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We consider a stationary Gaussian information process transmitted through an 
additive noise channel. We assume that the noise and information processes are 
mutually independent, and we model the noise process as nominally Gaussian with 
additive outliers. For the above system model, we first develop a theory for outlier 
resistant filtering and smoothing operations. We then design specific such nonlinear 
operations, and we study their performance. The performance criteria are the 
asymptotic mean squared error at the Gaussian nominal model, the breakdown 
point, and the influence function. We find that the proposed operations combine 
excellent performance at the nominal model with strong resistance to outhers. 
0 1988 Academic Press. Inc. 

I. INTRODUCTION 

In filtering and smoothing, information carrying data are extracted from 
noisy observations. The formalization and solution of the filtering and 
smoothing problems are well established, when the joint process that 
characterizes the relationship between information and noise data sequen- 
ces is statistically well known (see Kalman, 1960, 1963; Kolmogorov, 1941; 
Wiener, 1949), or parametrically known. Linear filtering and smoothing 
operations are then by far the most widely used, due to their simplicity in 
implementation. In practice, however, the occurrence of occasional 
extremely erroneous data values, called outliers, are frequently observed. 
Furthermore, linear data operations are notoriously nonresistant to such 
outliers, inducing dramatic performance instabilities. The purpose of this 
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paper is to establish a theory for outlier resistant filtering and smoothing 
procedures and to provide such specific data operations for Gaussian infor- 
mation processes and additive, nominally Gaussian, noise processes. The 
initial steps of our presentation are based on the theory of quantitative 
robustness (see Boente, Fraiman, and Yohai, 1982; Cox, 1978; Hampel, 
197 1; Papantoni-Kazakos and Gray, 1979; Papantoni-Kazakos, 198 1, 
1987, 1984a, 1984b). Our approaches on pertinent performance criteria are 
as those in Hampel et al. (1986). 

Problems of nonlinear filtering are considered in the paper by Masreliez 
and Martin (1977). In particular, the above authors present a 
robustification procedure for Kalman filters operating on the outputs of 
linear dynamical systems. Discussion of their results and comparisons with 
ours are given in Sections 4 and 6 of this paper. 

A general theory and methodology for nonlinear smoothers, acting on 
stationary processes, is developed by Mallows (1980). The issue of primary 
concern there is the decomposition of smoothers into linear and nonlinear 
parts and the study of their properties. Furthermore, the problem of outlier 
resistance is examined, using as the indicator of resistance an extension of 
Hampel’s concept of the breakdown point. However, explicit design issues 
are not undertaken. Relevant results on the design and analysis of specific 
outlier resistant filters and smoothers for stationary processes can be found 
in Tsaknakis (1986). 

In Section 2 of this paper, we first present a formalization of the filtering 
and smoothing problem under consideration. Then, we define outlier resis- 
tance for filtering and smoothing operations and present certain sufficient 
conditions for resistance of such operations. In Section 3, a two person 
game formalization is adopted for fixed finite length operations and the 
corresponding least favorable structure is derived. In Section 4, the above 
structure is used for the design of a causal recursive filtering operation 
when the nominal information process is autoregressive and the nominal 
noise process is i.i.d. Then the asymptotic properties of the resulting 
operation are studied on a stationary environment, in terms of asymptotic 
outlier resistance, asymptotic stationarity, and asymptotic mean square 
error at the nominal model. 

In Section 5, we define the breakdown point and the influence function 
of a filtering or smoothing operation. Both these quantities are defined in 
such a way as to reflect important sensitivity aspects of the mean square 
error, induced by the filtering or smoothing operation, to the action of out- 
liers. Then, we continue with the explicit evaluation and study of the 
breakdown point and influence function of the filter presented in Section 4. 
Section 6 is devoted to the numerical evaluation and comparison of the 
proposed filter in relationship to an existing one, for specific numerical 
examples. Finally, in Section 7, we briefly present some conclusions. 
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2. PRELIMINARIES 

We consider real-valued discrete-time information and noise stochastic 
processes, denoted respectively by {X,, n E Z}, { W,, n E Z}, where Z is the 
set of integers. The observation process, { Y,, n E Z} is given by the 
equation 

r,=x,+ w,, n E Z. (1) 

It will be assumed that the information and noise processes are indepen- 
dent. Then a complete statistical description of the model (1) is provided 
by the probability measures of {Xn}, ( W,), denoted by pS, Pi, respec- 
tively. The probability measures of the observation process { Y,>, denoted 
by pr, is expressed as the convolution p,,= pS * pN and the joint 
probability measure of { Y,, X,}, denoted by p, is expressed as the product 
p( ( Y,, X,)) = p,( (Xn>) pN( ( Y, - X,)). Assuming that (X,) has finite 
second-order moments, let us consider the minimum mean square 
estimation of the information process value X,, given a finite length 1 obser- 
vation sequence { yi, y,+,- r }, denoted as y’ for short. If i+ 1- 1 Q 0, we 
refer to causal filtering or simply filtering. If i + I- 1 > 0, we refer to non- 
causal filtering or smoothing. Given the measure p, the minimum mean 
square estimator, fO, of X0 is the conditional expectation 

mY’) = -w0/Y’~ PI (2) 

which is a function of the sequence y’ whose specific form is determined by 
p. If ,U is Gaussian, X,,(y’) is an afline transformation of y’. The induced by 
!0 mean square error is denoted by e(p, X,,) and is a functional of p and 
X0 given by the expression 

&cl, Jio) = E{ cxo- x3( Y’H2/4. (3) 

The occurrence of occasional erroneous values in the noise process 
( W,}, called outliers, induces uncertainties in the description of the 
measure ~1~. That induces further uncertainties in the measures p and p,,. 
The initial issue here is the qualitative characterization of those uncertain- 
ties. A particularly useful tool for describing uncertainties of probability 
measures is the Prohorov distance (see Hampel, 1971; Boente et al., 1982; 
Papantoni-Kazakos, 1987, 1984b), whose definition is given below. 

