
State-of-the-art in premixed combustion modeling using flamelet
generated manifolds
J.A. van Oijen *, A. Donini, R.J.M. Bastiaans, J.H.M. ten Thije Boonkkamp, L.P.H. de Goey
Eindhoven University of Technology, Eindhoven, The Netherlands

A R T I C L E I N F O

Article history:
Received 29 July 2015
Accepted 29 July 2016
Available online 13 October 2016

Keywords:
Flamelets
Manifolds
Reduced chemistry
Flame stretch
Preferential diffusion

A B S T R A C T

Flamelet based chemical reduction techniques are very promising methods for efficient and accurate mod-
eling of premixed flames. Over the years the Flamelet Generated Manifold (FGM) technique has been
developed by the Combustion Technology Group of Eindhoven University of Technology. Current state-
of-the-art of FGM for themodeling of premixed and partially-premixed flames is reviewed. The fundamental
basis of FGM consists of a generalized description of the flame front in a (possibly moving) flame-
adapted coordinate system. The basic nature of the generalized flamelet model is that effects of strong
stretch in turbulent flames are taken into account by resolving the detailed structure of flame stretch
and curvature inside the flame front. The generalized flamelet model, which forms the basis on which
FGM is built, is derived in Part I. To be able to validate numerical results of flames obtained with full
chemistry and obtained from FGM, it is important that the generalized flamelet model is analyzed further.
This is done by investigating the impact of strong stretch, curvature and preferential diffusion effects on
the flame dynamics as described by the local mass burning rate. This so-called strong stretch theory is
derived and analyzed in Part I, as well as multiple simplifications of it, to compare the strong stretch
theory with existing stretch theories. The results compare well with numerical results for flames with
thin reaction layers, but described by multiple-species transport and chemistry. This opens the way to
use the generalized flamelet model as a firm basis for applying FGM in strongly stretched laminar and
turbulent flames in Part II. The complete FGM model is derived first and the use of FGM in practice is
reviewed. The FGM model is then validated by studying effects of flame stretch, heat loss, and changes
in elements, as well as NO formation. The application to direct numerical simulations of turbulent flames
is subsequently studied and validated using the strong stretch theory. It is shown that the generalized
flamelet model still holds even in case of strong stretch and curvature effects, at least as long as the re-
action layer is dominated by reaction and diffusion phenomena and not perturbed too much by stretch
related perturbations. The FGM model then still performs very well with a low number of control vari-
ables. Turbulent flames with strong preferential diffusion effects can also be modeled efficiently with an
FGM model using a single additional control variable for the changes in element mass fractions and en-
thalpy. Finally FGM is applied to the modeling of turbulent flames using LES and RANS flow solvers. For
these cases, the flame front structure is not resolved anymore and unresolved terms need to be modeled.
A common approach to include unresolved turbulent fluctuations is the presumed probability density
function (PDF) approach. The validity of this FGM-PDF approach is discussed for a few test cases with
increasing level of complexity.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Detailed numerical modeling of reacting flows has gained a con-
tinuous growth of interest in the last few decades. This is related
to the fact that the development of new and the improvement of
existing combustion equipment is getting more and more impor-
tant. It has become strikingly clear that we cannot continue with
the emission of undesired polluting combustion-byproducts in the
way we have been doing in the last century, as this might lead to
the destruction of our complete ecosystem. Engines, gas turbines
and industrial furnaces play a major role in this emission and it is
therefore of the utmost importance to improve the combustion prop-
erties of these systems significantly in the near future to avoid a
further pollution of the atmosphere.

However, the improvement of combustion processes is a very
difficult task: the improvement of one aspect often leads to a de-
terioration of other combustion aspects due to the complicated
nature of combustion systems. For example, the shift of combus-
tion technology during the last few decades toward much leaner
low-NOx premixed combustion processes in many applications
has generally evolved in a reduction of the flame stability (leading
e.g., to flame oscillations, noise, CO-emissions and even flame
quenching). To be able to avoid all these problems, adaptations of
combustion systems were needed, and to assist these studies, com-
bustion CFD has become a very important tool. Another example
is related to the demand for more sustainable combustion which
has introduced a broad range of new fuels, some of which show really
different combustion phenomena, for example hydrogen enrich-
ment of fossil fuels from bio-sources introduces preferential diffusion
phenomena which may have a huge impact on the structure and
dynamics of underlying combustion processes. It is clear that com-
bustion CFD is also very important to guide these developments.
Therefore, further improvements by ad-hoc measures are insuffi-
cient and we have to rely on an in-depth understanding of the
processes to be able to improve these systems significantly. De-
tailed experiments have to be carried out and detailed numerical

modeling is needed to meet this goal. However, the numerical mod-
eling of combustion systems is also very challenging from a scientific
point of view. The interaction of the fluid flow, turbulence, chem-
ical reactions and thermodynamics in reacting flows is of exceptional
complexity. At the moment it has become within reach to model
the most important physical aspects in detail, but this is still limited
to small academic combustion problems. The modeling of the full
details of practical combustion equipment will remain prohibitive
in the next few decades, because of current and future limitations
in computing power.

This problem asks for special treatments with respect to themod-
eling of flames. An important way to tackle this problem is bymaking
use of the fact that the chemical time and length scales in most
flames are very small. This idea can be exploited in different smart
ways to reduce the number of equations to be solved, leading to
an enormous reduction in computing effort. In the last decades two
main routes have been followed using this idea in combustion
science to model the detailed dynamics and structure of chemical-
ly reacting flows: chemical reduction techniques and laminar flamelet
models.

Chemical reduction techniques – such as conventional reduc-
tion [1], Intrinsic Low-Dimensional Manifolds (ILDM) [2] and
Computational Singular Perturbation (CSP) [3] – are based on the
idea that most of the chemical time scales in the system are very
small. If all transport processes are neglected, a time-scale analy-
sis can be performed and the fastest time scales are assumed to be
in steady-state. Mathematically, this means that all variables can
be stored in a database as a function of a few controlling variables
and during run-time only the equations for the controlling vari-
ables are solved. Large savings in computing time are reported by
most methods with a small loss in accuracy.

Laminar flamelet methods [4] are based on the idea that flame
structures are much thinner than most scales of the distortions in
the flow, also implying that the chemical reactions are very fast com-
pared to all other time scales. For that reason, the internal structure
of the flame front is almost frozen while it moves around in the flow
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field. The dynamics of the thin flame front is then predicted by using
a kinematic equation for the propagation of the flame front, the
mixture fraction equation for the mixing and a computational fluid
dynamics (CFD) solver for the flow [4].

In 1999, van Oijen and de Goey proposed a combination of these
approaches, referred to as the Flamelet Generated Manifold (FGM)
technique [5,6]. The FGM approach is more accurate than chemi-
cal reduction techniques like ILDM and CSP in colder flame parts,
because it also takes transport effects into account in the reduc-
tion of chemical kinetics. The correct flame dynamics and
propagation speed of the flame are only captured by taking into
account the balance between convection, diffusion and reaction,

which is essentially not taken into account in the chemical reduc-
tion techniques like ILDM/CSP, because they are based on chemical
kinetics only. In hot flame parts, chemistry dominates and ILDM/
CSP methods are accurate, but transport processes start playing an
important role in the colder flame parts where chemical time scales
increase, taken into account only with flamelet based methods like
FGM. The FGMmethod is quite promising, both because of the im-
provement in reduction efficiency as well as in the accuracy of the
model. This method is based on a detailed analysis of (partially) pre-
mixed flames in the so-called laminar flamelet and thin reaction
zones combustion regime. The basis of the FGM approach is the set
of strongly stretched flamelet equations and the related strong stretch

Nomenclature

aji number of atoms of element j in a molecule
of species i [–]

cp specific heat capacity at constant pressure
[J/kg K]

cp i, specific heat capacity at constant pressure
of species i [J/kg K]

Di,m mixture averaged diffusion coefficient of
species i [m2/s]

DY preferential diffusion coefficient for progress
variable, Eq. (88) [kg/m s]

Dh preferential diffusion coefficient for enthalpy,
Eq. (89) [W/m]

Ea Activation energy [J/mol]
g square of the Jacobian of the coordinate

transformation x � ξ [–]
gαβ( ) contravariant metric tensor of flame adapted

coordinate system [–]
g gravitational acceleration vector [m/s2]
h specific enthalpy [J/kg]
hi specific enthalpy of species i [J/kg]
hi,ref specific enthalpy of formation of species i at

reference temperature Tref [J/kg]
hα scale factors of the coordinate transformation

x � ξ [–]
Jh preferential diffusion flux of enthalpy [W/m2]
JZ j preferential mass diffusion flux of element

j [kg/m2 s]
K mass-based stretch rate [1/s]
Kσ area-based stretch rate [1/s]
Ka Karlovitz number [–]
Kai Karlovitz integral, Eq. (45a) [–]
KaT Karlovitz integral, Eq. (45b) [–]
Lei Lewis number of species i [–]
m mass burning rate [kg/m2 s]
M je, molar mass of element j [kg/mol]
M is, molar mass of species i [kg/mol]
M average molar mass [kg/mol]
M Markstein number [–]
n unit normal vector at flame surfaces, directed

toward the burnt gas mixture [–]
Ne number of elements [–]
Nm number of manifold dimensions [–]
Ns number of species [–]
p hydrostatic pressure [N/m2]
q heat flux vector [W/m2]
Qh divergence of heat flux in flame surfaces [W/m3]
QYi divergence of mass flux of species i in flame

surfaces [kg/m3 s]

QZ j divergence of mass flux of element j in flame
surfaces [kg/m3 s]

r number of slow chemical processes [–]
R universal gas constant [J/mol K]
s arclength coordinate along flamelets [m]
sd displacement speed [m/s]
sL laminar burning speed [m/s]
t time [s]
T (absolute) temperature [K]
T viscous stress tensor [N/m2]
v mass-weighted average flow velocity [m/s]
vf velocity of flame surfaces [m/s]
Vi diffusion velocity of species i [m/s]
wj i, mass fraction of element j in species i [–]
x Cartesian space coordinates [m]
yi control variable i [–]
Yi mass fraction of species i [–]
Y progress variable [–]
Z mixture fraction [–]
Zj mass fraction of element j [–]
Ze Zeldovich number [–]
αi weight factor of species i in the definition of Y [–]
δf thermal thickness of the flame front [m]
δr thickness of the reaction layer [m]
η Kolmogorov length scale [m]
η manifold coordinates in unit domain [–]
λ thermal conductivity [W/m K]
ξ flame adapted space coordinates [m]
πi flamelet parameter [–]
ρ mass density [kg/m3]
σ factor of area elements at flame surfaces [–]
τ time in the flame adapted coordinate system [s]
ϕ equivalence ratio [–]
φ thermochemical variable [–]
χ scalar dissipation rate [1/s]
ψ enthalpy and element mass fraction vector [–]
ωi net chemical production rate of species i [kg/m3 s]

Subscripts
b at the burnt side of the flame front [–]
f flame front [–]
i at the inner layer of the flame front [–]
r reaction layer [–]
t tangential to the flame front [–]
u at the unburnt side of the flame front [–]

Superscripts
0 stretchless reference condition [–]
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theory, developed in the last decade. This theoretical model is based
on the idea that the most important aspects of the dynamics inside
the internal structure of the flame front should be taken into account.
In this paper, we will review the essential ingredients of the strong
stretch theory and the FGMmethod, show results, and indicate the
relation between the models and with other existing methods.

Various other methods have been developed to couple diffu-
sion and chemistry in reduction methods. Bongers et al. [7]
introduced the Phase-Space ILDM (PS-ILDM) method, which ana-
lyzes the time scales of a linearized form of the flamelet equations.
Reaction DiffusionManifolds (REDIM) were introduced by Bykov and
Maas [8]. Like PS-ILDM, REDIM is an extension of the ILDM frame-
work by including diffusion terms. Furthermore, the FGM method
is very similar to the Flamelet Prolongation of ILDM (FPI) tech-
nique, which was introduced by Gicquel et al. [9] in 2000. Parallel
to the development of FGM, the FPI approach has been applied in
many numerical combustion studies (e.g., Refs. [10–12]). While FGM
and FPI were at first developed for premixed flames and only later
applied to non-premixed flames [13,14], the Flamelet/Progress Vari-
able (FPV) approach was introduced by Pierce and Moin [15] for
application in non-premixed flames. The FPV method is based on
the non-premixed flamelet model of Peters [4,16], but uses a re-
action progress variable to describe non-equilibrium chemistry.
Pitsch, Ihme and coworkers further developed the FPV method fo-
cusing on turbulent non-premixed flames (e.g., Refs. [17–20]). Both
FPI and FPV describe the chemical kinetics with a single reaction
progress variable apart from variables to account for mixing and
non-adiabatic effects, while FGM has been developed to be usedwith
multiple reaction control variables [6,13,21].

The main goal of this paper is to form one consistent picture of
the FGM approach by reviewing older papers, filling the gaps with
new derivations and especially to discuss the main physical con-
sequences, which were less obvious in our previous papers. This
paper contains two parts. In Part I the set of strongly stretched
flamelet equations is derived on which the FGMmodel is based. This
set of equations is further used to derive and validate the strong
stretch theory. This theory is the basic formalism for describing the
effects of turbulence generated stretch and curvature on the flame
propagation rate and is therefore the essential link to the FGM
method described in Part II. Inclusion of strong stretch is the main
focus because the FGM approach is intended to predict turbulent
(partially) premixed combustion in the corrugated flamelet and thin
reaction zones regime of the combustion regime diagram [16].

2. Part I: Generalized flamelet description

2.1. Flamelet description based on strong stretch theory

2.1.1. Introduction to strong stretch theory
Partially premixed flames of hydrocarbon–air mixtures gener-

ally propagate as thin layers with a thickness δf mainly determined
by the balance of diffusion and reaction in the flame front. Such a
thin layer contains an even thinner reaction layer with a thickness
δr (with δ δr f� ) mainly determined by chemical kinetics. Turbu-
lent flames can then be regarded as thin reaction–diffusion layers
wrinkled by the turbulence, while the internal structure and the
propagation speed are perturbed by flame stretch and flame cur-
vature due to the turbulent structures. In most applications, flames
are wrinkled by all turbulent scales up to the smallest Kolmogorov
eddies with scale η, which can be of the order of the flame thick-
ness δf. We therefore consider partially-premixed flames of which
the smallest flow scales η satisfy η δ� r while η can be of the same
order of magnitude as the flame thickness, typically δ η δf f≤ ≤ 10 .
This corresponds to flames in the so-called corrugated flamelet
regime or the thin reaction zones regime. For this reason we can

assume effectively that the reaction layer is infinitely thin (δr → 0),
while the diffusive layer is resolved.

It is important to realize that most existing theories to predict
the effects of flame stretch and curvature on the flame propaga-
tion speed and flame structure, which have been developed over
the years [22–24], assume that length and time scales of the per-
turbations are large compared to the flame scales. These so-called
weak stretch theories effectively assume that the perturbations are
homogeneous on the scale of the flame front and are therefore suited
for the wrinkled flamelet regime (η δ δ� �f r ), but making predic-
tions about the effects of turbulence in the regime of main practical
interest, where η δ∼ f , probably unreliable. Still, these theories
have been ‘extrapolated’ to the more practical regimes of turbu-
lent premixed flames by most combustion researchers, simply
because a theory for the case with η δ~ f was lacking. For that reason,
the authors developed an extended theory, referred to as ‘strong
stretch theory’, indicating that the Karlovitz number Ka = τf/τη is no
longer small but can be of the order 1, with τf = δf/sL the flame time
and τη = η/u′ the flow time scale, where sL is the laminar burning
speed and u′ is the velocity fluctuation of the surrounding (turbu-
lent) flow.

In the regime with η ≈ δf and δr→0, it is obvious that the flow
perturbations cannot be assumed homogeneous inside the diffu-
sive layer. The flame stretch rate and the flame curvature should
therefore be resolved inside the flame front. This is the main dif-
ference between the existing weak stretch theories and our strong
stretch theory. We will not assume that δf→0 thus we cannot treat
the flame as an interface as in other models. We will treat the re-
action layer as an interface though. There are more differences
between the weak and strong stretch theories: weak stretch theo-
ries are derived for single-step kinetics between a fewmajor species
having a large activation energy while the strong stretch theory is
valid for (realistic) multiple-species transport and chemistry as we
will see, as long as the reaction chemistry is fast enough so that
δ δr f� . This enables application to (numerical) studies of flames
using realistic transport and chemistry models, like FGM. To resolve
the structure of the diffusive layer, we consider a progress vari-
able and we will evaluate the kinematic evolution of a series of iso-
contours of the progress variable, thereby taking the detailed
interaction of fluid dynamics and transport processes inside the flame
front into account. These aspects are the main ingredients of the
strong stretch theory developed over the last decades [25], which
forms the basis of the FGMmethod presented in Part II and further.
In Part I, we will review and derive the theory step-by-step.

We will first present the equations governing (partially) pre-
mixed flames in Section 2.1.2. We then introduce a flame-adapted
coordinate system and transform the equations to these curvilin-
ear coordinates in Section 2.1.3. After introducing the mass-based
flame stretch rate in Section 2.1.4, the transport equations are split
in a kinematic equation describing flame propagation and a set of
flamelet equations for the internal structure and propagation
speed of the resolved structure in Section 2.1.5. Using integral anal-
ysis we then analyze the influence of strong stretch on the flame
propagation rate in Section 2.2, while the theory is validated in
Section 2.3.

2.1.2. Governing equations
In this section we summarize a mathematical model for laminar,

premixed flames. Typically, we consider the combustion of hydro-
carbons in air. The species in the flame are numbered 1 through Ns.
Species Ns is nitrogen (N2) and is present in abundance. The gov-
erning equations for such flames are the conservation equations of
mass, momentum and energy of the gas mixture, the balance equa-
tions of mass for the species involved and the thermal and caloric
equations of state [26,27]. These can be written in the following
form:
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The independent variables in Eq. (1) are the density ρ, the (mass-
weighted average) flow velocity v, the pressure p, the specific
enthalpy h, the species mass fractions Yi and the temperature T. The
variables ρ, Yi, T and h are the combustion variables, whereas v and
p are the flow variables. Other variables/constants in Eq. (1) are the
stress tensor T , the gravitational acceleration g, the thermal con-
ductivity λ, the specific heat at constant pressure cp, the preferential
diffusion flux of enthalpy Jh, the diffusion velocities Vi, the reac-
tion rates ωi, the ambient pressure pamb, the universal gas constant
R, the species molar masses M is, , the average molar mass M and
the specific enthalpies of formation hi,ref at a reference tempera-
ture Tref . In the sequel of this paper we will neglect gravity. Note
that only the mass balance equations (1d) for the first Ns − 1 species
are required, since the mass fraction YNs follows from the
constraint ∑ ==i

N
iY1 1s .

In the remainder we assume that the fluid is an ideal
Newtonian fluid. Furthermore, using the Hirschfelder–Curtiss
approximation, we obtain for the diffusion velocities Vi the
relations:

ρ λ λ
ρ

Y
c c

Y
c
D

i Ni i
i p p

i i
p

i

V = − ∇ = = −
1

1 2 1
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m
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where D i Ni, , , ,m s= −( )1 2 1… are the mixture averaged diffusion co-
efficients and Lei the Lewis numbers of the species concerned. Here
we replaced the gradient of mole fractions by a gradient of mass
fractions, assuming that the gradient of mean molar mass is small
[28]. For premixed flames burning in air, this is a valid assump-
tion because M is mainly determined by the abundant N2.
Furthermore, thermal diffusion is neglected in Eq. (2). Soret and
Dufour effects are second-order diffusion effects, which can be
neglected in most premixed hydrocarbon–air flames. Since thermal
diffusion mainly affects the transport of light species, it only plays
an important role for fuel mixtures with very large quantities of H2

[29]. The effect of this assumption is investigated in Section 3.4.1.2.
For the heat flux vector q we only take into account conduc-

tion and enthalpy transport by diffusion, i.e.,

q V= − ∇ +
=
∑λ ρT hYi i i
i

N

1

s

, (3)

where hi are the species specific enthalpies. Combining the rela-
tions in Eqs. (2) and (3) we obtain the following expression for the
preferential diffusion flux of enthalpy

Jh
p i

i i
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c
h Y= −⎛

⎝⎜
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1
1 Le

s

. (4)

The species specific enthalpies hi in the previous relations are
given by

h h c T Ti i p i
T

T
= + ′( ) ′∫, , ,ref d

ref
(5)

where cp i, is the specific heat at constant pressure of the i-th species.
Note that h Yhi

N
i i= ∑ =1

s and c Y cp i
N

i p i= ∑ =1
s

, . Finally, the low-Mach
number approximation holds, i.e., p is set to the constant ambient
pressure in the equation of state (1e) and the term Dp/Dt is ne-
glected in the enthalpy equation (1c); see Ref. [30].

In the following of this paper we frequently need the element
mass fractions Zj. Assuming that the elements are numbered 1
through Ne, the element mass fractions are defined by

Z w Y j Nj j i i
i

N

: , , , , ,,= =
=
∑

1

1 2
s

e… (6)

where wj i, is the mass fraction of element j in species i, i.e.,
w M a Mj i j j i i, , , ,= e s with M je, the molar mass of element j and aj i,
the number of atoms of element j in a molecule of species i. Taking
the same linear combination as in Eq. (6) of the species equations
(1d), we get the following conservation equations for Zj:
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where JZ j is the mass diffusion flux of element j given by
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1
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for more details see Refs. [25,31]. These conservation equations are,
of course, not independent of the set (1d). Note that the balance
equations (7) are only required for the first Ne − 1 elements, since
∑ ==j
N

jZ1 1e .

2.1.3. Flame adapted coordinates and flame kinematics
In this subsection we present our flame adapted coordinate

system; see also Ref. [25]. The rationale behind our definition is the
observation that premixedflameshave a local one-dimensional struc-
ture, i.e., the gradients of many combustion variables are quite large
along certain curves in the flame front, whereas in surfaces per-
pendicular to these curves the variables are virtually constant.
Therefore,we consider a premixedflameas the region in spacewhere
Y Y Yu b≤ ( ) ≤x, t for some suitable combustion variable Y , taking
the values Yu and Yb in the unburnt and burnt gases, respectively.
The variable Y is called the progress variable and can be, say, one
of the species mass fractions or the temperature. We assume that
∇ ≠Y 0 everywhere in the flame. Consequently, we can identify iso-
surfaces of Y , i.e., surfaces where Y Yx, t( ) = 0 for some constant Y0

with Y Y Yu b≤ ≤0 , whichwe refer to as flame surfaces.We define the
curvilinear coordinate system ξ ξ ξ ξ= ( )1 2 3, , by the relations

Y Y Y Y Yx x x t1 2 3
1

1
0 2 3, , , , , , ,( ) = ( ) ∂

∂
⋅
∂
∂

= =( ) ≤ ≤ξ
ξ ξ

αα

x x
for u b

(9)

i.e., coordinate surfaces ξ1 = const coincide with flame surfaces and
the ξ1-coordinate lines are orthogonal to these. We refer to the ξ1-
coordinate lines as flamelet paths. In each flame surface, (ξ2,ξ3) is a
curvilinear coordinate system, not necessarily orthogonal, and is not
specified unless stated otherwise. Note that the flame coordinates
are not defined in the burnt and unburnt gas mixtures. For
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time-dependent flames the iso-surfaces will move in the spatial
domain, resulting ina timedependent coordinate system, i.e.,ξ = ξ(x,t).
Moreover, we introduce the variable τ as the time corresponding to
the curvilinear coordinate system. Obviously, τ = t. In Section 2.1.5,
wewill consider the transformation from the laboratory system (x,t)
to the curvilinear flame adapted coordinate system (ξ,τ) andwe re-
formulate the conservation laws in terms of these coordinates.

