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a  b  s  t  r  a  c  t

The “value of a prevented fatality” (VPF), the maximum amount that it is notionally reasonable to pay for a safety

measure that will reduce by one the expected number of preventable premature deaths in a large population, is

published by the UK Department for Transport (DfT). The figure, updated for changes in GDP per head, is used by the

DfT,  the Health and Safety Executive and other UK regulatory bodies as well as very widely in the process, nuclear and

other  industries as the standard by which to judge how much to spend to reduce harm to humans. The paper tests

the  validity of the 1999 study on which the VPF is based and finds that that study fails numerous tests of its validity.

It  is concluded that there is no evidential base for the VPF that has been used for many years in the UK and is still

in  standard use today. Given the difficulties evident in the interpretation of survey results, an urgent re-appraisal is

needed  of alternative statistical methodologies that can allow robust regulatory and industry safety decision making

and,  vitally, give adequate protection to the UK public and to those working in the UK’s transport, process, nuclear

and  other industries.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Executive
.  Introduction

he UK Government’s Department for Transport publishes the
value of a prevented fatality” (VPF), the maximum amount
hat it is notionally reasonable to pay for a safety measure
hat will reduce by one the expected number of premature
eaths in a large population associated with a transport pro-
ess or system (Department for Transport, 2013). Updated
or increases in GDP per head, the figure is assumed to be
he same for all people in the UK, irrespective of age or
ender, an assumption that has been questioned elsewhere
e.g. Nathwani et al., 1997, 2008; Pandey and Nathwani, 2003;
andey et al., 2006; Sunstein, 2004a,b; Thomas et al., 2006a,b,
010; Thomas and Vaughan, 2013). Nevertheless the figure
s important, as it is used extensively in the UK as a ref-
rence both by Government departments and by the Health

nd Safety Executive. Its adoption by the HSE has led to
ts widespread use in the UK process, nuclear and other
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industries as a standard for judging how much should be spent
on protection measures aimed at reducing risks to life.

The UK Health and Safety Executive (HSE) has, in
fact, built the Department for Transport’s VPF figure into
the core of its decision making process. In its state-
ment (Health and Safety Executive, 2001) of “the protocols
and procedures we  follow to ensure that the process of
decision-making, including risk assessment and risk man-
agement, is perceived as valid”, the HSE states, in paragraph
103:

“When an option produces the benefit of preventing fatali-
ties, this requires putting a monetary value on achieving a
reduction in the risk of death. For example, for the purpose
of conducting CBAs [cost-benefit analyses], we  currently
take as a benchmark that the value for preventing a fatality
0.
uk (P.J. Thomas).

(VPF) is about £1 000 000 (2001 figure). . ..  This figure derives
from the value used by the Department of Transport, Local

is an open access article under the CC BY-NC-ND license

http://www.sciencedirect.com/science/journal/09575820
www.elsevier.com/locate/psep
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2014.07.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:pjt3.michaelmas@gmail.com
mailto:p.j.thomas@city.ac.uk
dx.doi.org/10.1016/j.psep.2014.07.001
http://creativecommons.org/licenses/by-nc-nd/3.0/


240  Process Safety and Environmental Protection 9 4 ( 2 0 1 5 ) 239–261
Government and the Regions (DTLR) for the appraisal of
new road schemes.”

Thus the DfT VPF is the benchmark by which the HSE
judges schemes to protect human life in the process, nuclear
and other industries. Regarding death from cancer as caus-
ing people particular dread, HSE doubles the VPF figure when
considering death from this disease (HSE, 2001, Appendix 3):

“HSE takes the view that it is only in the case where death
is caused by cancer that people are prepared to pay a
premium for the benefit of preventing a fatality and has
accordingly adopted a VPF twice that of the roads bench-
mark figure.”

While the Office for Nuclear Regulation has been spun out
recently from the Health and Safety Executive, its require-
ments remain unchanged, as shown in the UK’s answers to
questions posed by other countries at the 2011 International
Convention on Nuclear Safety (Office for Nuclear Regulation,
2011):

“This value is based on the value for preventing a fatality
(VPF) applied by the UK Government when appraising road
safety measures, and is set at £1m per life at 2001 prices”

It is noted in the same document that the “factor of 2 for
‘dread’ of cancer” is currently “under review”.

The adoption by the regulators of the process and nuclear
industries of the Department for Transport’s VPF figure means
that that figure has become de facto a benchmark across those
industries.

A history of the development of the UK VPF figure is given
in Wolff and Orr (2009), Appendix 1, where those authors con-
clude that

“it appears that the Carthy study is now the primary source
of VPF figures, adjusted for inflation and changes in GDP.”

The Carthy study (Carthy et al., 1999) consists of an opin-
ion survey, conducted in 1997, in which 167 respondents were
asked about the amounts that they would be prepared to pay
to reduce the risk of death or injury in a road accident. The
results were analysed using utility theory to produce a VPF
figure, and this has been updated each year in line with the
growth in GDP per head. Despite the fact that it has been many
years since the survey was made, a 2011 report for the Depart-
ment for Transport, with authors in common with the Carthy
study, recommended “against any early new full scale WTP
[willingness to pay] study” (Spackman et al., 2011). Thus the
opinion survey of the 167 people in 1997 remains the eviden-
tial base for the VPF used by the Government, regulators and
many industries in the UK today, including the process and
nuclear industries.

The Carthy study interprets survey data using a method
that may be described as the “two-injury chained” method,
which depends on a fairly involved application of utility the-
ory. Believing that people could not be expected to answer
accurately on how much they would spend to reduce further
an already low risk of a fatal injury, Carthy et al. decided to seek
an estimate of the VPF indirectly, by asking people to consider
a lesser injury first, with which they considered people would
be better able to cope. They introduced the two-injury chained
model, where the response to a serious injury of the second
type, e.g. a fatal injury, is deduced after first eliciting from the
person a statement of how much he would spend to reduce

the probability of a lesser injury of type 1. Further questioning
is then used to establish the ratio of the individual’s desired
spending to reduce the chances of the more  serious, type 2
injury to his spending to reduce the probability of the type 1
injury. Multiplying the two values together gives the person’s
marginal rate of substitution (MRS) of wealth in place of non-
injury probability for the type 2 injury, a process Carthy et al.
call “chaining”. When the type 2 injury is fatal, the individual’s
MRS is his personal VPF (see Eq. (A.36)), and averaging over the
individuals in the sample produces the sample VPF.

The validation of the chained method is regarded by Wolff
and Orr (2009) as “severely challenging”:

“the method needs to make assumptions about the shape
of an average person’s utility function, connecting their
attitudes to small risks with their attitudes to the much
larger risks that are presented to the subject. Yet the test-
ing of any such assumption, and hence the validation of
the method, presents severe challenges. In order to test the
chained method it appears necessary to elicit individual
willingness to pay for very small changes in risk so they
can be compared with attitudes to larger changes. How-
ever, if it were possible to elicit such preferences then the
chained method would not be necessary; it was introduced
precisely because it has so far proven impossible to elicit
such preferences in any reliable way. In short, if it were
possible to validate the chained method, it would not be
necessary.”

However, it is shown in this paper that the method may
indeed be subjected to a fair test of its validity using no more
data than were available at the time to Carthy et al. To do so,
however, it is necessary first to generalise the mathematics
of the two-injury chained model (Appendix A) and to explain
the four utility functions used by Carthy et al.: Constrained
Power, Logarithmic, Negative Inverse and Negative Exponen-
tial (Appendix B).

While attempting to retain many  of the original symbols
used by Carthy et al., it has been found necessary to extend the
notation in places, particularly through the use of clarifying
subscripts and superscripts.

2.  Data

The authors are grateful to Professor Michael Jones-Lee for
providing them with a copy of the document, “Individual
Responses & VOSLS – PEG Study”, HSE/Peg/Nov 1997/SC, that
contains responses from the people taking part in the Carthy
survey as well as the calculated marginal rate of substitution
(MRS) values for the Constrained Power, Logarithmic and Neg-
ative Exponential utility functions, although, anomalously,
not for the Negative Inverse utility function.

We examine the data and the processes that have been
applied to them to show that there are inconsistencies in the
results that are derived and that the number of responses
that can reasonably be used in defining a VPF is less than the
authors propose. One of the early findings is that there are dis-
crepancies in the application of the various utility functions,
with values produced by one utility function being labelled
and used as if they came from a different one.

The 167 people in the Carthy survey were each given a
numeric identifier in the range 1–169, with numbers 62 and
63 being unassigned. The calculations have been repeated
and checked in detail with those in HSE/Peg/Nov 1997/SC (see
Tables 1 and 2).
The variable, m
(2)
Di

, is defined as individual i’s MRS  of
wealth in place of non-fatal-injury probability – his personal
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Table 1 – Comparison of computations of VPF in Carthy et al. and in this paper: 2-part chaining.

Utility function Mean (£) n Sample standard
deviation (£)

Standard error (£)

Carthy et al.
Constrained Power 3.41E+06 151 2.16E+07 1.76E+06
Logarithmic 2.98E+06 151 1.99E+07 1.62E+06
Negative Inverse 2.74E+06 151 1.95E+07 1.59E+06
Negative Exponential 2.62E+06 151 1.94E+07 1.58E+06

This paper
Constrained Power 3.40E+06 151 2.17E+07 1.76E+06
Logarithmic 2.95E+06 146 2.02E+07 1.67E+06
Negative Inverse 2.75E+06 150 1.97E+07 1.60E+06

V
o
c
t
t
c
a
p
m
t
(
X
i
a
o
b

c
s
d
i
a
i
f
c
D
t
X

t

l
c

r
i

Negative Exponential 2.69E+06 151 

PF – calculated by the two-injury chained method, applied
nce. Here the bracketed superscript, (2), indicates that “2 part
haining” from a lesser to a greater injury has been used, while
he subscript, D, indicates that the greater injury is death in
his case. Injury X is the lesser injury on which Carthy et al.
hoose to base their main calculation of m

(2)
Di

(see Section 3 for
 definition of the injuries considered by Carthy et al.). The
rocess involves, inter alia, the individual stating both the
aximum acceptable price (MAP), xXi, he is prepared to pay

o avert injury X, and the minimum acceptable compensation
MAC), yXi, he would require to make up for his receiving injury
. A utility function is then used to find from xXi and yXi the

ndividual’s MRS,  mXi, of wealth in place of non-injury-X prob-
bility, as described in Appendix B. Since mXi is derived in a
ne-stage process rather than in a two-stage process, mXi may
e written m

(1)
Xi

in this case.
The two-injury chaining model may be applied suc-

essively in a pairwise manner to injuries of increasing
eriousness. Carthy et al. use the term “3 part chaining” to
escribe a process based on three injuries of monotonically

ncreasing magnitudes: from the least serious W through X
nd then on to D (D for death). The two-injury chaining method
s applied first to generate the MRS  associated with injury X
rom the baseline MRS  for injury W,  and then the MRS  just cal-
ulated for injury X is used to estimate the MRS  for fatal injury,
. Hence respondents are asked to state their MAP, xWi, and

heir MAC,  yWi, for an injury W that is less serious than injury
, which allows mWi = m

(1)
Wi

to be calculated. 2-part chaining is

hen to calculate m
(2)
Xi

from m
(1)
Wi

and then reapplied to calcu-

ate m
(3)
Di

from m
(2)
Xi

. m
(3)
Di

is then the individual i’s personal VPF
alculated by “3-part chaining”.

Examination of the data contained in HSE/Peg/Nov 1997/SC
eveals that, in deriving the sample VPF using 2-part chain-

ng from injury X to fatal injury D, Carthy et al. sometimes

Table 2 – Comparison of computations of VPF in Carthy et al. an

Utility function Mean (£) n 

Carthy et al.
Constrained Power 3.30E+07 150 

Logarithmic 2.50E+07 150 

Negative Inverse 1.80E+07 150 

Negative Exponential 1.40E+07 150 

This paper
Constrained Power 3.30E+07 150 

Logarithmic 2.66E+07 138 

Negative Inverse 1.76E+07 150 

Negative Exponential 1.45E+07 150 
1.93E+07 1.57E+06

applied common values for m
(2)
Di

across the three utility func-
tions for which data were made available. This substitution
affects a significant fraction, about 20%, of the sample: 34 out
of the 167 cases. Specifically the personal VPF coming from the
Negative Exponential utility function is imposed on the Log-
arithmic utility function for respondent 13 and on both the
Constrained Power utility function and the Logarithmic utility
function for the following respondents: 6, 7, 12, 24, 27, 39, 58,
59, 70, 77, 85, 86, 88, 91, 97, 99, 100, 107, 108, 109, 113, 114, 122,
123, 128, 130, 145, 148, 152, 161, 163, 164 and 165. This anoma-
lous substitution does not appear to have been acknowledged
by the authors, nor justified.

In some instances the result found using the Nega-
tive Exponential utility function appears to have been used
because no valid number would have been returned by the
actual utility function specified. For example, respondent 114
gave yX114 = xX114 = 500, where yX114 is respondent 114s MAC
for receiving injury X, while xX114 is his MAP  for a system pro-
viding protection against injury X. From Eq. (B.20) derived in
Appendix B, the equality, yX114 = xX114, yields an incomputable,
infinite value for the MRS, mX114, associated with injury X, and
this leads in turn to an incomputable, infinite value for m

(2)
D114

when the Logarithmic utility function is used. By contrast,
HSE/Peg/Nov 1997/SC suggests that individual 114’s personal
VPF, m

(2)
D114, found using the Logarithmic utility, is £5045, which

is the result found from using the Negative Exponential utility
function.