Let p( ., .) be a metric in R”, and let v,, v2 be probability measures 
defined on the Bore1 field of (R”, p). Let N be the class of all joint 
measures, v, whose marginals are v, and v2. The Prohorov distance 
nptv r, v2) is defined as 

17,(v,,v,)=t~~inf{6>O:v(r,B:p(a,B)>S)~6}, (4) 

where CY, fi denote elements of R”. 
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The selection of the metric p( ., .) reflects the pattern according to which 
the outliers corrupt the nominal process. For the purpose of this paper, we 
select a metric which corresponds to outliers occurring in batches, or bursts 
of size m, m being a fixed design parameter. Such a metric is defined as (see 
Papantoni-Kazakos, 1984a, 1984b): 

For c(, p E R”, let d, fl be sequences generated by repetitions of c( and 8. 
Also, let 6; denote (Gj, . . . . a,), j < k. Then, we define the metric pn, ,( ., .) in 
R” as 

P,.,(a,B)=inf{6>O:n~‘[# i : ym(g+m-‘, &+-‘)>s]<s), (5) 
I = 1, .., n 

where, the auxiliary metric y,J ., .) is defined as 

y,(d, /3’)=m-’ 2 Icc:-j?:I, cd, /I’ E R”. (6) 
r=l 

In the sequel, we use the Prohorov distance in (4) with the metric (5) to 
give a formal definition of outlier resistant estimators. Let poN, par denote 
the nominal measures of the noise and observation processes respectively, 
and p0 denote the nominal joint measure of the observation and infor- 
mation processes. Also, let pas = p$ be the fixed information process 
measure. 

An estimator 2Jy’) of X0 from the observation sequence y’ is called 
outlier resistant or qualitatively robust at pLohi if tlq > 0, there is an E > 0 such 
that 

implies I e(h, Zd - e(k 1E,)I < v 

for every n. Notice that pL, and ~1 are fully determined from pt,N and pN. 
Considering stationary and ergodic processes, the limit lim,, co 

np,,,(poN, pLN) is equal to the Prohorov distance Z7y,(~oN, c(~). Since the 
Prohorov distance 27J ., .) metrizes the weak topology of the probability 
measure on (R”, y,), an estimator y,,( y’) of length I < m is resistant, if it is 
pointwise continuous and bounded. Such estimators are constructed in 
Section 3. However, for l> m, these conditions are no longer sufficient; 
appropriate resistant estimators of asymptotically large length are 
constructed in Section 4. 

Consider now the m-dimensional restriction of the nominal measure poN, 
and let it be denoted by /.&. Furthermore, assume that ~2~ is absolutely 
continuous with density &. Then, the s-contaminated class of densities 

F;(E) = {f”N = (1 - E)fyN + Ehm, h” arbitrary m-dimensional density} (7) 
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is contained in the class Lry,(poN, pN) < E of measures pN, for any E, 
0 <E < 1. The constant E can be interpreted as frequency of outlier 
occurrence. 

The class P;(E) of noise densities induces the following class of joint 
m-dimensional densities of the observation and information processes. 

sm(&)= {f”:f”(y”, xrn) 

Class sm(s) contains all the necessary statistical information for con- 
structing estimators of length at most m and will be used in the forth- 
coming section as the model for statistical contamination. 

3. CONSTRUCTION OF FILTERING AND SMOOTHING OPERATIONS-STEP 1 

In this section we derive a finite length robust estimator of the infor- 
mation process given observation sequence of length I <m, where m 
corresponds to outlier patterns, as discussed in the previous section. The 
derivation is based on a two-person game formulation of the estimation 
problem, with payoff function the induced mean square error. To fix ideas, 
suppose that A’,, is to be estimated from a length I observation sequence 
Yi+‘-‘, denoted as y’ for short (assume i d 0 d i + 1- 1). The joint density 
of x0 and y’, denoted by f(x,, y’), belongs to an s-contaminated class 
obtained from the appropriate restriction of the more general class F”‘(E), 
as defined in (8). We assume that the information process is a fixed zero 
mean Gaussian process and that the nominal noise process is also zero- 
mean Gaussian. Given an estimator z,(y’) and a joint density f(x,, y’), 
the mean square error e(f, A?o) of f. at f is the expectation 
E{ [A’, - ?o( Y’)]‘/f}. The objective is to find a density-estimator pair 
(f*, X,*) that constitutes a saddle point, i.e., 

for every To measurable andyE@% 
Unfortunately, a saddle point solution of the above game for the class 

Pm(e) does not exist. In particular, the quantity inff,, sup,,.,(,, e(f, J$?o) is 
strictly larger than sup ,-oFm(E)inff,, e(f, fo) and the latter supremum with 
respect tofcannot be attained in gm(s). This is due to the non-tightness of 
Fm(s) which allows probability masses to escape to infinity. For this 
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reason we consider an enlargement of the class Fm(s) to include ail 
densities of the form (we denote the enlarged class by the same symbol): 

Fy&) = {fm:fm( ym, xrn) = (1 - &)f;(X”)frN(y* - xrn) + &fZ(Xrn) h”( urn) 

h” arbitrary m-dimensional density >. (10) 

The enlarged class F-m(a) in (10) is equivalent to considering outliers 
affecting the observation process directly, not via the additive noise 
process, as is the case with the class in (8). However, the minimax value of 
the game for the class in (8) is the same as the minimax value for the class 
in (10). Furthermore, a saddle point solution of the game (9) always exists 
within the class F-m(s) in (10). From now on we consider only the class 
ym(.s) as defined in (lo), and we seek the saddle point solution of the game 
in this class. 