It is obvious that the moving coordinate system and the kine-
matic behavior of the flame are closely related. Note that due to
unsteady flow, the flame surfaces move in the spatial domain with
velocity vf given by

v v n nf d: , : ,= − =
∇
∇

s
Y

Y
(10)

where sd is the displacement speed, and n the (local) unit normal
vector to each flame surface, which we assume to be directed toward
the burned gas mixture, i.e., −sdn is the velocity of the flame sur-
faces relative to the flow. In our previous papers (e.g., Refs.
[25,32,33]), we referred to this velocity as the local laminar burning
velocity using symbol sL. In order to align with literature, we use
here the symbol sd and refer to it as the displacement speed. The
laminar flame speed sL is a global property of the flame front and
is defined as the displacement speed at the unburnt side of a one-
dimensional stretchless flame, s sL d u= ,

0 . As we intend to resolve the
internal structure of the flame front, it is regarded as a collection
of flame surfaces and the motion of each surface is described by
the (local) kinematic condition

d
d f
Y Y

Y
t t

: .=
∂
∂

+ ⋅∇ =v 0 (11)

Alternatively, differentiating the first relation in Eq. (9) with
respect to τ, we find

∂
∂

=
∂
∂

+ ⋅∇ =
Y Y

Y
τ t

�x 0, (12)

where �x x= ∂ ∂τ is the velocity of the moving system. Combining
the conditions in Eqs. (11) and (12), we conclude that v xf −( ) ∇ =� . Y 0,
i.e., the flame velocity vf and the velocity �x of the moving coordi-
nate system have the same component normal to the flame surfaces.
On the other hand, the tangential component of the velocity �x
of the moving coordinate system is not determined by Eq. (9),
and for this we simply choose a v xα α⋅ −( ) = =( )� 0 2 3, , aα being the
contravariant unit vectors in the curvilinear coordinate system (see

Appendix A). This implies that �x v= f and
d
dt

= ∂
∂τ .

The consequence of this choice is that the curvilinear coordi-
nate system moves with the flame velocity vf with respect to the
laboratory system. This motion is described by:

∂
∂

+ ⋅∇ = ∇
Y

Y Y
t

sv d , (13)

which follows readily if we substitute Eq. (10) in Eq. (11). If the con-
servation laws are reformulated in terms of this moving coordinate
system, the flame front in terms of Y ξ1( ) does not change any more,
although the internal structure (in terms of other combustion vari-
ables) may change due to unsteady effects (described by partial
derivatives with respect to τ), flame curvature and flame stretch (see
Fig. 1).

2.1.4. Mass-based flame stretch
Traditionally, the flame stretch rate is defined as the relative rate

of change of an area element d d dS = σ ξ ξ2 3 on a flame surface as
follows

K
t

σ σ
σ σ

ξ ξ
: , : ,= =

∂
∂

×
∂
∂

1
2 3

d
d

x x
(14)

due to flow straining and flame motion. It is clear that this is a very
useful definition in case of an infinitely thin flame sheet. This concept
needs extension when the diffusive layer is resolved. For a flame
of finite thickness, enclosed between the iso-surfaces Y Yx, t( ) = u

and Y Yx, t( ) = b, flamelet paths x = x(ξ1) are defined as curves cross-
ing the entire flame from the unburnt side to the burnt side in the
direction of the normal n, i.e., they satisfy an initial value problem
of the form

d
u b

x
n

d
C

ξ
ξ ξ ξ ξ

1
1 1 1 1= ( ) ≤ ≤, , (15a)

x xξu u
1( ) = , (15b)

where C is some function depending on the flamelet coordinate ξ1

only, which we assume to increase when going from unburnt to
burnt boundary of the flame.

It is important to investigate how much the mass flow rate
changes along a flamelet path. For this reason, de Goey et al. [34]
introduced the mass-based stretch rate K, defined as the fraction-
al rate of change of themassM(t) contained in an infinitesimal small
control volume V(t) moving in the flame with velocity vf, i.e.,

K
M

M
t

M t V
V t

= ( ) =
( )∫

1 d
d

d, .ρ (16)

Applying Reynolds’ transport theorem we find

d
d

d df
M
t t

V K V
V t V t

=
∂
∂

+∇⋅( )⎛
⎝⎜

⎞
⎠⎟ =

( ) ( )∫ ∫
ρ ρ ρv : . (17)

We now have the following expression for K

ρ ρ ρK
t

=
∂
∂

+∇⋅( )vf . (18)

Combining this relation with the continuity equation (1a) and
substituting vf = v − sdn we get

Fig. 1. Visualization of the Hmass fraction field in a premixed expanding flame kernel
(left top) with a zoom including the flame contours (constant Y -values) and flamelet
paths (perpendicular to the Y -contours) in the Cartesian coordinate system (right
top) and the H mass fraction field in the flame adapted coordinate system (bottom).

35J.A. van Oijen et al. / Progress in Energy and Combustion Science 57 (2016) 30–74



ρK m= −∇⋅( )n . (19)

where m = ρsd is the mass flux relative to the flame surfaces. This
relation gives rise to the following physical interpretation. Consid-
er a patch S1 t( ) on the flame surface Y Yx, t( ) = 1 and the patch S2 t( )
on the flame surface Y Y Yx, t( ) = ≠2 1 traced out by flame paths ema-
nating from S1 t( ) and let V t( ) be the volume enclosed by S1 t( ), S2 t( )
and the flame paths emanating from the boundary of S1 t( ). Inte-
grating relation (19) over V t( ) and applying Gauss’ theorem, we
obtain the mass balance

ρK V m S m S
V t S t S t

d d d
( ) ( ) ( )∫ ∫ ∫= −

1 2
, (20)

stating that stretch is responsible for the change of mass along flame
paths.

Using the notation and nomenclature introduced in Appendix A,
we can rewrite the expression (18) for K in the curvilinear coordi-
nate system. If we take q = ρ and u v x= =f � in relation (98e), see
Appendix A, we can derive from Eq. (18) the following expression
for the stretch rate

K
g

g=
∂
∂ ( ) + ∂

∂
1 1

τ ρ
ρ
τ

, (21)

where g is the Jacobian of the transformation x � ξ, given by

g h h= =
∂
∂1 1 1

σ
ξ

, : .
x

(22)

Clearly, d d d dV g= ξ ξ ξ1 2 3 is a volume element, d d dS = σ ξ ξ2 3 an
area element on the flame surfaces and ds = h1dξ1 is the arc length
element along flame paths. Substituting Eq. (22) in Eq. (21) we find

K
h

h
=

∂
∂

+
∂
∂

+
∂
∂

1 1 1

1

1

σ
σ
τ τ ρ

ρ
τ

. (23)

Compared to the expression for Kσ defined above, the mass-

based stretch rate K contains the additional terms
1

1

1

h
h∂
∂τ

, describing

the fractional rate of change of flame thickness, and
1
ρ

ρ
τ

∂
∂

, which

is the fractional rate of change of the density of a fluid parcel moving
with the flame. The first two terms in Eq. (23) represent the frac-
tional rate of change of the volume V(t). As indicated in Ref. [35],
the change in volume can be regarded as the sum of changes in flame
surface area and flame thickness. The flame thickness changes due
to unsteady phenomena as well as local flow straining and curva-
ture effects. This contribution is obviously not present in the
traditional definition (14) of Kσ for an infinitesimally thin flame
interface.

Alternatively, starting from Eq. (19) and relation (98b) we find

ρ
ξ

K
g

gm= −
∂

∂ ( )1
1

1 , (24)

where m1 1:= ⋅a m is the first contravariant component of the vector
m: =mn. In the derivation of Eq. (24) we additionally used the re-
lations mα α= =( )0 2 3, . Moreover, since n a= 1 11g we have
m m m g1 1 11= ⋅ =a n . Substituting the expressions for m1 and g
in Eq. (24) and applying the relation g g11

11 1= , this equation can be
rewritten as

δρ σK
s

m= −
∂
∂

( ), (25)

once more confirming that K determines the change of mass flux
along the flamelet paths.

2.1.5. Flamelet equations
In this subsection we will reformulate the combustion equa-

tions in terms of the flame adapted coordinates. Let us start with
the equation

∂
∂

( ) +∇⋅( ) −∇⋅ ∇
⎛
⎝⎜

⎞
⎠⎟
=

t cp
ρ ρ λ ωY Y Y

Y
Yv

1
Le

, (26)

for the progress variable Y . Combining this equation with the ex-
pression for ρK in Eq. (18) and the kinematic condition (11) and
writing all differential operators in ξ-coordinates, we obtain the
quasi-one-dimensional equation

∂
∂ ( ) − ∂

∂
∂
∂

⎛
⎝⎜

⎞
⎠⎟
= −( )

ξ ξ
λ

ξ
ω ρ

1
1

1
11

1

1
gm g

c
g g K

p

Y
Y

Y
Y

YLe
. (27)

In the derivation of Eq. (27) we additionally used the relations
mα = 0, g1 0α = and ∂ ∂ =Y ξα 0 for α = 2,3. Substituting again the ex-
pressions for m1, g and ds = h1dξ1 as arc-length in Eq. (27) and
applying the relation g g11

11 1= , we obtain the flamelet equation for
Y , see Ref. [25],

∂
∂

( ) − ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
= −( )

s
m

s c s
K

p

σ σ λ σ ω ρY
Y

Y
Y

Y
1

Le
. (28)

Equation (28) describes the convection-diffusion-reaction balance
of Y along flamelet paths, however, with an additional source term
−σρKY describing the loss/gain of mass due to flow along the
flame surfaces.

The same procedure can be applied to the scalar conservation
equations (1d), (1c) and (7). The result is the following set of quasi-
one-dimensional differential equations, referred to as the Strongly
Stretched Flamelet Equations (SSFE),

∂
∂

( ) = −
s

m Kσ σρ , (29a)

∂
∂

( ) − ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
= −( )

s
m

s c s
K

p

σ σ λ σ ω ρY
Y

Y
Y

Y
1

Le
, (29b)

σρ
τ

σ σ λ σ σ ρ∂
∂

+
∂
∂

( ) − ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂

⋅( ) = − +( )h
s

mh
s c

h
s s

Kh Q
p

h hJ n , (29c)

σρ
τ

σ σ λ σ ω ρ∂
∂

+
∂
∂

( ) − ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
= − +( )Y

s
mY

s c
Y
s

KY Qi
i

i p

i
i i Yi

1
Le

, (29d)

σρ
τ

σ σ λ σ σ ρ
∂
∂

+
∂
∂

( )− ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
−

∂
∂

⋅( ) = − +
Z

s
mZ

s c
Z
s s

KZ Qj
j

p

j
Z j ZjJ n jj( ).

(29e)

Note that the flamelet equations for mass and for the progress
variable are steady. All other equations do have a time derivative
indicating the unsteady behavior of the corresponding variables with
respect to Y . If a scalar is steady in the flame adapted coordinate
system, it means that this variable has the same transient behav-
ior as Y . Note that the time derivative in the flame adapted
coordinate system can be written as

∂
∂

=
∂
∂

+ ⋅∇ = −( )⋅∇Y Y
t

Y Yi i
i

i
iτ

v v vf f f , (30)

where we introduced vf
i as the velocity of the iso-surfaces of Yi,

which follows from the kinematic condition for Yi, similar to Eq. (11).
Equation (30) expresses that the time derivative arises because the
local iso-surfaces of Yi move with respect to the iso-surfaces of Y .
Furthermore, the terms Qh, QYi and QZ j , which describe transport
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in the flame surfaces, arise because the local iso-surfaces of h, Yi
and Zj generally are not parallel to the iso-surfaces of Y . These terms
read

Q
c

hh
p

h: ,= ∇ ⋅ ∇
⎛
⎝⎜

⎞
⎠⎟
+∇ ⋅t t t

λ
J (31a)

Q
c

YY
i p

ii : ,= ∇ ⋅ ∇
⎛
⎝⎜

⎞
⎠⎟t tLe

1 λ
(31b)

Q
c

ZZ
p

j Zj j: ,= ∇ ⋅ ∇
⎛
⎝⎜

⎞
⎠⎟
+∇ ⋅t t t

λ
J (31c)

where ∇ ⋅t and ∇t denote the internal divergence and gradient
operator, respectively, restricted to the flame surfaces; see
Appendix A.

The Q-terms in Eq. (29) describe conduction/diffusion along the
flame surfaces and are presumably small. In order to investigate this
issue more precisely we have to make the flamelet equations (29)
and the relations (31) dimensionless. As an example consider equa-
tion (29d) together with relation (31b). We consider combustion
in the corrugated flamelet regime and assume that the surround-
ing flow, which distorts the flame layer, is characterized by a velocity
fluctuation u′, length scale η (Kolmogorov length scale) and time
scale τη: = η/u′. The velocity, length and time scales of the flame are
the laminar burning speed sL, thermal thickness δf and τ δf f L:= s ,
respectively. The superscript 0 indicates the stretchless value of the
corresponding variable. Other relevant scaling parameters are

m m
Y

Ki
i

ref b ref b ref
b ref

f
ref= = = =0 0

0 1
, , , .,

,ρ ρ ω ρ
τ τη

(32a)

The subscript ref on a variable denotes a reference value for the
corresponding scaling parameter. We now introduce the follow-
ing dimensionless variables (indicated by an asterisk *):

x x= = = =( ) = =: , : , , , , ,η δ ξ ηξ α τ τ τα α
η* * * * *f refs s q q q2 3 (32b)

where q is an arbitrary variable/parameter in Eq. (39) or Eq. (43). The
resulting dimensionless equation reads (omitting all asterisks):

σ ρ
τ

σ σ λ σ ω ρ εKa
Le

Ka
∂
∂

+
∂
∂

( ) − ∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟
= − +

Y
s

mY
s c

Y
s

KY Qi
i

i p

i
i i Y

1 2
ii( ),
(33)

where Ka b ref f b f:= =ρ δ τ τη
0 0K m is the Karlovitz number and

ε δ η:= = ′f LKas u . In the corrugated flamelet regime [16], Ka and ε
are both much smaller than 1. In this regime, the time derivative,
the stretch term and the Q-term can be neglected. In the thin re-
action zones regime Ka ~ 1, the Q-term is still much smaller than
the stretch term and is negligible. However, the time derivative and
stretch term are of order 1. In practice the order of magnitude of
the time derivative is smaller because it is related to a difference
in velocities (Eq. 30).

In flames that are not fully premixed or adiabatic, gradients of
Zj and h may occur in the flame surfaces. Such gradients will lead
to diffusion along the flame surfaces and may result in a non-
negligible Q-term. When the typical length scale of the gradient
is comparable to or smaller than the flame thickness (e.g.,
Z Zj j,u f∇ �δ ), then the Q-term cannot be neglected. In Part II we
will show that the magnitude of the Q-term is proportional to the
scalar dissipation rate in the flame surface and that this may result
in non-negligible Q-terms in partially-premixed flames and flames
that stabilize on a burner by heat loss. A quantitative analysis of all
terms in flamelet equation (29d) is given in Ref. [36] for the tur-
bulent expanding flame kernel shown in Fig. 1. For this premixed

adiabatic case, the Q-terms were found to be negligible compared
to the other terms in the flamelet equation. In the MFGM method
[37] these terms are included in the manifold by computing multi-
dimensional flamelets.

The analysis shows that the transformation to the flame adapted
coordinate system leads to a quasi-one-dimensional system of equa-
tions (29), describing the internal structure of the flame as function
of the arc-length s along flamelet paths, which are not straight lines.
The mass burning ratem is the eigenvalue of this one-dimensional
system. If this so-called ‘flamelet’ system would be solved togeth-
er with the kinematic equation (13) for the set of flame iso-
contours Y in the range Y Yu b,( ) this would be equivalent to solving
the original set of transport equations. For infinitely thin flames, a
single kinematic equation for a reference iso-plane would suffice.
This is known as the G-equationmodel [16], where a kinematic equa-
tion is solved for a single iso-surface G =G0, where G is some arbitrary
scalar field. For flames with a resolved diffusive layer an extension
is necessary. However, as the numerical handling of this set of
(loosely coupled) kinematic equations is very tedious [38], we will
solve the transport equation (26) for the control variable Y instead
(together with the flamelet system for the internal structure) to track
the resolved flame volume. If the kinematic equation (13) is mul-
tiplied by ρ and added to Eq. (28) we recover the original transport
equation (26). This is thus again equivalent to solving a set of ki-
nematic equations. This approach is the starting point of the FGM
method, presented in Part II.

2.2. Integral analysis of flame dynamics

The SSFE set of equations forms the basis of the FGM formal-
ism for the modeling of flames in the flamelet and thin reaction
zones regime and is described further in Part II. This set governs
the impact of small and large scale fluctuations in the flow on the
flame dynamics, viz. the influence of the K(s) and σ(s)-fields on the
mass burning rate. To analyze the effects of stretch, curvature and
preferential diffusion further, a strong stretch theory has been
derived. This theory makes use of the fact that reaction layers are
mostly thinner than all other scales and in the case of an infinitely
thin reaction zone, the SSFE set can be used to derive analytical ex-
pressions for the influence of perturbations on the mass burning
rate. These expressions in turn can be used to validate FGM which
solves the SSFE set numerically without assuming that the reac-
tion layer is infinitely thin. This strong stretch theory is derived and
analyzed in this section and approximations and comparisons with
other stretch theories and with numerical computations using de-
tailed chemistry are presented in Section 2.3. Thus, we will analyze
the solution of the SSFE system (29). In Section 2.2.1 we first neglect
the Q-terms and the stretch terms (and insert Q = K = 0). The solu-
tion for themass burning rate will be referred to as themass burning
rate of ‘stretchless flames’. Note that this is the mass burning rate
of a curved flame, since the flamelet path is generally not straight
and the flame contours are curved (σ ≠ 1). This does not necessar-
ily represent a physical flame because important stretch terms have
been neglected. This procedure will just lead to a mathematical ex-
pression for the mass burning rate of stretchless flames and is a first
step to derive the physically relevant stretched mass burning rate.
Subsequently, in Section 2.2.2, wewill analyze how themass burning
rate of stretchless flames changes into the full stretchedmass burning
rate if the right-hand side stretch terms are included.

We will solve the system using the so-called integral analysis
method, first introduced by Law and coworkers [39]. This means
that the SSFE system is integrated along flamelet paths connect-
ing the unburnt and burnt mixtures. The final expression for the
mass burning rate is the same as the expression obtained using
matched asymptotic expansions [40,41], in case of an infinitely fast
reaction taking place at a flame sheet.
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2.2.1. Mass burning rate of stretchless flames
Let us first derive an expression for the mass burning rate of

stretchless flames, i.e., for K = 0. Integration of the conservation equa-
tions for mass, enthalpy and element mass fractions of the set (29)
from the unburnt to the burnt gas mixture gives:

σ σm m0 0( ) = ( )b u
, (34a)

σ σm h m h0 0 0( ) = ( )b u
, (34b)

σ σm Z m Z j Nj j
0 0 0 1 2( ) = ( ) =( )

b u e, , , , ,… (34c)

where it has been used that the diffusive fluxes all vanish in the
unburnt and burnt gases. Equations (34) simply indicate that the
mass, enthalpy and element composition are conserved over the
flame area, i.e., h hb u

0 = and Z Zj j, ,b u
0 = , as expected. This means that

the stoichiometry of the burnt mixture near the reaction zone is
equal to the stoichiometry of the unburnt mixture while the tem-
perature equals the adiabatic temperature of the flame (as for a
planar unstretched flame without heat loss).

Let us now turn to the mass burning rate mb
0 of the stretchless

flame, which can be computed from the quasi-one-dimensional
equation for Y :

A D Ss
s

s s( ) − ∂
∂

( ) = ( ), (35)

where we introduced the terms A , D and S:

A Y D
Y

S
Y

Ys
s

m s
c s

s
p

( ) = ∂
∂

( ) ( ) = ∂
∂

( ) =σ σ λ σω, , .
1

Le
(36)

We multiply Eq. (35) with D s( ) and subsequently integrate the
resulting equation from su to sb. The integral over the diffusion term
1
2

2∂
∂

( )
s

D then drops out, as the diffusion fluxes equal 0 in the

(un)burnt mixture and we find

A D D Ss s s s s s
s s

s s
( ) ( ) ( ) ( )∫ ∫d d

u u

b b
. (37)

The integrals in this equation run over the complete flame region.
When the reaction layer near s = sb is very thin, S As s( ) ( )�
in the preheat zone, and consequently we can approximate the
diffusive flux function D s( ) in the left hand side of Eq. (37) as
follows. We set S s( ) = 0 in Eq. (35) and integrate the equation to
obtain

D As
s

s
( ) ≈ ( )∫ ψ ψd

u
. (38)

Inserting the approximation (38) in Eq. (37), we obtain

A A A D D Ss s s s s s s
s

s

s

s

s

s

s
( ) ( )( ) = ( )( ) ≈ ≈ ( ) ( )∫ ∫ ∫

u
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u u

b
d d d dbψ ψ 1

2
1
2

2
2

uu

bs

∫ .

(39)

The validity of the approximation in Eq. (38) is related to the fact
that the reaction layer is much thinner than the preheating zone,
so that the major contribution to the integral over A Ds s( ) ( ) in Eq.
(37) can be attributed to the preheating zone. For an infinitely thin
reaction layer as considered here, this is exact.

The integrals in Eq. (39) can now be evaluated as

A Y Ys s m
s

s
( ) = ( ) −( )∫ d

u

b

b b uσ 0 0 , (40a)
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u

b σ λ ω2 10

, (40b)

where we used Eq. (34a). If the expressions for the integrals are sub-
stituted into Eq. (39), we obtain the following approximation for
the mass burning rate:
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λ ω (41)

This approach to compute mb
0 gives the same result as the large

activation energy asymptotics (LAEA) approach [27,42]. In that case,
a scaling procedure is carried out for the two (preheating and re-
action) zones in the flame and after expanding all terms in series
of a small parameter ε inversely proportional to the activation energy,
i.e., ε ∝ 1/Ea, solutions in the different zones are matched for the
different orders of the parameter ε. A similar procedure can be carried
out with Eq. (35) as follows. The solution in the preheating zone
follows from Eq. (35) if we set S s( ) = 0 , leading to expression (39)
for the diffusive flux Db of Y at the edge of the diffusive layer and
the reaction layer; cf. Eq. (38). Convective transport is small and ne-
glected in the reaction zone. So after setting A s( ) = 0 andmultiplying
Eq. (35) with D s( ) and integrating, we find the expression (40a) for
the diffusive flux Db at the edge between the two zones. Matching
them gives Eq. (41). Physically, this can be interpreted as follows.
The square root of the right-hand side integral (39) is proportion-
al to the total amount of Y per unit flame surface area and per unit
time produced or consumed in the reaction layer. Equation (39) thus
expresses that the total amount of Y produced in the reaction layer
leads to a diffusive flux Db of Y at the edge of the reaction layer.
This flux of Y into the preheating zone has to be distributed
somehow between convection and diffusion, which is expressed by
Eq. (40a). Matching them fixes the mass burning rate needed for
that.

It should be realized that the right hand side of Eq. (41) is in
general not equal to the adiabatic mass burning rate mb,1

0 of a flat
adiabatic stretchless flame, due to the factor σ σb( )2

. For an infi-
nitely thin reaction layer, though, this factor becomes unity and this
expression does reduce to the expression for the adiabatic mass
burning rate of a planar flame. That curvature does not influence
the mass burning rate of a flame with infinitely thin reaction layer
is also clear from a physical point of view: the production or con-
sumption of Y in the reaction layer leads to a flux Db of Y at the
edge of the reaction layer directed toward the preheating zone. If
this reaction layer is infinitely thin, this flux cannot be influenced
by curvature. Convective and diffusive processes are responsible for
the distribution of this ‘flux’ in the preheating zone. Without ‘losses’
(like flame stretch) in the preheating zone, this flux is equal to
Eq. (40a) and independent of the structure of the preheating zone.
This has already been shown by de Goey [32] who proved that the
laminar burning velocity is not influenced by transport processes
inside the preheating zone, as long as no losses are present. Equa-
tion (40a) expresses ‘conservation’ of Y in the preheating zone. It
should be realized that Eq. (41) also shows that the way the dis-
tribution inside the preheating zone takes place is not relevant, since
the expression depends on the diffusivity near the reaction layer
but does not depend on the diffusivity inside the preheating zone
where the source term is virtually 0.