The equality, yXi = xXi, occurs also in the data collected for
respondents 13, 108, 128 and 130. The present authors have
excluded the resulting numbers for m

(2)
Di

, as they are not com-
putable for the Logarithmic utility function (see Eq. (B.20)), so
that the number of usable results, n, is recorded in Table 1 as
n = 146, rather than n = 151, as declared by Carthy et al. for that

utility function. There is a further, important issue concerning

d in this paper: 3-part chaining.

Sample standard
deviation (£)

Standard error (£)

2.69E+08 2.20E+07
1.96E+08 1.60E+07
1.22E+08 1.00E+07
9.92E+07 8.10E+06

2.63E+08 2.15E+07
2.00E+08 1.70E+07
1.26E+08 1.03E+07
9.86E+07 8.05E+06
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the cases where the MAC for injury, X, is strictly less than
the MAP: yXi < xXi, and this will be discussed in Section 5. For
the present, however, and to give better comparability with
the declared figures of Carthy et al., the present authors have
retained results wherever they are computable.

In a similar fashion, it was found that common figures for
the personal VPF, m

(3)
Di

, found from 3-part chaining had been
applied in HSE/Peg/Nov 1997/SC across all the reported utility
functions for 32 cases, namely for respondents 7, 12, 13, 16,
19, 24, 58, 59, 65, 70, 77, 79, 84, 85, 86, 88, 99, 101, 112, 113,
122, 123, 124, 126, 130, 148, 150, 152, 159, 161, 163 and 169.
Once again the figure found using the Negative Exponential
utility function appears to have been substituted in place of
the figure (or lack of one) coming from the Constrained Power
and Logarithmic utility functions, without acknowledgement
or justification.

For the Logarithmic utility function, it was found neces-
sary in this paper to exclude 10 cases where yWi = xWi: no value
of m

(3)
Di

was computable for respondents 13, 19, 65, 77, 84, 86,
112, 126, 130 and 148. Additional exclusions were needed for
respondent 108, since yW108 =∞, and respondent 114, since
xW114 = 0 (see Eq. (B.20)). These twelve incomputable cases

account for the fact that “n” for the m
(3)
Di

values is listed by
the present authors for the Logarithmic utility function as 138
rather than the 150 declared by Carthy et al. (see Table 2).

The sample standard deviations associated with the VPF
for the various utility functions were not given in Carthy et al.,
but that omission has been remedied in Tables 1 and 2. Fig. 1
shows a histogram of the calculated personal VPF values, m

(2)
Di

,
under the Constrained Power utility function using the two-
injury chained method. The spread of personal VPFs is very
extensive, from £850 to £264 M.  However, a lognormal prob-
ability distribution, using a mean of £3.40 M and a standard
deviation of £21.7 M, as listed in Table 1, gives a good represen-
tation of the reported data throughout this very large range,
as Fig. 1 demonstrates.

3.  Testing  the  validity  of  the  two-injury
chained  method

3.1.  Fundamental  test

Carthy et al. consider 3 injuries, listed below in increasing
order of severity:

injury W:  2–3 days in hospital, with full recovery after 3–4
months;
injury X: 2 weeks hospitalisation, with full recovery taking 18
months;
injury D: fatal injury (D for death).

Because X is more  severe than W,  the two-injury chained
model explained in Appendix A allows an indirect estimate of
person i’s MRS  of wealth in place of non-injury probability for
injury X, mXi, to be found from his MRS  in place of non-injury
probability for injury W,  mWi. Consider now injury D: being
fatal, it is more  severe than either X or W.  Hence an indirect
estimate of person i’s MRS  associated with injury D, mDi, may
be found from either his MRS  associated with injury X, mXi, or
his MRS  associated with injury W,  mWi.

In fact, Carthy et al. recommend a VPF based on using an

individual’s responses to injury X to produce an indirect esti-
mate of his MRS  associated with fatal injury D – his personal
VPF. Thus person i’s personal VPF, m
(2)
Di

, is based on Eq. (1),
derived and explained in Appendix A as Eq. (A.20):

m
(2)
Di

= 1 − �X

˘Xi − �X
m

(1)
Xi

(xXi, yXi) (1)

The values for xXi, yXi and ˘Xi are elicited by questioning
from the respondent: xXi is the MAP that individual i says he
will pay for a measure that will avert injury, X, while yXi is the
MAC he says he requires for enduring injury X. Meanwhile ˘Xi

is his stated indifference probability of failure for an operation
to counter an otherwise fatal injury that will produce a swift
recovery if successful but will lead to death if unsuccessful,
given that the alternative is an operation with failure proba-
bility, �X, that will leave him with injury X if successful and
death if unsuccessful. Carthy et al. pre-set the value of �X at
10−3.

The value of the MRS associated with injury X, m
(1)
Xi

, used
in Eq. (1) depends on which of the four utility functions put
forward by Carthy et al. is used. Thus for a Constrained Power
utility function (Eq. (B.12) of Appendix B, with k = X):

m
(1)
Xi

= xXi
ln(xXi + yXi) − ln xXi

ln 2
(2)

while for a Logarithmic utility function (Eq. (B.20) of Appendix
B, with k = X):

m
(1)
Xi

= xXiyXi

yXi − xXi
ln

yXi

xXi
(3)

and for a Negative Inverse utility function (Eq. (B.27) of
Appendix B, with k = X):

m
(1)
Xi

= 2xXiyXi

xXi + yXi
(4)

and, finally, for a Negative Exponential utility function:

m
(1)
Xi

= eˇixXi − 1
ˇi

(5)

where ˇi = (ln�Xi)/xXi, in which �Xi(xXi, yXi) is the non-unitary
solution of

�Xi − 2 + �−(yXi/xXi)
Xi = 0 (6)

See Eqs. (B.31), (B.33), (B.36) and (B.38).
While Carthy et al. do not present any detailed evidence to

validate their two-injury chained model, it is, in fact, possible
to test its validity immediately using Eq. (7) based on Eq. (A.21):

m
(2)
Xi

= 1 − �W

˘Wi − �W
m

(1)
Wi

(xWi, yWi) (7)

The parameters, xWi and yWi, defined fully analogously with
xXi and yXi, are the respondent’s stated MAP  and MAC with
respect to injury W.  Meanwhile ˘Wi is the individual’s indif-
ference probability of failure for an operation against bodily
harm that will result in injury X if untreated, where that oper-
ation will bring about a rapid recovery if successful but will
leave him with injury X if unsuccessful, given that the alterna-
tive is an operation with failure probability, �W, that will leave
him with injury W if successful and injury X if unsuccessful.
Carthy et al. fixed �W at 10−2.
It may be seen that Eq. (7) is exactly analogous to Eq. (1), the
basis of the VPF value recommended by Carthy et al., and is



Process Safety and Environmental Protection 9 4 ( 2 0 1 5 ) 239–261 243

0

2

4

6

8

10

12

14

16

18

6 7.0 8.0 9.0 10
.0

11
.0

12.0 13
.0

14
.0

15
.0

16
.0

17
.0

18
.0

19
.0

20
.0

ln(m (2)
Di )

N
um

be
r o

f r
es

po
nd

en
ts

 in
 in

te
rv

al

Fig. 1 – Histogram for ln(m2
Di

) : results of Carthy et al. compared with a lognormal distribution with mean = sample mean
a unct

t
i
f
i
E
E

m

m

m

m

w
u

t
f
t
t
X
o

o

m
a
T
r
f
i
o

p
f
p
t

e
c

nd variance = sample variance − Constrained Power utility f

herefore an excellent vehicle for a test of their method’s valid-
ty. In this regard, it is fortunate that Carthy et al. collected a
ull set of data: xWi, yWi, ˘Wi for each respondent, thus allow-
ng a calculation of the MRS  associated with injury X, mXi, from
q. (7). The value of the MRS  associated with injury W,  m

(1)
Wi

, in
q. (7) is given by (cf. Eqs. (2)–(6)):

(1)
Wi

= xWi
ln(xWi + yWi) − ln xWi

ln 2
for a Constrained Power

utility function (8)

(1)
Wi

= xWiyWi

yWi − xWi
ln

yWi

xWi
for a Logarithmic utility function (9)

(1)
Wi

= 2xWiyWi

xWi + yWi
for a Negative Inverse utility function (10)

(1)
Wi

= eˇixWi −1
ˇi

for a Negative Exponential utility function (11)

here ˇi = (ln �Wi) /xWi, in which �Wi (xWi, yWi) is the non-
nitary solution of �Wi − 2 + �−(yWi/xWi)

Wi
= 0.

In addition to the four values of m
(2)
Xi

found from Eq. (7)

here is available an independent set of estimates, m
(1)
Xi

, one
or each utility function, from Eqs. (2) to (6). It is clear that for
he chained approach based on the two-injury chained model
o be valid, the individual’s MRS  value associated with injury

 should be the same or at least close, irrespective of which
f the two  methods is used. It should be found that m

(2)
Xi

= m
(1)
Xi

r, equivalently, m
(2)
Xi

/m
(1)
Xi

= 1.
Unfortunately, far from matching each other closely, the

Xi values calculated from the direct, one-stage method
nd the two-injury chained method are completely different.
able 3 shows that for each of the four utility functions, the
atio, m

(2)
Xi

/m
(1)
Xi

, is not restricted to the vicinity of 1.0 but ranges
rom near zero to about 100, with an average value of approx-
mately 6, subject to the very large sample standard deviation
f about 15.

Another perspective is given by Fig. 2, which shows the
lot of m

(2)
Xi

versus m
(1)
Xi

under the Constrained Power utility
unction for the 158 data points available. The straight line
lotted on the log–log graph is the best-fit straight line
hrough the origin, m

(2)
Xi

= 8.2442m
(1)
Xi

, very different from the
quation m
(2)
Xi

= m
(1)
Xi

that the data should be supporting if the
haining method were to be validated. Moreover, the degree
ion.

of linear correlation is almost non-existent: while the square
of the correlation coefficient, R2 should obey R2 = 1.0 or be
close, the actual value is R2 = 0.0719.

The plots for the other utility functions show similar
scatter, and the results are summarised in the linear equations
found from minimising the squared error:

Constrained Power utility function: m
(2)
Xi

= 8.2442m
(1)
Xi

, R2 =
0.0719
Logarithmic utility function: m

(2)
Xi

= 6.1887m
(1)
Xi

, R2 = 0.0443

Negative Inverse utility function: m
(2)
Xi

= 4.0335m
(1)
Xi

, R2 =
0.0195
Negative Exponential utility function: m

(2)
Xi

=
3.3146m

(1)
Xi

, R2 = 0.0079

There is no disguising the fact that the slope violates by
a very large margin its requirement to be equal to 1.0. More-
over, the plotted variables are barely linearly correlated at all:
R2 < 0.08 in each of the four cases. It is clear than 2-part chain-
ing has failed comprehensively this fundamental test of the
method’s validity.

Based on data collected for the Carthy study, it has to be
concluded that the chained method is devoid of validity.

3.2.  The  “internal  consistency”  check  advanced  by
Carthy et  al.

Carthy et al. presented their version of the fundamental vali-
dation test of Section 3.1 when they combined Eqs. (1) and (7)

to give the individual’s VPF, m
(3)
Di

, based on 3-part chaining as:

m
(3)
Di

= 1 − �X

˘Xi − �X

1 − �W

˘Wi − �W
m

(1)
Wi

(xWi, yWi) (12)

and compared this with the individual’s VPF, m
(2)
Di

, based on 2-
part chaining as Eq. (1), repeated below for ease of comparison:

m
(2)
Di

= 1 − �X

˘Xi − �X
m

(1)
Xi

(xXi, yXi) (1)

They called this an “internal consistency” check, saying
that “too wide a divergence would be cause for concern”.
The only difference between comparing m
(2)
Xi

from Eq. (7)

with m
(1)
Xi

found directly and comparing m
(3)
Di

from Eq. (12) with
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Table 3 – Statistics for m
(2)
Xi

/m
(1)
Xi

.

Utility function n Mean Sample standard
deviation

Minimum Maximum

Constrained Power 158 5.94 14.58 0.16 109.6
Logarithmic 145 6.30 16.17 0.16 114.5
Negative Inverse 159 5.89 14.66 0 102.8

Negative Exponential 158 5.86 

m
(2)
Di

from Eq. (1) is that each of the former values are multiplied
by �i = (1 − �X)/(˘Xi − �X) to produce the latter:

m
(3)
Di

= �im
(2)
Xi

m
(2)
Di

= �im
(1)
Xi

i = 1, 2, 3. . . (13)

Hence, provided �i, i = 1, 2, 3... is computable and non-zero,
it will cancel when these two equations are divided:

m
(3)
Di

m
(2)
Di

= m
(2)
Xi

m
(1)
Xi

i = 1, 2, 3. . . (14)

Thus the “internal consistency” check may be regarded as
a version of the fundamental test of the two-injury chained
methodology, slightly abbreviated because of the incom-
putability of about 10% of the �i values.

The requirement for validity of the two-injury chained
method is that m

(3)
Di

/m
(2)
Di

= 1, at least approximately, a con-

dition that is completely equivalent to m
(2)
Xi

/m
(1)
Xi

= 1. The

statistics for the ratios, m
(3)
Di

/m
(2)
Di

, given in Table 4 are, of
course, almost identical to those of Table 3. The small differ-
ences arise from the elimination of the 16 cases where �i is
incomputable, a situation occurring when a respondent sets
his indifference probability at ˘Xi = �X. While a few of these
instances coincide with other computability problems affect-
ing the m

(2)
Xi

vs. m
(1)
Xi

assessment also, the overall effect is that
the “internal consistency” check will have fewer comparisons
to draw upon than the fundamental test detailed in Section
3.1. 144 comparisons may be made if one of the Constrained
Power, Negative Inverse or Negative Exponential utility func-

tions is used and 133 when the Logarithmic utility function is
chosen as the vehicle for interpreting the survey results. But

Constrained Po
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Fig. 2 – mXi values from chained approach, m
(2)
Xi

, versus more  dire
function.
14.24 0.13 99.0

far from producing the result needed to validate the chained
method, namely m

(3)
Di

/m
(2)
Di

= 1.0 (or a close approximation),

Table 4 shows that the ratio, m
(3)
Di

/m
(2)
Di

, has a sample mean of
about 6 and a sample standard deviation of about 15.