From the results in Papantoni-Kazakos (1984a) we conclude that the 
saddle point of the game can be found by solving 

sup inf e(f, 8,). 
/-c IT& ) 2% 

(11) 

The expression inf,+O e(J TO) represents the minimum mean square error at 
the density f and can be written as 

where, gf = E(g) is the fixed variance of X0, and 

Considering the form of f(x,, y’) in terms of the nominal and con- 
taminating densities, as derived from (lo), and the zero mean assumption 
of the nominal densities, the quantity Z(f) can be written as a functional of 
the I-dimensional restriction of the density of the observation sequence y’. 
Let us denote the latter density by fy(y’). After some algebra, we obtain 

z(f) = Ivy) = JR, ((1 - 4foY(y’)(P%‘))2 &[ 

f&7 ’ 
(13) 

where, foy(y’) is the nominal density of Y’ at the vector point y’, given by 
the convolution of the information density fis and nominal noise density 
f LN, and the inner product Pry’ is the optimal linear estimator of X0 from 
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y’ under nominal conditions (i.e., for E = 0). The density fY( y’) belongs to 
the class F’,,(E), obtained from Y’(E) as follows 

Problem (11) can now be reduced to 

inf I(fy). 
frGF’y(st 

(14) 

Although the class of densities 9$(e) is not tight (therefore not compact) 
in the weak topology of all probability measures on the Bore1 a-field of the 
metric space (R’, yr), the intimum in (14) is attained in F;(E). Further- 
more, there is a unique member of F:(E) attaining that intimum, under the 
nominal assumptions discussed before. The above assertions together with 
the explicit form of the intimum and the corresponding estimator, con- 
stitute the statements of Theorem 1 below, whose proof is in the Appendix. 

Let d(x) and a(x) be the zero mean unit variance Gaussian density and 
cumulative distribution, respectively. Let H(,I, z), i > 0 be the Huber 
function defined as 

H(R, z) = max( -I., min(E,, z)). (15) 

Finally, let Y be the nominal variance of the linear form PTY’, i.e., 
r = E{ (PTY’)*} = JR, (PTy’)*fO,(y’) dy’. Then, we express Theorem 1 as 
follows. 

THEOREM 1. (i) There is a unique saddlepoint solution (f*, 2:) of the 
game (9). 

(ii) The saddlepoint observation density f *y and estimator 2: are given 
by the equations 

1 (1 - E)fOAY$ for IPTy’) <ii 

f*y(y’)= 
(1 -t.)qfOy(y’), for 1 P’y’I >A. (16) 

2$( y’) = H(%, P’y’), (17) 

where 

%==CJ 

Z--E 
c: G(c) + c-‘&c) =-. 

2(1-E) 



170 TSAKNAKIS AND PAPANTONI-KAZAKOS 

We note that the estimator 2: in (17) above, is a truncated version of 
the linear, nominally optimal mean square estimator Pry’. The truncation 
constant 1 is proportional to the square root of the quantity r which is the 
variance gain in estimating X0 from JJ’ under nominal conditions (E = 0). 
The proportionality factor c tends to infinity for E --+ 0. In the latter case, 
the estimator (17) becomes identical to the nominally optimal mean square 
estimator. 

There are interesting similarities and differences between the estimator 
2: in (17) and the classical robust parameter estimator of Huber (1964). 
Both estimators introduce the same form of nonlinearity to limit the 
influence of bad observations. However, while Huber’s estimator applies 
the nonlinearity on each one of the observation data, the estimator derived 
here applies a similar nonlinearity on a linear combination of the obser- 
vation data. Furthermore, the form of the least favorable density derived in 
(16) has heavier tails than the Gaussian by the linear factor 1 P’y’I, while, 
in the robust parameter estimation problem, the corresponding least 
favorable density has much heavier exponential tails. Regarding these com- 
parisons, it should be pointed out that Huber’s result is based on the 
maximum likelihood estimation of the unknown mean of a contaminated 
distribution, while the result of Theorem 1 is based on a Bayesian 
estimation of a random process corrupted by contaminated noise and with 
the mean square as performance criterion. 

Regarding qualitative robustness, we note that for any E, 0 <E < 1, the 
estimator 2: is both continuous and bounded satisfying thus the 
conditions for outlier resistance stated in the previous section for finite 
length estimators. 

The mean square error induced by J?$ at the least favorable density f *y is 
equal to r~; - I(f*y). This is the largest possible error within the class Fm(s) 
and by substitution we obtain 

e(fF, T@) = ci[ 1 - (1 - &)(2@(c) - 1) 4’1, 

where, ~7 = cr;‘&. Let e(fO, J@) b e t h e mean square error induced by the 
robust estimator 2: at the nominal Gaussian density. Also, let e” be the 
nominally optimal mean square error. Then, after some computations we 
obtain 

e’=az(l -q2) 

e(fo, ii?;) = e” - 2r(@( -c)( 1 + c’) - c&c)). 

The second term of the right-hand side of the above equation is always 
positive and represents the performance loss that is incurred if the robust 
nonlinear estimator 2; is applied, instead of the linear nominally optimal 
one. 
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4. CONSTRUCTION OF FILTERING AND SMOOTHING OPERATIONS-STEP 2 

We now consider the case when the number of observation data is larger 
than the parameter m. For this case and for arbitrary nominal information 
and noise processes, results concerning the design and study of appropriate 
nonlinear filtering and smoothing operations can be found in Tsaknakis 
(1986). For the purpose of this paper we will focus on autoregressive 
Gaussian information processes and white Gaussian nominal noise 
processes. 

Let the nominal information and observation processes {X”}, { Y,} be 
given by the equations 

X,=a,X,-,+a,X,-,+...+a,X,-,+ v, 

r,=x,+ w,, 
(19) 

where, { v,>, { W,> are mutually independent, i.i.d., and zero mean 
Gaussian, with variances C; and aZ,, respectively. Upon defining 

u;f= LX,, xn-l, . ..> x,-/c+,1 al a2 ‘.. ak 
1 

A= 
0 ... 0 

0 1 ... 0 

BT=[l 0 ... 0-J 

the nominal model can be described in the following vector form 

U,=AU,_,+BV, 

Y, = BTU, + W,,. 