We can conclude from this that the mass burning rate of an
unstretched flame is not dependent on curvature, i.e., flat, spheri-
cal or cylindrical flames all have the same mb,1

0 at the reaction layer
in case of an infinitely thin reaction layer. As the mass burning rate
of a curved flame changes through the preheating zone with
m s m s0 0( ) = ( )b bσ σ , this does not hold at other positions in the
flame front, like in the unburnt gases. This coincides with obser-
vations from numerical calculations using detailed chemistry
performed by Groot [38], who concluded that the mass burning rate
is independent of curvature only at the ‘inner layer’ coinciding with
the point of highest heat release rate.
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Note that the expression Eq. (41) for mb
0 only depends on the

unburnt state Yu due to the ‘friction’ factor 1 0Y Yb u− , which has
to be conquered by the flame, in the sense that Y has to change
from Yu to Yb

0 by convection, diffusion and reaction. Furthermore,
we also explicitly emphasized that the mass burning rate mb

0 also
depends on the enthalpy hb

0 and element composition Z j,b0 in the
equilibrium state. This follows from the observation that the factor

1
LeY

Y
λ ω
cp

in Eq. (41) is a function of all flame variables

Y i Ni =( )1 2, , ,… s and T. However, the integral in Eq. (41) effectively
only runs over the thin reaction layer, where ωY ≠ 0 and where the
system approaches the equilibrium state. From a time scale anal-
ysis of a number of combustion systems, it has become clear in a
few studies [2,43,44] that the reaction path in composition space
is embedded in a low-dimensional manifold, which can be de-
scribed by a small number of progress variables. Near the equilibrium
point in composition space, indicated by h Z jb b

0 0, ,( ), all reaction paths
are attracted to a one-dimensional subspace in most cases, inde-
pendent of the initial composition. Assuming that this holds in the
present analysis implies that all flame variables in the integral of
Eq. (41) can be written as a function of one single monotonic vari-
able. Adopting the progress variable, which is monotonic because
∇ ≠Y 0 , this leads to Y Yi i= ( )Y and T T= ( )Y . Equation (41) then in-
dicates that the integral over Y is independent of the initial
composition and depends only on the equilibrium state. The
local equilibrium state is completely described by the pressure
(assumed to be constant), total enthalpy and element composi-
tion in the reaction layer, i.e., by hb

0 and Z j,b0 for j N= 1 2, , ,… e.
Though the FGM method is based on the assumption of the
existence of a lower-dimensional manifold (see Part II), the 1Dman-
ifold assumption used here is only needed for the present integral
analysis.

2.2.2. Mass burning rate of stretched flames
In this subsection we consider the change in the mass burning

rate if stretch terms are included. As in the previous subsection, we
first study the conservation equations formass, enthalpy and element
mass fractions. Integration of the mass conservation equation in
Eq. (29) across the flame gives

σ σ σρm m K s
s

s
( ) − ( ) = −∫b u d

u

b
. (42)

In the same way, integration of the enthalpy equation and
element mass fraction equations in Eq. (29) along the flamelet and
using Eq. (42) results in

h h
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K h h s
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b
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Note that mass, enthalpy and elements are not conserved
anymore, the ‘change’ being expressed by the integrals of mass
change ρK, enthalpy change ρK(h − hu) and element mass fraction
change ρK Z Zj j−( ),u over the flamelet path. When the definitions
(1f) for h and hu and (6) for Zj and Z j,u are inserted into the right-
hand sides we find
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where the so-called Karlovitz integrals Kai and KaT are defined
by:
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with hT the thermal enthalpy. We also introduced normalized
variables as follows

�f s
f s f
f f

f Y hi T( ) = ( ) −
−

=( )u

b u

, , . (46)

The Karlovitz integrals express the relative change of tempera-
ture and species mass fractions over the flamelet path due to flame
stretch. If a Karlovitz integral Kai is of order unity, this means that
the ‘loss’ (positive integral) or ‘gain’ (negative integral) of Yi due to
convection along the flame surfaces (flame stretch) is of the same
order of magnitude as the change of Yi along the flamelet path. Using
h h h h h Y YT T i i i i, , , , ,b u b u ref b u− = − − ∑ −( ) and Z Z w Y Yj j i j i i i, , , , ,b u b u− = ∑ −( )
in Eqs. (44a) and (44b) gives the exact equations
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Equations (47a) and (47b) describe the influence of preferen-
tial diffusion and flame stretch on the local enthalpy and element
composition of the burntmixture. These equations have been derived
without assumptions about the magnitude of the Karlovitz inte-
grals and therefore their validity is not limited to weak stretch. It
should be noted from the definitions (45a) and (45b) of the Karlovitz
integrals that the influence of flame stretch ρK in the preheating
zone is effectively damped exponentially by factors like �Yi and �hT .
These factors are equal to 1 in the burnt gases and tend to 0 expo-
nentially for s→ su. The enthalpy hb and the element mass fractions
Z j,b in the burnt mixture determine the local stoichiometry and
equilibrium composition in the burnt mixture. These quantities, fol-
lowing from Eqs. (47a) and (47b), have an important influence on
the local mass burning rate mb of the stretched flame, because mb

is determined to a large extend by the mixture composition and
enthalpy in the reaction layer, close to the burnt mixture (see also
Eq. (41)). The precise description of this influence will be studied
hereafter.

Thus, let us now turn to the evaluation of the mass burning rate
for stretched flames. Themass burning rate is again determined from
Eq. (35), where A is now given by

A Y Ys
s

m K( ) = ∂
∂

( ) +σ σρ , (48)

while D and S are still defined in Eq. (36). The derivation of the
expression for the mass burning rate is analogous to the deriva-
tion presented in the previous subsection, with the expression for
A s( ) replaced by Eq. (48). For the integral over A in Eq. (40a) we
now have
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(49)

so that we find for the mass burning rate
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with F Yu b b, , ,h Z j( ) the expression for the stretchless mass burning
rate as defined in Eq. (41), however, with hb

0 and Z j,b0 replaced by
their stretched counterparts hb and Z j,b. This term is again a func-
tion of all combustion variables Yi and T. Once again, the integral
defining F Yu b b, , ,h Z j( ) effectively runs over the thin reaction layer,
where the source term is non-zero and where the composition ap-
proaches the equilibrium point, following the one-dimensional
manifold described by Yi Y( ) and T Y( ). The second integral in the
right-hand side of Eq. (50) indicates that the flux Db of Y into the
preheating zone is not conserved inside the preheating zone. Flame
stretch induces a convective ‘loss’ during the distribution of Y inside
the diffusive layer. This transport ‘loss’ due to flame stretch is ap-
parent from Eq. (49). Using Eq. (41) for mb

0 and the definition of the
Karlovitz integral (45a) for KaY then gives:
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where Z = ( )Z Z ZN1 2, , ,… e denotes the vector of element mass
fractions.

So far we did not choose a specific variable for Y . The theory is
independent of its choice but for the case of Y = hT , the expres-
sions simplify. Therefore, we adopt this choice in the following, so
that Eq. (51) reduces to

m h m hTb u b b b u b bKaY Y, , , , .Z Z( ) ≈ −( ) ( )1 0 (52)

If we finally use (52) in Eqs. (47a) and (47b) and
introduce w i i i N iw w w e: , , ,= ( )1 2 … , Δh h h h hb b u b b:= − = − 0 and
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m h h Z m h h hT T Tb u b b b u b b b bKa, ,, , , , .( ) ≈ −( ) + +( )1 0 0 0Δ ΔZ Z (53c)

The set of equations (53) for Δhb, ΔZb and mb describes the en-
thalpy, element composition andmass burning rate of stretched and
curved premixed flamelets and forms the basis of the subsequent
analysis of the flamelet system. This set is also valid in case of strong
stretch rates: Eqs. (47a) and (47b) follow rigorously from the flamelet
equations and to derive Eq. (52) we only have assumed that the re-
action layer is infinitely thin. However, the system (53) is not closed
because stretched flame solutions �f f Y hi T=( ), are needed in the
Karlovitz integrals (45a) and (45b) to evaluate Eq. (53).

For the limit of weak stretch, i.e., Ka Kai T, � 1, this description
simplifies. We can expand all expressions in terms of the Karlovitz
integrals and only take into account terms of lowest order in the
Karlovitz integrals. The changes in enthalpy/elements are then small
and linearly dependent on Kai and KaT. These small changes can be
substituted in the relation for mb in Eq. (53) and Taylor expansion
then gives:
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with hot containing higher-order terms in Kai0 , KaT0 . The super-
script ° indicates that stretchless expressions are taken, because we
are considering lowest order stretch contributions. For the enthalpy/
element change we can now substitute
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Equations (54) and (55) are compared with theoretical expres-
sions derived using LAEA in Section 2.3.1.

2.2.3. Physical interpretation
Although Eq. (53) describes the effects of curvature and flame

stretch on the mass burning rate of premixed flames, it is hard to
visualize the physical background of these expressions. We will
therefore investigate some schematic examples by which it might
be possible to understand these expressions in a better way. Wewill
consider

1. a planar unstretched flame,
2. a spherical steady flame,
3. a planar stagnation flame with unity Lewis number,
4. a planar stagnation flame with non-unity Lewis number
5. a curved flame propagating in a homogeneous flow field of a

mixture with non-unity Lewis number.

In all cases we will resolve the diffusive structure of the pre-
heating layer, but the reaction layer will be treated as an interface
as before. Our theory takes care of multiple-species transport effects
through the use of a Lewis number for each species in the reac-
tion mechanism. However, for the sake of simplicity, we consider
in the following examples only the diffusion flux JF of one single
species (fuel, mass fraction Y ) and the diffusion flux JT of thermal
energy.

2.2.3.1. Planar unstretched premixed flame. We consider a steady
planar flame in a homogeneous flow field, like the one stabilized
on a Bunsen burner through which a plug flow is issuing. As an
example see Fig. 2a. The flow velocity can be split in a component
perpendicular to the flame and a component parallel to the front.
For the sake of simplicity we assume that the density is constant,
so that the flow remains undisturbed by the flame. The flame is not
stretched because the parallel flow component is constant so that
∂ ∂ =vξ ξ2

2 0 for a flame in a two-dimensional geometry. The con-
sumption of fuel in the reaction layer leads to a flux from the reaction
layer into the preheating layer (see Fig. 2a). This flux is trans-
ported further by diffusion and convection inside the diffusive layer.
Consider a small volume element around the flamelet (red dashed
area) in which this flux enters. (For interpretation of the refer-
ences to color in this text, the reader is referred to the web version
of this article.) As the convective flux of Y due to vξ2 into and out
of the small volume element is the same, there is no loss or gain
of fuel in the preheating zone and it is conserved. This means that
we obtain the mass burning rate of an adiabatic planar stretchless
flame, denoted by mb,1

0 . The kinematic equations of all flame iso-
planes of Y s( ) inside the diffusive layer have the samemass burning
rate mb,1

0 , because ∂m/∂s = 0 (take σ(s) = 1 in Eq. 29a).

2.2.3.2. Steady spherical flame. A spherical flame may be gener-
ated from a spark in a homogeneous mixture. This flame propagates
outwards and grows in size. However, if a sink of mass would be
positioned in the origin, the flame will become steady at a certain
radius rf (see Fig. 2b). At this point, all iso-planes of Y are spheri-
cal and curved. However, for an infinitely thin reaction layer the
amount of fuel consumed in the reaction sheet, and therefore also
the flux Db into the diffusive layer is exactly the same as for a planar
flame. If a small volume element is formed around the flamelet (red
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dashed area), we observe that local convective and diffusive fluxes
are aligned. Again, there is no gain or loss of fuel, the flame is
stretchless, and the mass burning rate of the reaction layer is given
by m r mbf( ) = ,1

0 , the same as for a planar flame. Equation (34a) now
indicates that all other iso-planes have a different mass burning
rate m r m r r r( ) = ( ) ( ) ( )f fσ σ because of the change of σ inside the
diffusive layer.

2.2.3.3. Planar stagnation flame with unity Lewis number. Planar pre-
mixed stagnation flamesmay be stabilized in a flow of two opposing
nozzles, often applied to measure the adiabatic burning velocity of
combustible mixtures (see e.g., Ref. [45]). A simple representation
is given in Fig. 3a. For the case of unity Lewis number it is clear that
the fuel mass fraction and the temperature diffuse with the same
strength inside the preheating zone, indicated by the equal length
of the diffusion flux vectors of fuel, JF, and thermal energy, JT. There
is no reason for the enthalpy or mixture fraction to change and as
a result, the flame attains the same adiabatic flame temperature and
equilibrium composition as the planar flame of Fig. 2a. The con-
sumption rate inside the reaction layer also remains unchanged and
the flux Db of Y is the same as for the first example. There is no
sign of preferential diffusion in this case. However, the distribu-
tion of fuel inside the preheating zone is different now. The flame
is strained so that ∂ ∂ >vξ ξ2

2 0 , which means that the parallel con-
vective flux of Y in the small volume element around the flamelet
is not conserved. As the flux Db into the volume remains the same,
while mass is leaking out of the volume element, this requires a
smaller convective mass transportmb along the flamelet path to dis-
tribute the fuel (see Eq. (49)). The mass burning rate thus decreases
according to Eq. (52). In the remainder we will refer to this as the
‘direct’ effect of stretch in the flame. It exists even if the flame tem-
perature and reactive mixture composition remain the same and
is directly related to the loss of mass inside the diffusive layer, re-
ferred to as flame stretch.

2.2.3.4. Planar stagnation flame with non-unity Lewis number. If we
consider the same flame as in Fig. 3a, but now propagating in a
mixture having a Lewis number not equal to 1, the situation changes
as follows (see Fig. 3b). The amount of mass leaking away out of
the volume element around the flamelet is now the same as in
the previous case, so the ‘direct’ stretch effect is also present.
However, due to the fact that diffusive fluxes are not the same,
this leads to a change in element composition and enthalpy in the
preheating zone. This can be understood by the simple example
displayed in Fig. 3b, where two diffusive fluxes JF and JT have op-

posite directions but a different magnitude. This leads to a change
in element composition/enthalpy in the volume element. Diffu-
sive fluxes are all aligned and not responsible for the change of
total enthalpy/elements that the volume element and as such the
flame front encounters. The local enthalpy increases inside the dif-
fusive layer in the current example of Fig. 3b because there is a
larger thermal energy flux JT into the diffusive layer than the energy
carried by the flux JT out of the dashed area. Note that this unbal-
ance of diffusive fluxes in stretchless flames leads to a local change
in enthalpy/element composition inside the diffusive layer but these
quantities remain conserved in a flamelet because there is no loss
from the flamelet due to homogeneous flow. Since flame stretch is

Fig. 2. Planar unstretched flame (a) and steady spherical flame (b). Db is the diffusive flux from the reaction layer into the preheating zone.

Fig. 3. Planar stagnation flame with unity (a) and non-unity Lewis number (b).
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related to an inhomogeneous flow perpendicular to the flamelet,
the non-constant convective flux ρ ξv 2 in the current stretched flame
of Fig. 3b is responsible for the loss/gain of enthalpy/elements out
of the volume element through the sides of the red dashed area.
Enthalpy and elements are now not conserved along a flamelet.
This means that the flame temperature changes and as a result
also the amount of mass of fuel consumed in the front changes,
which in turn changes the flux Db into the diffusive layer. The
stretched flame in this example thus not only encounters a ‘direct’
effect of flame stretch but also an additional effect of ‘preferential
diffusion’, and the mass burning rate behaves as described by
Eqs. (54) and (55).

2.2.3.5. Curved flame in a planar flow field with non-unity Lewis
number. We now consider the case depicted in Fig. 4. The flow is
homogeneous but the flame front is curved and the mixture has a
non-unity Lewis number, indicated again by the different lengths
of the diffusion flux vectors JT and JF. Two small volume elements
around two flamelets are presented in this figure. Although the flow
is homogeneous (chosen here for simplicity), there is a non-
homogeneous flow component along the curved flame front with
∂ ∂ <vξ ξ2

2 0 near the left flamelet and ∂ ∂ >vξ ξ2
2 0 near the right

flamelet, assuming the coordinate ξ2 increases going from left to
right along the flame surfaces. This again introduces a direct gain/
loss, previously indicated as the direct effect of flame stretch. As
before, the diffusive fluxes have opposite directions but are of
unequal strength, leading to a local change in enthalpy/elements
in the diffusive layer. The enthalpy locally increases in the preheat-
ing zone in the current example as in the previous example. Again,
the non-zero flow along the iso-planes of Y perturbs global con-
servation. Enthalpy and flame temperature increase in the left
flamelet, while the opposite is true for the right flamelet. This flame
thus encounters a ‘direct’ stretch effect and a ‘preferential diffu-
sion’ effect, and the mass burning rate is again described by
Eqs. (54) and (55).

The examples discussed in the previous subsections indicate how
flame stretch influences phenomena taking place inside the diffu-
sive layer of a flame front. It is clear that transport effects inside
this layer dominate the physics. Transport effects inside the reac-
tion layer are less important if this layer is much thinner than the
preheating zone, simply because there is less time and space for
transport phenomena to be of significance. We will validate these

phenomena using numerical modeling in the following. However,
it must be clear that this is not the first and only analysis of these
phenomena, although this description is more detailed than most
other theories, which are based on a flame sheet assumption and
one-step chemistry (e.g., Refs. [46–48]). For some special cases it
is possible to compare our extended strong stretch theory with ex-
isting theories derived by others. This will be one of the objectives
of the first part of the next section.

2.3. Validation of strong stretch theory

In the previous section, we formulated general equations for
computing the changes in enthalpy, element mass fractions and
mass burning rate in strongly stretched premixed flames. The
preheating zone had been resolved, while the reaction layer was
reduced to a sheet. In this section, we will validate these expres-
sions comparing them with existing theories and numerical
modeling.

2.3.1. Comparison with large-activation energy asymptotics
In this subsection we will show that the strong stretch equa-

tions previously derived reduce to the equations available for weak
stretch theories, based on large-activation energy asymptotics (LAEA).
To be able to make a comparison possible, we will restrict the anal-
ysis to (a) weak stretch rates, (b) planar flames (σ(s) = 1), (c) a one-
step irreversible reaction F P→ , with one rate-determining lean
species F and a single constant Lewis number Le Le LeF P= = , and
(d) a constant coefficient λ/cp. For weak stretch, it can be shown that
the stretch rate inside the flame zone is close to spatially homo-
geneous. For instance, the stretch rate of an expanding spherical
flame K = 2vf/r, where the flame velocity vf(s) of the different iso-
planes Y s( ) is almost the same, while the radius r is large, much
larger than the flame thickness for weak stretch. This means that
we can assume that K(s) = Kb is constant.

Note that we then have a single element mass fraction
Z Y Y Y= + =F P F ,u which is constant as F and P have identical
Lewis numbers. This means that � �Y s Y sF P

0 0( ) = ( ) , so that the Karlovitz
integrals of both species are equal, i.e., Ka KaF P

0 0= . Furthermore,
ω ωP R= so that ΔZb = 0 in Eq. (55). Using enthalpy conservation,
i.e., h Y h Y c T TpF F P P

0 0 0 0 0
, ,u b b u− = −( ) for this one-step reaction, we can sim-

plify the equation for Δhb in Eq. (55) as follows:

Fig. 4. Curved flame with non-unity Lewis number.
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Furthermore, using d db bh c Tp
0 0= , we can derive from Eqs. (54) and

(56):
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In the last equation we introduced the familiar Zeldovich number
Ze a b u b

0 0 0 2= −( ) ( )E T T R T , Ea being the activation energy of the one-
step reaction. The Zeldovich number in Eq. (57) indicates the
sensitivity of the mass burning rate to changes in enthalpy
(or temperature). It has been assumed that the mass burning
rate mb

0 only changes as a function of the flame temperature Tb
0 ,

given by m E RTb a b
0 02∝ −( )exp [49], as is often applied in LAEA

theories.
Note that the expression (57) for m mb b

0 contains two contri-
butions, viz. the term KaT0 related to the ‘direct’ stretch effect
introduced in the previous section, and the term proportional to the
Zeldovich number, which is related to the ‘differential diffusion effect’.
We will show that this last term vanishes if Le = 1, while the ‘direct’
stretch always remains unless K = 0.

We will consider three different theoretical cases in the follow-
ing. The first case focuses on the (academic case of) a constant
density ρ0(s) = ρb and the other two cases include variable density
ρ0 01s T s( ) ∝ ( ) . In the second case, we will look at the mass
burning rate at the burnt side of the flame (s = sb). However,
since there are also expressions available for the unburnt flame
edge, this will be considered in the third case. This requires
some extra attention because false interpretation and application
of these expressions by some authors has been detected. This
analysis also gives some directions on how to apply these expres-
sions for interpreting experimental data of stretch induced
phenomena.

2.3.1.1. Constant density case. In this first case, the hypothetical case
of a flame without gas expansion ( ρ ρ0 0s( ) = b) will be considered. For
an infinitely thin reaction layer (in the limit of infinite activation
energy) we may solve the stretchless one-dimensional equations
for the fuel mass fraction �Y sF

0 ( ) and the temperature �T s0 ( ) from
Eq. (29) in the preheat zone, fixing sb = 0 to the reaction layer without
loss of generality and assuming that su → −∞:

� �Y s s T s sF
0 0( ) = ( ) ( ) = ( )exp , exp ,Le f fδ δ (58)

where we introduced the flame thickness δ λf = ( )m cp0 . Using this
solution for �T s0 ( ) and �Y sF

0 ( ), the expressions for the Karlovitz in-
tegrals in Eq. (45a) may be evaluated and are equal to the usual
Karlovitz number Kab , i.e.,

Ka Ka Kab
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fF
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Then, Eq. (57) can be rewritten as:

m
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where Mb is the so-called Markstein number, given by:

Mb
Le
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Ze

= +
−

1
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2
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. (60)

In 1962 Barenblatt et al. [49] studied the dynamic flame re-
sponse with constant density, leading to a Markstein number for
the unburnt and burnt gases equal to

Mb Le
Ze

= + −( )1 1
2

0

. (61)

They assumed that Le Ze−( ) = ( )1 10 O , so that deviations of the
Lewis number from 1 are of order 1 0Ze . To lowest-order in 1 0Ze ,
Eqs. (60) and (61) are therefore equal.

2.3.1.2. Variable density case: burnt flame boundary. Wewill repeat
the analysis above, but now for the case that the density ρ0(s) in
the expression (45a) for the Karlovitz integrals varies as in a non-
stretched deflagration wave with negligible pressure variation:

ρ ρ ρ
θ δ

0
0 1

s
T

T s s( ) = ( )
=

+
u u u

e f
, (62)

where we introduced the thermal expansion coefficient
θ ρ ρ ρ= −( ) = −( )T T Tb u u u b b

0 0 0 . Now, substituting Eqs. (58) and (62)
into Eq. (45b) for KaT gives:
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where the relation ρ ρ θu b= +( )0 1 has been used in the last step.
The expression for KaF

0 can be derived in the same way. Equa-
tion (58) for �Y sF

0 ( ) and Eq. (62) for ρ0(s) are substituted into Eq. (45a)
for Ka LeF

0 , which leads to
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Combining Eqs. (45b) and (64) for the Karlovitz integrals with
Eq. (57) then gives the Markstein number in the burnt gases:
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In 1985 Clavin derived a similar expression using large activa-
tion energy asymptotics [40]. Clavin assumed in his analysis
that Le − 1 is of order 1 0Ze . To lowest order in the reciprocal
Zeldovich number, Eq. (65) is therefore equal to the result of Clavin
[40].