Fig. 3 shows a plot of the 144 comparisons possible when
the Constrained Power utility function is used to interpret the
opinion-survey data. The degree of scatter is similar to that of
Fig. 2 when due allowance is made for the 1000-fold increase
in scale compared with Fig. 2. The data points should reflect
the equation: m

(3)
Di

= m
(2)
Di

, with an R2 value of 1.0, or at least

provide a close approximation. However, when m
(3)
Di

is plotted

against m
(2)
Di

, the best linear matches are

Constrained Power utility function: m
(3)
Di

= 3.6458m
(2)
Di

, R2 =
0.0767
Logarithmic utility function: m

(3)
Di

= 2.9032m
(2)
Di

, R2 = 0.0742

Negative Inverse utility function: m
(3)
Di

= 2.2313m
(2)
Di

, R2 =
0.1024
Negative Exponential utility function: m

(3)
Di

=
1.9145m

(2)
Di

, R2 = 0.1218

As with mXi, the two mDi values are barely linearly corre-
lated, whichever utility function is used. An intuitive feel for
the sort of disparity involved is provided in Table 5, which
shows the personal VPFs, mDi, values for respondents 30, 31,
32, 33 and 34. The table shows that not only does each of the
respondents appear to disagree dramatically with his neigh-
bours on the value of the VPF, he appears also to have a major
disagreement with himself.

Surprisingly, Carthy et al. make no acknowledgement of

the internal inconsistencies their two-injury chained method
generates. Those studying Fig. 3 and Tables 4 and 5 might

wer Utility Function

000,001000,01

m (1)
Xi 

 equation on graph )

ctly calculated values, m
(1)
Xi

: Constrained Power utility
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Table 4 – Statistics for m
(3)
Di

/m
(2)
Di

.

Utility function n Mean Sample standard
deviation

Minimum Maximum

Constrained Power 144 6.30 15.21 0.16 109.6
Logarithmic 133 6.73 16.82 0.16 114.5
Negative Inverse 144 6.30 15.33 0.16 102.8
Negative Exponential 144 6.23 14.84 0.16 99.0

Constrained Power Utili ty Fun ction
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Fig. 3 – Personal VPF found from 3-part chaining, m
(3)
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, against that found from 2-part chaining, m
(2)
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tility function.

nd it difficult to understand just how wide the divergence
ould need to be before becoming acknowledged as a “cause

or concern”. Carthy et al. content themselves with suggesting
hat

“the indirect approach involves a three-part chaining
process and is therefore clearly more  vulnerable to com-
pounding of errors than the more  direct approach”

The suggestion is misleading, since the “internal consis-
ency” check of Carthy et al. is actually equally a test of 2-part
haining as of 3-part chaining, for, as has been shown, the
oor match between m

(3)
Di

and m
(2)
Di

is caused not by the exten-
ion from 2-part to 3-part chaining, which involves merely the
se of a common multiplier (see Eq. (13)), but by the deviation

f the ratio, m
(2)
Xi

/m
(1)
Xi

, from unity, where m
(1)
Xi

is found directly

nd m
(2)
Xi

is found through the 2-part chaining process.
The “internal consistency” check was available to Carthy

t al. at the time their paper was written, putting them in a
osition to make a test of the validity of the two-injury chained

ethod. As has just been shown, their two-injury chained
ethod fails this test comprehensively.

Table 5 – Comparison of the VPF value (mDi) from 2-part
chaining and 3-part chaining for respondents 30, 31, 32,
33 and 34. Constrained Power utility function.

Respondent VPF from 2-part
chaining (£)

VPF from 3-part
chaining (£)

30 618,569 7,713,783
31 104,726 892,040
32 707,034 9,487,290
33 131,948 29,093
34 79,387 68,020
3.3.  Comparison  with  a  random  simulation

To put Fig. 3 into further perspective, a simulation was car-
ried out of the comparison of the personal VPFs, m

(2)
Di

and

m
(3)
Di

, arising from 2-part and 3-part chaining, when the Con-
strained Power utility function was used as the vehicle to
interpret the survey data. Random number generators were
used first to simulate the VPFs, M

(2)
Di

, found from 2-part chain-
ing and then to simulate a corresponding set of personal VPFs,
M

(3)
Di

, found from 3-part chaining. In line with the number of
computable results resulting from the application of the Con-
strained Power utility function, 144 comparison pairs were
generated.

The enormous spread of personal VPFs, m
(2)
Di

, reported
(from £850 to £264 M) was accommodated by conditioning the
random numbers using the lognormal distribution found to
provide a good match to the results from the Constrained
Power utility function (see Fig. 1). The M

(2)
Di

figures were then
multiplied by a random multiplier, Ri, to give a simulation of
the personal VPFs, M

(3)
Di

, found from 3-part chaining:

M
(3)
Di

= RiM
(2)
Di

(15)

The 3-orders-of magnitude spread in the observed values
of the personal multiplier, Ri, from 0.16 to 109.6, was mod-
elled by once again using a lognormal probability distribution
to condition the random numbers generated. Fig. 4 shows the
match between the recorded number of respondents associ-
ated with given intervals of ln(m(3)

Di
/m

(2)
Di

) and those predicted by
a lognormal probability distribution with a mean of 6.30, and
a standard deviation 15.21, as listed in the top line of Table 4.
It is clear that the lognormal distribution captures the gen-
eral outline and spread of the recorded values, if not their
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mean = sample mean and variance = sample

variance − Constrained Power utility function.

full granularity. The match is good enough to allow the values
reported by Carthy et al. to be compared against those coming
from a random simulation over the same range.

Fig. 5 presents the simulation results under one realisation,
indicating that simulation based on random number genera-
tors can reproduce approximately the very wide spread across
both axes observed in the graph of m

(3)
Di

versus m
(2)
Di

given
in Fig. 3. A credible visual match between Figs. 3 and 5 is
revealed. Moreover, the best-fit straight-line passing through
the origin for the simulated data of Fig. 5 has the equation,
m

(3)
Di

= 3.735m
(2)
Di

, close to the survey result of Carthy et al.,

where the best-fit line is m
(3)
Di

= 3.6548m
(2)
Di

.
The correlation for the random simulation is, however, sig-

nificantly better than for the recorded results: R2 = 0.3331 as
compared with R2 = 0.0767 for the observed data. The higher
linear correlation between the randomly generated results
than between the observed data of Carthy et al. is charac-
teristic of many  of the simulation realisations. This may be
because of the greater regularity of the lognormal distribution
as compared with the actual distribution for the multiplier, Ri,
as illustrated by in Fig. 4.
It is, of course, at least questionable whether the spread
of personal VPFs, m

(2)
Di

, in the UK population in 1997 could
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Fig. 5 – Simulation of the Constrained Power utility function resu
a log normally distributed multiplier.
have been as wide as the 5 orders-of-magnitude range from
£850 to £264 M reported by Carthy et al., as reflected in the
mean, £3.4 M,  and standard deviation, £21.7 M,  of the simu-
lated VPF under the Constrained Power utility function. But,
whether or not the range, £ 850 ≤ m

(2)
Di

≤£ 264, 100, 000 is rea-

sonable, it is certain that the ratio of m
(3)
Di

to m
(2)
Di

(exactly equal

to the ratio of m
(2)
Xi

to m
(1)
Xi

) should not have deviated appreciably
from unity, and that the square of the correlation coefficient
should not have fallen much below 1.0. The fact that a ran-
dom realisation incorporating a lognormal distribution for the
multiplier, Ri, with a mean of 6.3 and standard deviation of
15.21, is able to provide a good visual match to the graph of
Fig. 3 (even showing a better correlation value) provides an
intuitively understandable illustration of how far the results
reported by Carthy et al. fall short of satisfying the validity
test for the 2-part chaining principle. This is surely evidence
of the “wide divergence” feared, but apparently not discovered
by Carthy et al.

4.  The  wealths  of  the  respondents

The wealth, wi, of each respondent emerges as an inter-
mediate result that allows the individual VPFs, m

(1)
Di

, to be
calculated for the Constrained Power, Logarithmic and Neg-
ative Inverse utility functions (see Appendix B). If the utility
function methodology is correct, the wealth of each respon-
dent will be predicted accurately. An incorrect prediction of
wealth will mean that the utility function methodology used
by Carthy et al. is flawed, which will mean that it cannot be
relied upon for the purposes of estimating the respondent’s
personal VPF.

Two values of wealth may be calculated per individual for
each of these utility functions, corresponding to his MAP  and
MAC for each of the injuries, W and X. The figures should, of
course, coincide, but it is found that they are not even close.
Thus the utility function methodology relied upon by Carthy
et al. must be judged immediately to be flawed. Thus a further
test of the method’s validity is failed.

For the 112 respondents with positive wealths deduced
under the Logarithmic utility function from the responses to

both injury W and injury X, the best linear match between the
wealth under injury W and the wealth found under injury X

5 1.E+06 1.E+07 1.E+08 1.E+09

 by l ogno rmal  model
equation  on g raph)

lts: m
(2)
Di

obeys a lognormal distribution; m
(3)
Di

is found using
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where “under” is shorthand for “based on the responses for”)
s:

Wi = 0.0984wXi R2 = 0.1591 (17)

It should be borne in mind that for the methodology to have
alidity, the equation should be wWi = wXi or a close approx-
mation, while the R2 value should be unity or nearly so. It is
lear from Eq. (17) that the actual values come nowhere near
hose requirements.

Since the wealth under the Negative Inverse utility func-
ion is always twice that for the Logarithmic utility function
see Eqs. (B.16) and (B.24)), Eq. (17) will apply to the Nega-
ive Inverse for the same 112 respondents. It is clear that the
ealths, which should be identical, are hardly correlated.

The poor linear correlation improves for the 161 respon-
ents where wealths may be calculated under injury W and
nder injury X for the Constrained Power utility function:

Wi = 0.2452wXi, R2 = 0.5751 (18)

ut the slope of the line is only a quarter what it should
e, were the method to be valid. The respondent’s predicted
ealths under injuries W and X are clearly markedly different
hen, of course, they should be the same.

Fig. 6 gives a histogram for wealth under injury X for
he Negative Inverse utility function. Meanwhile Fig. 7 plots
he wealth histogram for the Constrained Power utility func-

ion under injury X. While Fig. 6 suggests that a significant

Power Utility Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10
0 t

o 10
5-

90
 to

 95
-

80
to

85
-

70
 to

75
-

60
 to

 65
-

50
 to

55
-

40
 to

 45
-

30
to 

35
-

20
 to

25
-

10
 to

 15
-

0 t
o 5-

Wealth  based on respo nse for  injury X (£k)

Fr
ac

tio
n 

of
 s

am
pl

e

ig. 7 – Histogram of wealths under injury X for the
onstrained Power utility function (notation: 50− indicates
9,999).
number of the respondents are heavily in debt, this conclusion
is contradicted by Fig. 7, in another inconsistency.

Moreover, the low level of wealth predicted for the respon-
dents is striking, even when the wealths under injury X
(generally much higher than those under injury W)  are consid-
ered. The average wealths under this injury are: £5252 for the
Constrained Power utility function, £3568 for the Logarithmic
utility function and £7136 for the Negative Inverse utility func-
tion. These figures are less than 10% of the average net wealth
of UK adults (aged 18 and over) in 1997, given by Matheson and
Summerfield (2000) as £78,300 in 1998 £s.

This discrepancy in wealth is particularly important
because the VPF can be expected to be strongly increasing
in wealth. For example under the Logarithmic utility func-
tion preferred by the UK Treasury, a person without heirs and
no interest in charity could be expected to have the following
utility function

mDi ≈ wi ln wi (19)

which is clearly strongly increasing in wealth, wi (see Eq. (A.9)
and the discussion following).

Section 3 has demonstrated already that the method used
by Carthy et al. to produce a VPF is invalid. This conclusion is
reinforced by the method failing to come even close to predict-
ing the same wealth under injury X as under injury W for the
same individual. But if we were to set these failures aside for
the moment, and take the methods on trust up to this point,
it is clear that even then the VPF figures reported by Carthy
et al. would have been biased low and therefore incorrect as a
result of the selection of respondents with low wealths.

If the wealths of the respondents in the surveys could
be shown actually to have been much higher than the pre-
dicted wealths generated by from the utility functions used by
Carthy et al. then this new inconsistency between predicted
and actual wealths would cause their methods to fall once
more.

Further problems associated with wealth, including nega-
tive wealths, are discussed in the next section.

5.  The  problems  when  an  individual’s  MAC
is  less  than  or  equal  to  his  MAP

Some respondents stated a MAC value less than or equal to
their MAP value, which causes a particular problem for the
methods of Carthy et al., as impossible or incalculable values
are implied either for the individual’s wealth or for the utility
of his wealth. The exploration of this situation for the different
utility functions suggests that many  of the responses have to
be discarded.