(20) 

(21) 

Writing the system (19) in the vector form (21) has the advantage of the 
recursive Kalman filtering relationships for the nominal model. We want to 
estimate x0 given observations y,, y- r, . . . . y-,+ I for any value of 1, when 
the observation process is corrupted by outliers occurring in batches of size 
m. When l<m, we apply the minimax estimator derived in the previous 
section. When I > m, we consider estimating the entire vector u. given the 
above measurements, and we define the following recursive estimator 

Q o,,=A”L.,+g,n 
( 

i b,(y, - BTAm+ ‘i 
i=-mfl 

-,.J). (22) 

In W), ho,,, L,,, denote the estimates of the vectors uo, u-, given 
observation data ( y,, y _ 1 ,..., Y-,+~), b-,, YL-~,...~Y-~-~+~), rewc- 
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tively. Also, (b,, i = 0, . . . . -1+ 1 > are the vector-valued coefficients of the 
linear m-step recursion of the Kalman filter operation on the system (21). 
Finally, the vector-valued function g, is defined as 

fiL(x)= CWCI,,~ Xl), WL,,,, x,1, ...> W-k+,,,, Xk)lT 
x = [x, 3 ..., -$I=, 

(23) 

where 

A-j,m =c[r-,,,]"' 

2-E 
c: @(c)+c-‘4(c)=2(1 + 

(24) 

Y-j m .  . variance gain in estimating x Pj given ( yi, -m + 1 Q i d 0 } 

under nominal conditions. 

H( ., .) : the Huber function as defined in (15). 

From (22), and in view of the definitions (23) and (24), it is evident that 
every scalar nonlinearity is applied to linear combinations of at most m 
observation data. Furthermore, if E + 0, the positive constants {lP,,mr 
j= 0, . . . . -k + 1 } tend to infinity and the estimator in (22) becomes iden- 
tical to the optimal at the nominal Gaussian model estimator. For E > 0, 
the above constants are all finite and they determine the amount of limiting 
which is introduced in each entry of the innovations term of the Kalman 
filter. 

A filter similar to (22) was earlier considered by Masreliez and Martin 
(1977), for the case m = 1. The above authors applied the nonlinearity on a 
transformed version of the innovations process. However, their analysis 
was based on an ad hoc assumption that the process formed by the 
residuals is Gaussian. Then, using this assumption, they derived a 
covariance recursion, thus avoiding the problem of nested nonlinearities in 
the actual nonlinear recursion. Later on, we will numerically demonstrate 
the performance of the above filter as compared with that in (22), as 
analyzed by the methods we present in the sequel. 

Here, we are primarily interested in the study of the asymptotic proper- 
ties of the estimator in (22) when the number of observations tends to 
infinity, and the nominal information process is stationary. The condition 
for stationarity of the latter process is that all the roots of the polynomial 
equation 

have magnitudes less than one. 
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The first issue is the asymptotic outlier resistance of the estimator. 
Theorem 2 below, whose proof is in the Appendix, establishes that 
property. 

THEOREM 2. Let (A’“} in (19) have finite variance and be stationary. 
Then, the filter in (22) is asymptotically (l-+ 00) outlier resistant for 
mutually independent m-size batches of outliers. 

The next issue is the asymptotic stationary of the filter itself when I+ cc. 
In order to study that we consider the residual process 

-&I ( f bi,((Y,-BTA”+iU-,,,) 
i=-m+l 

+BTA”‘+r(U~,-~~m,,) . 
> 

(25) 

For 1 going to infinity along multiples of m, the above residual process 
becomes asymptotically stationary. This will be shown by establishing a 
more general result regarding the asymptotic stationarity of Markov 
processes with Euclidean state space. The latter result is expressed in 
Theorem 3 below, whose proof is in the Appendix. In the sequel we denote 
1) x 1) & max, ) xi) for x = (xi, . . . . x,)~. 

THEOREM 3. Let f (x, v): Rk x RI-+ Rk be measureable. Let {X,, n > 0) 
be a stochastic process in Rk defined by 

X n + 1 =f PL VII), n 2 0, (26) 

where {I’,,, n 2 0} is an i.i.d. process in R’, independent of X, with dis- 
tribution P( .). Then, if there is a positive c, such that 5 < 1 and 

! R’ 
llf(x, VI-f@‘, v)ll WV)< l/x--‘/l .i, Vx, x’ E Rk (27) 

the process {X, } is asymptotically stationary. 

The residual process (25) satisfies the conditions of Theorem 3. This can 
be shown by using the properties of the nonlinearity g,( .), namely that 
II g,(x) - g,(x’)ll < /I x - x’ 11, and certain standard properties of the linear 
filtering coefhcients {b, > and the stationary matrix A. As a result, the 



174 TSAKNAKIS AND PAPANTONI-KAZAKOS 

marginal probability density of the residuals converges weakly to a steady 
state density. The covariance of that steady state density is what we call the 
asymptotic mean square error induced by the filter (22) at the nominal 
Gaussian model. In fact, it is even true, as a result of Theorem 3, that the 
sequence of covariances of the residual process converges to the steady 
state covariance. 

The computation of the steady state covariance is an important com- 
ponent in the study of the asymptotic properties of the proposed filter. It is 
interesting to point out that the deviation of the robust filter from the 
nominally optimal linear filter builds up as the number I of observations 
increases, and we would like to see what the performance is for an 
asymptotically large number of observations, as compared to the nominally 
optimal asymptotic performance. The difference in performance will clearly 
exhibit the price that one has to pay for achieving robustness in this 
context. 