2.3.1.3. Variable density case: unburnt flame boundary. For the mass
burning ratemu in the unburnt mixture, an equation equivalent to
Eq. (54) can be derived. This can be done by following the same pro-
cedure as formb, which has been described in ten Thije Boonkkamp
et al. [34, 35]. This procedure then yields
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where KaT* is given by
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with T̂ s T s T T T T s0 0 0 0 01( ) = ( ) −( ) −( ) = − ( )b u b
� , the normalized temper-

ature with respect to the burnt mixture instead of the unburnt
mixture, as used in Eq. (45a). We again take the stretch rate con-
stant in the flame but use the unburnt flame edge as reference, i.e.,
K(s) = Ku. The preferential diffusion terms in Eq. (66), which are pro-
portional to Ze0 as in the previous section, have the same
contribution to m mu u

0 as to m mb b
0 . Instead of Eq. (57) we thus

have
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Using ρ0(s) from Eq. (62) and �T s0 ( ) from Eq. (58) we obtain for
KaT* :
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where the Karlovitz number Ka Kau u u f u b= = +( )ρ δ θK m0 1 in the
unburnt mixture is introduced. The integral diverges because the
unburnt boundary of the flame is taken at su → −∞. Using a finite
value for the unburnt boundary leads to
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where su denotes the position in the unburnt mixture where the
unburnt flame boundary is chosen. Substituting Eqs. (70) and (64)
in Eq. (68), taking the limit su → −∞ in the logarithmic term and re-
taining the term su/δf in Eq. (94), then gives the Markstein number
Mu us( ) in the unburnt gases:
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When this equation is evaluated at su = 0, it is equivalent to the
equation of Clavin and Williams [41] up to order 1 0Ze , if
Le Ze= + ( )1 1 0O is substituted into the integral.

For su = 0 this equation describes the change of mass burning rate
in the unburnt gases, extrapolated to s = 0, i.e., at the position of the
reaction layer (see Fig. 5). Analogously, Eqs. (59) and (65) for m mb b

0

describe the effect of stretch on the mass burning rate in the burnt
gases, extrapolated to the reaction layer. These equations are well
suited for describing jump conditions inm/m0 if the complete flame
structure is described by an interface. However, here only the re-
action layer is infinitely thin, while the diffusion layer is resolved,
so that the expressions for m mu u

0 are less suited. This is indi-
cated in Fig. 5 where the density field ρ(s) and mass burning rate
m(s) for a flame with a resolved preheating zone and infinitely thin
reaction layer are presented. Away from the reaction layer, in the
cold zone before the preheating zone, m s mu u u( ) 0 changes linearly
with su in the unburnt gases where the continuity equation (29a)

dictates that ∂ ∂ = −m s Ku uρ . Deviations from this linear behavior
arise in the preheating zone due to temperature changes which in-
fluence the density. This finally leads to a significant effect near the
reaction layer. A similar effect is in principle present when using
m mb b

0 in the burnt gases and extrapolating to s = 0. However, this
effect is much smaller than inmu because the reaction layer is much
thinner than the preheating zone. In case of an infinitely thin re-
action layer, there is no error in m mb b

0 .

2.3.2. Comparison with numerical results
In this section we will validate the flame stretch theory by com-

paring the expressions for the mass burning rate with numerical
simulations. First, methane–air flames are studied in a counterflow
configuration. In order to study the behavior at strong stretch, the
applied strain rate is increased up to the maximum level at which
a steady flame exists. At higher strain rates the flame extin-
guishes. Second, we will investigate preferential diffusion effects in
lean and rich propane–air flames. Different approximations in the
theoretical strong stretch model will be assessed. Third, the mass
burning rate of stretched lean methane–hydrogen–air flames is in-
vestigated to assess the theoretical model for fuels consisting of
multiple components with different Lewis numbers.

2.3.2.1. Strongly stretched methane–air counterflow flames. The ob-
jective of this section is to investigate the accuracy of the flame
stretch theory for strongly stretched flames. This is done by com-
paring results obtained by the expression (52) with results from
numerical simulations of back-to-back counterflow flames. Pre-
mixed lean methane–air (equivalence ratio ϕ = 0.7) counterflow
flames are computed in the back-to-back configuration employ-
ing the GRI-Mech 3.0 reaction mechanism [50]. As a first step, we
avoid preferential diffusion effects by setting the Lewis numbers to
1 for all species. For methane flames with an effective Lewis number
close to 1, this is a valid assumption. Preferential diffusion effects
are included in the analysis in the following sections. Steady flames
are computed for a range of applied strain rates, a. Starting at
a = −100 1s , the strain is increased until no steady solution can be
obtained. The last steady flame is found at a = × −1 65 103 1. s . At higher
strain rates the flame extinguishes.

The mass burning rate at the burnt side,mb, is plotted as a func-
tion of Karlovitz number Ka0 in Fig. 6. For these steady flames, the

Fig. 5. Density ρ(s) (solid line) and mass burning ratem(s) (dashed line) in a planar
flame with constant stretch rate Ku;mb(0) andmu(0) indicate the mass burning rate
in the burnt and unburnt gases extrapolated to the reaction sheet at s = 0.

Fig. 6. Mass burning rate of methane–air counterflow flames as a function of Karlovitz
number Ka0 . The markers correspond to numerical results while the solid line rep-
resents m mb b Ka0 1= − and the dashed line m mb b Ka0 01= − .
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mass burning ratem is equal to the mass flux ρu. The burnt side is
chosen at the point s = sb where the chemical heat release is reduced
to 10% of its maximum in the flame. It can be seen that the nu-
merical results closely follow the analytical expression
m mb b Ka0 1= − , in which the Karlovitz integral is based on the
mass fraction of methane. This confirms the validity of the strong-
stretch theory up to the point where the flame quenches and Ka = 1.
The dashed line in Fig. 6 shows the expression m mb b Ka0 01= − , in
which the Karlovitz integral is evaluated by using K(s) = a and the
stretchless profiles ρ ρs s( ) = ( )0 and Y Ys s( ) = ( )0 . As expected, this
expression agrees with the numerical results for weak stretch
(Ka0 0 1< . ) but shows significant deviations at larger stretch rates.
The present results demonstrate the validity of the theoretical ex-
pressions formb derived by integral analysis of the set of SSFE. This
basically confirms that the main underlying assumptions (i.e., a thin
reaction layer and a one-dimensional manifold near chemical equi-
librium) are valid. In Section 3.3.1 of Part II, we will investigate how
accurate stretched flames are modeled by using FGM.

2.3.2.2. Lean and rich propane–air flames. The aim of this section
is to get more insight in the accuracy of the different steps, which
are taken from the original linearized strong stretch expressions (54)
and (55) to the final expressions like Eq. (57) focusing on prefer-
ential diffusion effects. This is done by comparing analytical results
with numerical results for stretched lean (ϕ = 0.6) and rich (ϕ = 1.4)
propane–air flames computed using the San Diego Mechanism [51].
The numerical mass burning rate mb is shown as a function of the
Karlovitz integral KaT0 in Fig. 7 with black markers. To understand
the impact of different assumptions on the Markstein number ex-
pressions, several assumptions in the derivation of Eq. (57) are
relaxed. To start with, we consider the full expressions for the mass
burning rate (54) and (55) restricted to weakly stretched flames and
where the burned side of the flame s = sb is chosen at the location
where the fuel consumption rate has decreased to 5% of its maximum
value in the flame. This result is shown in the figure with thick solid
curves. Note that this expression quite accurately reproduces nu-
merical results for both the lean and rich flames. On the other hand,
thin dashed lines represent the unity Lewis number result of Eq.
(57) without preferential diffusion, i.e., assuming Δ ΔZ hj,b b= = 0 . The
numerical results are not at all reproduced by this expression.

The enthalpy and element mass fraction changes can be written
in terms of changes in temperature and mass fractions of the major

species H2O, CO2 and O2 as shown by Groot et al. [38]. Neglecting
the species’ terms and taking only variations in Tb into account gives:
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For relation (57) taking ΔTb from the numerical solution of the
fully stretched flame structure gives the green curves in the figure.
This approximation is still accurate for both the lean and rich cases.
Next, assuming one-step chemistry, the temperature change ΔTb can
be expressed as the difference between the Karlovitz integrals of
temperature and the deficient (lean) species:
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where ‘lean’ refers to the Karlovitz integral of the lean species (either
fuel or oxidizer). This relation is plotted with red curves. It works
well for the lean case but not for the rich, because the burnt gas
contains large fractions of CO and H2. Finally, assuming analytical
(exponential) profiles for ρ0(s), T0(s) and Y si

0 ( ) gives Eq. (65). This
expression is shown with blue lines and is a very poor represen-
tation of the true result. Note that this means that a much more
accurate evaluation can be obtained substituting the one-dimensional
numerical solution of the undistorted flame structure for ρ(s), T(s)
and Yi(s) instead of approximate (exponential) solutions, like Eqs.
(58) and (62).

2.3.2.3. Lean methane–hydrogen–air flames. In the previous part of
this section we have shown that the linearized strong stretch theory
is able to reproduce numerically computed mass burning rates of
propane–air flames. The full theory therefore seems to be accu-
rate, but it would be desirable if more simplified versions of the
theory could be used, which would make interpretations easier. It
was found that rich propane–air flames are governed by multiple
Lewis numbers, while lean flames are dominated by the Lewis
number of the fuel. On the other hand, simple expressions found
in the literature (e.g., Ref. [40]) can only predict the qualitative be-
havior of these flame parameters. Furthermore, we noticed that if
we restrict preferential diffusion effects to temperature variations
ΔTb in stretched propane–air flames, the theory is still reasonably
accurate. In the following part of this section, we will study differ-
ent parts of the theory in more detail and for other flames. It is

Fig. 7. Mass burning rate of stretched propane–air flames. Left: Lean mixture (ϕ = 0.6). Right: Rich mixture (ϕ = 1.4). Spherical markers: numerical simulations. Black curves:
Equations (54) and (55). Dashed curves: m m Tb b Ka0 01= − . Green curves: Equation (72). Red curves: Equation (73). Blue curves: Equation (65). (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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investigated whether temperature changes are dominant also in
other flames. It is shown that this is generally not the case, but that
the combination of temperature changes and equivalence ratio
changes yields much more accurate results. The contribution of dif-
ferent element and enthalpy changes to the change in mass burning
rate will also be investigated. We will study methane–hydrogen–
air flames for this validation.

In previous sections we considered flame quantities at the burnt
side of the flame (where fuel consumption has decreased to 5% of
its maximum value). For a proper comparisonwith numerical results
formethane–hydrogen–air flames computedwith GRI-Mech 3.0 [50],
it is more appropriate to use the inner layer inside the flame as point
to evaluate the numerical and theoretical results. Equation (57) pre-
dicts the mass burning rate at the burnt side of a stretched flame.
By integrating the continuity equation (29a) between these two lo-
cations, the mass burning rate mi at the inner layer (indicated by
the subscript i) can then be determined. The inner layer is defined
here as the point where the chemical source term of the progress
variable has its maximum value. As shown in Ref. [52], this results
in the expression

m
m

m hoti

i
i i iKa

0
01= − + ⋅∇ ( )+Δψ ψ ln , (74)

with Δψ ψ ψi i i= − 0 the enthalpy and element distortion vector
(ψ = ( )−Z Z hN1 1, , ,… e ) at the inner layer and a modified Karlovitz in-
tegral, given by:
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s
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where H is the Heaviside function. Predictions of mi from this the-
oretical expression are compared with results of a numerical
simulation, in which the full transport equations are solved.

The effects of further simplifications of the theory, which are used
in most existing theoretical studies, are investigated as well.
One of these simplifications that are mostly used is to assume
that the unstretched mass burning rate does not depend on all four
variables in ψi but only on flame temperature Ti through the
Zeldovich number, as in the previous section. To study the effect
of this, Δψi is projected on the one-dimensional subspace spanned
by eT T= ∂ ∂ψ i i . This vector is determined numerically from
unstretched flame simulations for a range of Tu-values. Another sim-
plified version of Eq. (54) is similar to the previous one, except it
includes only variations in the equivalence ratio ϕ. In this case, the
variations Δψi are projected on the one-dimensional subspace
spanned by eφ ψ φ= ∂ ∂i . This vector is determined numerically from
unstretched flame simulations for a range of ϕ-values. The last sim-
plified version is a combination of the previous two, i.e., it includes
variations in temperature and equivalence ratio independently. In
this case, the variations Δψi are projected on the two-dimensional
subspace spanned by eT and eϕ.

In the results which follow, three different equivalence ratios
ϕ = 0.6, 0.8, and 1.0 are considered. The equivalence ratio takes into
account the overall stoichiometry of themethane–hydrogenmixture.
For each stoichiometry, the mole fraction of hydrogen in the fuel
is varied from pure methane, XH2 0 0= . , to pure hydrogen, XH2 1 0= . .
The changes in enthalpy and element mass fractions Δψi needed
to evaluate Eq. (54) are taken from the numerical simulations of the
counterflow flames. The sensitivity ∇ ( )ψ lnm0 of the unstretched
mass burning rate is determined numerically following the proce-
dure described in Ref. [52]. A large number of unstretched flames
are computed for different inlet compositions. The inlet composi-
tion is changed by varying the temperature and mass fractions of
CH4 , H2, O2, H2O, CO2, CO, and N2. Each simulation k yields a com-
bination of mk

0 and ψk, dropping the subscript i to avoid confusion.
The sensitivity coefficients c mj j= ∂( ) ∂ln 0 ψ are then found by

solving the overdetermined system Δψ ψkj j kc m m= ( ) −0 0 0 1 with a
least squares fit. The sensitivity coefficients for methane–air mix-
tures are listed in Table 1.

Methane–air flames. Before the influence of hydrogen addi-
tion is investigated, the pure methane case is considered. In Fig. 8,
the mass burning rate mi is shown against the Karlovitz integral
Kai for different equivalence ratios. For all cases the mass burning
rate decreases with positive stretch. The numerical results for mi

(symbols) are comparedwith different theoretical expressions (lines).
The theoretical expression (74) using all 4 components in Δψ pre-
dicts the mass burning rate within 0.5% for all cases (Fig. 8a).
Simplified versions of this expression taking only changes in T or
ϕ into account are clearly not able to predict the right behavior
(Fig. 8b,c). For most cases large deviations are observed. On the other
hand, the theoretical model taking both T and ϕ changes into account
shows the same trend as the numerical results (Fig. 8d). Although
the results are somewhat worse than that of the complete expres-
sion, the difference inmi with the numerical results is approximately
2.5%. Note that the influence of equivalence ratio fluctuations was
smaller for propane–air flames, as shown in Section 2.3.2.2.

The explanation for this behavior can be found in Fig. 9. In this
figure, the changes in enthalpy and element mass fractions due to
flame stretch are shown. The changes Δψj are multiplied with their
sensitivity coefficients c mj j= ∂( ) ∂ln i

0 ψ such that the contribu-
tion to Eq. (74) is visible for each component. For lean flames, the
contributions of ZC and ZH are larger than that of ZO, which reflects
that mb

0 of a lean flame is more sensitive to changes in the fuel con-
centration than in the amount of oxidizer. It can be seen in Fig. 9
that the changes in ZC and enthalpy have the largest contributions
to Eq. (74), while ZO and ZH have negligible effects on mi for these
methane–air flames. Furthermore, the effects increase with de-
creasing equivalence ratio. To a large extent, this is caused by the
higher sensitivity at lower ϕ (cf. Table 1). The mass burning rate of
lean flames is more sensitive to changes in ϕ than that of stoichio-
metric ones. Although the separate contributions are comparable
to the direct effect of stretch (i.e., the second term in the r.h.s. of
Eq. (74)), the sum of the contributions is much smaller because the
changes in ZC and h have opposite effects. This is an effect noticed
for the special case of methane–air flames, but this is not the case
for ethane–air and propane–air flames (see also de Swart et al. [52]).

When the changes are projected on the space spanned by eT (see
Fig. 10a), it is obvious that mainly enthalpy changes remain. Small
non-zero values for ZH can be observed, since the numerical ap-
proximation of ∂ ∂Z TH i u,

0 is small but not exactly 0. With this
simplified model the predicted mi is too low. When Δψ is pro-
jected on the space spanned by eϕ (see Fig. 10b), mainly contributions
of ZC and ZH are observed. Since the ratio of C and H is fixed in the
fuel, they change proportionally. As a result, the effect of ZH is over-
estimated. The oxygen mass fraction ZO also changes, but because
of the very low sensitivity it has a negligible contribution. The mass
burning rate predicted by this version of themodel is too high.When
both effects are combined (see Fig. 10c), the most essential effects
are covered. However, the contribution of ZC in the full version of
the model is in this version replaced by the combined effect of ZC
and ZH. In this simplified version, the ratio between ZC and ZH is fixed
because changes in ϕ and T do not alter this ratio.

Table 1
Sensitivity coefficients c mj j= ∂( ) ∂ln 0 ψ for methane–air mixtures.

ψj ϕ = 0.6 ϕ = 0.8 ϕ = 1.0

ZC 1 0 102. × 4 5 101. × 1 6 101. ×
ZH 4 0 102. × 1 9 102. × 9 1 101. ×
ZO 2.3 4.7 9.7
h [J/kg] 3.8 2.2 1.6
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Hydrogen addition. The influence of hydrogen addition is in-
vestigated next. It is well known that the burning velocity of
unstretched flames increases when hydrogen is added at constant
ϕ. Here, it is investigated how the mass burning rate of methane–
hydrogen flames changes due to flame stretch. Furthermore, this
behavior is explained by analyzing the role of preferential diffusion.

In Fig. 11 the mass burning rate of stretched methane–hydrogen
flames is shown for fuels of various equivalence ratio and a hydro-
gen content up to 60%. It can be seen that the scaled mass burning
rate m mi i

0 of positively stretched flames increases when hydro-
gen is blendedwithmethane. This effect is stronger for leaner flames.
In Fig. 11, values ofmi predicted by Eq. (74) are shown as well (lines).

For increasing hydrogen content, the differencewith numerical values
increases from 0.5% at XH2 0 0= . to 2% at XH2 0 6= . .

The behavior of m mi i
0 observed in Fig. 11 is caused by changes

in the enthalpy and element mass fractions Δψ. The separate con-
tributions of these changes to mi are shown in Fig. 12 for various
hydrogen contents. It can be seen that the contribution of ZC de-
creases with increasing XH2 . On the other hand, the contribution
of ZH increases significantly when hydrogen is added to the fuel
mixture. This effect increases for increasing hydrogen content up
to XH2 0 6= . .

Markstein numbers. The Markstein numbers are determined
from the previous results by fitting a third order polynomial to the

Fig. 8. Mass burning rate of stretched methane–air flames versus Karlovitz integral Kai for ϕ = 0.6, 0.8, and 1.0. Numerical results are denoted by symbols. The lines rep-
resent different theoretical approximations: (a) full theory, (b) temperature variations only, (c) equivalence ratio variations only, (d) both temperature and equivalence ratio
variations.

Fig. 9. Contributions to the mass burning rate by changes in enthalpy and element mass fractions in stretched methane–air flames as a function of the Karlovitz integral
Kai for ϕ = 0.6 (left), 0.8 (middle), and 1.0 (right).
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mi results and taking the derivative at Kai = 0 . These Markstein
numbers are depicted in Fig. 13 for both the numerical and theo-
retical values of mi. For increasing equivalence ratio the Markstein
number increases. In case of pure methane, the Markstein numbers
are Mi = 0 5. , 1.1 and 1.8 for ϕ = 0.6, 0.8, and 1.0, respectively. When
hydrogen is added, the Markstein numbers decrease up to XH2 0 8≈ . .
At higher hydrogen levels, the Markstein numbers increase again.
The lines in Fig. 13 correspond to theoretical values of mi. Both the

full theory (solid) and the one including ϕ and Ti changes (dashed)
agree well with the numerical values for not too large amounts of
hydrogen addition ( XH2 0 6< . ). At higher XH2 the theoretical models
follow the trend of the numerical results, but the quantitative agree-
ment is less. The main reason is that for a hydrogen flame ( XH2 1= )
at low temperatures the heat release ωT as a function of the scaled
temperature �T is non-zero in a broad region. This means that
the assumption that the reaction layer is thin compared to the

Fig. 10. Changes in enthalpy and element mass fractions in stretched methane–air flames versus Karlovitz integral Kai for ϕ = 0.6. Different approximations: (a) tempera-
ture variations only, (b) equivalence ratio variations only, (c) both temperature and equivalence ratio variations. The legend is the same as in Fig. 9.

Fig. 11. Mass burning rate m mi i
0 of stretched methane–hydrogen–air flames versus Karlovitz integral Kai for ϕ = 0.6 (left), 0.8 (middle), and 1.0 (right) and different hy-

drogen content in the fuel XH2 0 0 2 0 4 0 6= , . , . , . . Numerical results are denoted by symbols and theoretical results from Eq. (74) by lines.

Fig. 12. Changes in enthalpy and element mass fractions in stretched methane–hydrogen–air flames versus Karlovitz integral Kai for ϕ = 0.6. Left: 20% hydrogen. Middle:
40% hydrogen. Right: 60% hydrogen.
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preheating zone does not hold any more when reaching the pure
hydrogen limit. In fact, the reaction layer shifts from the burnt side
in the pure methane case to the leading edge of the flame for pure
hydrogen. Neither the current theoretical model nor other exist-
ing models assuming a thin reaction layer take this behavior into
account. The Markstein numbers presented in Fig. 13 correspond
to the range of values given in literature. The behavior of Mi as a
function of XH2 was also observed in Ref. [53]. A quantitative com-
parison is, however, not very useful because different configurations
and definitions are used in literature. The actual value of M is, e.g.,
sensitive to the position in the flame at which m is evaluated.
However, the trends as function of ϕ and XH2

presented here do not
change and the conclusions remain the same.

To conclude, we can say that changes in enthalpy and element
mass fractions give rise to significant changes in mass burning rate.
Predictions of mi using the full theory correspond well with nu-
merical values. Simplified versions of the theory taking only changes
in equivalence ratio or temperature into account are not sufficient
to predict the numerical behavior of mi versus Kai . Therefore, one
should be careful applying theories or reduced numerical models
that are based on one of these changes only. When variations in both
temperature and equivalence ratio are included, the results are ac-
ceptable for the present case, though the large change in C to H ratio
at the inner layer is not accounted for. This conclusion is not sur-
prising since the burning velocity is to leading order dependent on
temperature and equivalence ratio. This has been observed by others
as well. However, unlike in previous studies, both separate effects
are studied quantitatively here. Moreover, the theoretical model used
in this study is able to predict these effects resulting in Markstein
numbers that correspond both qualitatively and quantitatively with
the numerical results for not too high amounts of hydrogen addition.

From the results presented here, one may also conclude that
when highly diffusive hydrogen ( LeH2 0 3= . ) is blendedwithmethane
( LeCH4 0 97= . ), the increase in ZH due to stretch becomes substan-
tial. This effect can be so large that the Markstein number changes
sign and becomes negative. This means that blending hydrogen to
a methane–air flame reduces its diffusive-thermal stability possi-
bly leading to sharp cusps, cellular structures and an increased flame
surface area in turbulent flames as seen by many others (e.g., Refs.
[54–56]). Thermal-diffusive instabilitiesmight lead to increased flame
stretch rates due to strong curvature effects. Although the present
study is limited to weak stretch and considers a linearized version

of the theoretical model, the original theory includes non-linear
effects at high stretch rates.

2.4. Conclusions on Part I

A generalized formalism has been introduced to split the full set
of conservation equations for describing the detailed behavior of
flames into a kinematic equation for the motion and dynamics of
the flame front and a set of SSFE equations for the internal struc-
ture of the flame structure. The full dynamics of the flame can be
very well approximated if the SSFE model is further reduced into
a model in which the flame structure is split into a preheating zone,
where detailed transport phenomena including stretch, curvature
and preferential diffusion take place, and a much thinner reaction
layer in which only chemical reaction and molecular diffusion take
place and balance each other. This is shown in terms of an ad-
vanced flame stretch theory for the mass burning rate of flames,
which reduces to existing weak stretch theories under certain con-
ditions. The theoretical formalism has shown to be an excellent
prediction of the dynamics of numerically modeled flames using
detailed transport and chemistry, even in the case of (strong) flame
stretch, curvature, elemental/enthalpy effects. This opens the way
to formulate flamelet-based reduction techniques inwhich the chem-
ical source term of the flame is accurately predicted. In such
techniques, it is important to include major effects related to mo-
lecular diffusion in the chemical source term evaluation, but the
inclusion of stretch, and curvature is less important inside the re-
action layer, while these effects have to be resolved by the model
in the thicker preheating zone. The reproduction of the enthalpy
and the elemental composition at the reaction layer is, however, im-
portant and has to be included. The FGM model, developed and
described in Part II, is based on these ideas.