5.1.  Logarithmic  utility  function

The Logarithmic utility function is defined by Eq. (B.13),
repeated below:

Ui (wi) = ln wi (B.13)

An obvious problem arises when an individual’s MAC,  yki,
is equal to his MAP,  xki: yki = xki since, from Eq. (B.16) the
individual’s wealth, wi, is calculated to be infinite, which is
impossible. Similarly, yki =∞, is inadmissible on grounds of

impossibility. Using Eq. (B.16), wealth would appear to become
negative when an individual’s MAC is less than his MAP:
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yki < xki, and become zero when xki = 0. But since no logarithm
can be taken in either case, the Logarithmic utility function
cannot exist (Eq. (B.13)). This means that, while it may be pos-
sible to calculate a zero or negative wealth from Eq. (B.16), the
theory on which its validity is based has collapsed.

Thus the evidence of the following 36 respondents concern-
ing injury X is ruled out on the grounds that yXi ≤ xXi: 6, 7, 8,10,
12, 13, 24, 27, 39, 58, 59, 65, 70, 77, 78, 85, 86, 88, 90, 91, 97, 99, 100,
103, 107, 113, 114, 122, 128, 130, 145, 148, 149, 152, 161 and 163.
In addition, yX108 =∞, meaning that mX108 is not computable.

When considering calculating m
(2)
Di

values, based on 2-part
chaining, it needs to be borne in mind that no computable
value of �i = (1 − �X)/(˘Xi − �X) exists when ˘Xi = �X, as was the
case with 16 respondents, specifically respondents 3, 8, 10, 46,
78, 83, 90, 93, 95, 103, 115, 118, 137, 149, 153 and 155. After
taking out the 6 respondents who appear in more  than one
list based on injury X, namely 8, 10, 78, 90, 103 and 149, this
implies that 36 + 1 + 16–6 = 47 of the 167 responses cannot be
interpreted using the 2-part chained approach based on the
Logarithmic utility function. This leaves only 120 of the origi-
nal 167 responses as meaningful for any attempt to estimate
a VPF based on 2-part chaining using the Logarithmic utility
function.

As noted above, Carthy et al. allowed themselves the
freedom to substitute results derived from the Negative Expo-
nential utility function into the column of the Logarithmic
utility on a good many  occasions. This might raise the thought
that the Negative Exponential utility function would be robust
against cases when yki ≤ xki, but this is not so, as will now be
shown.

5.2.  Negative  Exponential  utility  function

The Negative Exponential utility function obeys Eq. (B.28),
repeated below:

Ui(wi) = −e−ˇiwi ˇi > 0 (B.28)

It shown in Appendix B that the only admissible values for
the ratio of MAC to MAP,  cki = yki/xki, are those in the range
1< cki ≤ ∞,  while �ki is constrained to 1 < �ki ≤ 2. Interestingly,
the response yX108 =∞ (or at least yX108→ ∞)  can be coped with,
since �X108 → 2.

Thus for the Negative Exponential utility function, the
same set of 36 respondents listed in Section 5.1 for whom
yXi ≤ xXi are still ruled out. This means that estimating a VPF
using 2-part chaining and the Negative Exponential utility
function can be based validly on only 121 out of the 167 respon-
dents.

5.3.  Negative  Inverse  utility  function

The Negative Inverse utility function takes the form of Eq.
(B.22), repeated here:

Ui(wi) = − 1
wi

(B.22)

The wealth is given by Eq. (B.24), so that wi = ∞ when
yXi = xXi, which is unrealistic – no-one has infinite wealth.
Meanwhile yXi < xXi implies negative wealth, which leads the

utility function to behave in an anomalous and unrealistic
way. For the utility of having a negative wealth of −P pounds,
P > 0, viz. owing P pounds, will always be greater than the utility
of owning P pounds:

U(−P) = 1
P

> U(P) = −1
P

(20)

For this reason the Negative Inverse function can be used
for utility calculations only when the wealth stays strictly pos-
itive.

Note that in Eq. (B.27) as yki→ ∞ so mki → 2xki. Hence the
response yX108→ ∞ can be accommodated. But the 36 respon-
dents with yXi ≤ xXi are ruled out, and the 2-part chaining
calculation must proceed on the basis of only 121 respondents.

5.4.  Constrained  Power  utility  function

The Power utility function is given by Eq. (B.1), repeated below

Ui(wi) = w1−εi
i = wsi

i (B.1)

This utility function, too, is designed only for non-negative
wealths, but Carthy et al. circumvent the problem of negative
wealths by constraining the individual’s wealth to be the same
as his MAP:

wi = xki (B.6)

Hence the name, “Constrained Power utility function”.
The assumption behind Eq. (B.6) is that the person will be

prepared to give up all his wealth to avoid an injury, be it
injury X or the less serious injury W.  The rationale behind this
assumption is not made clear, and it introduces an immedi-
ate contradiction, since, in general, the person is prepared to
spend more  to avert a more  serious injury, so that xXi > xWi,
implying that Eq. (B.6) cannot be true. This is a built-in logical
failure: the individual’s wealth is assumed to change depend-
ing on which injury he is contemplating, an impossibility.

Moreover, the assumption invites the further questions: if
every individual is prepared to give up all his wealth to avoid
an injury “of lesser severity” and “involving no permanent
injury”, how much wealth will each person be willing to give
up to avoid death? and if much more,  where is that money
coming from?

Nevertheless, artificial and contradictory though it might
be, the constraint of Eq. (B.6) does ensure that the Constrained
Power utility function does not encounter negative wealths.
So is the problem solved? It turns out that the artifice preven-
ting negative wealths merely transfers the problem elsewhere.
Noting that si = 1 − εi, where εi is risk-aversion, we  may rewrite
Eq. (B.11) as:

εi = 1
ln(1 + yki/xki)

(
ln
(

1 + yki

xki

)
− ln 2

)
(21)

revealing that the individual will be risk-neutral, with εi = 0,
if yki = xki and risk-seeking, εi < 0, if yki < xki. Neither descriptor
is likely to be a realistic characterisation of someone taking
decisions on serious injury, involving hospitalisation and a
recovery period of 3–4 months in the one case and fully 18
months in the other. More probable risk-aversions are likely
to be between 0.8 and 0.9, as found by Thomas et al. (2010),
or approaching unity, as recommended by the UK Treasury

(2011), when the Power utility function is transformed into the
Logarithmic utility function.
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Fig. 8 shows the risk-aversions calculated using Eq. (21)
or the Constrained Power utility function applied to the
esponses concerning injury X. The anomalous behaviour for
he 36 cases listed in Section 5.1, where yki ≤ xki, shows up
n zero or negative risk-aversions, indicating risk-neutral or
isk-seeking decision making of a reckless kind.

It may be concluded that the results associated with these
diosyncratic risk-aversions cannot be relied upon, suggesting
hat the analysis method cannot apply to the aforementioned
6 respondents with yki ≤ xki. Moreover, the case of yX108 =∞
annot be accommodated as mX108→ ∞ and cannot be com-
uted. Hence, once again the 2-part chaining calculation will
e constrained to proceed on the basis of only 120 respon-
ents.

.  Effects  of  removing  the  cases  where
AP  ≤  MAC

s shown above, many  responses that have been included in
he Carthy study need to be dropped, including some where
arthy et al. avoided exclusion by erroneously substituting
esults from one utility function into those of another.

.1.  The  effect  on  calculated  average  wealth

emoving the inadmissible cases discussed in Section 5 on
he larger, injury-X-based estimates of wealth has the effect
f decreasing the average wealth under the Constrained Power
tility function from £5252 to £3873, but increases it from £3568
o £8516 under the Logarithmic utility function and from £7136
o £17,032 under the Negative Inverse utility function. Thus
he estimates of average wealth of the survey respondents
tart to diverge, indicating a further problem, since it is an
mpossibility for a respondent’s instantaneous wealth to be

ultiple-valued.
But note that all the revised averages of wealth remain far

elow the actual wealth of an average UK adult at the time of
he survey (£78,300, 1998 £s).

.2.  The  effect  on  the  “internal  consistency”  check
he “internal consistency” check has to work with fewer data
oints than the fundamental test of the two-injury chained
method of Section 3.1, but poses a similar test for the validity
of 2-part chaining, as discussed in Section 3.2. In fact, strip-
ping out the inadmissible cases discussed in Section 5 reduces
the number of feasible comparisons to just 102 under all four
utility functions – the evidence of 65 out of the original 167
respondents has to be ignored. But no improvement is seen in
the “internal consistency” check when applied to this smaller
number of valid cases. The best linear matches are almost
unchanged at:

Constrained Power utility function: m
(3)
Di

= 3.6747m
(2)
Di

R2 =
0.0724
Logarithmic utility function: m

(3)
Di

= 2.9053m
(2)
Di

R2 = 0.0707

Negative Inverse utility function: m
(3)
Di

= 2.2355m
(2)
Di

R2 =
0.0983
Negative Exponential utility function: m

(3)
Di

= 1.915m
(2)
Di

R2 =
0.1177

The slope remains well away from the value of 1.0 required
for validity, and the linear correlation is again almost non-
existent.

The mean VPFs, standard deviations and standard errors
remain similar but slightly higher (see Table 6).

7.  Censoring  of  the  data

One feature of Carthy et al. is their ambivalence between the
mean and the median as a measure for consolidating different
people’s varying valuations deduced from an opinion survey:
“Estimates of the VOSL for road risks – taken as the mean
or median of mD. . . – are reported” is the almost throw-away
introduction to Section 3.3 (VOSL, “value of a statistical life” is
used synonymously with VPF).

However, it has been shown (Thomas, 2014) that the
median violates the conditions for structural view indepen-
dence, which requires that the algorithm for consolidating
human views into a single figure should contain no in-built
structural bias that would render some people’s views less
important than others. In the case of the median, attention is
paid to the view of one person only or the views of two  persons
at most: it is the ultimate in double-sided “trimming”. The
effect of someone else in the sample changing his view, possi-
bly by a lot, will be zero, unless his view happens to supplant
the old median. Indeed, out of the general, nonlinear, increas-
ing and differentiable transformations that may be applied to
the consolidation of views, only the linear transformation sat-
isfies the requirement of structural view independence and
leads to the sample mean. Use of the sample mean brings
the analyst the considerable advantage that he will be able to
refute any charge of lack of objectivity or bias in his consoli-
dation of the sample views into a single figure.

In the case under examination, the distribution of the
VPF found from 2-part chaining using the Constrained Power
utility function is revealed by simple calculations to be approx-
imately lognormal (see Fig. 1 and the end of Section 2), which
implies that the ratio of the mean to the median is e�2/2. Thus
the mean VPF must be bigger than the median VPF whenever
�2 > 0, that is to say wherever there is any variation whatso-
ever between the opinions of the respondents. It will be much
bigger when there are large divergences in personal VPFs. In
the present instance, the ratio of mean to median is about 6.5.

This ratio is reduced a little by the decision of Carthy et al., for
the purposes of calculating the median only, to restore the 16
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Table 6 – Results from 2-part chaining when the infeasible cases discussed in Section 5 are removed.

Utility function Mean (£) n Sample standard
deviation (£)

Standard error (£)

Constrained Power 3.88E+06 120 2.42E+07 2.21E+06
Logarithmic 3.34E+06 120 2.22E+07 2.03E+06
Negative Inverse 3.02E+06 121 2.18E+07 1.98E+06
Negative Exponential 2.85E+06 121 2.15E+07 1.95E+06

After (unjustifiably) trimming out the views of respondents
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respondents censored from their one-sided, “trimmed mean”
calculation, but only to 6.2. So when Carthy et al. declare that

“it is our view that policy recommendations should be
based on the untrimmed medians and trimmed means”,

they are granting themselves the freedom to reduce their rec-
ommended VPF by a factor of up to 6 below the mean VPF
found from all computable results.

The mean VPF based on all computable results, £3.40 M
under the Constrained Power utility function, is itself based on
discarding the views of the 10% of the sample population who,
when faced with the alternative possibility of even a low prob-
ability of death, choose to regard the effect of the lesser injury,
X, as having a negligible effect on their enjoyment of life and
so put ˘X = �X (see the discussion at the end of Appendix A.4).
But Carthy et al. decide to carry out a further, unilateral “trim-
ming” of the mean by disregarding the views of two further
people: respondents 132 and 13, asserting that their opinions
are “extreme outliers”, although they advance no justification
for this view. Table 7 shows the 5 highest and the 5 lowest per-
sonal VPFs under each of the utility functions used by Carthy
et al. It is difficult to see the personal VPF of respondent 13
as an outlier when it is not even the second highest view
under the Constrained Power utility function. Nor is it clear
that the VPF of respondent 13 is “extremely” different from
those of respondents 51 and 152 under the Negative Inverse
and Negative Exponential utility functions.

Looking now at the bottom 5 VPFs, it is noteworthy that
Carthy et al. do not regard as extreme the personal VPF of
respondent 111, who apparently values human life at between
£742 and £850 a factor of over 1000 below their final recom-
mendation of £1 M – roughly the price of an everyday dining
table and 4 chairs. But interestingly, in this they are correct:
their mistake is to regard the personal VPF of respondent 132,
£264 M,  as an outlier.

Fig. 1 shows how well a lognormal distribution is able to
model the reported VPFs results under 2-part chaining and the
Constrained Power utility function, incorporating a mean and
a standard deviation supplied by the Carthy survey. Running
400 simulations of groups of 167 respondents using this model

allows the average maximum personal VPF, max167(m(2)
Di

), to
be calculated as £131.5 M,  with a sample standard deviation
of £182.6 M.  Fig. 9 shows that the probability distribution is
asymmetrical, with a long tail. 90% of the groups of 167
simulated produced a maximum personal VPF in the range:
£ 30.7M ≤ max167(m(2)

Di
) ≤£ 356.8M, which may be regarded as

a 90% empirical probability interval for the maximum per-
sonal VPF in the sense that 5% of the 400 groups simulated
returned a value of max167(m(2)

Di
) that was below £30.7 M while

95% of the groups produced a value of max167(m(2)
Di

) below

£356.8 M.  Clearly this range includes comfortably the personal
VPF of £264 M of respondent 132. In fact, just under 9% of the
simulations based on the evidence of Carthy et al. yielded a
maximum personal VPF of more  than £264 M.