Due to the nature of the nonlinear residual recursion, the computation of 
the asymptotic covariance is a difficult and tedious task. As analytic, or 
closed form, expressions seem impossible to obtain, we approached the 
problem by deriving upper and lower bounds. The derivation was based on 
the asymptotic stationarity of the residual process, which implies 
lim I+ IX E{(UO-U,,,)‘}=lim,,, E{(U,-UP,,,)‘}, and the approxi- 
mation of the square of the second term in (25) by upper and lower 
quadratic bounds in terms of U, - U_,,,, ,. The bounds were finally 
obtained by solving two fixed point matrix equations of the form 
X= A”X(Am)r + G(X). The two bounds are found to be tight enough and 
approaching each other as the design parameter m becomes larger, at the 
exponential rate 1 pmax(A)JZm, where p ,,,(A) is the largest magnitude eigen- 
value of the matrix A. As a result, a reasonably good estimate of the 
asymptotic covariance was obtained. We defer the discussion of this issue 
until Section 6, where the above results are numerically demonstrated and 
analyzed. 

5. BREAKDOWN POINT; INFLUENCE FUNCTION 

Let us consider the frequently observed in practice case of independent 
and additive outliers. In particular, let the noise sequence 
{... , W-,, W,, W,, . ..} b e such that each of its elements is generated by the 
nominal Gaussian noise process, with probability 1 - 6, and it is instead 
equal to some deterministic value, u, with probability 6, 0 < 6 < 1. Let the 
value u occur with probability 6, independently per noise datum. Given the 
above outlier model, given some asymptotic filtering or smoothing 
operation, 20, let e(fo, 6, u, $,,) denote the induced mean squared error. 
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That is, if f, represents the overall nominal Gaussian model, then, 
e(fO, 6, u, 2,,) = E{ (x0 - PO)’ 1 fO, 6, u}. Let us denote, e(fO, S, yO) g 
lim “‘*cc e(fO, 6, u, X0), and let there exist some value 6*, 0<6* 6 1, such 
that, 

Then, the value 6* is called the breakdown point of the asymptotic 
operation J?,,. The breakdown point clearly represents the maximum 
frequency of independent, asymptotically large in amplitude outliers that 
the operation y0 can tolerate, before it becomes worthless, that is, before it 
starts inducing mean squared error that is larger than that induced when 
no observation data are available. We note that the breakdown points of 
the nominally optimal linear filtering and smoothing operations are easily 
found to equal zero. 

Let us now consider a generalization of the outlier model presented 
above. In particular, let us consider the case where independent, size m 
blocks of outliers may occur. Then, each block occurs with probability 6, 
and it consists of a value u per datum in the block. Given some filtering or 
smoothing operation J?,,, we then denote the induced mean squared error, 
e,(fO, 6, v, fO). Denoting by e(fO, 20) the mean squared error in the 
absence of the above outlier model, we denote, J,&IJ) b e,(fO, 6, u, 20) - 
e(fO, fO). We call J,,Ju) the variation function at 6. Given 6, the variation 
function exhibits the difference between the mean squared error, when the 
outlier value is u and the frequency of the outlier blocks is 6, and the mean 
squared error in the absence of outliers. We call Z,,,Ju) & 6P1J,Ju), the 
normalized variation function at 6, and we call Z,(u) & lim, +0 Z,,,,(u) the 
influence function. The influence function is the slope of the variation 
function at 6 =O, and it exhibits the effect of the outlier value u, at 
asymptotically small outlier frequencies 6. 

Regarding the computation of the breakdown point and the influence 
function Z,(u) of the filtering operation in (22), an approach similar to that 
used for the asymptotic variance was adopted. In particular, upper and 
lower bounds were computed for both quantities. These bounds approach 
each other at the same exponential rate Ipm,,(A)12”‘. 

The influence function, Z;(u), of the nominally optimal linear filter was 
also computed for comparison. The latter has a closed form expression 
which is a quadratic function of the outlier value v, 

G(u) = f cv- C) Am]’ [V2pp= - apq [(AT)” (I- C)T]i, 
i=O 
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c= 2 
r--m+1 

biBTAi, (b; = ,li~ bil) 

i= -m+l 

i=--m+l 

6. NUMERICAL RESULTS 

In this section we present some numerical results regarding the 
asymptotic performance of the filtering operation in (22), for two special 
cases of the nominal model (20). 

I;(Y) 
A- 

t 

j=,:I 
10 _ 

8. 

6- 

4- 

2- 

0, , 
4 6 8 -Y 

FIG. 1. Bounds on the influence function, Model 1. Causal filtering operation in (22); 
E = 0.002; Ii(u): influence function induced by the optimal at the nominal model filter. 
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TABLE I 

Bounds on the Asymptotic Mean Squared Error, at the Nominal Model. 

2 3 4 6 

0.002 0.53167 
0.66941 

0.01 0.53488 
0.67108 

0.1 0.58157 
0.70620 

0.15 0.60983 
0.72961 

0.25 0.66941 
0.78026 

0.3 0.70079 
0.80718 

0.4 0.76727 
0.86426 

0.53284 0.53333 0.53346 0.53350 0.53351 
0.56629 0.54159 0.53552 0.53401 0.53364 

0.53963 0.54136 0.54183 0.54195 0.54198 
0.57247 0.54945 0.54385 0.54246 0.54211 

0.608293 0.61640 0.01851 0.61904 0.61917 
0.63797 0.62328 0.62032 0.61949 0.61929 

0.64401 0.65401 0.65659 0.65723 0.65740 
0.67249 0.66099 0.65832 0.65767 0.65750 

0.71376 0.72608 0.72921 0.72999 0.73019 
0.73998 0.73249 0.73080 0.73039 0.73028 

0.74848 0.76146 0.76474 0.76556 0.76576 
0.77357 0.76758 0.76626 0.76594 0.76586 

0.81887 0.83243 0.83582 0.83667 0.83688 
0.84156 0.83795 0.83719 0.83701 0.83697 

Nore. Model 1. Causal filtering operation in (22). Asymptotic mean squared error induced 
by the optimal at the nominal model causal filter = 0.53112. Upper lines: lower bounds. 