3. Part II: FGM for premixed flames

3.1. Introduction to Part II

In Part I of this paper, a mathematical formalism has been in-
troduced to describe premixed combustion systems in terms of a
kinematic equation for the flame propagation in combination with
a flamelet system of equations (SSFE) describing the internal flame
physics and chemistry. This method forms the basis of the Flamelet
Generated Manifold (FGM)method for combustion processes taking
place in thin active layers. The basics of the FGM approach and its
application to laminar and turbulent premixed flames will be pre-
sented in this Part II. The principle idea of the method consists of
concepts from both reduced chemistry as well as from laminar
flamelet models. In a sense the FGM approach forms the bridge
between these two methods, which were thus far regarded as two
separate methods. In a number of previous publications, parts of
the FGM approach have been introduced and applied. The FGM
method was applied to premixed laminar flame first, see e.g., Refs.
[6,21,57]. The applicability of FGM to partially premixed and non-
premixed laminar flames was also tested with success in Refs.
[7,12,13,58–60]. The FGMmethod has an important advantage com-
pared to chemistry based reduction methods because the main
influence of transport effects has been included in the solution of
the reduced chemical mechanism.

A derivation of the FGM method with the relevant approxima-
tions and assumptions will be presented in this Part II. In Section
3.2, we will first present and derive the complete FGM model and
compare it with other existing methods (Section 3.2.1) and de-
scribe how to use themodel in practice by considering representative
flamelets (Section 3.2.2). The numerical implementation of FGM and
the coupling with a flow solver are described in Section 3.2.3. The
method is further validated and applied step-by-step to various

Fig. 13. Markstein number Mi as a function of hydrogen content XH2 in the fuel.
Symbols: Numerical results. Solid lines: Full theory. Dashed lines: Theory includ-
ing temperature and equivalence ratio variations.
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laminar combustion cases in Section 3.3. Later it is extended to DNS,
LES and RANS models for turbulent flames in Section 2.4. The con-
clusions of Part II are given in Section 3.5. Special attention is given
to the modeling of flame stretch and preferential diffusion effects.

3.2. Basic model description of FGM

3.2.1. Complete FGM model: from flamelet equations to manifold
The basic principles of the FGM approach are similar to those

of reduced chemistry models that are based on dimension reduc-
tion techniques, such as ILDM [2] and CSP [3]. The idea is that the
combustion process is described by a number of slow processes,
while most of the fast processes are in a ‘generalized’ steady state.
Suppose that the time scales are ordered, such that y y y1 2 3, , ,… are
the corresponding control variables in order of decreasing time scale.
Furthermore, the enthalpy h and the element mass fractions Zj are
conserved quantities in the sense that they are not influenced by
chemistry. The generalized set of reduced combustion equations of
dimension r now consists of conservation equations for the r slowest
processes y1,. . .,yr, combined with conservation equations for ‘con-
served quantities’ h and Zj. The remaining N − Ne − r equations
y yr N N+ −1, ,… e are in a so-called ‘generalized’ steady-state, which
will be defined later. The solution of this generalized steady-state
forms a sub-space or a manifold in composition space. When pa-
rameterized in terms of the slow processes y1,. . .,yr, this steady-
state manifold defines y y y y Z Z hk k r N= ( )1 1, , , , , ,… … e for any
k r N N= +( ) −1 , ,… e and this ‘steady-state solution’ can be stored
in a database. During the numerical solution of a combustion process,
the transport equations are solved for y y Z Zr N1 1, , , , ,… … e and h, com-
bined with the fluid flow and state equations for p, ρ and v. The
solution of the remaining variables is retrieved from the precom-
puted ‘manifold’ or by solving the steady-state equations online.

Depending on the degrees of freedom of the combustion system,
the reduced chemistry ‘manifold’ describes yk, for k r N N= + −1, ,… e

(and functions thereof) as a function of yi (with i = 1,. . .,r) and Zj, h.
This manifold could have a large dimensionality N r Nm e= + +1 in
general, but it should be realized that Zj and h are often not inde-
pendent, so that one does not need to treat each conserved quantity
as an independent degree of freedom. For instance, the elementmass
fractions are not independent since ∑ =Z j 1. Furthermore, for fully
premixed adiabatic flames (with Lei = 1), h and Zj are all constant
and do not have to be treated as degree of freedom. For non-
premixed flames in an adiabatic two-fluid stream, h and Zj are
dependent on a single degree of freedom, referred to as the mixture
fraction Z, which leaves us with only one single degree of freedom
for the conserved variables. So the manifold with the lowest di-
mensionality for fully premixed flames is a one-dimensionalmanifold
with y1 as degree of freedom. If the accuracy is not good enough
also y2 or y2 and y3 can be used. For partially-premixed and non-
premixed flames, one has to treat at least y1 and Z1 as degrees of
freedom (see Refs. [59,61]) and if a higher accuracy is desired one
could add y2 (or y2 and y3).

There are different ways to define or approximate the solution
of the manifold describing yk ( k r N N= + −1, ,… e ) as a function of
yi (i = 1,. . .,r), h and Zj. Let us first look at the full most accurate man-
ifold definition and consider approximations afterwards. To derive
the exact manifold equations, we transform the combustion equa-
tions to a flame-adapted coordinate system as derived in Section
2.1.3. This thus leads to the set of strongly stretched flamelet equa-
tions SSFE (Eq. 29). This set of SSFE defines the inner ‘flamelet’
structure and the local ‘manifold’ is governed by the magnitude of
the different convective, diffusive and reactive time scales, ex-
pressed in the flame-adapted coordinate system. So for any reduced
chemistry or flamelet-based model, the SSFE set forms the basis.
The exact solution of a combustion CFD problem would be ob-
tained, if the local values of the flame stretch, curvature and Qi-

fields along flamelet paths in the CFD problem would be derived
and the SSFE set would be solved with those fields, to determine
the inner structure in terms of yk ( k r N N= + −1, ,… e ).

Although the focus has been on premixed flames in the deriva-
tion of the flamelet equations, the approach can also be applied to
non-premixed flames. The flame coordinate system is then at-
tached to iso-surfaces of the mixture fraction. This is explained in
Appendix B.

There are different ways to combine the manifold with the trans-
port equations. In the G-equation flamelet model (see Ref. [16]), the
kinematic equation is solved for themotion of an infinitely thin flame
front, while the local mass burning rate m of this front is derived
from some approximation of the SSFE set. A more complete model
would be to solve the full kinematic equation, Eq. (13), and locally
derive the mass burning rate m from the full SSFE set. This would
mean that the original set of transport equations is solved exactly.
This method was used by Groot et al. for modeling the motion of
spherically expanding premixed laminar flames, but they found it
to be not very stable in a numerical sense [38].

Another method is to solve a set of transport equations for yk,
k = 1, . . ., r for the r slowest processes together with those of h and
Zj, like in so-called reduced chemistry models, e.g., ILDM [2], CSP
[3], FGM [6], FPI [9], FPV [62], PS-ILDM [7] and REDIM [8]. In
that case one does not use the full solution of the SSFE set, but de-
pending on the method, some approximation of this SSFE set is
proposed. How this SSFE set is approximated depends on themethod
involved.

There are several ways to derive reduced chemistry manifolds
from the SSFE set Eq. (29). In case of ILDM or CSP, all diffusive, stretch
and curvature effects in Eq. (29) are neglected and the reduced chem-
istry manifold is deduced from a time scale analysis of the remaining
set of equations which only contains chemistry. The fastest N −Ne − r
chemical time scales are assumed in chemical steady-state which
defines the reduced chemistry manifold. In case of FGM, the trans-
port and stretch/curvature terms are not neglected in the
computation of the manifold. In practice, the FGM manifold is ap-
proximated from a series of independent 1D computations of a fully
premixed or non-premixed flame (see next section).

To conclude, there are multiple ways to model flames based on
the SSFE set. FGM is a promising technique for two reasons: First,
it combines the accuracy of dimension reductionmethods by solving
a set of complete transport equations for y1,. . ., yr together with h
and Zj, and second it does not only consider chemical steady-state
of the SSFE set, but also takes into account most important trans-
port effects. This is very important since flame structures are
dominated by diffusion-reaction balances with a major influence
of diffusion effects. This advantage of FGMwas demonstrated by van
Oijen et al. [6] by comparing a 1D FGM with a 1D ILDM for a pre-
mixed hydrogen–air flame. While at high temperatures close to
chemical equilibrium the manifolds are similar, the FGM is more
accurate in the colder parts of the reaction layer. In practice, it is
too expensive to solve the full SSFE set (29) and we therefore ap-
proximate it by a representative set of solutions instead. How this
is done is explained in the next subsection.

3.2.2. Practical FGM model: ‘representative’ flamelets
In the previous section we explained that the set of SSFE equa-

tions forms the basis of the manifold of the FGM method. A local
strongly stretched flamelet in a CFD problemmay be computed from
this set on the basis of local stretch fields K(s) and curvature fields
σ(s) as input. Direct computation of this set for each flamelet in the
combustion problem is too involved andwe therefore restrict to best
approximations of this set in practice. Convective, diffusive and chem-
ical source terms are always involved, but some transport, curvature
and stretch terms are neglected, depending on the situation. The
Qi-terms are always neglected, as explained in Part I.
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The following procedure is used to derive the manifold from an
approximation of the SSFE set. First, the conserved quantities h and
Zj are considered. For the combustion system of interest, the number
of independent ‘mixing’ parameters is evaluated. For instance, in
case of a fully premixed systemwith unity Lewis numbers, Zj is con-
stant, but hmight be changing. In case of heat losses, h is changing
and this is the only conserved scalar taken into account. To gener-
ate a 2D manifold that includes enthalpy variations, a series of 1D
representative flamelets is solved with step-wise varying initial tem-
perature to mimic the changes in h in the system. The 2D manifold
is now parameterized by two scalars h and y1, while transport equa-
tions for h and y1 are solved during run-time. This is quite accurate
for problems with constant Zj (See Section 3.3.2). However, in case
of strong preferential diffusion effects, Zj and h are changing as well,
even in case of a fully premixed combustion system. For that case
one should also take into account variations in Zj and h as gov-
erned by the preferential diffusion phenomena. It is found that for
some cases changes in Zj and h due to preferential diffusion are
coupled, so that one may again define a 2D manifold with one pa-
rameter for these coupled variations in Zj and h. This is studied in
Section 3.3.1. In case of a non-premixed system, at least one mixing
parameter Z is needed to predict variations in Zj and h, but this could
also increase if the elements and enthalpy are not coupled, e.g., in
flames with more than two different inlet streams.

In any case, if the number of independent variations of Zj and h
is known and parameterized, the principle method is to solve a set
of 1D flames which mimic the combustion system best, by varying
the inlet and/or boundary conditions according to the variations in
conserved quantities. In case of premixed combustion systems, the
flame curvature and stretch could be of interest. If that is the case,
a series of 1D flamelets is solved with step-wise varying stretch and/
or curvature fields. In case of non-premixed or partially-premixed
flames, a series of stagnation flames is solved, where the stagna-
tion flow is governed by the stretch field. Again, boundary conditions
are used which mimic the variations in Zj and h, but now on both
sides of the flame. Contrary to the classical flamelet method, the
solution is not parameterized in terms of mixture fraction Z and
scalar dissipation rate χ = ∇2 2D Z but by Z and y1. If auto-ignition
and quenching phenomena are present in the combustion system,
like in the case of engine combustion, the solution may have to
contain unsteady flamelets in order to accurately predict these phe-
nomena [63,64].

Apart from the procedure explained above, there is no princi-
ple way to generate the representative flamelets. The user has to
analyze which flamelets are most representative of the system at
stake. This can be regarded as a disadvantage of the FGM method
compared to other dimension reduction techniques.

3.2.3. Implementation of FGM
The implementation of the FGMmethod consists of three main

steps:

1. Computing representative flamelets
2. Building a look-up table
3. Coupling the table with a flow solver

These three steps will be explained in the following.

3.2.3.1. Computing representative flamelets. The first step consists
of computing flamelets which are representative for the combus-
tion system towhich the FGMwill be applied. It is obvious that when
combustion takes place under (non-)premixed conditions in the ap-
plication, the most representative flamelet is a (non-)premixed
flamelet. The flamelets are computed by solving the flamelet equa-
tions (29) under the appropriate conditions. For a premixed flame
this means that the boundary conditions correspond to an inflow

of the reactants at one side (s → −∞) and an outflow at the other
side. When we furthermore assume that σ = 1, K = 0, Qi = 0, and that
the time derivatives (∂/∂τ) are zero, the equations describe the most
elementary 1D premixed flamelet: an adiabatic, flat, stretchless,
steady flame. CHEM1D [65] is a code that can solve the flamelet
equations numerically employing detailed chemistry and trans-
port models. The solution consists of the profiles of mass burning
ratem, enthalpy h, and species mass fractions Yi as functions of the
spatial coordinate s. Note that for this special casem is constant and
an eigenvalue of the system. So the 1D flamelet solution yields the
thermochemical variables φ parameterized by one variable: the
spatial coordinate, φ = φ(s). When more degrees of freedom are re-
quired, e.g., to account for changes in Zj, h and p, multiple flamelets
have to be computed.

For instance, heat loss to the walls of the combustion chamber
decreases the enthalpy h in the computational domain. In order to
take this into account in the FGM tabulation process, laminar
flamelets have to be solved for different values of enthalpy, intro-
ducing enthalpy as an additional degree of freedom. The enthalpy
in an adiabatic premixed flame is constant and equal to the en-
thalpy of the burnt mixture, hb, apart from small local changes due
to non-unity Lewis number effects. The enthalpy of the flamelets
can be reduced by lowering the temperature of the reactants, dilute
them with cold combustion products, computing burner-stabilized
flames, by adding a radiation source term, or by rescaling the heat
release source term. These different approaches are explained in Refs.
[6,21,57,66,67]. With enthalpy as an additional parameter, the ther-
mochemical state is parameterized by two variables: ϕ ϕ= ( )s h, b . In
general, an Nm-dimensional FGM can be generated from a series of
one-dimensional flamelets with Nm − 1 parameters π:

ϕ ϕ π π= ( )−s N, , , .1 1… m (76)

3.2.3.2. Storage and retrieval. During the CFD run, the code needs
to retrieve thermochemical variables from the table for given values
of the control variables. Therefore, a transformation needs to be per-
formed:

ϕ π π ϕs y yN N, , , , , ,1 1 1… …m m−( )→ ′( ) (77)

or more specifically for the present example with heat loss

ϕ ϕs h y y, , ,b( )→ ′( )1 2 (78)

in which the control variables yi are linear combinations of the orig-
inal variables ( Y Y hN1, , ,… ). Contrary to the previous section, we do
not differentiate here between reaction control variables and
conserved variables. A straightforward choice for (y1, y2) is Y, h( )
with Y the reaction progress variable. The reaction progress vari-
able is usually chosen as a linear combination of species mass
fractions

Y =
=
∑α i i
i

N

Y
1

, (79)

with αi the weight factor of themass fraction of species i. This choice
should result in a monotonic function Y x( ) for all hb in order to have
a non-singular mapping. Therefore, linear combinations of reac-
tants or products are commonly used. In the example shown in
Fig. 14, we have chosen a combination of carbon dioxide and oxygen,

Y = +α αCO CO O O2 2 2 2Y Y , (80)

with αCO2 22 7= . and αO2 31 3= − . . This choice results in a monoto-
nous progress variable for the case studied here. Note that this choice
is not unique; many other choices that result in a monotonous
progress variable are possible. Although theoretically the exact
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choice is not important, it can be optimized to reduce numerical
interpolation errors of the retrieval procedure (see e.g., Refs. [68,69]).
Apart from monotonicity and numerical resolution, flame cover-
age is also relevant.

As an example, the heat release rate is shown in Fig. 14 as a func-
tion of the original parameters s and hb and as a function of y1 = Y
and y2 = h after transformation. The heat release rate decreases with
decreasing enthalpy. Below a certain enthalpy level, the flame tem-
perature is too low to sustain a steady flame. Since steady flamelets
can not be computed for lower Tb, the tabulated data end at this
level. In the application of the manifold, lower enthalpy levels might
occur, which requires an extrapolation of the data in Fig. 14. Often
linear extrapolation is employed, but a more accurate extrapola-
tion is described in Ref. [6].

A multitude of methods has been used to store the data and to
retrieve values from it, e.g., artificial neural networks [70], in-situ
adaptive tabulation [71], k-d trees [72] and orthogonal polynomi-
als [73], each with its own merits. The most common and
straightforward method, however, is to store a discrete represen-
tation of the function ϕ = ( )f y yN1, ,… m on a structured mesh and
usingmulti-dimensional linear interpolation for retrieval. In this case,
the thermochemical variables are interpolated to a curvilinear mesh
in y yN1, ,… m( ) space. The mesh for the present example is shown
in the left plot of Fig. 15. The curved mesh lines follow the bound-

aries given by the flamelets with the highest and lowest enthalpy
hb. Note that the enthalpy in these flamelets changes because of pref-
erential diffusion effects. Subsequently, the curvilinear mesh is
mapped onto an Nm-dimensional unit domain, viz.

f y y fM N i1 1 0 1, , , , , .… …( )→ ′( ) ∈[ ]η η ηm with (81)

An equidistant mesh with n n nN1 2× ×� m mesh points is used to
discretize f′ on this unit domain and the function values at the mesh
points are stored in an Nm-dimensional array. This array is stored
in a file, which can be read by the CFD code. The right plot of Fig. 15
shows the source term of progress variable on an equidistant mesh
in the unit domain. To retrieve data from the table at an entry
( *, , * )y yN1 … m , the corresponding coordinates η η1, ,… Nm( ) in the unit
domain have to be determined first. After that, it is straightfor-
ward to find the enclosingmesh points and to interpolate the values.
Finding the coordinates in the unit domain can be regarded as finding
the solution to the non-linear system

y y N1 1 1 2* , , ,= ( )η η η… m
(82a)

y y N2 2 1 2* , , ,= ( )η η η… m
(82b)

	

Fig. 14. Chemical heat release rate as a function of the original parameters s and burnt enthalpy hb (left) and after transformation as a function of the control variables
y1 = Y and y2 = h (right).

Fig. 15. Chemical source term of the progress variable as a function of the control variables y1 = Y and y2 = h (left) and as a function of η1 and η2 after transformation to
the unit square (right).
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y yM M N* , , ,= ( )η η η1 2 … m
(82c)

with yi* the entry of control variable i. This may seem like a com-
plicated and computationally expensive method. However, in most
cases the control variables yi are smooth monotonic functions of ηi

and only weakly dependent on the other ηj (j ≠ i). Therefore, the Ja-
cobian matrix ∂yi/∂ηj is diagonally dominant and as a consequence
the solution is typically obtained with only a few iterations when
Newton’s method (or similar method) is applied.

Often the solution method of Eq. (82) can be simplified even
further. For instance, when unity Lewis numbers are applied, the
enthalpy is constant in each flamelet. For a 2Dmanifold with y1 = Y

and y2 = h, this would mean that y2 is only a function of η2. There-
fore, η2 is easily found and subsequently back substituted in Eq. (82a)
to find η1. In this case, the Jacobian is a 2 × 2 upper triangular matrix
and the solution can be obtained efficiently using back substitu-
tion. More generally in Nm dimensions, this holds when control
variable yi is independent of ηj for all j < i. If in addition the grid points
are distributed equally along the mesh lines, then the retrieval pro-
cedure becomes basically search free.

The main advantages of this method are its simplicity, fast re-
trieval, and the fact that one has full control over inter- and
extrapolation errors. The large memory requirement is its main –
and probably its only – drawback. A 3D table of 15 variables stored
with double precision at 100 points in each dimension results in
15 100 8 12 103 7× × = × bytes or approximately 120 MB. A 4D table
would result in approximately 12 GB, which is more than the
memory of a single CPU in many computer clusters. A higher-
order interpolation procedure could reduce the required number
of grid points, but it increases complexity and computational cost
to retrieve a value from the table. A method to reduce the memory
requirements by using a memory abstraction layer was intro-
duced by Weise et al. [74].

3.2.3.3. Coupling with a flow solver. After the manifold is stored in
a lookup table, it can be linked to a standard CFD code. First, in the
initialization phase, the database is loaded into memory. Then, the
CFD code must solve transport equations for the control variables,
together with the momentum and continuity equations. In mani-
fold methods, the conservation equations for the control variables
are derived by a projection of the full system onto the manifold (see
e.g., Refs. [75,76]). The projection determines how processes that
drive the composition of the manifold are forced back to the man-
ifold by the fast chemical processes. In flamelet-based methods, this
projection is usually not considered. It was shown by van Oijen [6,77]
that the projection has only a small contribution in the FGMmethod
and can be ignored. However, this omission causes the final result
of an FGM calculation to depend on the choice of control variables.

Ignoring the projection, the transport equations for the control
variables can be derived by taking the proper linear combinations
of the original species equations (1d). For the progress variable,
Y = ∑ =i

N
i iY1α , this yields
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which can be rewritten as
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where ωY is the progress variable source term given by
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The first term on the right hand side of Eq. (84) represents the
fluxes due to preferential diffusion. In case of unity Lewis numbers,
this term is zero. By applying the chain rule,
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this term can be rewritten in terms of the gradients of the control
variables ∇yi. This can be simplified by assuming that the gradi-
ents of the control variables are not independent but are correlated
as in the 1D flamelets:

∇ = ∇y ci i Y, (87)

with ci a coefficient that is a function of the control variables. The
transport equation then reads [6,77,78]
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The preferential diffusion coefficient DY is stored in the FGM table.
In a similar way, transport equations for the other control vari-
ables can be derived. For the enthalpy, it reads
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with Dh the preferential diffusion coefficient [6].
The transport equations for the control variables are solved during

run-time together with the momentum and continuity equations,
while all other parameters (e.g., ρ, cp, λ, ωY , DY , Dh, T) are re-
trieved from the FGMdatabase. For low-Mach pressure based solvers,
ρ and T can be taken directly from the manifold. For density based
solvers, however, an energy equation should be solved that in-
cludes acoustic terms (contrary to Eq. 89). The temperature can then
be computed from the energy equation and the pressure follows
from the gas law. The implementation of FGM in fully compress-
ible solvers is described in detail by de Swart et al. [78] and Vicquelin
et al. [79].

Since the progress variable is a combination of species mass frac-
tions, the boundary conditions for Y are straightforward to
implement and follow from the definition in Eq. (79). The bound-
ary conditions for h are somewhat more cumbersome because they
are often not defined in terms of enthalpy itself but in terms of tem-
perature. Therefore, an iterative proceduremight be needed to obtain
the enthalpy at a boundary. To find the enthalpy at a wall with con-
stant temperature Twall, one has to solve

T h TY,( ) = wall (90)

for h with Y given at the wall. Since T is a nearly linear function
of h, this equation can be solved with only a few iterations. Alter-
natively, one can solve Eq. (90) in a pre-processing step for a given
Twall and store the solution hwall as a function of Y . This has also
been studied by Ketelheun et al. [80].

In the method described here, the species mass fractions are not
required to solve the equations and they are only retrieved from
the database during post-processing and visualization of the results.
Several alternative methods to couple the manifold with a flow
solver, in which all or major species are transported, were com-
pared by Jha and Groth [81].