Meanwhile the average minimum personal VPF,

min167(m(2)
Di

) turned out to be £3840, with a sample standard
deviation of £2605. On the evidence of 400 simulations, the
90% empirical probability interval for the minimum personal
VPF, min167(m(2)

Di
), in a survey of 167 people based on the

two-injury chained model was between £805 and £8779,
which includes the personal VPF of £850 of respondent 111.

Thus both the low and high ends of the reported range for
personal VPFs, £850 and £264,100,000, are included in their
respective 90% empirical probability intervals, derived from
the evidence of the Carthy survey. Therefore there would
appear to be no reason to see either of the ends of the reported
range for personal VPFs as other than credible outputs of the
two-injury chained model. There is thus no justification for
any “trimming”, which Carthy et al. implemented always in
the direction of reducing the VPF.

Since no trimming is justified, one might perhaps expect
the VPF figure coming from the Carthy study to be based on
Table 1 of this paper, or, after accounting for the inadmissi-
ble nature of some of the data, as discussed in Section 5, in
Table 6. The recommended VPF might then have been based
the average of the four mean VPFs listed in Table 6, that is to
say about £3.3 M rather than £1 M.

But this does not capture the very large degree of person to
person variation suggested by the Carthy study. Interestingly,
Carthy et al. attempt to quantify this by considering possible
variations in the MRS  of wealth in place of non-probability of
injury X using a geometric approach to the utility function.
Fig. 9 – Histogram for the maximum personal VPF in a
group of 167 respondents based on 400 simulations.
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Table 7 – Top 5 and bottom 5 personal VPFs: all computable m
(2)
Di

.

Constrained Power Logarithmic Negative Inverse Negative Exponential

Respondent no. Personal VPF (£) Respondent
no.

Personal
VPF (£)

Respondent
no.

Personal
VPF (£)

Respondent
no.

Personal
VPF (£)

Top 5
132 264.1 M 132 243.0 M 132 239.8 M 132 236.6 M
51 28.89 M 51 21.23 M 13 19.98 M 13 19.98 M
13 19.98 M 152 13.85 M 51 14.68 M 152 12.83 M
76 13.16 M 112 10.31 M 152 13.32 M 51  11.53 M
112 12.68 M 76  9.45 M 112 9.22 M 112 8.35 M

Bottom 5
84 8923 99 9099 67 7280 67 5775
99 8644 84 8211 114 5046 114 5046
114 5045 140 6520 140 3013 140 2206
79 2020 79 1664 79 1515 79 1391
111 850 111 774 111 758 111 742
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32 and 13, in addition to the 16 respondents whose views
ead to the failure of their model, they come up with an upper
ound of £5.76 M.  However, apparently not regarding their
nalysis as sufficiently robust to stand on its own, Carthy et al.
hen dismiss their figure for lack of prior precedent: “to the
est of our knowledge, no-one has argued for a VOSL for road
isks in the UK in excess of £5.0 × 106 ′′.

But an alternative and easy procedure presents itself
mmediately, namely to estimate the upper bound of the 90%
onfidence interval for the average VPF as the mean VPF plus
.645 × the standard error. Using only the figures listed in Table

 of Carthy et al. (repeated in Table 1 of this paper), the average
cross all utility functions for the upper bound of the 90% con-
dence interval for the mean VPF is £5.63 M. Using the figures

isted in Table 6 of this paper, that figure rises to £6.63 M. These
imply calculated values are strikingly close to the estimate of
5.76 M dismissed by Carthy et al. So while Carthy et al. might
ot have been arguing for a VPF in excess of £5 M, a reasonable

nterpretation of their results points in that direction.

.  Discussion

elieving that people could not be relied upon to say how much
hey would be prepared to spend to reduce the already low
robability of a fatal injury (because of a presumed inabil-

ty to make such a computation), Carthy et al. invented the
wo-injury chained model, whereby the response to a serious
njury (a class that includes fatal injuries) is deduced in a two-
tage process. In the first stage, the questioner tries to elicit
ow much the person would be prepared to spend to reduce

he probability of a less serious injury. Then, in the second
tage, an attempt is made to find the respondent’s acceptable
atio of how much should be spent to reduce the chances of
he more  serious injury to the comparable spend against the
esser injury by asking him to estimate an indifference prob-
bility. The method depends on a fairly involved application
f utility theory, at the end of which the two stages are linked

n a process called “2-part chaining” to produce the personal
PF of the respondent.

The proposition is at least questionable ab initio that peo-
le should be better equipped to give accurate monetary
alues and indifference probabilities associated with non-fatal

njuries if they could not perform the arguably simpler task of
utting a value on avoiding a fatality. What is clear is that the
views of respondents in Part 1 of the study (Beattie et al., 1998)
did not conform to the expectations of Carthy et al., who felt
that there was:

“a failure on the part of many  respondents to take ade-
quate account of the magnitude of the risk reduction in
CV [contingent valuation] questions aimed at estimating
individual marginal rates of substitution of wealth for risk.”

Even so, Carthy et al. felt it necessary in Part 2 of their study
to reject numerous results that did not meet their conceptions,
as embodied in the two-injury chained model they developed.

But whatever the hopes and expectations held out for
the new technique, using only data from the Carthy survey,
Section 3.1 of this paper shows that the two-injury chained
method fails by a very large margin the fundamental test nec-
essary for it to be valid. It follows that the recommendations
of the Carthy study have no valid evidential base.

Moreover, although Carthy et al. did not perform the fun-
damental test of Section 3.1, largely equivalent results were
available to them from the “internal consistency” check that
they performed, as explained in Section 3.2. Of course the two-
injury chained method fails that internal consistency check as
comprehensively as it failed the fundamental test.

Section 3.3 shows how random number generators can be
used to simulate the values of the personal VPFs, m

(2)
Di

and m
(3)
Di

,
arising from 2-part and 3-part chaining when the Constrained
Power utility function is used to interpret the survey results.
Whether or not the spread of personal VPFs in the UK  popula-
tion in 1997 was as wide as the 5 orders-of-magnitude range
reported by Carthy et al. based on 2-part chaining, it is cer-
tain that the ratio of m

(3)
Di

to m
(2)
Di

should not have deviated
appreciably from unity, and that the square of the correla-
tion coefficient should not have fallen much below 1.0. But a
random realisation incorporating a lognormal distribution for
the multiplier, Ri = M

(3)
Di

/M
(2)
Di

, with a mean of 6.3 and standard
deviation more  than twice that figure, was able to provide not
only a good visual match to the reported results for m

(3)
Di

and

m
(2)
Di

but also a better linear correlation. The fact that a random
simulation is able to perform better casts a further shadow on
the credibility of the results reported by Carthy et al.

If, for the sake of argument, judgement on the invalidity

of the two-injury chained method is suspended temporarily,
we should expect the wealths predicted for the same person
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to be the same under injury X as under injury W.  They turn
out to be different by a factor of between 4 and 10 for each of
the three utility functions for which wealth can be calculated:
Constrained Power, Logarithmic and Negative Inverse. Thus
another test of the methodology of the Carthy study is failed.

If all the tests failed up to this point are put to one side,
an examination of the average wealths under injury X (which
are much higher than those under injury W)  shows that these
are far too low to be representative of the UK population in
1997 – less than 10% of the actual average wealth in that year.
Because the VPF is strongly increasing in wealth, this implies
that the figure for VPF produced by Carthy et al. will be biased
low and must be incorrect on these grounds alone.

The methodology used by Carthy et al. means that they are
obliged to declare a significant number of cases incomputable.
They suggest 16 incomputable results for their calculation
of personal VPFs from 2-part chaining, associated with the
16 respondents who  set their indifference probability, ˘Xi, at
˘Xi = �X = 10−3, implying that, when faced with an alternative
possibility of death, such respondents decide that their enjoy-
ment of life will not be adversely affected by injury X. Given
the adaptability of human nature, it is not unreasonable that
people should make such a judgement. In fact, the figure of
16 assumes the use of a different utility function on occasion
to supply alternatives to otherwise incomputable parameters.
Thus the true number of incomputable results rises to 21
rather than 16 when the Logarithmic utility function is used.

But further problems arise for all four utility functions used
in Carthy et al. when the individual’s minimum acceptable
compensation (MAC)  is less than or equal to his maximum
acceptable price (MAP). As shown in Section 5, this causes the
number of cases that are either incomputable or infeasible to
rise to 56 or 57, no less than a third of the original sample
of 167. The effect of removing the extra, infeasible cases is
to raise the VPF calculated using the 2-part chaining by about
10%. But there is no improvement in the “internal consistency”
check, and no confidence can be expressed in these (slightly
different) results any more  than in the originals.

A feature of the Carthy et al. study is the freedom the
authors allow themselves to censor their results beyond the
nominally 16 incomputable cases by excluding further cases
when their personal VPF is high – one-sided “trimming”. But,
as shown in Fig. 1, the Carthy results for personal VPFs are
modelled well by a lognormal distribution with a very large
spread. Simulations carried out on the basis of the represen-
tative lognormal distribution suggest that the 90% empirical
probability interval for the maximum personal VPF in a sample
of 167 is between £30.7 M and £356.8 M under the Constrained
Power utility function, a range that easily includes the high-
est personal VPF reported by Carthy et al., namely £264.1 M,
meaning that there is no case for censoring the opinion of
respondent 132, whose personal VPF this is. There is certainly
no case for censoring the opinion of respondent 13, whose
personal VPF is £19.98 M,  a figure exceeded by the maximum
personal VPF in all but 4 out of the 400 simulations (the low-
est maximum VPF in all 400 simulations was £14.32 M). Given
that Carthy et al. decide to exclude the view of respondent
13 (although, surprisingly, not the opinion of respondent 51),
there would appear to be a 99% chance that they would regard
the maximum personal VPF as an outlier and hence a can-
didate for censorship in whichever group of 167 people they
chose to survey.
Although the detailed analysis has been applied to the
results as analysed under the Constrained Power utility
function, the general similarity of the personal VPFs under
all four utility functions suggests that there is no case for
censoring the opinion of any respondent, no matter which
utility function is used.

When the censored opinions are restored, the mean VPF
based on all computable and feasible results from the Carthy
study emerges as £3.27 M. The average VPF is, however, sub-
ject to a wide 90% confidence interval for the mean: between
£0.061 M and £6.63 M, when averaged across all four utility
functions. These figures are of somewhat academic interest
because they are based on a method shown to have failed
several validity tests comprehensively.

9.  Conclusions

The two-injury chained model proposed by Carthy et al. has
been subjected to several tests of its validity. Failure in just one
test would have been enough to invalidate the model, but, in
fact, numerous tests have been failed comprehensively. There-
fore no reliance can be placed on the Carthy study, in which
so many  flaws and inconsistencies have been identified both
in the main text and in the appendices of this paper.

This finding has particular significance for the UK because,
as noted by Wolff and Orr, the Carthy study provides the
underpinning for the VPF figure used by the Department for
Transport, by the Health and Safety Executive and by other UK
regulators. The fact that the VPF figure in such widespread use
has been shown to be devoid of a valid evidential base raises
questions about the many  decisions that have been made
based upon it in the past 15 years, relating to the safety of road
and rail development and to safety in the process, nuclear and
other industries in the UK.

Looking to the future, the uncovering of the serious flaws
in the method used to estimate the VPF currently used is
important since that figure forms the basis by which cost-
effectiveness continues to be judged for many  health, safety
and environmental protection measures. While the goal must
be to allocate resources in an equitable and consistent man-
ner, the severe methodological shortcomings identified here
may well have led to the true value of the UK’s VPF being under-
estimated. This would imply that the safety of UK citizens has
not been and is not being protected properly.

If it is desired to continue with the stated preference
approach to valuing human life, then the statement in
Spackman et al. (2011) recommending “against any early new
full scale WTP  [willingness to pay] study” requires reconsid-
eration. A key requirement for those who might undertake
a new opinion survey is that they are fully seized with the
fundamental importance of careful analysis and painstaking
interpretation of survey evidence.

However, given the difficulties evident in the interpreta-
tion of survey results, active consideration should be given to
methods of valuing human life in the UK that offer an alter-
native to stated preference techniques. An urgent re-appraisal
is needed of other statistical methodologies that can allow
robust regulatory and industry safety decision making and,
vitally, will ensure that UK workers and public receive ade-
quate protection from industrial and transport hazards.
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ppendix  A.  The  application  of  the  two-injury
hained  model

.1.  The  two-injury  chained  model

he analysis presented in Carthy et al. is based on expected
tility theory. Let wi be the starting wealth of an individual, i,
nd Ui(wi) be his utility of wealth when he is in good health.
ossible forms of his utility function, Ui(·), will be discussed
n Appendix B. Now consider an injury, k, that will reduce
he individual’s utility of wealth to Iki(wi), k = 1, 2, . . .,  with

ore serious injuries having a higher index value, so that

i(wi)≥Ik1i(wi)≥Ik2i(wi) for k2 > k1. A simple model for the utility
n the injured condition is provided by Carthy et al. (1999):

ki(wi) = Ui(wi) − aki aki≥0, k = 1, 2, . . . (A.1)

here aki may be termed the injury offset, particular to the
njury and to the individual. Eq. (A.1) is claimed by Carthy et al.
o apply provided the injuries are not too severe: “e.g. those
nvolving permanent disability”, suggesting that they would
egard it as no longer valid when the injury is fatal. But note
hat the specific form of this equation is critical to the analy-
is in Carthy et al. because it renders equal the derivatives of
tility in the (non-fatally) injured and non-injured states:

dIki(wi)
dwi

= dUi(wi)
dwi

k = 1, 2, . . . (A.2)

This is no longer the case if Eq. (A.1) is replaced by

ki(wi) = �kiUi(wi); 0 ≤ �ki < 1, on the face of it preferable and
t least equally plausible, when dIki(wi)/dwi = �kidUi(wi)/dwi.
his would prevent the cancellation in Eq. (A.5) necessary for

he approach of Carthy et al. to work, indicating a weakness
n the method.