TABLE II 

Bounds on the Breakdown Point 

2 4 

0.002 0.09928 0.06814 
0.14352 0.07476 

0.01 0.14699 0.10040 
0.20676 0.10942 

0.1 0.32204 0.21602 
0.40878 0.22978 

0.15 0.38225 0.25595 
0.47011 0.27034 

0.25 0.48129 0.32349 
0.56488 0.33815 

0.3 0.52466 0.35423 
0.60450 0.36875 

0.4 0.60417 0.41329 
0.67478 0.42723 

0.04932 
0.05048 

0.07274 
0.07433 

0.15715 
0.15974 

0.18674 
0.18937 

0.23761 
0.24036 

0.26119 
0.26395 

0.30739 
0.31012 

0.03788 0.03056 
0.03811 0.03060 

0.05597 0.04522 
0.05628 0.04528 

0.12180 0.09898 
0.12228 0.09908 

0.14516 0.11824 
0.14568 0.11835 

0.18576 0.15194 
0.18631 0.15205 

0.20477 0.16783 
0.20533 0.16795 

0.24246 0.19955 
0.24301 0.19967 

0.02556 
0.02557 

0.03786 
0.03788 

0.08326 
0.08328 

0.09962 
0.09964 

0.12840 
0.12842 

0.14203 
0.14206 

0.16937 
0.16940 

Note. Model 1. Causal filtering operation in (22). Independent per datum outliers. Upper 
lines: lower bounds. 
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TABLE III 

Bounds on the Breakdown Point 

\ 

m 
1 

E 
2 3 4 5 6 

0.002 0.09928 
0.14352 

0.01 0.14699 
0.20676 

0.1 0.32204 
0.40878 

0.15 0.38225 
0.47011 

0.25 0.48129 
0.56488 

0.3 0.52466 
0.60450 

0.4 0.60417 
0.67478 

0.13164 
0.14394 

0.19073 
0.20686 

0.38537 
0.40676 

0.44639 
0.46759 

0.54234 
0.56195 

0.58298 
0.60152 

0.65577 
0.67193 

0.14080 
0.14394 

0.20274 
0.20682 

0.40125 
0.40653 

0.46212 
0.46733 

0.55688 
0.56166 

0.56672 
0.60124 

0.66775 
0.67166 

0.14315 
0.14394 

0.20580 
0.20682 

0.40520 
0.4065 1 

0.46601 
0.4673 1 

0.56045 
0.56164 

0.60010 
0.60121 

0.67067 
0.67164 

0.14315 0.14389 
0.14394 0.14394 

0.20656 0.20676 
0.20682 0.20682 

0.40618 0.40643 
0.4065 1 0.4065 1 

0.46698 0.46723 
0.4673 1 0.4673 1 

0.56134 0.56156 
0.56164 0.56164 

0.60093 0.60114 
0.60121 0.60121 

0.67140 0.67158 
0.67164 0.67164 

Note. Model 1. Causal filtering operation in (22). Independent size-m batches of outliers. 
Upper lines: lower bounds. 

TABLE IV 

Bounds on the Asymptotic Mean Squared Error at the Nominal Model. 

\ 
m 

\ 
1 

E 
2 

\ 
0.002 0.55402 0.57594 0.59937 0.61040 0.61445 0.61566 

0.83214 0.68407 0.63361 0.62154 0.61764 0.61658 

0.01 0.57548 0.62504 0.66518 0.68180 0.68763 0.68936 
0.86214 0.73994 0.70200 0.69383 0.69109 0.69035 

0.1 0.62110 0.69155 0.72865 0.74097 0.74499 0.74615 
0.89436 0.79589 0.76040 0.75110 0.74788 0.74698 

0.15 0.65204 0.72942 0.74120 0.77011 0.77401 0.77432 
0.94013 0.83110 0.79568 0.78320 0.77516 0.77501 

0.25 0.69875 0.73479 0.76678 0.78133 0.79002 0.79012 
0.95182 0.86264 0.80203 0.79312 0.79202 0.79 136 

0.3 0.73478 0.73930 0.78033 0.79300 0.80400 0.80511 
0.96067 0.91011 0.8648 1 0.82414 0.80923 0.80547 

0.4 0.73510 0.74902 0.79087 0.81142 0.82267 0.82320 
0.97033 0.91437 0.86690 0.83571 0.82610 0.82359 

Nole. Model 2. Causal filtering operation in (22). Asymptotic mean squared error 
induced by the optimal at the nominal model causal tilter =0.54731. Upper lines: lower 

bounds. 
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TABLE V 

Bounds on the Breakdown Point 

2 4 

0.002 0.07594 0.05802 0.04513 0.035395 
0.13890 0.07501 0.04960 0.035980 

0.01 0.11029 0.08225 0.06334 0.04958 
0.20020 0.11510 0.08010 0.05156 

0.1 0.25689 0.18640 0.14353 0.11313 
0.39537 0.22540 0.15003 0.11804 

0.15 0.32899 0.23552 0.18083 0.14286 
0.47563 0.27100 0.20242 0.14811 

0.25 0.47094 
0.60225 

0.3 0.53838 
0.65802 

0.4 0.66166 
0.75106 

0.33123 
0.39693 

0.378 11 
0.42004 

0.47002 
0.52401 

0.25350 0.20121 
0.26089 0.20541 

0.28952 0.23047 
0.29457 0.23215 

0.36191 0.29019 
0.39102 0.30016 

0.028765 0.02411 
0.029010 0.02486 

0.04030 0.03380 
0.0450 0.03388 

0.09248 0.07790 
0.09424 0.07823 

0.11705 0.09878 
0.11829 0.09890 

0.16563 0.12747 
0.16735 0.12784 

0.19020 0.16150 
0.19082 0.16195 

0.24090 0.20548 
0.24210 0.20602 

Note. Model 2. Causal filtering operation in (22). Independent per datum outliers. Upper 
lines: lower bounds. 