3.2.4. Concluding summary
Summarizing, we have explained how the strongly stretched

flamelet equations can be used to derive reduced chemical models.
FGM is a particular promising method, since it does not only con-
sider chemical kinetics but also takes into account the main
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convective and diffusive effects in the SSFE. A complete FGMmodel
is obtained when K and σ profiles along flamelet paths in the CFD
problem are used to solve the set of SSFE. This would lead to an exact
representation of the full set of equations apart from the Qi-terms,
which were shown to be negligible. In practice, however, this is
computationally too expensive and the set of SSFE is solved in a
pre-processing step assuming representative conditions. These rep-
resentative flamelets constitute a manifold which is parameterized
by control variables and stored in a lookup table. To couple the FGM
model with a flow solver, transport equations are solved for the
control variables and the variables needed to solve these equa-
tions (source terms, diffusion coefficients, etc.) are retrieved from
the lookup table. This coupling has been studied in many papers
by TU/e, but also bymany other groups, e.g., the EM2C group at Ecole
Central Paris, CERFACS, CORIA and the University of Darmstadt.
Results of some studies are summarized in the following parts. In
the following section, the application of FGM in simulations of
laminar flames is discussed.

3.3. Application of FGM in simulations of laminar flames

In the previous section the basics of FGM were explained. In
this section, we will discuss the application of FGM in simulations
of laminar flames. First, following the analysis of flame stretch
effects in combination with preferential diffusion at the end of
Part I, we will study how these effects can be modeled by using
FGM. In Section 3.3.1, flame stretch effects will be systematically
analyzed by considering different diffusion models. We will discuss
how changes in enthalpy and element mass fraction caused by
flame stretch can be accounted for by increasing the dimension of
the manifold. In the subsequent two sections, we will study much
larger changes in enthalpy and mixture fraction that are caused
by the boundary conditions of the system. In Section 3.3.2, heat
loss effects are investigated in simulations of burner-stabilized
flames. It is explained how an FGM with a progress variable and
enthalpy as control variables can be used to simulate these effects.
Then, the application of FGM in partially premixed flames is dis-
cussed in Section 3.3.3. An FGM with Y and Z as control variables
is used to simulate steady propagating triple flames in a stratified
methane–air mixture and the results are compared with detailed
chemistry simulations. Finally, in Section 3.3.4 we study the mod-
eling of formation of nitrogen monoxide by using FGM. Since NO
formation is a relatively slow chemical process, extra care is re-
quired for the use of FGM.

3.3.1. Modeling flame stretch effects with FGM
Flame stretch and curvature effects play an important role in the

dynamics of flames because they can have a large influence on the
mass burning rate as explained in Part I. Since the most elemen-
tary 1D FGM is constructed from a single stretchless flat flamelet,
these effects are not present in the 1D manifold. However, in this
section we will investigate how stretch effects – possibly in com-
bination with preferential diffusion – are taken into account by using
the FGM method. Moreover, we will discuss how an FGM can be
extended with additional degrees of freedom to obtain a higher ac-
curacy in stretched flame simulations.

In order to investigate the role of flame stretch, we havemodeled
stretched lean propane–air flames (ϕ = 0.8) with both detailed chem-
istry [51] and FGM. In Ref. [21] a similar study was performed for
stretched methane–air back-to-back stagnation flames. Here propa-
gating lean propane–air flames are studied, which are steady (in the
flame reference system) and flat, but they are subjected to a con-
stant stretch field K(s) = a, with a the strain rate, which is varied from
0 to 1000 1s− . To analyze the effect of preferential diffusion, three
different diffusion models will be considered:

1. Unity Lewis numbers are assumed for all species ( Lei = 1). In this
case the element mass fractions and the enthalpy are con-
stant: ΔZj = 0 and Δh = 0. Additional dimensions to account for
these changes are therefore not needed. Note that the Lei = 1 as-
sumption is used in many theoretical studies and turbulent
combustion models.

2. All Lewis numbers equal 1.5 ( Lei = 1 5. ). This is an artificial case,
in which differential diffusion effects occur, since heat diffusion
occurs at a different rate thanmass diffusion. All species, however,
have the same diffusion coefficient. Therefore, the element mass
fractions are constant, but the enthalpy is not. To account for
variations in h, the manifold is extended with an additional di-
mension. Wewill discuss how this can be done and how it affects
the results.

3. All Lewis numbers are constant but not the same ( Le constanti = ).
This is themost realistic model considered here. In this case, both
the element mass fractions and the enthalpy will vary. In prin-
ciple, they change independently from each other and an
additional dimension is needed for each element mass fraction
and the enthalpy.

In the following subsections we will discuss these cases
subsequently.

3.3.1.1. Results for Lei = 1. When unity Lewis numbers are applied,
the element mass fractions and enthalpy are constant and do not
have to be used as additional degrees of freedom. Therefore a 1D
FGM is constructed with the reaction progress variable defined as
in Eq. (80). In Fig. 16 the computed mass burning rate mb of these
stretched flames is shown as a function of the dimensionless strain
rate Kab b f b= a mρ δ 0 . It can be seen that the mass burning rate of the
flames computed with the FGM is almost the same as those com-
putedwith detailed chemistry. This is expected for small stretch rates
Kab < 0 1. , but for higher Kab the stretch terms in the flamelet equa-
tions are not negligible and larger deviations might have been
expected.

The reason for the good agreement between FGM and detailed
chemistry results can be found in Fig. 17, in which the chemical
source term of the progress variable is plotted as a function of the
progress variable for all stretch rates. The flamelet with a = 0 is shown
with a red curve, all the other curves are blue. (For interpretation
of the references to color in this text, the reader is referred to the

Fig. 16. Scaled mass burning rate m mb b
0 as a function of the Karlovitz number

Kab b f b= a mρ δ 0 for Lei = 1.

54 J.A. van Oijen et al. / Progress in Energy and Combustion Science 57 (2016) 30–74



web version of this article.) It can be observed that the chemical
source term is hardly changed by the applied stretch field. There-
fore, the source term in the FGM, which was generated with a = 0,
can also be used for cases withmoderate stretch. At very high stretch
rates (Kab � 1), which may occur in turbulent flames, the reaction
layer might be affected by flame stretch and additional degrees of
freedom are required for the FGM. The observation that the source
term occurs in a thin layer and is hardly changed by stretch when
there are no preferential diffusion effects was the very basis of the
strong stretch theory and the derivation of Eqs. (41) and (51) in Part
I. The small changes in source term can be accounted for by in-
creasing the dimension of the manifold. This was shown in Ref. [21]
where a 2D FGM was generated by changing the inlet composi-
tion of the flamelets while keeping h and Zj constant.

3.3.1.2. Results for Lei = 1 5. . In our second diffusion model, all Lewis
numbers are assumed to be Lei = 1 5. . In this case the enthalpy
changes, but the element mass fractions are constant. This makes
it a suitable case to investigate how variations in a conserved vari-
able can be accounted for by the FGM method.

In Fig. 18 the variation in enthalpy Δh h hb b b= − 0 as a function of
the Karlovitz number Kab b f b= a mρ δ 0 is shown. Let us consider the
results of the detailed chemistry simulations (symbols). With in-
creasing stretch rate, the enthalpy at the burnt side of the flame
decreases. At Kab = 0 3. the enthalpy has been decreased by 180 J/
g, which corresponds to a decrease in flame temperature Tb of
approximately 100 K. This lower flame temperature has a direct effect
on the reaction rates in the flame. This can be observed in Fig. 19,
in which the source term of the progress variable is plotted as a func-
tion of the progress variable for flames with different stretch rates.
Contrary to the unity Lewis number case shown in Fig. 17, the source
term changes significantly. The lower temperature at high strain rates
leads to a reduced source term. At the highest strain rate of
a = −1000 1s , the maximum of the source term is reduced by 25% of
the value at a = 0.

To account for this change in source term, the FGM is extended
with enthalpy as an additional variable. To do so, a series of flamelets
with different enthalpies has to be computed. Here we compare two
ways to lower the enthalpy: The first manifold (FGM A) has been
created by changing the temperature Tu of the reactants. Since it
would require unrealistically low Tu to lower the enthalpy suffi-

ciently, an alternative method is needed. This is done by computing
1D burner-stabilized flames [57]. By lowering the inlet gas veloc-
ity, the flame temperature and enthalpy are decreased. The second
manifold (FGM B) was constructed from flamelets of which the re-
actants were diluted by cooled combustion products [6]. The
reactants were diluted with carbon dioxide, water and nitrogen in
such a way that the enthalpy is decreased but the element mass
fractions are unchanged. A third manifold (FGM C) was created in
the same way as FGM A, but the flamelets were computed using
unity Lewis numbers. Therefore, each flamelet has a constant en-
thalpy and shows no preferential diffusion effects. However, when
this manifold is used, the preferential diffusion terms in the trans-
port equations (88) and (89) for the control variables are retained
with Lei = 1 5. . This third approach seems inconsistent but it is in-
cluded in the comparison because the flamelet equations are often
solved assuming unity Lewis numbers, since that simplifies the
storage and retrieval procedure (see Section 3.2.3.2). Furthermore,
it will show whether it is more important to include enthalpy as
additional dimension or to include differential diffusion in the

Fig. 17. Source term of the progress variable as a function of the progress variable
for different strain rates a = −0 1000 1, ,… s for Lei = 1. The red curve corresponds to
a = 0. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 18. Variation in enthalpy Δhb as a function of the Karlovitz number
Kab b f b= a mρ δ 0 for Lei = 1 5. .

Fig. 19. Source term of the progress variable as a function of the progress variable
for different strain rates a = −0 1000 1, ,… s for Lei = 1 5. . The red curve corresponds
to a = 0. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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flamelet computations. These three 2D FGMs are used to compute
stretched flames and the results are compared with results ob-
tained by using a 1D FGM and detailed chemistry.

In Fig. 20 the mass burning rate is shown as a function of the
Karlovitz number Kab b f b= a mρ δ 0 for the different chemistry models.
The results are very similar, except for the 1D FGM where Δhb = 0.
Due to the lower flame temperature and hence the lower chemi-
cal source term, the mass burning rate decreases more than for the
unity Lewis number case. Since the 1D FGM does not include varia-
tions in enthalpy, it cannot predict this preferential diffusion effect.
All 2D FGMs, however, include these effects and follow the trend
of the detailed result much better. The small difference between FGM
A and B indicates that the result is not very sensitive to the way
the enthalpy is changed in generation of the manifold. It is also in-
teresting to see that the manifold based on unity Lewis number
flamelets predicts the preferential diffusion effects accurately. This
demonstrates that it is more important to allow for changes in hb
by retaining the preferential diffusion terms in the transport equa-
tions for the control variables, Eqs. (88) and (89).

FGM B and C overestimate the effect of preferential diffusion on
the mass burning rate. This small deviation can be traced back to
the larger decrease in enthalpy in the simulations with FGM B and
C as can be seen in Fig. 18. While the enthalpy in the 1D FGM cannot
change, the decrease in enthalpy is predicted by all 2D FGMs but
slightly more accurate by FGM A.

3.3.1.3. Results for Le constanti = . The last and most realistic diffu-
sion model considered here assumes constant but not equal Lewis
numbers. As explained in Part I, the element mass fractions Zj and
the enthalpy h will change due to preferential diffusion in combi-
nation with flame stretch. In principle, to account for all these
variations we need Ne additional degrees of freedom for Ne − 1 in-
dependent element mass fractions and enthalpy. However, for weak
stretch it was shown that these changes are linear functions of Ka
(see Eq. 55). As a result, they are proportional to each other and can
be parameterized by a single variable. In this case, one additional
dimension for the manifold is sufficient to account for preferen-
tial diffusion effects. Therefore, a 2D manifold (FGM A) is created
by computing a series of flamelets with different unburnt mix-
tures. The element mass fractions and enthalpy of the unburnt
mixtures are given by Z Z c Zj j j, ,u u= +0 Δ and h h c hu u= +0 Δ with c the
varying parameter and ΔZj and Δh obtained from Eq. (55) as ex-
plained in Ref. [21]. The enthalpy and element mass fractions of the

unburnt mixture are changed by varying the mass fractions of the
major species and temperature. The flamelet data are stored as a
function of the progress variable and a second control variable, which
is chosen to be ZC + ZH because it results in a unique mapping and
these elements are changing the most. A second manifold (FGM B)
was generated by solving the flamelet equations including a con-
stant stretch term K = a for a series of stretch rates a. The applied
flame stretch results in changes in enthalpy and element mass frac-
tions. These changes are not linearly dependent but can be
parameterized by a single control variable. The same control vari-
ables as for FGM A are used.

Both 2D FGMs are used to compute stretched 1D flames and the
results are compared with simulations employing the full kinetic
mechanism and a 1D FGM. In Fig. 21 the mass burning rate is shown
as a function of the Karlovitz number Kab b f b= a mρ δ 0 for the dif-
ferent chemistry models. Again the 1D FGM cannot account for the
preferential diffusion effects and follows m mb b bKa0 1= − . On the con-
trary, both 2D FGMs yield good agreement with the detailed
calculations. With increasing Kab the agreement becomes worse for
FGM A, because the linear relation between the changes in ele-
ments and enthalpy is only valid for weak stretch. FGM B accurately
predicts the mass burning rate because it includes the correct cor-
relation between the changes in elements and enthalpy since it is
based on flamelets with the same constant stretch field. However,
in general, the stretch field is not constant and not known in the
pre-processing step when the manifold is generated. Therefore, to
get a higher accuracy at high stretch rates, probably more inde-
pendent dimensions are required.

It is important to emphasize that in all three test cases with
various transport models, good results are obtained by using FGM
tables based on stretchless flamelets. This demonstrates that the
direct effect of stretch on the chemical source terms is negligible,
but that the indirect effect through changes in Z j,b and hb due to
preferential diffusion is important.

3.3.2. Flame stabilization by heat loss
Changes in enthalpy not only happen due to preferential diffu-

sion effects, but they can also occur due to heat transfer by radiation
or convection. Premixed laminar flames are often stabilized on a
burner by heat loss. The heat loss to the burner lowers the tem-
perature of the flame and as a result its burning velocity is reduced.
To account for these heat loss effects, the enthalpy is added as an

Fig. 20. Scaled mass burning rate m mb b
0 as a function of the Karlovitz number

Kab b f b= a mρ δ 0 for Lei = 1 5. . Fig. 21. Scaled mass burning rate m mb b
0 as a function of the Karlovitz number

Kab b f b= a mρ δ 0 for Le constanti = .
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additional control variable to the FGM method. This is done by
solving the flamelet equations for different values of the enthalpy
as was discussed in Section 3.2.3.

The FGM method was used in Ref. [6] to model a premixed
laminar flame that stabilizes on a 2D slot burner. A methane–air
flame with an equivalence ratio of ϕ = 0.9 was simulated by using
the reaction mechanism of Smooke [82] and a 2D FGM while con-
stant Lewis numbers were adopted. Here, the enthalpy of the
flamelets in the manifold was changed by lowering the tempera-
ture of the reactants and by diluting the reactants with cold reaction
products. The mass fraction of O2 was chosen as progress variable.
Further details of the numerical implementation can be found in
Ref. [6].

Fig. 22 shows isocontours of T and the mass fractions of O2, CO
and H on a portion of the computational domain for both the de-
tailed and reduced chemistry computations. The results obtained
with the 2D manifold are in excellent agreement with the detailed
chemistry computations. The location of the flame front is nearly
the same in both results, which means that the FGM approach ac-
curately describes the burning velocity and how it is affected by heat
loss and flame stretch. Not only the position of the flame front is in
good agreement, but the values of the mass fractions are as well.
Also in the flame tip, where stretch and curvature are very impor-
tant, the reduced computations appear to coincidewith the detailed
chemistry calculations. Note that preferential diffusion effects as dis-
cussed in the previous section are not very large for this methane–
air flame with an effective Lewis number close to unity.

Near the burner wall, however, some differences between the
FGM and detailed results can be observed. The CO mass fraction at
thewall is much larger in the detailed results than in the FGM results,
because in the detailed model CO can diffuse along flame surfaces
toward the wall, while in FGM it can not. In Fig. 23 the mass frac-

tion of CO is plotted as a function of the dimensionless tangential
coordinate ξ2/δf in the flame surface Y = =YO2 0 07. , with ξ2 = 0 at the
wall. In the FGM approach, YCO is a function of the control vari-
ables Y and h. In the manifold the CO concentration rapidly
decays with decreasing enthalpy. When the flame temperature is
below 1400 K, the CO mass fraction is less than 10% of its value at

Fig. 22. Isocontours of T, YO2 , YCO and YH computed using detailed chemistry (left) and FGM (right). The contours are drawn at equal intervals covering the entire range of
each variable (indicated in the upper right corner of each graph). The same isolevels are used for detailed and FGM computations. The coordinates are in cm. Adapted from
Ref. [6].

Fig. 23. Mass fraction of CO as a function of the dimensionless tangential coordi-
nate ξ2/δf in the flame surface Y = =YO2 0 07. , with ξ2 = 0 at the burner wall. The solid
curve corresponds to the detailed computation and the dashed curve to the FGM
computation.
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adiabatic conditions. Since the temperature of the wall is 300 K, the
CO mass fraction, which is retrieved from the manifold, is nearly
zero for ξ2/δf < 1. In the detailed case, CO diffuses from the adiabat-
ic zone along the ξ2-coordinate toward the burner wall. Diffusion
in this direction is represented by the Q-terms (31) in the flamelet
equations. At the wall, QYCO kg m s= − −1 1 3 1. , which is two orders of
magnitude smaller than the chemical source term ωCO at adiabat-
ic conditions. However, at the wall the convective terms and the
chemical source term are negligible and the QYCO -term is balanced
by diffusion in flame normal direction, i.e., parallel to the burner
surface. Therefore, the QYCO -term is actually of leading order in the
flamelet equations and cannot be ignored in this region. The mag-
nitude of the Q term can also be estimated from the FGM result.
When λ/cp is assumed constant and Y Y hi i= ( )FGM Y, is used, the term
can be approximated as
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in which χt,h is introduced as the scalar dissipation rate of en-
thalpy in the flame surface. With this expression it is possible to
estimate the Q-term in an FGM simulation and to have an esti-
mate of the validity of the 1D flamelet assumption.

Another difference between the detailed and reduced chemis-
try computations is the computation time. The computation with
detailed chemistry took approximately twoweeks to converge, while
the FGM results were obtained within a few hours. These figures
are only a rough indication of the gain in computation time, because
different numerical solvers, grids and initial fields have been used.
Amore systematic analysis of the computational gain of FGM is given
in Ref. [77]. The reduced number of equations and the reduced stiff-
ness of the set of equations are the main factors that cause the
reduction in computing time.

3.3.3. Stratified or partially premixed flames
In many engineering applications of combustion, fuel and oxi-

dizer are not perfectly mixed before entering the combustion
chamber and combustion occurs under partially premixed condi-
tions. Since fuel and oxidizer are not perfectly mixed in partially
premixed flames, variations in the element mass fractions Zj and
enthalpy h are inevitable. The element mass fraction of carbon in
a methane/air mixture for instance varies between ZC = 0.75 in pure
methane and ZC = 0 in pure air. In non-premixed flames, the local
equivalence ratio, which is determined by the local element com-
position, is usually described by the mixture fraction Z, which is
defined in such a way that it is a conserved scalar unchanged by
chemical reaction. For hydrocarbon mixtures it can be expressed
in terms of the element mass fractions ZC, ZH and ZO as follows [83]:
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where the subscripts fu and ox denote pure fuel and oxidizer quan-
tities, respectively. The mixture fraction is scaled such that Z = 1 in
the fuel stream and Z = 0 in the oxidizer stream. To account for varia-
tions in the mixture fraction due to mixing, Z can be added to the
FGM as additional control variable. This is similar to the addition
of h as control variable to account for non-adiabatic effects as de-
scribed in the previous Section 3.3.2. Recently, the same burner
geometry as investigated in the previous section was studied with
a stratification of the fuel in the inlet [84]. A parabolic profile was
adopted for the mixture fraction going from Z = 0.033 (ϕ = 0.6)
at the wall to Z = 0.0713 (ϕ = 1.35) at the center of the inlet. By
using a 3D FGM ( Y, ,h Z ) good agreement was found with detailed
chemistry results.

Here we want to isolate the effects of fuel stratification from heat
loss effects. Therefore, we discuss the application of FGM to par-
tially premixed flames in the context of triple flames as studied in
Ref. [59]. A triple flame is a flame structure generated by flame prop-
agation in a partially premixed system. A schematic representation
of such a triple (or tribrachial) flame structure is shown in Fig. 24.
In a partially premixed field the mixture fraction determines the
local equivalence ratio and thereby the value of the mass burning
rate. Since premixed flame speeds reach themaximum for near stoi-
chiometric conditions, a flame in a partially premixed field
propagates preferentially along surfaces of stoichiometric mixture,
i.e., near Z Z= st. On the fuel-lean side of such a surface there is a
lean premixed flame front and on the fuel-rich side there is a rich
premixed flame front, both propagating with a lower burning ve-
locity than the leading edge of the flame, called the triple point.
Behind the partially premixed flame front, two streams, one con-
taining unburnt intermediates like CO and H2, and the other unburnt
oxidant, come together and burn as a diffusion flame.

In Ref. [59] a manifold was constructed from 1D premixed
flamelets. Since the mixture fraction in such flamelets is con-
served, changes in the mixture fraction as they occur in partially
premixed flames have to be taken into account by adding Z as control
variable to the manifold. The procedure to add Z as extra control
variable is similar to the one described before for adding h as vari-
able to account for enthalpy changes. Because the triple flames
considered here are adiabatic, the enthalpy is not used as addition-
al control variable. In order to add the mixture fraction as additional
control variable, the 1D flamelet equations are solved for different
values of the initial mixture fraction Z Z x−∞ = = −∞( ). The value of
Z−∞ is simply changed by varying the ratio between fuel and air in
the initial mixture. Since unity Lewis numbers are used, there are
no differential diffusion effects and Z Z= −∞ in each flamelet. The pro-
gress variable is chosen as a linear combination of CO2, H2 and H2O,
which is monotonously increasing in each flamelet. The Z range of
the manifold 0 028 0 082. , .[ ] is within the flammability limits and is
wide enough to cover the variations in mixture fraction in the triple
flame discussed here. In applications with much larger variations,
the manifold needs to be extended outside the flammability ranges.
A straightforward linear interpolation of the species mass frac-
tions and enthalpy between the lean and rich flammability limit and
the pure oxidizer and fuel composition, respectively, is commonly
used and gives reasonable results (see, e.g., Refs. [85,86]). Linear ex-
trapolation of the density leads to incorrect results because density
is a non-linear function of the control variables. Therefore, it is better
to calculate the density from the linear extrapolated mass frac-
tions and enthalpy. Details of the numerical set-up of these triple
flame simulations can be found in Ref. [59].

Fig. 25 shows iso-contours of temperature T and the species mass
fractions YCH4 , YO2 , YCO, YH and YCH O2 computed with detailed chem-
istry [82] and FGM. The lean and rich premixed flame branches of

Fig. 24. Schematic representation of a triple flame. The arrows indicate the local
burning velocity. Reprinted from Ref. [59].
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the triple flame (see Fig. 24) can clearly be identified in Fig. 25. The
temperature rises from 300 K in the unburnt mixture to approxi-
mately 2000 K behind the premixed flame branches depending on
the local stoichiometry. The highest temperatures of approximate-
ly 2150 K are found in regions of near-stoichiometric mixture.
However, since heat is conducted away from the stoichiometric line,
these temperatures are almost 100 K lower than themaximum equi-
librium temperature of 2240 K.

The steady propagation speed of this flame structure com-
puted by using detailed chemistry is 44 0 1. cm s− . When FGM is used,
the propagation speed is 44 7 1. cm s− ; a difference less than two
percent. For more details, the reader is referred to Ref. [59]. This
small difference indicates that FGM yields accurate results for these
triple flames. This is confirmed by the temperature and species pro-
files shown in Fig. 25. For most variables the results of the detailed
and reduced chemistry computations agree very well. Since trans-
port processes along the iso-surfaces of Y are not included in
FGM, the CO formed on the fuel-rich side cannot diffuse along
the premixed flame toward the fuel-lean side. Therefore, the CO

concentration in the fuel-rich premixed flame branch is slightly
overpredicted by FGM. This effect is very similar to the diffusion of
CO toward the burner wall as discussed in the previous section. In
this case, however, the variation along the flame surface is caused
by a gradient in mixture fraction and, hence, the Q-term is propor-
tional to the scalar dissipation rate χt of Z in the flame surface.