The main vehicle used by Carthy et al. is the two-injury
hained model, under the assumption that respondents will
e capable of making more  accurate economic choices con-
erning the less serious injury. It is supposed that, over some
eriod of time, an individual faces 3 mutually exclusive possi-
ilities: (i) he may incur injury 1, with probability q1, or (ii) he
ay incur injury 2, with probability q2 or (iii) he may continue

n full health. Carthy et al. ignore the possibility that the indi-
idual will fall ill or die from other causes during the interval,
ffectively assuming that the probability of disease or death
rom other causes is negligible at all ages. Since in reality the
ossibility of both becomes ever more  likely the greater the
ge of the individual, this assumption constitutes a further
eakness in the two-injury chained model.
Pursuing the approach of Carthy et al., the individual’s util-
ty of wealth will depend on the random events of injury and
death and hence will be a random variable, Zi(wi), with an
expected value, zi, given by:

zi = E[Zi(wi)] = (1 − q1 − q2)Ui(wi) + q1I1i(wi) + q2I2i(wi) (A.3)

It may be possible for the individual to reduce the proba-
bility, qk, of injury k, k = 1, 2, over some period by expending
money on protection, leading to a fall in wealth, wi. Alterna-
tively, he might accept a higher injury probability but receive
compensation, with the result that his wealth, wi, rises. Thus
changes to qk will be accompanied by related changes in wi,
and the limiting condition that the expected utility stays the
same, viz. zi = constant, implies that ∂zi/∂qk = 0 ; k = 1, 2.

Carrying out the partial differentiation of Eq. (A.3) with
respect to qk and setting the result to zero gives

∂zi

∂qk
=
((

1 −
2∑

k=1

qk

)
dUi

dwi
+

2∑
k=1

qk
dIki

dwi

)
∂wi

∂qk

+ Iki − Ui = 0 k = 1, 2 (A.4)

This may be solved for the rate of change, ∂wi/∂qk, of wealth,
wi, with the probability, qk, of injury k, at constant expected
utility.

Now the probability, pk, of not receiving injury k is
pk = 1 − qk, so that dpk/dqk = −1 and ∂wi/∂pk = −∂wi/∂qk. It is
reasonable to assume that a person would be prepared to
trade some of his wealth, wi, so as to increase his probability
of not receiving injury k. An indifference curve should then
exist, where the person’s utility stays constant. The expres-
sion, −∂wi/∂pk

∣∣
zi=const

, quantifies the trade-off at a general

point (pk, wi) on the indifference curve: wealth is decreased
by a positive small amount, ıwi, from wi to wi − ıwi in order
that non-injury probability, pk, should increase to pk + ıpk,
where ıpk is small and positive. The negative of the partial
differential of wealth with respect to non-injury probability
may be described as the marginal rate of substitution, mki,
of non-injury probability, pk, in place of wealth, wi: mki =
−∂wi/∂pk

∣∣
zi=const

. Since ∂wi/∂pk = −∂wi/∂qk, it follows that

mki = ∂wi

∂qk

∣∣∣
zi=const

= Ui(wi) − Iki(wi)(
1 −

2∑
k=1

qk

)
dUi
dwi

+
2∑

k=1

qk
dIki
dwi

k = 1, 2

(A.5)

Incidentally, Carthy et al. describe their version of mki as “the
individual’s MRS,  mI, of wealth for risk of injury”, which is
an incorrect usage unless they define “risk of injury” as the
probability of non-injury, which seems unreasonable.

Putting k = 1 in Eq. (A.2) and then substituting the result into
Eq. (A.5) yields:

mki = ∂wi

∂qk

∣∣∣
zi=const

= Ui(wi) − Iki(wi)

(1 − q2) dUi
dwi

+ q2
dI2i
dwi

k = 1, 2 (A.6)

where the cancellation of the denominator terms in the prob-
ability, q1, of the lesser injury will occur by Eq. (A.2), valid if
and only if I1i(wi) is equal Ui(wi) less the injury offset.

If the more  serious injury, injury 2 in the two-injury

chained model, is also insufficiently severe to cause
permanent disability, then Eq. (A.1) may be applied to injury 2
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also. The result of Eq. (A.2) with k set to 2 may now be inserted
into Eq. (A.6) to cancel the terms in q2 as well, leading to:

mki = Ui(wi) − Iki(wi)
dUi/dwi

= aki

dUi/dwi
k = 1, 2 (A.7)

When injury 2 is serious enough to cause permanent dis-
ability, however, the more  general form of Eq. (A.6) needs to
be retained. Thus Eq. (A.6) needs to be used when considering
mortal injuries. Examination of that equation when the more
severe injury, injury 2, is fatal, shows that the marginal rate
of substitution of non-death-probability, p2 = 1 − q2 = 1 − qD, in
place of wealth, m2i = mDi, will be a function of both wealth, wi,
and death-probability, qD:

mDi = mDi(wi, qD) (A.8)

The dependence of mDi on the individual’s wealth is
clearly very important, although this fact does not appear
to be brought out in Carthy et al. The strength of this
dependence may be seen by replacing Eq. (A.1) by the
form, I2i(wi) = IDi(wi) = �DiUi(wi), as discussed below Eq. (A.2),
which is at least equally plausible and regarded as real-
istic alternative by Carthy et al. (see their Note 5). Here
�Di: 0 ≤ �Di ≤ 1 is a constant for the individual, indicating
the fraction of utility of wealth retained at death, so that
dI2i(wi)/dwi = dIDi(wi)/dwi = �DidUi(wi)/dwi. Using the logarith-
mic  utility function adopted by the UK Treasury (Treasury,
2011), Ui(wi) = ln wi and dUi(wi)/dwi = 1/wi. Substituting into
Eq. (A.6) gives:

mDi(wi, qD) = wi(1 − �Di) ln wi

1 − (1 − �Di)qD

≈ 	iwi ln wi when qD << 1

(A.9)

where 	i = 1 − �Di is a constant for the individual. It is thus clear
that mDi is strongly increasing in wi. In cases where the person
has no close relatives and no interest in charitable giving, it is
possible that �Di → 0 so that 	i → 1.0. In this case the marginal
rate of substitution of non-death-probability in place of wealth
would simplify to mDi = wi ln wi.

Returning to the general two-injury chained model, sup-
pose that for an individual of wealth, wi, the parameter, m1i,
is estimated when the injury 2 probability is q2 = q21, while the
parameter, m2i, is estimated when the injury probability has
the value: q2 = q22. Using Eq. (A.6), the ratio of the marginal
rates of substitution for individual i may be found as

m2i

m1i
= Ui(wi) − I2i(wi)

Ui(w) − I1i(wi)

(1 − q22) dUi
dwi

+ q22
dI2i
dwi

(1 − q21) dUi
dwi

+ q21
dI2i
dwi

(A.10)

Clearly this ratio will be approximately equal to the ratio of
utility differences if both q21 	 1 and q22 	 1, and strictly equal
if the probability of incurring injury 2 is the same during the
measurement of m1i and m2i:

m2i

m1i
≈ Ui(wi) − I2i(wi)

Ui(w) − I1i(wi)
if q21 << 1 and q21 << 1 or if q22 = q21 (A.11)

A.2.  Finding  the  marginal  rate  of  substitution  of  wealth
in place  of  non-injury  probability  for  injury  1

The two-injury chained model relies on finding the value of

the injury offset, a1i, for the lesser injury, injury 1. As neither
injury W nor injury X leads to permanent disability, Eq. (A.7)
is valid for marginal rate of substitution of wealth in place of
non-injury probability for each injury with k set either to W or
to X. Hence each is a possible candidate for the role of injury
1.

In considering these injuries, X and W,  respondents were
asked to estimate the maximum acceptable price (MAP, £) they
would pay to avert the injury and the minimum acceptable
compensation (MAC,  £) they would take as compensation for
enduring the injury. The MAP of individual i associated with
injury k, xki, will be reached when its payment will reduce
the utility of the healthy individual to the level he would
experience without paying it and suffering the injury in con-
sequence:

Ui(wi − xki) = Iki(wi) k = W,  X (A.12)

In an analogous way, the MAC, yki, will be reached when the
utility of the injured person has risen by virtue of the increase
in wealth to the level it would have been in the absence of both
injury and compensation:

Ui(wi) = Iki(wi + yki) k = W,  X (A.13)

Using Eq. (A.1) in Eq. (A.12) and (A.13), we achieve the equa-
tion pair:

Ui(wi − xki) = Ui(wi) − aki

Ui(wi + yki) − aki = Ui(wi)
k = W,  X (A.14)

from which aki may be eliminated to give

Ui(wi) = Ui(wi − xki) + Ui(wi + yki)
2

k = W,  X (A.15)

Eq. (A.15) is an equation pair that may be solved for the
individual’s wealth, wi, once values of xki and yki are available
and the form of the utility function has been specified. The
values of wealth, wi, found from responses to injuries W and
X should, of course, be the same, a proposition is tested in
Section 4 of the main text.

The constant, aki, may be found from equation pair (A.14) by
back substitution. The value of dUi/dwi depends on the utility
function chosen and is derived in Appendix B as a function of
xki and yki for the four forms used in Carthy et al. A knowledge
of aki and dUi/dwi allows the marginal rate of substitution, mki,
of non-injury probability, pk = 1 − qk, in place of wealth, wi, to
be calculated from Eq. (A.7) for k = W,  X.

A.3.  Using  the  “standard  gamble”  to  estimate  the  ratio  of
utility  differences  in  the  two-injury  chained  model

Suppose that a person has incurred an injury for which two
treatments, � and ˇ, are assumed to be available. If successful,
treatment � will give the patient an outcome equivalent to the
lesser injury, injury 1, so that his utility of wealth will be I1i(wi).
But it has a probability of failure, �1, where �1 carries the label
of the lesser injury, injury 1, in its subscript. If unsuccessful,
treatment � will lead to an outcome equivalent to the more
severe injury, injury 2, so that the individual’s utility of wealth
will be I2i(wi). Hence the expected utility when treatment  ̨ is
chosen will be:
E( U|˛) = (1 − �1)I1i(wi) + �1I2i(wi) (A.16)
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Meanwhile treatment  ̌ is assumed to have a probability
f failure, ˘1i, to be chosen by respondent i. In keeping with
he convention introduced by Carthy et al., ˘1i is labelled with
njury 1, in its first subscript, analogously to �1. If treatment ˇ

s successful, it will lead to a rapid return to full health, but, if
nsuccessful, it will lead to an outcome equivalent to the more
evere injury, injury 2, with utility of wealth, I2i(wi). Hence the
xpected utility when treatment  ̌ is chosen will be:

( U|ˇ) = (1 − ˘1i)Ui(wi) + ˘1iI2i(wi) (A.17)

Treatment ˇ, is to be preferred to treatment  ̨ provided its
ailure probability is regarded by individual, i, as sufficiently
ow. Each respondent was asked to specify the probability of
ailure, ˘1i, at which he would be equally content to have treat-

ent  ̨ or treatment  ̌ administered to him. ˘1i is thus an
ndifference probability.

Indifference between treatments � and  ̌ at the respon-
ent’s choice of probability, ˘1i, is taken to imply that
he respondent’s expected utilities are equal: E( U|˛) = E( U|ˇ).
ence:

1 − �1)I1i(wi) + �1I2i(wi) = (1 − ˘1i)Ui(wi) + ˘1iI2i(wi) (A.18)

This may be re-arranged into the form:

Ui(wi) − I2i(wi)
Ui(wi) − I1i(wi)

= 1  − �1

˘1i − �1
(A.19)

Note that I2i(wi) ≤ I1i(wi) ≤ U(wi) requires the indifference
robability, ˘1i, to lie in the range: �1 ≤ ˘1i ≤ 1. When ˘1i = 1,
q. (A.19) degenerates to I2i(wi) = I1i(wi), implying that the per-
on feels that his utility is reduced equally by both the lesser
nd the more  severe injury. Meanwhile ˘1i = �1 implies, from
q. (A.18), that that person believes that his enjoyment of life
hen healthy will be unaffected by the lesser injury, injury

, in the sense that Ui(wi) = I1i(wi). Given the adaptability of
umans, this last is a possible and reasonable viewpoint (and
ne held by a sizeable fraction, 10%, of the sample when the
wo-injury chained model has a fatal injury as injury 2). But
t causes particular problems for the method of Carthy et al.
ecause it causes the ratio on the right-hand side of Eq. (A.19)
o return an infinite value.

.4.  Finding  the  marginal  rate  of  substitution  of  wealth
n place  of  non-injury  probability  for  injury  2:  testing  the
wo-injury  chained  model

he marginal rate of substitution, mki, of wealth in place of
on-injury probability, pk = 1 − qk, may be found as explained
t the end of Appendix A.2 for injuries k = W,  X, based on MAP
nd MAC data, xki, yki ; k = W,  X. Casting either injury W or
njury X in the role of injury 1 in the two-injury chained model,
his estimate may be used in conjunction with Eqs. (A.11) and
A.19) to find the marginal rate of substitution of wealth in
lace of non-injury probability for a more  severe injury, injury
.