TABLE VI 

Bounds on the Breakdown Point 

2 3 4 5 6 

0.002 

0.01 

0.1 

0.15 

0.25 

0.3 

0.4 

0.07594 0.11269 0.12939 0.13424 0.13578 0.13622 
0.13890 0.13995 0.14500 0.13952 0.13595 0.13682 

0.11029 0.15774 0.17826 0.18406 0.18592 0.18643 
0.20020 0.19500 0.19851 0.18820 0.18683 0.18682 

0.25689 0.33813 0.37173 0.38136 0.38444 0.38530 
0.39537 0.39220 0.39104 0.38804 0.38740 0.38607 

0.32899 0.41556 0.45031 0.46022 0.46336 0.46424 
0.47563 0.47215 0.46903 0.46630 0.46502 0.46482 

0.47094 0.55275 0.58401 0.59287 0.59561 0.59820 
0.60225 0.60112 0.60039 0.60004 0.59970 0.59918 

0.53838 0.61325 0.64137 0.64932 0.65175 0.65244 
0.65802 0.65720 0.65695 0.65530 0.65398 0.65307 

0.66166 0.71912 0.74020 0.74616 0.74795 0.74845 
0.75106 0.75083 0.75010 0.74970 0.74912 0.74887 

NOW. Model 2. Causal filtering operation in (22). Independent size-m batches of outliers. 
Upper lines: lower bounds. 
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FIG. 2. Bounds on the influence function, Model 1. Causal filtering operation in (22); 
E = 0.01; Z:(U): influence function induced by the optimal at the nominal model filter. 

MODEL 1. First-order autoregressive with autoregressive parameter 
cc=OS, and CJ’=[T~=~. x 

MODEL 2. Third-order autoregressive with a, = 0.6, a2 = 0.07, a3 = 
-0.06, and of = crt, = 1. 

Tables I, II, and III and Figs. 1 and 2 exhibit the performance of the 
filtering operation in (22), for various values of the design parameters E and 
m, when the nominal model is Model 1. When the nominal model is 
instead Model 2, the corresponding performance is exhibited in Tables IV, 
V, and VI and Fig. 3. Tables II and V correspond to independent per 
datum outliers, while Tables III and VI correspond to independent m-size 
batches of outliers. 
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TABLE VII 

Comparison of Asymptotic Mean Square Error Bounds between Filtering Operation in (22) 
and the Filter by Masreliez and Martin 

E A B 

0.002 0.53167 
0.66941 

0.01 0.53488 
0.67108 

0.1 0.58157 
0.70620 

0.15 0.60983 
0.72961 

0.25 0.66941 
0.78026 

0.3 0.70079 
0.80718 

0.4 0.76727 
0.86426 

0.53283 
0.66992 

0.53934 
0.67378 

0.60346 
0.72394 

0.63695 
0.75215 

0.70312 
0.80876 

0.73546 
0.83740 

0.80487 
0.89603 

Note. Model 1. Optimal at the nominal: 0.53112: A: Causal filtering operation in (22), 
M = 1; B: Filter by Masrelize and Martin. Upper lines: lower bounds. 

TABLE VIII 

Comparison of Breakdown Point Bounds 

E A B 

0.002 0.09928 
0.14352 

0.01 0.14699 
0.20676 

0.1 0.32204 
0.40878 

0.15 0.38225 
0.47011 

0.25 0.48129 
0.56488 

0.3 0.52466 
0.60450 

0.4 0.60417 
0.67478 

0.12240 
0.17464 

0.17853 
0.24633 

0.36890 
0.45648 

0.42999 
0.51629 

0.52707 
0.60631 

0.56851 
0.64324 

0.64312 
0.70798 

Note. Model 1: A: Causal filtering operation in (22), M = I; B: Filter by Masrelize and 
Martin. Upper lines: lower bounds. 
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TABLE IX 

Comparison of Asymptotic Mean Square Error Bounds between Filtering Operation in (22) 
and the Filter by Masreliez and Martin. 

E A B 

0.002 0.53284 0.53283 
0.56629 0.66992 

0.01 0.53963 0.53934 
0.57247 0.67378 

0.1 0.60829 0.60346 
0.63797 0.72394 

0.15 0.64401 0.63695 
0.67249 0.75215 

0.25 0.71376 0.70312 
0.73998 0.80876 

0.3 0.74848 0.73646 
0.77351 0.83740 

0.4 0.81887 0.80487 
0.84156 0.89603 

Note. Model 1. Optimal at the nominal error: 0.53112: A: Filtering operation in (22) 
M = 2; B: Filter by Masreliz and Martin. Upper lines: lower bounds. 

TABLE X 

Comparison of Breakdown Point Bounds 

E A 3 

0.002 0.13164 
0.14394 

0.01 0.19073 
0.20686 

0.1 0.38537 
0.40676 

0.15 0.44693 
0.46759 

0.25 0.54234 
0.56195 

0.3 0.58298 
0.60152 

0.4 0.65577 
0.67193 

0.12240 
0.17464 

0.17853 
0.24633 

0.36890 
0.45648 

0.42999 
0.51629 

0.52707 
0.60631 

0.56851 
0.64324 

0.64312 
0.70798 

Note. Model 1. Size-m batches of outliers: A: Causal filtering operation in (22), m = 2; 
B: Filter by Masrelize and Martin. Upper lines: lower bounds. 
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Both the upper and the lower bounds of the asymptotic at the nominal 
mean squared error (Tables I and IV) are monotonically increasing when 
the contamination parameter E increases, for any fixed m. Moreover, for 
fixed E, particularly for small values of E, the upper bounds of the 
asymptotic error decrease sharply when m increases, while the corre- 
sponding lower bounds experience relatively smaller variations with m. 
Regarding the breakdown point (Tables II, III, V, and VI), we first observe 
that both upper and lower bounds increase when E increases, for any fixed 
m. For the case of independent per datum outliers, the upper and lower 
bounds of the breakdown point decrease when m increases. On the 
contrary, when independent m-size batches of outliers are acting, the lower 
bounds of the corresponding breakdown point increase with m, while the 
upper bounds remain practically constant. Finally, the upper and lower 
bounds of the influence function of the filtering operation in (22) are 

FIG. 3. Bounds on the influence function, Model 2. Causal filtering operation in (22); 
E = 0.01; I:(o): influence function induced by the optimal at the nominal model tilter. 
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always monotonically increasing and bounded, as can be seen from Figs. 1, 
2, and 3. They both reach certain saturation points depending on E and m, 
and, for fixed m, these saturation points are decreasing when E increases. In 
all the above cases and for all values of E, the upper and lower bounds tend 
to become equal for large m, permitting thus a more accurate evaluation of 
the performance measures of the filtering operation in (22). 