The mass fractions of H and other radicals are hard to predict
accurately using conventional reduction methods based on chem-
ical steady states [2,75]. However, when using FGM the results agree
well with the results of detailed chemistry computations, though
small differences can be observed. Again, as in the case of CO, dif-
fusion along the ξ2-coordinate leads to a smaller peak value of H
mass fraction in the detailed computations. By using a similar ex-
pression as Eq. (91) but now with the scalar dissipation of mixture
fraction, the magnitude of QYH is estimated to be 10% of the flame
normal diffusion term, which explains the small difference between
FGM and detailed chemistry. The effect of the scalar dissipation on
the accuracy of FGM in the modeling of partially premixed
counterflow flames has been investigated in Refs. [12,61].

Fig. 25. Iso-contours of T, YCH4 , YO2 , YCO and YH computed with detailed chemistry (left) and FGM (right). Only a part (12 × 5 mm) of the complete computational domain
is shown. The contours are drawn at equal intervals indicated in the lower right corner covering the entire range of each variable. The same iso-levels are used for the de-
tailed chemistry and FGM results. The black curve in the top right figure indicates the mixture fraction profile at the inlet boundary. Adapted from Ref. [59].

59J.A. van Oijen et al. / Progress in Energy and Combustion Science 57 (2016) 30–74



3.3.4. Prediction of NO formation
Formation of nitrogen oxide and soot formation are relatively

slow chemical process, which cannot be assumed in quasi-steady
state and therefore need special treatment. For flamelet models the
problem can be solved by using unsteady flamelets which are com-
puted at runtime (see, e.g., Refs. [87,88]). This results in accurate
NO predictions, but at an increased computational cost. When using
precomputed tables as in FGM, two approaches to model the slow
formation of NO can be distinguished:

1. Include NO in the definition of reaction progress variable Y

2. Solve a transport equation for NO with the source term from the
look-up table

With mixed results both approaches have been applied in simu-
lations of turbulent flames [86,89,90]. It is not easy to draw
conclusions from these simulations because the predictions are
strongly influenced by the modeling of turbulence–chemistry in-
teraction and the accuracy of the NO measurements is not always
high enough. Therefore, both approaches were compared in simu-
lations of unsteady one-dimensional laminar flames [91]. This made
it possible to validate the reduced models against simulations with
detailed chemistry. In the following section it is explained how the
FGM method is used to model NO formation. After that the one-
dimensional test problem is described and the results and
conclusions are presented.

3.3.4.1. Parametrization of NO chemistry in FGM. Flamelet gener-
ated manifolds are constructed from solutions of steady laminar
flamelet simulations with detailed chemistry. In accordance with
the application, premixedmethane–air flamelets are used here. Since
the equivalence ratio is not fixed in the test problem, a series of pre-
mixed flamelets is computed for mixtures of different stoichiometry
as explained in Section 3.3.3. This set of flamelets forms a two-
dimensional manifold, which can be parameterized by mixture
fraction Z and a progress variable Y . In this case, the reference pro-
gress variable Y0 is defined as

Y0
2 2 2 2 2 2= + +Y M Y M Y MH H H O H O CO CO . (93)

Since the formation of NO continues in the burnt gas, the pro-
gress variable has almost reached itsmaximum value, while themass
fraction of NO is still increasing. This results in extremely large gra-
dients in the database ( ∂ ∂ → ∞YNO Y ) and, hence, in large
interpolation errors during data retrieval. This effect can be ob-
served in Fig. 26. In this figure the NOmass fraction is shown versus
progress variable at stoichiometric conditions ( Z Z= st). It can be seen
that the mass fraction of NO increases sharply when the progress
variable has nearly reached its maximum value Y Y= max

0 . Obvi-
ously, this choice of parametrization would result in huge
interpolation errors. One way to solve this problem is to add the
mass fraction of NO to the definition of the progress variable, viz.

Y Y= +0 αY MNO NO. (94)

The resulting parametrization is also shown in Fig. 26 for dif-
ferent values of α. It can be seen that the gradient ∂ ∂YNO Y becomes
smaller for increasing α. Due to the very small values of YNO com-
pared to the major species, a rather large value of α is needed to
get a significant contribution of YNO in the progress variable.

A similar observation can be made for the chemical source term
ωNO of NO, which is shown in Fig. 27. Although the effect is less dra-
matic than for the NOmass fraction, also interpolation errors in the
source term may occur. Since this source term is used to solve the
transport equation for NO, it also results in errors in the NO
predictions.

3.3.4.2. Test problem and results. The two approaches for NO mod-
eling as described above have been applied to a simple test problem
[91]. It consists of a one-dimensional, adiabatic, premixedmethane–
air flame, which is subjected to sudden changes in stoichiometry.
The initial solution consists of a steady lean premixed flame
( Z Z= 0 5. st). At t = 0 the equivalence ratio of the inlet mixture is
changed to rich conditions ( Z Z= 1 7. st ). This is done by prescrib-
ing the composition of the unburnt mixture at the inlet of the
computational domain (s = −1 cm). The flame is stabilized in the
domain by adapting the inlet gas velocity in such a way that
T s =( ) =0 1500 K . At t = 0.25 s the unburnt mixture composition is
switched back to the initial lean condition.

In Fig. 28 the profiles of mixture fraction Z, temperature T, and
NO mass fraction YNO are shown as a function of space s and time
t. These results have been computed using detailed chemistry, i.e.,
the GRI-Mech 3.0 reaction mechanism [50]. In the plot for mixture
fraction, it can be seen that the inlet composition suddenly changes
at t = 0 and t = 0.25 s. While this sudden change in mixture frac-
tion travels with the gas velocity toward the flame front, it is
smoothed by molecular diffusion. When this mixture fraction wave
travels through the flame front, its wavelength is increased by the
increase in gas velocity due to expansion of the reaction products.

Fig. 26. NO mass fraction YNO versus progress variable Y at stoichiometric condi-
tions ( Z Z= st ) for different values of α.

Fig. 27. NO source term ωNO versus progress variable Y at stoichiometric condi-
tions ( Z Z= st ) for α = 0 and 100.
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In the temperature plot, it can be seen that when the mixture
fraction wave hits the flame front the temperature rises, because
the stoichiometry changes from lean to stoichiometric. When the
wave has passed the reaction front, the temperature decreases again
since the conditions have changed from stoichiometric to rich. When
the mixture fraction is changed back to lean conditions at t = 0.25 s,
a similar but reversed process is observed.

The profiles of NO mass fraction closely follow the trend in the
temperature profiles. When the mixture fraction is close to stoi-
chiometry and the temperature is high, a lot of NO is produced. This
results in a growing NO peakwhich is convected away from the flame
front by the flow of burnt gases. This can also be observed in Fig. 29,
in which snapshots of the NO profile are shown at three time in-
stants. In the top figures the mixture fraction has just increased, in
the middle figures a steady rich condition is obtained, and in the
bottom figures the mixture fraction has just changed back to lean
conditions.

In Fig. 29 the results of FGM simulations with the two different
approaches and different values of α are shown as well. The results
with α = 10 indicate that adding a small amount of NO to the pro-
gress variable does not prevent large interpolation errors. In fact,
for this value of α the profile of NO is still not resolved by the grid
spacing used in the look-up table. The interpolation errors result
in an overestimation of the mass fraction of NO, but an underes-
timation of its chemical source term. For larger values of α, the results
becomemore accurate. The steady situation at t = 0.25 s is then very
well captured by both approaches. However, the unsteady parts of
the simulation are more accurately predicted by the approach in
which a transport equation for NO is solved. The direct lookup ap-

proach gives only acceptable results for α = 103 . Note that in the limit
α → ∞, both approaches are the same because then the progress
variable Y is equivalent to YNO . In order to include the dependen-
cy of the NO source term on concentration of NO, it is possible to
split the source term in production and a consumption part. This
was investigated by Ihme and Pitsch [18].

3.4. Application of FGM in simulations of turbulent flames

The previous section showed how FGM can be successfully
applied to laminar flames. These were all flames that are moder-
ately perturbed by steady flow and mildly unsteady effects, in one
or two dimensions. In this section, we will discuss the application
of FGM in simulations of turbulent flames. In the numerical mod-
eling of turbulent flames, a distinction is made between direct
numerical simulation (DNS), in which all turbulent scales of motion
are resolved on the numerical grid, and Reynolds-Averaged Navier–
Stokes (RANS) or Large-Eddy Simulation (LES) methods, in which
the governing equations are filtered or averaged before they are
solved. DNS is extremely costly, requiring tens of millions cpu-
hours, but it provides important insight in the details and
fundamentals of turbulent combustion. Recent reviews on DNS of
turbulent combustion are given by Chen [92] and Trisjono and Pitsch
[93]. The computational burden for RANS and LES is considerably
smaller than for DNS. However, the former require additional mod-
eling of the unresolved terms in the governing equations. Reviews
on models for LES of turbulent combustion have been given by, e.g.,
Janicka and Sadiki [94], Pitsch [95] and Gicquel et al. [96]. The ap-
plication of FGM in simulations of turbulent premixed flames will

Fig. 28. Mixture fraction Z, temperature T, and NO mass fraction YNO as a function of space s and time t computed using detailed chemistry.
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be discussed first, in Section 3.4.1, in the context of DNS and then,
in Section 3.4.2, in the framework of RANS and LES.

3.4.1. Direct numerical simulations
3.4.1.1. Flame turbulence interaction. Since in DNS all scales of tur-
bulent motion are resolved, it is the ideal tool to investigate flame–
turbulence interaction. In various DNS studies the interaction of a
flame front with turbulence has been investigated in canonical prob-
lems in order to clarify the effect of flame stretch and curvature on
burning rates, to assess the accuracy of reduced chemical models,
and to develop models for closing the unresolved terms in RANS
and LES [93].

As discussed in Part I, the set of flamelet equations gives an ac-
curate description of the flame structure when Ka < 1 and
perturbations from 1D behavior are not too large. In turbulent flames
this implies that the model is valid as long as the conditions are
within the flamelet regime [16], in which the aerodynamic scales
are larger than the thickness of the laminar flame front. This ensures
that the combination DNS–FGM performs without potential loss of
accuracy, even if the conditions are more severe than the laminar
ones that were discussed in Section 3.3.

First implementations of DNS–FGM were presented in Refs.
[33,97,98], in which it was analyzed whether the strategy cor-
rectly performed under three-dimensional time dependent
conditions with a simple fuel (Le = 1) in a state-of-the-art com-

pressible DNS code. Similar studies using a low-Mach code were
reported in Refs. [99,100]. In these studies, premixed flame kernels
in homogeneous isotropic turbulence were simulated. By varying
the intensity of the velocity fluctuations, flame kernels in the thin-
reaction zones regime (T1) and in the distributed reaction zones
regime (T2) were investigated [33]. The turbulent Reynolds numbers
for cases T1 and T2 were Re .= ′ =u l st L f

0 3 7δ and 37, respectively.
In Fig. 30, cross sections through the center of the flame kernels

are shown for t = lt/u′. Three isotherms are shown to indicate the
location of the unburnt side, the inner layer and the burnt side of
the flame front. From the figures it is clear that in case T1 the tur-
bulent flow structures are small and strong enough to disturb the
preheat zone of the flame. The reaction zone, however, is not sig-
nificantly affected by the flow structures. This is the typical behavior
expected in the thin-reaction zones regime [16]. For case T2, it was
found that not only the structure of the preheat zone but also that
of the reaction zone was altered by the turbulent flow, which is char-
acteristic for combustion in the distributed-reaction zones regime.
The high turbulence level in case T2 was found to locally quench
the flame, ultimately leading to global extinction.

The gray curves in Fig. 30 represent flamelet paths as defined in
Eq. (15). These flame paths are 3D curves that are projected on the
center plane and cross this plane at the location of the inner layer.
The profiles of Y and dimensionless flame stretch rate K mδ ρf u i

0

as functions of the dimensionless arclength s s−( )i fδ along these

Fig. 29. Profiles of NO mass fraction YNO at three different times computed with detailed chemistry and four different FGM tables and two different approaches: direct look-
up (left) and solving a transport equation for NO (right).
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flame paths are shown in Fig. 31. The profiles of Y confirm that tur-
bulent eddies distort the preheat zone in both cases, but they do
not affect the reaction zone in case T1. In case T2, the gradients of
Y of the various flame paths are different in the reaction zone,
which confirms that the reaction layer is distorted by the flow. The

dimensionless stretch rate Ka f u i= K mδ ρ 0 is in the order O 10( ) for
T1 and O 102( ) for T2. These relatively high stretch rates and their
large fluctuations in the flame zone cause the adoption of weak-
stretch approximations in theoretical studies debatable. The flame
stretch theory discussed in Part I, however, is not limited to weak

Fig. 30. Cross sections through the center of turbulent flame kernels at t = lt/u′ for case T1 (left) and T2 (right). The bold lines are isotherms corresponding to the position
of the unburnt side, the inner layer and the burnt side of the flame (T = 305, 1698 and 1849 K). The vectors represent the gas velocity (u, v). For each case six flame paths
(thick gray lines) are projected on the plane z = 0. The spatial coordinates are given in mm. Reprinted from Ref. [98].

Fig. 31. Profiles of the progress variable Y and the dimensionless flame stretch rate K mδ ρf u i
0 along the flame paths displayed in Fig. 30. The stretchless progress variable

Y0 is indicated by the red dashed curves. Left: case T1. Right: case T2. Adapted from Ref. [98].
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stretch rates. By using the actual profiles of density ρ, progress vari-
able Y , flame surface σ and stretch rate K as shown in Fig. 31 in
the Karlovitz integral (75), the mass burning rates of approximate-
ly 104 flame paths in the DNSwere predicted by Eq. (74) with amean
deviation of 2% for case T1. When constant K and/or σ profiles were
applied in the evaluation of the Karlovitz integrals, the difference
between theory and numerical result increased severely, which in-
dicates that these approximations in theoretical expressions should
be used with great care [98]. For case T2, the deviation was higher
but still a strong correlation between theory (Eq. 74) and DNS results
was observed, which shows the strength of this theoretical model,
since the dimensionless stretch rates are of order O 102( )!

Due to the large stretch rates observed in these flames, onemight
wonder whether the 1D FGMmodel applied in the DNS is valid for
these conditions. The fact that the flame stretch theory accurately
predicts the mass burning rate may be interpreted as a positive sign
because the FGM method is based on the same flamelet equations
with similar assumptions. However, in order to assess the accura-
cy of the FGMmodel a comparison with simulations employing the
full kinetic mechanism is desired. The most direct way would be
by performing a DNS of the same case with detailed chemistry. Since
such a DNS would require enormous computational power, which
is not available to everyone, other approaches have been used. In
Ref. [98], the FGM model was validated by comparing it with de-
tailed chemistry solutions of the flamelet equations for the flame
paths in the DNS results with the actual flame stretch rate K and

surface σ as shown in Fig. 31. Neglecting the unsteady terms and
the Q terms, the flamelet equations were solved for O 104( ) flame
paths with a 1D flame code using both FGM and detailed chemistry.

The results of the detailed chemistry calculations, employing GRI-
Mech 3.0 [50] without nitrogen chemistry, are shown in Fig. 32 as
scatter plots of H2, O and CO in composition space. In the top row
of this figure, it can be seen that the scatter is located in a narrow
region around the 1D FGM but that deviations of approximately 10%
occur. In the bottom row, conditional scatter plots are shown for
Y = 0 6. . In these plots, cross sections of a 2D FGM and a 2D ILDM
are shown as well. The 2D FGMwas created by solving the flamelet
equations with a constant stretch rate K = a. A series of flamelets
was computed for a mδ ρf u i

0 5 4 4 5= − −, , , ,… and the solutions φ(s,
a) were then used to construct an FGM φ(y1, y2) with two control
variables. It can be seen that, contrary to the 2D ILDM, the 2D FGM
is in excellent agreement with the scatter of the detailed calcula-
tions. Apparently, for the unity Lewis number case studied here, the
flamelets computed with a constant stretch rate occupy the same
states in composition space as the flamelets with largely varying
stretch rates.

Since the 2D FGM is a better approximation of the space ac-
cessed by the detailed calculations, it is expected that it will lead
to a more accurate representation of the chemical source terms, ul-
timately leading to a more accurate modeling of the mass burning
rate. This was tested in Ref. [98] by using the 2D FGM to solve the
flamelets from the DNS. In Fig. 33, the results of the 1D and 2D FGM

Fig. 32. Top row: Scatter plots of H2, O and CO mass fractions Yi versus first control variable y1 = Y . The solid line is the 1D FGM. The dashed line denotes the scaled chem-
ical source term of Y . Bottom row: Scatter plots of variations in the species mass fraction ΔYi versus variations in the second control variable y Y2 = OH conditioned at Y = 0 6. .
The curves are cross sections of a 2D ILDM (solid) and a 2D FGM (dashed). Adapted from Ref. [98].
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are both compared with results of the simulations with detailed
chemistry. The mass burning rate at the inner layer is compared for
all the flame paths in two scatter plots, in which the FGM result is
plotted on the vertical axis and the detailed chemistry result on the
horizontal axis. The average deviation between the 1D FGM results
and the detailed results is 5%. The largest deviations occur for the
lowest mass burning rate, because these flames are subjected to the
highest stretch rates. The 2D FGM results show a better agree-
ment with the detailed results. The average deviation is only 1%.

3.4.1.2. Preferential diffusion effects. Although 3D DNS with de-
tailed chemistry is extremely expensive and only possible with
petascale computing power [92], 2D simulations with detailed chem-
istry are tractable on affordable computer clusters. Despite the fact
that 2D turbulence behaves very differently from 3D turbulence, 2D
DNS studies can yield very useful information on how vortical flow
fields interact with flame fronts and how the internal structure of
the flame front in terms of species and temperature profiles is af-
fected by flame stretch and curvature. As an example, we discuss
the validation of FGM in a 2D DNS study of lean premixedmethane–
hydrogen–air flame kernels [101]. The fuel mixture consists of 60%
methane and 40% hydrogen by volume and is premixed with air at
an equivalence ratio of ϕ = 0.7. Apart from the fresh gas mixture and
the dimensionality of the problem, the simulation setup is the same
as applied in the studies discussed so far in this section [33,98].
However, as it was shown in Section 2.3.2.3, the presence of hy-
drogen with a Lewis number of 0.3 in the fuel leads to strong
preferential diffusion effects, which affect the mass burning rate and
hence the dynamics of the flame front. To capture the variations in
enthalpy and element mass fractions caused by preferential diffu-
sion effects, the manifold needs to be extended with additional
dimensions as explained in Section 3.3.1. There, it was shown that
one additional degree of freedom is enough to describe this effect
for small Karlovitz numbers. Here we will investigate whether this
also holds for the present fuel mixture of methane and hydrogen.

The variations in hb and Z j,b can be incorporated in the mani-
fold by solving the flamelet equations including a stretch term. Here
two different methods are compared. In the first method the flamelet
equations are solved imposing a constant stretch rate K = Ku. By ap-
plying a range of stretch rates K su = − − −200 175 950 1, , ,… , a 2D
manifold is generated: FGM A. In the second method a 2D mani-
fold is generated by solving the flamelet equations assuming constant
curvature κ = κu (or equivalently σ κ= ( )exp us ) and a stretch term
related to that, i.e., K = κm0/ρu. By computing a series of flamelets

with different curvatures κ u = − − −300 290 300 1, , ,… m , a 2D mani-
fold, FGM B, is generated. The ranges of Ku and κu are taken to span
a manifold that covers the range of variations in element mass
fractions found in the DNS.

Both manifolds are parameterized by a set of two control vari-
ables. The first control variable is the progress variable, which is here
chosen as Y = + − −φ φ φ φCO H O CH H2 2 4 20 6 0 4. . with ϕi = Yi/Mi. The second
control variable is chosen as a combination of element mass frac-

tions Z = +1
2
Z ZC H . This set of control variables results in a

monotonic parametrization of both manifolds. The chemical source
term of the progress variable in FGMA is shown in Fig. 34. The source
term increases for higher values of Z , which corresponds to an in-
creased burning rate at richer conditions. The two flamelet curves
demonstrate that a positive stretch rate leads to an increase in Z

which is in agreement with the results in Fig. 12.

Fig. 33. Scatter plot of the scaled mass burning rate m mi i
0 at the inner layer computed with FGM (y-axis) and detailed chemistry (x-axis). Left: 1D FGM. Right: 2D FGM.

Adapted from Ref. [98].

Fig. 34. Chemical source term of progress variable ωY kg m s3[ ] in the two-
dimensional FGM generated by assuming constant stretch rates. The solid and dashed
curves correspond to flamelets with K = −0 1s and K = −200 1s , respectively.
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Both manifolds are used to compute strained flames similar to
the study in Section 3.3.1. Results obtained with the 2D manifolds
are compared with results of calculations using detailed chemis-
try (GRI-Mech 3.0 [50]) and a 1D FGM. In Fig. 35 the mass burning
rate is plotted versus Karlovitz integral. The results computed using
detailed chemistry show the strong effect of preferential diffusion.
These effects were analyzed in detail in Section 2.3.2.3. Fig. 35 also
shows the results of calculations that employ a complex transport
model, which solves the Stefan–Maxwell equations and includes
thermal diffusion [29]. The results indicate that the simplified trans-
port model with constant Lewis numbers (Eq. 2) is also valid for
this fuel with high hydrogen content. The 1D FGM cannot predict
the preferential diffusion effects because it does not include changes
in hb and Z j,b. Both 2D FGMs, however, predict the correct trend in
mass burning rate. This good agreement and the small difference
between the two 2D FGMs indicate that one degree of freedom is

sufficient to describe the changes in enthalpy and elementmass frac-
tions, and that it is not very important how they are imposed.

The 2D FGM A is used in DNS of an expanding flame kernel and
compared with the 1D FGM and the detailed mechanism [50]. Snap-
shots of the mass fraction of the hydrogen radical, which is an
important intermediate in hydrocarbon oxidation and an indica-
tor for the fuel consumption rate, are shown in Fig. 36. The detailed
result shows the increased mass fraction of H in parts of the flame
front that are curved outward. These parts of the flame are posi-
tively stretched and become richer due to preferential diffusion
effects (see Section 2.3.2.3). This local increase in stoichiometry leads
to an increase in mass burning rate, which attributes to the cellu-
lar instability of lean flames with Le < 1 [102]. While the 1D FGM
cannot predict the change in Zj, the 2D FGM reproduces the de-
tailed chemistry results very well. The increased H mass fractions
in the outward curved parts are very well predicted. At closer in-
spection, however, one can still find differences. Due to the variations
of species mass fractions along isocontours of the progress vari-
able, diffusion in this direction starts to play a role. Delhaye [36]
performed a quantitative analysis of all terms in the flamelet equa-
tions (29) for a similar DNS of a lean methane–air mixture as shown
in Fig. 1. He found that the Q-terms are mostly much smaller than
the stretch and curvature terms, but in the part with the highest
curvature, where the curvature radius is comparable to the thick-
ness of the reaction layer δr, the Q-terms become comparable in
magnitude. Since Delhaye investigated a methane flame with a near
unity Lewis number, the variations in Zj along the flame front are
not as large as in the present methane–hydrogen mixture. There-
fore, the Q-terms are expected to be larger for the present case. For
an accurate representation of these tangential diffusion fluxes, ad-
ditional degrees of freedom have to be added to the manifold.