In particular, the two-injury chained model may be used to
etermine the marginal rate of substitution of wealth in place
f non-injury probability for a fatal injury, by using the fatal
njury, denoted by D for death, as injury 2. Carthy et al. chose
o use injury X as injury 1 in their main calculation. Putting
X as the first injury, X = 1, and D as the second injury, D = 2, in
Eqs. (A.11) and (A.19) and combining the results gives:

mDi = 1 − �X

˘Xi − �X
mXi (A.20)

where Carthy et al. set �X = 10−3, a figure said to be “not unre-
alistic for a treatment involving surgery and anaesthesia”.

A particularly interesting case occurs when injury W is cho-
sen as injury 1 and injury X as injury 2. In this case, putting
W = 1 and X = 2 in Eqs. (A.11) and (A.19) and combining gives:

mXi = 1 − �W

˘Wi − �W
mWi (A.21)

where Carthy et al. set �W = 10−2. (No justification is advanced
in Carthy et al. for choosing a figure for �W that is ten times
higher than that for �X, but the number seems to reflect the
thinking that a treatment failure resulting in a less severe out-
come – 2 weeks in hospital and an 18-month recovery time as
opposed to death – might occur much more  often.)

The value of mXi from Eq. (A.21) is based on MAP and MAC
data associated with injury W and on the standard gamble
probability, ˘Wi. Eq. (A.21) is exactly analogous to Eq. (A.20)
and may be used to test the method, since an independent
value of mXi is available, based on directly MAP  and MAC data
for injury X. The values produced of mXi for each individ-
ual using the two independent methods should be the same.
Using m

(2)
Xi

the MRS for injury X found by the two-stage chain-

ing process and m
(1)
Xi

the MRS for the same injury found directly
from a one-stage process, the following equation should be
valid: m

(2)
Xi

= m
(1)
Xi

.

A.5.  Population  averages:  the  value  of  a  prevented  injury
2

On finding the VPF Carthy et al. say only:

“Estimates of the VOSL for road risks – taken as the mean or
median of mD, computed from equation (27) – are reported”

where VOSL is the “value of statistical life”, synonymous with
VPF, and their Eq. (27) corresponds to Eq. (A.20). No further
mathematical justification is given for this assertion.

Moreover, Carthy et al. seem to regard the median as occu-
pying a similar status to the mean. But it has been shown that
this is not the case: only arithmetic averaging complies with
the requirement that the opinion of each person in the sam-
ple should be given equal weight (see Thomas, 2014), and the
median is not a valid measure for measuring human valua-
tions.

A justification for taking the mean of the mDi values as
the VPF may be attempted as follows. Consider a population
of size, N. Making the assumption that the initial probability,
denoted by the superscript, (1), for injury 2, q

(1)
2 , is binomial, the

expected number of type 2 injuries, G1, over the given inter-
val will be: E(G1) = q

(1)
2 N. An analogous equation will pertain

when a safety measure has been installed to reduce q2 to q
(2)
2 ,

where the superscript (2) indicates a probability for injury 2
that has been reduced by the installation of a safety measure.
Thus the expected difference in numbers of type 2 injuries
may be found by subtraction as
E(G1) − E(G2) = (q(1)
2 − q

(2)
2 )N (A.22)
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where G2 is the number of type 2 injuries after the safety
measure has been installed.

When the expected difference in the number of type 2
injuries is unity, viz.  E(G1) − E(G2) = 1, then

q
(2)
2 = q

(1)
2 − 1

N
(A.23)

The maximum change in wealth individual i, with wealth,
wi, will be prepared to undergo in order to change his proba-
bility of the type 2 injury from an initial value, q

(1)
2 , to a final

value, q
(2)
2 , is found by integrating the marginal rate of substitu-

tion, m2i, of the probability of non-injury 2, p2 = 1 − q2, in place
of wealth, wi, at constant expected utility of wealth between
these probability limits:


w2i(wi, p
(1)
2 , p

(2)
2 ) =

p
(2)
2∫

p2=p
(1)
2

∂wi

∂p2

∣∣∣
zi=const

dp2

=
q

(2)
2∫

q2=q
(1)
2

∂wi

∂q2

∣∣∣
zi=const

dq2 =
q

(2)
2∫

q2=q
(1)
2

m2i(wi, q2)dq2 (A.24)

where the limits have been changed between in the penul-
timate step, noting that dp2 = − dq2, while ∂wi/∂p2 = −∂wi/∂q2,
as shown in Appendix A.1. Moreover, in the general case, m2i

may be a function of both wi and q2 (see Eqs. (A.6) and (A.9)).
Eq. (A.24) will yield a negative value, indicating a reduction in

wealth when q
(2)
2 < q

(1)
2 , corresponding to a protective action.

Thus the maximum acceptable price (MAP), v2i(w2i, q
(1)
2 , q

(2)
2 ),

that the individual is prepared to pay for this probability reduc-
tion will be v2i = −�w2i, which may be found by reversing the
order of the limits in Eq. (A.24). It follows from using Eq. (A.24),
that the maximum acceptable price, v2i, that an individual, i,
with wealth, wi, will be prepared to countenance for a reduc-
tion in probability that will reduce by one the expected number
of type 2 injuries over the chosen period will be

v2i(wi, q
(1)
2 ) =

∫ q
(1)
2

q2=q
(1)
2 − 1

N

m2i(wi, q2)dq2 ≈ 1
N

m2i(wi, q
(1)
2 ) (A.25)

Since the population as a whole will be prepared to pay a
total of v2 =

∑N

i=1v2i for the safety measure that will reduce
its expected number of type 2 injuries by unity, it is possible
to calculate the value of a prevented injury 2, v2, as:

v2 =
N∑

i=1

v2i ≈
N∑

i=1

1
N

m2i(wi, q
(1)
2 ) = 1

N

N∑
i=1

m2i(wi, q
(1)
2 ) (A.26)

When the population is large and if f(w) is the probability
density for wealth in the population, treated as a continuum,
we may replace Eq. (A.26) by

v2(q(1)
2 ) ≈

∫ ∞

w=0

f (w)m2(w, q
(1)
2 )dw (A.27)

which indicates a remaining dependence on the initial injury
2 probability, q

(1)
2 . However, provided the measurement of
marginal rate, m2, of substitution of wealth in place of type
2 non-injury probability, p2, is made when the initial injury
2 probability, q
(1)
2 , is small, then m2(w, 0) ≈ m2(w, q

(1)
2 ). See Eq.

(A.9). This allows the evaluation of a single value of prevented
injury 2, when its probability is already small:

v2 ≈
∫ ∞

w=0

f (w)m2(w, 0)dw when q
(1)
2 ≈ 0 (A.28)

If wealth is divided into equal intervals of width, 
w =
wmax/K,  where wmax is the maximum wealth of any individual
in the population and K is large so that 
w is small, then Eq.
(A.28) may be written

v2 ≈
∫ 
w

0

f (w)m2 (w, 0) dw + · · · +
∫ wk

wk−1

f (w)m2(w, 0)dw

+· · · +
∫ wK

wK−1

f (w)m2(w, 0)dw

≈ f (0) m2(0, 0)
w + · · · + f (wk−1) m2(wk−1, 0)
w

+· · · + f (wK−1)m2(wK−1, 0)
w

(A.29)

where wk = wk−1 + 
w. Now suppose the respondents in the
sample have been chosen so that the probability density for
wealth in the sample matches that in the target population (for
example the UK adult population). Assuming a large sample
size, Ns, this implies that the number of people, nk, in the kth
sample interval, between wealths wk−1 and wk, will be

nk

Ns
≈
∫ wk

wk−1

f (w)dw ≈ f (wk−1)�w (A.30)

where
∑K

k=1nk = Ns. Substituting from Eq. (A.30) into the sec-
ond line of Eq. (A.29) gives:

v2 ≈ 1
Ns

(n1m2(0, 0) + ... + nkm2(wk−1, 0) + · · · + nKm2(wK−1, 0))

(A.31)

Consider further the kth wealth interval, which contains nk

people with wealths, ω
(m)
k−1, m = 1, 2, ..., nk, where wk−1 ≤ ω

(m)
k−1 ≤

wk−1 + 
w and each person’s wealth is assumed to be distinct
(valid when the measuring scale is very fine). If 
w is very

small, then ω
(m)
k

≈ wk−1 for all m = 1, 2, ..., nk, which implies

that m2(ω(m)
k−1, 0) ≈ m2(wk−1, 0) for all m.  Hence

nk∑
m=1

m2(wk−1, 0) = nkm2(wk−1, 0) ≈
nk∑

m=1

m2(ω(m)
k−1, 0) (A.32)

As a result, Eq. (A.31) may be approximated by:

v2 ≈ 1
Ns

(
n1∑

m=1

m2(ω(m)
0 , 0) + · · ·+

nk∑
m=1

m2(ω(m)
k−1, 0) + · · ·+

nK∑
m=1

m2(ω(m)
K−1, 0)

)
(A.33)

Relabeling the wealth of each individual on a single scale,
wi, i = 1, 2, ..., Ns =

∑K

k=1nk, according to:

w(∑ ) = ω
(m)

k = 1, 2, . . ., K and m = 1, 2, . . .,  nk
k−1

j=1
nj +m

k−1

(A.34)
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llows Eq. (A.33) to be written as the arithmetic average of the
arginal rate of substitution of type 2 non-injury probability

n place of wealth, viz. the sample mean:

2 ≈ 1
Ns

Ns∑
i=1

m2(wi, 0) = 1
Ns

Ns∑
i=1

m2i (A.35)

The value of a prevented fatality, vD, is found by setting the
ype 2 injury as a fatal injury, hence setting D = 2 in Eq. (A.35):

D ≈ 1
Ns

Ns∑
i=1

mD(wi, 0) = 1
Ns

Ns∑
i=1

mDi (A.36)

This equation shows that mDi may be regarded as the per-
onal VPF of individual i.

It needs to be remembered that the validity of Eq. (A.36)
ests critically on the sample population reflecting very closely
he probability density for wealth of the target population as

 whole. This includes the requirement that the wealth inter-
als in the sample population should be small. In this context,
arthy et al. (1999) say of their study that it

“involved a quota sample of 167 respondents selected by
professional market research organisations on the basis of
gender, age and social class quotas supplied by the research
team to reflect national breakdowns for Great Britain.”

ut do not give further details of the quotas. However, the
ealth value, wi, for each respondent emerges as an integral
arameter used in the analysis procedure. Hence a check of
his figure against national figures provides a legitimate and
mportant test for the validity of the VPF for the UK recom-

ended by Carthy et al.

.6.  Accounting  for  the  increasing  wealth  of  the  country

arthy et al. (1999) state at the end of their paper:

“In the light of the findings reported in this paper, the UK
Department of the Environment, Transport and the Regions
has elected to maintain its current WTP-based monetary
value for the prevention of a road fatality at £902,500 in 1997
prices, with the figure to be updated annually in line with
inflation and the rate of growth of real output per capita.”

However Chilton et al. (2002) updated this statement to:

“In the light of the findings in [Beattie et al., 1998 and
Carthy et al., 1999] the . . . DTER [Department for Trans-
port, Environment and the Regions] elected to increase its
WTP-based roads VPF to some £1.05 million in 1998 prices.”

Thus Wolff and Orr (2009), after noting that “the resulting
gure was very close to the existing one”, concluded:

“it appears that the Carthy study is now the primary source
of VPF figures, adjusted for inflation and changes in GDP.”

This suggests that the VPF used in the UK, vD(t), for year, t,
s related to the VPF for 1998 by:

D (t) = vD (1998)
G (t)

G (1998)
(A.37)
here G(t) is the GDP per head in year, t, in £s of that year.
Appendix  B.  Derivation  of  wealth  and  the
marginal  rate  of  substitution  of  non-injury
probability  in  place  of  wealth  for  the  utility
functions  used  in  Carthy  et  al.  (1999)

It has been argued elsewhere (Thomas, 2010) that human deci-
sion making is modelled most realistically by assuming that
the decision-maker’s risk-aversion stays constant during the
course of a decision on monetary matters. This argument
reduces the number of families of viable utility functions to
one, the Power utility function, to which family the Logarith-
mic  utility function belongs as a limiting case.

Carthy et al. use the Power utility (albeit in constrained
form) and the Logarithmic utility in their analysis, as well as
two further utility functions, the Negative Inverse and the Neg-
ative Exponential. All will be analysed here, and the influence
that the individual’s wealth has on the VPF valuations brought
out.

B.1.  Constrained  Power  utility

The Power utility function, has the basic form:

Ui(wi) = w1−εi
i = wsi

i (B.1)

where si = 1 − εi and εi is the dimensionless risk-aversion of
individual i, defined by εi = −wiU

′′
i
(wi)/U′

i
. Carthy et al. (1999)

assign n = 1/si and describe the Constrained Power utility as
the “nth root” utility function as a consequence. Their method
assumes that si = 1 − εi is particular to each individual and is
to be determined from the MAP for injury, k, xki, and the MAC,
yki. Substituting from Eq. (B.1) into Eq. (A.15) gives

(wi − xki)
si + (wi + yki)

si = 2wsi
i (B.2)

Meanwhile, from equation pair (A.14), the individual’s
injury offset, aki, for injury, k, is

aki = wsi
i − (wi − xki)

si (B.3)

Furthermore, differentiating Eq. (B.1) with respect to
wealth, wi, gives

dUi

dwi
= siw

si−1
i (B.4)

Substituting from Eqs. (B.3) and (B.4) into Eq. (A.7) gives the
first estimate of marginal rate of substitution of non-injury
probability in place of wealth for injury, k:

mki = w
si
i

− (wi − xki)
si

siw
si−1
i

(B.5)

The marginal rate of substitution is thus a function of the
two unknowns, the exponent, si, and the wealth, wi, (no data
on wealth are made available in Carthy et al., 1999) in addition
to the MAP, xki, which is to be measured. One of the depend-
encies may be eliminated by bringing in the MAC,  yki, which
is the second value to be measured, but one unknown will be
left. One natural course of action would have been to set a
value for risk-aversion, εi, common to all in the same way that
risk-aversion is set to unity for everyone when the Logarithmic

utility function is used. This value of εi would fix the exponent:
si = 1 − εi. However, Carthy et al. make the assumption that the



258  Process Safety and Environmental Protection 9 4 ( 2 0 1 5 ) 239–261
injury offset, aki, should take the highest value possible that
does not make the utility of wealth after injury negative. That
is to say that the utility of wealth after the injury should be
made zero, Iki (wi) = 0, no matter how insignificant the injury
and no matter how wealthy the individual is. Thus from Eqs.
(A.12) and (B.1), Ui(wi − xki) = (wi − xki)

si = 0. It follows that the
individual’s wealth is given by

wi = xki (B.6)

which eliminates the wealth as an unknown. Reflecting the
fact that Carthy et al. have chosen to impose the constraint of
Eq. (B.6) on their Power utility function, it will be referred to as
the Constrained Power utility function.

The rationale for Eq. (B.6) offered by Carthy et al. is

“as  ̨ [=�ki] decreases it transpires that the value of n [=1/si]
required to accommodate any particular values of x̂ [=xki]
and ŷ [=yki] gets larger. Thus, for example, with ŷ  = 5x̂, and
setting  ̨ = U(w̄ − ˇ), 0.25U(w̄ − ˇ) and 0.01U (w̄ − ˇ) [aki =
Ui(wi), 0.25Ui(wi)and 0.01Ui(wi)] entails values of 2.6, 7.6 and
160 respectively. Since in this case larger values of n yield
implausibly low values for the Pratt-Arrow coefficient of rel-
ative risk aversion [= risk aversion, εi], it seems appropriate
to set � at the upper end of its range of admissible values.
In view of this, and in the interests of analytical tractabil-
ity, it seems most straightforward to set  ̨ = U(w̄ − ˇ) [aki =
Ui(wi)]”.

where the italics are those of Carthy et al., while the square
brackets indicate the notation used in the current paper.

To explore further, put aki = rkiU(wi), 0 ≤ rki < 1 to accommo-
date the values rki = 1.0, 0.25 and 0.01 instanced by Carthy et al.
The equation pair (A.14) is now transformed into:

Ui(wi − xki) = (1 − rki)Ui(wi)

Ui(wi + yki) = (1 + rki)Ui(wi)
k = W,  X (B.7)

When rki is assumed to be unity, the top line of equation
pair (B.7) gives: Ui(wi − xki) = (wi − xki)

si = 0, which implies Eq.
(B.6). The development of Eqs. (B.9)–(B.11) then allows si to be
calculated as 0.387, so that n = 2.58 and εi = 0.61. It appears to be
the fact that εi = 0.61 when rki = 1.0 and when yki/xki takes the
reasonably representative value of 5.0 that encourages Carthy
et al. to regard rki = 1.0 as a reasonable value, presumably on the
grounds that they regard εi = 0.61 as a reasonably good figure
for risk-aversion, although that is not made clear.

Nor is it clear how the values of n = 7.6 and n = 160 could
be derived based only on the ratio yki/xki = 5. The development
below indicates that the ratio of the individual’s MAP to his
wealth, xki/wi, is also needed. Dividing the lower equation by
the upper and using Eq. (B.1) gives, after taking logs and re-
arranging:

si = ln
(

1 + rki

1 − rki

)
÷ ln

(
1 + yki

xki

xki
wi

1 − xki
wi

)
k = W,  X (B.8)

The solution of Eq. (B.8) requires not only rki and yki/xki but
also a value for xki/wi. Furthermore, it is clear from Eq. (B.8)
that Eq. (B.6), wi = xki, will lead to an incomputable value of
si and hence n. Given the values quoted by Carthy et al. of
rki = 0.25, n = 7.6 = 1/si and rki = 0.01, n = 160 = 1/si, a back solution

of Eq. (B.8) gives xki/wi = 0.89 in the first case and xki/wi = 0.80
in the second.
Now note that risk-aversion is given by εi = 1 − si = 1 −1/n.
This means that the values of “the Pratt-Arrow coefficient of
relative risk aversion” or risk-aversion, εi, corresponding to
n = 7.6 and n = 160 are εi = 0.87 and εi = 0.99 respectively, both
of which lie between the value, εi = 0.61, which Carthy et al.
seem to regard as reasonable, and the value εi = 1.0 that char-
acterises the Logarithmic utility function, which Carthy et al.
must regard as reasonable since they use it in one of their anal-
ysis streams. Thus neither εi = 0.87 nor εi = 0.99 should have
been regarded by Carthy et al. as “implausibly low”. Therefore
the primary justification for setting � “at the upper end of its
range of admissible values” disappears. What remains seems
to be that the combination of rki = 1.0 and yki/xki = 5 produces
εi = 0.61, apparently regarded as a reasonable value, plus the
“interests of analytical tractability”. The full spread of risk-
aversions, εi, is given in Fig. 8, which shows that the constraint
of Eq. (B.6) does not prevent some very low and highly negative
values of risk-aversion being observed.

Substituting Eq. (B.6) into Eq. (B.5) gives:

mki = wi

si
k = W,  X (B.9)

Meanwhile Eq. (B.2) degenerates to:

(wi + yki)
si = 2wi

si k = W,  X (B.10)

Taking logs and rearranging gives the exponent, si, as

si = ln 2
ln(wi + yki) − ln wi

[
= ln 2

ln(1 + yki/xki)

]
k = W,  X (B.11)

allowing mki to be given as

mki = wi
ln(wi + yki) − ln wi

ln 2

[
= xki

ln(xki + yki) − ln xki

ln 2

]
k = W, X

(B.12)

for the Constrained Power utility function.

B.2.  Logarithmic  utility  function

The Logarithmic utility function was introduced by Daniel
Bernoulli (Bernoulli, 1738) and follows from the precept that
“the utility resulting from any small increase in wealth will
be inversely proportionate to the quantity of goods previously
possessed”, or dUi/dwi = 1/wi, integration of which produces:

Ui(wi) = ln wi (B.13)

This form may be shown to be a limiting case of the Power
utility when the person’s risk-aversion is set to unity, εi = 1 (see
e.g. Thomas, 2010), and it is the utility function recommended
by the UK Treasury (2011).

Substituting into Eq. (A.15) gives

ln (wi − xki) + ln(wi + yki) = 2 ln wi (B.14)

so that
ln ((wi − xki)(wi + yki)) = ln w2
i (B.15)
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Exponentiating and rearranging then gives the individual’s
ealth as

i = xkiyki

yki − xki
(B.16)

Thus wealth becomes infinite if xki = yki. Meanwhile, from
he first equation in equation pair (A.14)

n(wi − xki) = ln wi − aki (B.17)

Rearranging and using Eq. (B.16) gives the injury offset as

ki = ln
wi

wi − xki

[
= ln

(
xkiyki

(yki − xki)
1(

xkiyki
yki−xki

− xki

)
)

= ln
yki

xki

]
(B.18)

Differentiating Eq. (B.13) with respect to wi produces

dUi

dwi
= 1

wi
(B.19)

Substituting from Eqs. (B.18) and (B.19) into Eq. (A.7) gives
he marginal rate of substitution of non-injury probability in
lace of wealth as

ki = wi ln
wi

wi − xki

[
= xkiyki

yki − xki
ln

yki

xki

]
(B.20)

It may be noted that mki becomes infinite for xki = yki.

.3.  Homogeneous  utility  function:  Negative  Inverse
tility  function

arthy et al. describe as “homogeneous” the utility function:

i(wi) = −w−n
i

for n > 0 (B.21)

nd then choose the single value, n = 1 for reasons of “analyti-
al tractability”, meaning that only the Negative Inverse utility
unction is actually considered:

i(wi) = − 1
wi

(B.22)

Substituting from Eq. (B.22) into Eq. (A.15) gives:

1
wi − xki

− 1
wi + yki

= − 2
wi

(B.23)

After rearranging and cancelling terms, the individual’s
ealth, wi, emerges as:

i = 2xkiyki

yki − xki
(B.24)

Comparing (B.24) with Eq. (B.16), it is clear that for the
ame values of maximum acceptable price, xki, and minimum
cceptable compensation, yki, the wealth associated with the
egative Inverse utility function is predicted to be twice the
ealth of the Logarithmic utility function.

Meanwhile, solving equation pair (A.14) for aki and using
he utility function as defined by Eq. (B.22) gives the injury
ffset as: [

2
]

ki = 1
wi − xki

− 1
wi

= xki

w2
i

− wixki

= (xki − yki)
2xkiyki(xki + yki)

(B.25)
where the last step involves the use of Eq. (B.24). Meanwhile
differentiating Eq. (B.22) with respect to w gives:

dUi

dwi
= 1

w2
i

[
= (yki − xki)

2

4x2
ki

y2
ki

]
(B.26)

where Eq. (B.24) has been used in the second step. Substituting
from Eqs. (B.25) and (B.26) into Eq. (A.7) gives the marginal rate
of substitution of non-injury probability in place of wealth as

mki = wixki

wi − xki

[
= 2xkiyki

xki + yki

]
(B.27)

B.4.  Negative  exponential  utility  function

In this case

Ui(wi) = −e−ˇiwi ˇi > 0 (B.28)

Substituting into Eq. (A.15) gives, after minor
rearrangement:

e−ˇiwi eˇixki + e−ˇiwi e−ˇiyki = 2e−ˇiwki (B.29)

Multiplying throughout by eˇiwi for any wealth, wi, gives

eˇixki + e−ˇiyki = 2 (B.30)

which implies that all further results will apply whatever the
individual’s wealth. The degenerate solution, ˇi = 0 for all xki

and yki, is ruled out by the condition ˇi > 0, but an alternative
solution may be found by first using the substitution:

cki = yki

xki
(B.31)

in Eq. (B.30):

eˇixki + e−ˇickixki = eˇixki + (e−ˇixki )cki = 2 (B.32)

where cki ≥ 0.
Using the further substitution, �ki = eˇixki , yields:

�ki − 2 + 1

�
cki
ki

= 0 (B.33)

This equation will normally need to be solved for �ki numer-
ically, but it is advisable to examine the properties of the
equation further before doing so.

One solution that will apply for all cki is �ki = 1, but since
�ki = eˇixi , or, equivalently, ˇi = (ln�ki)/xki, this solution implies
ˇi = 0. Such a beta-value would render Ui(wi) in Eq. (B.28) inde-
pendent of wealth, wi, and therefore inadmissible as a utility
function. Hence the solution �ki = 1 may be disregarded in this
application.

Turning to particular values of cki, if cki = 0, then Eq. (B.33)
yields the single solution �ki = 1, while cki = 1 turns Eq. (B.33)
into a quadratic equation, with �ki = 1 for both solutions. Hence
values of cki = 0 and cki = 1 are of no interest.

For the values of cki that are intermediate between 0 and 1,
viz. 0 < cki < 1, the first solution is �ki = 1, which has already been
explained to be of no interest. Furthermore, it can be shown
by numerically mapping the function, �ki − 2 + 1/�cki

ki
, over the
space defined by 0 < �ki < 1 and 0 < cki < 1 that the second solu-
tion will obey the open condition 0 < �ki < 1. This implies that
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ˇi = (ln�ki)/xki < 0. But substituting a negative value of ˇi into Eq.
(B.28) implies that an individual’s utility, Ui(wi), will decrease
with increasing wealth, an inadmissible condition for a utility
function.

Thus it has been shown that values of cki at or below unity
violate the constraints of the application at hand, so that the
range of possible cki is restricted to 1< cki ≤ ∞.

A  lower, open limit of �ki > 1 may be established from the
foregoing by assuming continuity, viz. �ki → 1 as cki → 1 from
above. Moreover, it is clear from Eq. (B.33) that no �ki > 2 is
possible if 1< cki ≤ ∞.  Thus �ki is constrained to stay within
the bounds: 1 < �ki ≤ 2, which narrows down the search for a
numerical solution.

Solving equation pair (A.14) for aki and substituting from
Eq. (B.28) into the result gives

aki = −e−ˇiwi + e−ˇi(wi−xki) = e−ˇiwi (eˇixki − 1)

= −Ui(wi)(�ki − 1)
(B.34)

Meanwhile, differentiating Eq. (B.28) with respect to wi

gives:

dUi

dwi
= ˇie

−ˇiwi = − ln �ki

xki
Ui(wi) (B.35)

since �ki = eˇixi ⇔ ˇi = (ln�ki)/xki. Thus, substituting from Eqs.
(B.34) and (B.35) into Eq. (A.7) gives the marginal rate of
substitution of non-injury probability in place of wealth
as

mki = (�ki − 1)
ln �ki

xki (B.36)

which may be calculated once Eq. (B.33) has been solved for
�ki.

Using l’Hôpital’s rule, Eq. (B.36) reduces to

mki → xki as �ki → 1 (B.37)

but since �ki = 1 has been shown to lead to the inadmissible
value ˇi = 0, the result mki = xki cannot be used.

Eq. (B.36) may, of course, be written in terms of ˇi as:

mki = eˇixki − 1
ˇi

(B.38)

As noted above, it is not possible to use the values of xki

and yki to find the wealth for an individual if his behaviour is
represented by this utility function.
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