DNSmodeling of leanmethane–hydrogen–air mixtures with FGM
is extensively described by de Swart et al. [103]. Three different
methane–hydrogen ratios were studied in 2D simulations of flame–
vortex interaction and 3D simulations of statistically planar turbulent
flames in the thin reaction zones regime. In this work, a similar flame
path analysis was performed as described at the beginning of this
section. Stretch and curvature profiles were computed and used to
calculate the Karlovitz integrals. From the scatter plots of the scaled
mass burning rate m/m0 versus Karlovitz integrals, Markstein
numbers M were obtained using linear least-squares fits. The
Markstein numbers were found to decrease with increasing hydro-
gen content, in line with the results presented in Fig. 13. However,
the change in M appeared to be much smaller than in the steady

Fig. 35. Mass burning rate m mi i
0 of strained methane–hydrogen–air flames versus

Karlovitz integral Kai
0 .

Fig. 36. Contour plots of the mass fraction of hydrogen radicals computed with detailed chemistry (left), 1D FGM (middle), and 2D FGM (right) at t = 0.3 ms. Spatial di-
mensions are in millimeters.
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laminar flames. The changes in element mass fractions ΔZ j,b and
enthalpy Δhb in flame paths in the DNSwere not as large as in steady
laminar flames with the same Karlovitz number. This difference can
be attributed to the unsteadiness of K and σ. When these vari-
ables change in time, the element mass fractions will follow with
a finite response time. This is demonstrated in Fig. 37, in which the
evolution of ΔZ j,b is shown for a flat flame that is subjected to a
sudden change in stretch rate. The flame is initially not stretched
and ΔZ j,b = 0, but at t = 0 the stretch rate is increased to K = −103 1s
and the element mass fractions start to change. However, it takes
about two flame time scales τf = δf/sL before the steady values are
reached. This finite response time causes the flame to act as a low
band-pass filter, effectively averaging out the effect of the stretch
rate fluctuations. Note that expressions (43b) and (43a) for ΔZ j,b and

Δhb do not include this transient effect because the unsteady terms
∂/∂τwere ignored in their derivation. In the FGM approach, however,
transport equations are solved for Zj and h if they are control vari-
ables, which implies that this unsteady effect can be accounted for.

The local variations in Zj and h lead to a change in mass burning
ratem, which on its turn affects the propagation of the flame front.
This effect is not clearly visible in Fig. 36 because only one eddy-
turnover time was simulated and in this time span the movement
of the flame front is mainly determined by the velocity of the gas.
The effect of preferential diffusion on the dynamics of the flame was
investigated by Vreman et al. [104] by using FGM in DNS. Pre-
mixed turbulent flames of lean methane–hydrogen–air mixtures
were simulated on a slot burner geometry that was based on the
experiments of Filatyev et al. [105] and that was used in earlier FGM–
DNS studies of methane combustion [106,107]. In this study the
preferential diffusion effects were demonstrated by comparing a 1D
FGMwithout changes in Zj and h, with a 2D FGM that does account
for these changes. In Fig. 38, instantaneous contours of the pro-
gress variable source term are shown for both cases. The FGMmodel
with preferential diffusion effects (Fig. 38b) shows an increase in the
source term in regions of the flame front that are convexwith respect
to the unburnt mixture and vice versa. Therefore, the flame front
becomes more wrinkled than in case of the 1D FGM. This increase
in flame surface density leads to an increase in the averaged burning
rate and a shorter averaged flame length. In Ref. [104], the turbu-
lent burning velocity was found to increase by 30%when preferential
diffusion was included. The change in local equivalence ratio does
not only affect the mass burning rate but it also changes the NO pro-
duction rate, because the flame temperature changes. The NOmass
fraction was found to increase by approximately a factor two at the
burnt side of the convex flame front in Fig. 38b. Variations in equiv-
alence ratio at the flame front are not only caused by preferential
diffusion, but they also arise often due to imperfect premixing of
fuel and oxidizer. The effect of such a fuel stratification on the dy-
namics of the flame was investigated in a similar numerical setup
with DNS–FGM by Ramaekers et al. [108].

Fig. 37. Temporal response of element mass fractions ΔZ j,b in a flat flame that is
subjected to a step-wise increase in stretch rate at t = 0 from K = 0 to 103 1s− .

Fig. 38. Contours of instantaneous ωY (kg/m3s) in the vertical plane x = 0 m, for a 1D FGM (a) and a 2D FGM (b). Adapted from Ref. [104].
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3.4.2. RANS and LES
In the previous section, it was shown that the use of FGM in DNS

yields results close to results of detailed chemistry calculations, but
at a fraction of the computational cost. This makes it possible to
perform DNS of high Reynolds number flows in real burners (see
e.g., Moureau et al. [109]). In practice, however, a DNS is still too
costly for most applications and RANS or LES approaches have to
be used. Typically, two types of models are required in order to close
the first moment equations of turbulent reacting flowswith flamelet
based tables. First, a fluid mechanical model must describe the un-
resolved stress and flux terms. Usually, eddy-viscosity and gradient
transport assumptions are employed to close these terms [26].
Second, a closuremethod is needed for themean values of the highly
non-linear chemical terms, such as the averaged source term, density,
temperature and species mass fractions.

First implementations of FGM in RANS of premixed turbulent
flames are described in Refs. [12,110]. In these studies, 3D mani-
folds with Y , Z and h as control variables are used and the chemical
closure problem is tackled by describing the control variables in a
stochastic way. It is assumed that locally the probability of occur-
rence of a certain state is described by a presumed shape probability
density function (PDF). Usually, the joint PDF of the control vari-
ables is written as a product of themarginal PDFs assuming statistical
independence of the variables. Beta functions parameterized by the
first two Favre averaged moments (mean and variance) are used to
describe the marginal PDFs. The combination of a tabulated pre-
mixed flamelet with a beta PDF for RANS modeling of turbulent
combustion was already introduced by Bradley et al. [111] in 1988.
Cook and Riley [112] proposed to use the beta PDF for the model-
ing of unresolved terms in the context of LES. Since then it has
become a standard closure technique in both LES and RANS, al-
though various other PDF shapes have been proposed and used
successfully as well [113,114].

The computational cost of LES is much larger than for RANS,
because LES is intrinsically unsteady and requires a finer grid to
resolve a sufficient part of the turbulent length scales in the flow.
However, since a larger part of the turbulent fluctuations is re-
solved and the modeled terms are much smaller, LES has a superior
accuracy compared to RANS. Together with the continuous in-
crease in available computer power, this has led to considerable
attention for LES modeling in recent years. FGM or other tabu-
lated chemistry models have been combined with many different
approaches to close the unresolved or sub-grid scale terms in LES.
An overview of various approaches to couple tabulated chemistry
with LES is given in a review by Fiorina et al. [115]. A non-exhaustive
list of recently usedmethods for premixed flames features: The level-
set or G-equation formalism [116,117], presumed PDF methods
[107,118], Flame-Surface Density methods [119,120], Thickened
Flamemodels [80,121], and Filtered Flameletmethods [107,122–125].
Several of these LES approaches have been used recently by various
groups to simulate the turbulent stratified flame experiments per-
formed at TU Darmstadt [126,127]. A comparison of these LES results
is described in a joint paper [128]. Good predictions were found for
all the models that were based on premixed flamelet tables that in-
cluded mixture fraction and enthalpy as additional degrees of
freedom. Since the premixed flamelet models performed well, it is
expected that the diffusion fluxes tangential to the flame front (Q-
terms in Eq. (31)) are relatively small for this mild stratified flame,
although a quantitative analysis was not given in Ref. [128]. Includ-
ing heat loss by adding enthalpy as a control variable was necessary
to quench the flame near the cold burner tip leading to a lifted flame
as it was observed in the experiments.

Another setup, in which the modeling of heat loss has been in-
vestigated, is the confined premixed jet experiment performed at
the German Aerospace Center (DLR). This geometry was selected
and analyzed experimentally in Refs. [129,130] because of the pro-

nounced recirculation zone that arises due to the off-center position
of the jet-nozzle exit. The strong recirculation of the hot product
leads to a large heat loss to the walls of the combustion chamber,
effectively lowering the flame temperature. RANS simulations of this
setup were presented by Domenico et al. [131] and Donini et al.
[132]. In Ref. [132], the FGM method was applied and both adia-
batic and non-adiabatic manifolds were used to model the flame.
As to be expected, the FGMwith enthalpy as additional control vari-
able gave much more accurate results. Excellent agreement was
found between the non-adiabatic FGM results and measured tem-
perature and velocity profiles in the region close to the nozzle. At
farther distance (more than 10 nozzle diameters) the agreement was
found to be less satisfactory. The differences were principally at-
tributed to the RANS modeling, which was not able to predict the
extent of the recirculation zone in an accurate way. More recently,
Proch and Kempf [66] performed LES of the same setup combin-
ing FGM with an artificial thickened flame model. They also
investigated the inclusion of heat loss and basically came to the same
conclusion. Furthermore, they compared two different ways to lower
the enthalpy of the flamelets. It was found that this choice has almost
no effect on the result, which is in line with findings of laminar flame
studies (see, e.g., Ref. [57], and Section 3.3.1). Although the LES pre-
dictions were more accurate than the RANS ones, the flame length
was still not in perfect agreement with the measurements. Proch
and Kempf attributed the underprediction of the flame length to
flame stretch effects.

The last test case that will be discussed here is a turbulent swirl-
ing flame in a laboratory-scale gas turbine combustor developed at
DLR. This modified version of a practical gas turbine combustor has
been extensively investigated by Weigand, Meier and coworkers
[133,134]. This burner setup provides a suitable test case for veri-
fication and validation of combustion models, given the challenging
complexity of the flow and the availability of a comprehensive set
of experimental measurements. Donini et al. [135] applied the FGM
method in combination with a presumed PDF approach in an LES
of this setup. Since the fuel (methane) is injected separately from
the air, the mixture fraction has to be used as additional control vari-
able. Additionally, enthalpy is used as control variable to account
for heat losses due to gas radiation and convective cooling at the
combustor walls. The complex flow behavior characterized by inner
and outer recirculation zones and a precessing vortex core, as well
as the stabilization of the flame are accurately predicted by the nu-
merical model. A detailed discussion of the flow pattern and a
comparison with measurements is given in Ref. [135]. In Fig. 39, the
computed instantaneous and time-averaged distributions of the
control variables are shown. High turbulence levels in the shear layers
near the inlet lead to fast mixing of fuel and air. At the location of
the flame front, they are almost completely premixed and burn in
a premixed mode. This is confirmed by an analysis of the resolved
scalar dissipation rate χ, which drops from approximately 103 near
the inlet to values below 1 s−1 at the flame front. The scalar dissi-
pation rate in the flame surface, for which χt ≤ χ holds, is therefore
much smaller than the flame time scale sL/δf. The low scalar dissi-
pation rate indicates that the related Q-terms in the flamelet
equations can be ignored. Heat loss to the combustor walls leads
to a significant enthalpy deficit in the outer recirculation, but the
region where the flame stabilizes is nearly adiabatic. Strong en-
thalpy gradients can therefore be neglected in the FGM modeling
of this case. However, when the flame front comes close to the wall,
local quenching may occur and the enthalpy gradients will have the
same length scale as the flame thickness. In that case, large Q-terms
are expected as was demonstrated for the laminar flame in Section
3.3.2.

The FGM model was also used to predict NO concentrations in
this combustor by solving a transport equation with the source term
obtained from the look-up table as discussed in Section 3.3.4. The
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predicted NO level in the exhaust of the combustor was in excel-
lent agreement with the measured value of 6 ppm. The influence
of gas radiation on the NO emission was found to be small, but ig-
noring heat loss to the walls resulted in an overprediction of 50%
due to an overestimation of flame temperature.

3.5. Concluding summary of Part II

In Part II, the basics of the FGM approach have been presented
and its application in laminar and turbulent premixed flames has
been discussed. The principle idea of the method consists of a com-
bination of reduced chemistry and laminar flamelet models. It was
shown that the FGM method can be derived from the strongly

stretched flamelet equations taking the major convective and dif-
fusive effects into account. A complete FGMmodel is obtained when
the actual flame stretch and curvature profiles from the CFD cal-
culation are included in the SSFE, which have to be solved at run
time. In practice, this is computationally too expensive and the SSFE
are solved in a pre-processing step assuming representative con-
ditions. The representative flamelets constitute a manifold which
is parameterized by control variables and stored in a database.
Methods to store the manifold and to couple it to a flow solver are
presented and discussed.

The FGM method was further validated and applied step-by-
step to various laminar combustion cases. First, the modeling
of stretch effects was investigated. It was shown that a manifold

Fig. 39. Iso-contour representations of instantaneous (top) and time-averaged (bottom) distributions of normalized progress variable (left), local equivalence ratio (middle)
and enthalpy deficit [J kg−1] (right) at the mid plane of the combustor.
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constructed from stretchless flamelets can accurately predict the
mass burning rate of stretched laminar flames because the chem-
ical source terms are hardly influenced by stretch. Only in
combination with preferential diffusion, flame stretch leads to a
change in chemical source terms, because the element mass frac-
tions and enthalpy change. When these changes are included in the
manifold by adding additional dimensions, the effect of preferen-
tial diffusion on the mass burning rate is predicted by FGM. While
for low Karlovitz numbers one additional dimension is enough, more
degrees of freedom are required at high stretch rates.

Second, the modeling of heat loss by using FGM was studied. It
was shown that by using a 2D FGM with enthalpy as an additional
control variable, the stabilization of a premixed flame on a cooled
burner can be accurately modeled. Stretch and curvature effects in
the tip of this methane–air flame were accurately predicted by the
2D FGM. Close to the burner wall, where the flame quenches, dif-
fusion along iso-surfaces of the progress variable cannot be neglected
leading to small inaccuracies.

Third, the FGM method was used to simulate triple flames in
order to investigate its application in partially-premixed systems.
To account for mixture fraction variations in the FGMmethod, Zwas
added to the manifold as an additional control variable. The agree-
ment between the detailed chemistry and FGM results was very
satisfactory. Since transport of species along iso-surfaces of Y is not
included in the FGM computations, differences appear for species,
whose concentration changes significantly along the premixed flame
front. The differences between FGM and full chemistry results are
small for the flames studied here because the length scale of the
variations along the flame front is much larger than the premixed
flame thickness.When the length scale of mixing ∇ −Z 1 is in the same
order as δf, additional degrees of freedom will be required in the
FGM. When ∇ −Z 1 � δ f , it is more appropriate to use diffusion
flamelets to generate themanifold (see Verhoeven et al. [60]). A com-
bined approach that switches from a premixed to a non-premixed
table depending on the local gradients was investigated by
Ramaekers et al. [58]. The enhanced accuracy of this combined ap-
proach for partially premixed flames, however, did not outweigh
the additional complexity of the implementation in their study.

Finally, the modeling of NO formation was discussed in the
context of laminar flame simulations. The slow chemical time scales
of NO formation (or other slow chemical processes) form a chal-
lenge for the FGMmethod because they result in very steep gradients
in the manifold, which lead to severe interpolation errors when NO
or its source term is retrieved from the database. Adding NO to the
definition of the progress variable results in a smoother mapping
of the NO mass fraction and its chemical source term and reduces
the interpolation errors. When a transport equation is solved for
NO and its source term is well resolved, the FGM results closely
match the detailed results. In general, we can conclude that the FGM
method can predict accurately and efficiently the structure and dy-
namics of laminar flames including emission formation.

In Section 3.4, the application and accuracy of the FGMmethod
in simulations of turbulent flames were investigated. First, the ap-
plication of FGM in DNS was discussed. Premixed expanding flame
kernels were simulated and their interaction with the turbulent flow
was analyzed. Turbulent eddies distorted the preheat zone of the
flame and lead to large varying flame stretch rates. The accuracy
of the FGM approach was assessed by reconstructing flame paths
form the turbulent flame and solving the flamelet equations for these
paths with detailed chemistry and FGM. It was shown that the mean
error in the predicted mass burning rate was 5% for a 1D manifold
and that by using a 2D manifold based on stretched flamelets, this
error was reduced to 1%.

A direct comparison with detailed chemistry calculations was
shown for a 2D DNS of a methane–hydrogen flame kernel. The large
preferential diffusion effects caused by flame stretch and curva-

ture in this flame require additional dimensions in the manifold to
capture changes in enthalpy and element mass fractions. As in the
laminar test cases, a 2D FGM reproduces the detailed results very
well, while the 1D FGM cannot account for the changes in h and
Zj. Small deviations in highly curved regions of the flame are at-
tributed to large Q-terms due to large tangential diffusion fluxes.
In order to improve the FGM modeling, these Q-terms might have
to be included in the flamelet calculations. The relevance of these
preferential diffusion effects was investigated in FGM–DNS of pre-
mixed methane–hydrogen–air combustion on a slot burner. The
variations in stoichiometry lead to changes in local burning rate that
in turn lead to more flame wrinkling and therefore a shorter aver-
aged flame length with an increased turbulent flame speed.

For application in LES or RANS, the FGM method needs to be
coupled with a turbulencemodel that accounts for unresolved terms
in the governing equations. Many different approaches exist to close
these terms and to couple FGM with LES or RANS. The presumed
PDF approach is probably the most widely used method, but more
advanced methods are being developed and are gaining interest.
Several test cases were discussed, in which the role of fuel strati-
fication and heat loss was investigated. It was found that LES with
manifolds based on premixed flamelets with additional degrees of
freedom to account for variations in mixture fraction and en-
thalpy, in general yields satisfactory agreement with measurements.
The results obtained for the DLR gas-turbine combustor demon-
strate the large potential of FGM in combination with LES for the
modeling of combustion in real devices.

4. General conclusions and outlook

State-of-the-art of the Flamelet Generated Manifold (FGM) tech-
nique has been reviewed and consolidated. The FGM technique is
one possible solution to the important problem to model the de-
tailed structure of flames described by complex chemistry and
transport processes in a much more efficient and fast way. This is
not done by solving all transport equations at hand, but by reduc-
ing this set to a few equations describing the main progress in the
flame, while detailed information on all other relevant param-
eters is stored in a database, prepared before the actual flame
computation. The basic idea of the FGM technique is that the flame
structure is a combination of a preheating zonewhere detailed trans-
port phenomena including stretch, curvature and preferential
diffusion effects take place and a much thinner reaction layer in
which only chemical reaction andmolecular diffusion take place and
balance each other. The chemical source term, perturbed and bal-
anced by molecular diffusion effects, is the key information stored
in the FGM database. This chemical source is not very sensitive to
stretch and curvature, but major effects due to changes in con-
served variables like pressure, enthalpy and elemental composition
at the reaction layer must be taken into account. This is invoked by
creating a multiple-dimensional manifold, generated by choosing
a set of appropriate flamelets in which the same or similar pertur-
bations appear. A generalized flame stretch theory, based on these
ideas, has been developed to show this and to analyze the flame
dynamics. The FGM technique has been appliedwith success tomany
DNS studies of laminar and turbulent flames in which all phenom-
ena in the preheating zone are resolved, while the source term has
been prepared and stored on the basis of the above principles. Heat
loss, fuel stratification, flame stretch and preferential diffusion effects
have been accounted for. Diffusion transport along iso-surfaces of
the progress variable is, however, not accounted for. This leads to
inaccuracies in regions of intense cooling or mixing where large gra-
dients of enthalpy and element mass fractions occur. It remains to
be investigated how these effects can be included in future FGM
approaches.
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The application of the FGMmodel in ‘unresolved’ models using
LES or RANS for the flow field is also studied. To cover the unre-
solved behavior, various approaches exist of which the presumed
PDF method is probably the most applied one. This model has ap-
peared to be very promising as well, but there are many open
questions to be asked. Important questions are, for instance, what
the shape and structure of the PDF should be and how to model
accurately the propagation of a flame front which is much thinner
than the mesh size. New ideas in the direction of this last problem
are currently under investigation, e.g., by the preparation of flamelets,
suitably filtered to recover the correct propagation and dynamics
of the thin embedded fronts (see e.g., Refs. [107,109,122–124]).
Another question is how to include preferential diffusion effects in
‘unresolved’ models. In DNS the interaction between flame stretch
and preferential diffusion was found to play an important role, but
in LES this effect happens at the sub-grid scale and requires proper
modeling.

Appendixes

A. Transformation rules

Let us consider the transformation rules belonging to the coor-
dinate transformation from a Cartesian system to a moving
curvilinear system x, ,t( )→ ( )ξ τ . The covariant and contravariant base
vectors ai and aj are defined by, respectively,

a
x

ai i
j j i j: , : , , , , ,= ∂

∂
= ∇ =( )

ξ
ξ 1 2 3 (95)

where the gradient operator is taken w.r.t. the Cartesian coordi-
nates x. The properties of these base vectors are determined by the
(symmetric) covariant and contravariant metric tensors gij( ) and
gij( ) , defined by, respectively,
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These tensors are each other inverse, having determinant
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For the case described by Eq. (9), the (symmetric) covariant and
contravariant metric tensors are given by g g11

11
21= = ∇ ′( )Y Y ,

where ′Y denotes the derivative of Y with respect to ξ1. We assume
that ′ >Y 0 . Using the Einstein summation convention, i.e., prod-
ucts containing repeated indices should be summed over the
appropriate range of this index, we have for the differential opera-
tors in this paper the following expressions
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where q and r are arbitrary scalar fields and u an arbitrary vector
field. Moreover, ui and Ui are the contravariant component and the

contravariant component of this velocity field relative to the moving
coordinate system, respectively, and �x is the velocity of the moving
coordinate system.

B. Non-premixed flames

In Part II the flamelet equations are used to derive reduced chem-
istry models. While the focus is on premixed flames in the derivation
of the flamelet equations (29) in Part I, the approach can also be
used for non-premixed flames. It might be confusing to use Eq. (29)
to derive reduced combustion models for premixed as well as for
non-premixed flames, because normally the quantities in this set
of equations are typically used for premixed flames and not for non-
premixed flames. For instance,m = ρsd is themass burning rate which
is a quantity normally used to analyze premixed flames. However,
in the derivation of the FGM method and the SSFE set, it makes in
principle no difference what kind of flame geometry is studied.
Therefore, we generalize the concept of m to arbitrary flames and
use this quantity to study these flames instead of the so-called scalar
dissipation rate χwhich has been used in laminar flamelet methods
for non-premixed flames so far [16]. The question then is, how should
sL or m be interpreted in case of non-premixed flames? To answer
this question, let us consider a non-premixed flame defined in terms
of the progress variable y1 which might be a reactive progress vari-
able Y . However, to be able to study the relation with existing
laminar flamelet models for diffusion flames we chose the mixture
fraction Z as first progress variable. The velocity of a point on a flame
iso-surface (with Z as constant) in time equals vf, while the local
flow velocity equals v giving the kinematic equation:
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These two velocities vf and v are not equal due to diffusive effects
in the flame leading to a displacement velocity sdn = vf − v. If Eq. (99)
is inserted in the transport equation for Z, a flamelet equation like
Eq. (29e) for Z is obtained, which defines the local ‘mass burning
rate’ of the diffusion flame:
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A coordinate transformation as presented in Section 2.1.3 is in-
troduced subsequently and the transformed set of equations again
reduces to Eq. (29), but now with m given by Eq. (100). A reduced
‘manifold’ defined by Eq. (29) can now be generated in one way or
another (e.g., ILDM, FGM, PS-ILDM, etc). For instance, in case of a
two-step reduced mechanism applied to a diffusion flame, y1 and
Z can be used as the two first control variables in case of ILDM and
FGM. In case of traditional laminar flamelet models, Z and the scalar
dissipation rate χ = ∇2 2D Z are used instead. m now replaces the
role of the scalar dissipation rate as a measure for the importance
of diffusive time scales. The relation between these two variables
can be written in simple form if ρD is taken constant, σ = 1 and Lewis
numbers are equal to unity. We then have:
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It is interesting to note that the laminar flamelet model
developed by Peters uses a similar flame-adapted coordinate trans-
formation. However, the main difference is the scaling to Z as new
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coordinate, while we use distances s perpendicular to the Z planes

in the present case. This leads to a relative factor
∂
∂
Z
s for each spatial

derivative in the direction of the normal on the flame surface. This
ultimately explains the appearance of m instead of χ as measure
for the diffusion time scale in the flamelet equations. Another dif-
ference is that in the present case the transformation is locally
orthogonal, while this is not the case for the method of Peters.
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