The filtering operation in (22) can combine close to optimal at the 
nominal model performance, together with good protection against out- 
liers. In addition, this operation is more appropriate for protection against 
independent batches of outliers. Similar results are drawn when the order 
of the nominal autoregressive model in (20) is some arbitrary integer k. 

Using the concepts and methods that we developed in previous sections, 
we analyzed the asymptotic performance of the filter proposed by 

FIG. 4. Bounds on the influence function, Model 1: m = 1; E = 0.002; - - - causal filtering 
operation in (22); -filter by Masreliez and Martin. 
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Masreliez and Martin when it operates on a stationary environment. In 
Tables VII and VIII, the asymptotic mean square error bounds and the 
breakdown point bounds of the latter filter are shown (column B) versus 
the corresponding bounds for the filter in (22) presented here. In Figs. 4 
and 5 the same comparison is made for the influence functions of the two 
filters. Both filters were assumed to operate on the same process which was 
taken here to be Model 1, and for m = 1. It is observed that the mean 
square error bounds of the filter (22) are uniformly better than those of the 
Masreliez and Martin filter (Table VII), at the expense of lower breakdown 
points (Table VIII) and higher saturation points of the influence functions. 
However, for m = 2, it can be clearly seen from Tables IX and X, that the 
breakdown points of the lilter (22) improve considerably while the mean 
square error remains small, especially for low contamination levels. 

12. 

IO- 

8- 

6. 

4. 
__--------- 

FIG. 5. Bounds on the influence function, Model 1: m= 1; &=O.Ol; - - -causal filtering 
operation in (22); - filter by Masreliez and Martin. 

643/79/2-l 
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7. CONCLUSIONS 

We designed and analyzed nonlinear filtering and smoothing operations 
that were found to provide effective resistance to outliers and 
simultaneously good performance at the nominal Gaussian model. The 
proposed estimators can be easily implemented, being only slightly more 
complex (in implementation) than the usual linear estimators. However, 
the analysis and evaluation of their asymptotic performance were con- 
siderably more involved than that for linear estimators, both from a 
theoretical and a computational point of view. 

Due to the nonlinear recursion which is involved in (22), an exact 
covariance recursion is not possible. So, it was necessary to study the entire 
functional recursion of probability distributions. Then, we proved 
asymptotic stationary of the residual process by establishing a more general 
result concerning the asymptotic stationarity of Markov processes with 
Euclidean state space. 

For the proposed estimators, strong robustness and good performance at 
the nominal are conflicting requirements. The more robust an estimator is, 
the worse performance it has, and vice versa. The trade-off between 
robustness and performance has to be adjusted for each particular problem 
by appropriately varying the design parameters E and m, according to the 
specific requirements and the available knowledge about the underlying 
situation. 

APPENDIX: PROOF OF THEOREM 1 

We first prove that if the optimization problem 

has a solution, it is unique. Indeed, let f, , f2 be two I-dimensional densities 
in F:(E) attaining the inlimum. Then, since Z( .) is convex, any density fa of 
the form 

must attain the same intimum. Thus, Z(fs) is constant for 0 < 6 < 1. It is 
implied that 

02i!3&2J ((1 -4foY(Y')(~TY'))2 (fi(u')-fi(Y'))2dy, (A 1) 
R’ (fa(Y’))3 

3 . 
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where the differentiation under the integral sign is justified by the 
dominated convergence theorem (observe that f6 > (1 - s) fey > 0). From 
(A.l) we conclude that f, =fi a.e. (dy’), since P #O and the set where 
P’y’ = 0 is a proper subspace of R’. 

We now prove 

Let El = { y’: 1 PTy’l < A} and E; its complement in R’. Since f ,?( y’) = 
(1 - s) foy( y’) max { 1, 1 P’y’l/A}, we have the relationships: 

I(f y* ) - Z(f Y) = jE, 
C(l -8) P’Y!MY’P (fAY,)- (1 -QfoAY’)) dy, 

* fAY,)fF(Y’) 

+s 
C(l -El pTY!foY(Y’u2 (fAY’)-fy*(Y’)) dy, 

‘3 fJY’)fT(Y’) 

’ s 
<A2 fS(y’) 

R,fyo (fAY’)-fu*(Y,))dY’ 

The inequality in (A.2) follows from the above relationships. The 
expressions in (18), determining the value of the constant 1, evolve from 
the requirement that JR’ fy”( y,) dy’ = 1. 

Finally, the form of the robust estimator $+( y’) is equal to the 
conditional expectation E(X,,/y’) at the least favorable density f *(x0, y’), 

~~(y,)=jR,x,f;~;;;‘)dxo, 
Y  

where 

f *(x0, Y’) = (1 - E)fo(xo, y’) + Efo,(Xl)) h*( y’). (A.41 

Substituting (A.4) into (A.3) and recalling that ~R~xOfos(xO) dx,,=O and 
jR’fO(xO, y’) dx, =foy( y’) P’y’, we obtain 

-j*( y,) = (1 - El FJ%Y(Y’) 
0 

fy*(Y’) 

i 

P’Y’, for 1 P’y’)I < A 
= 1 sgn( P’y,), for /Pry’1 >A 

= H( 1, P’y’), 
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Proof of Theorem 2. The operation in (22) has the general form, 
fn = xi txiRi + g(.V, xi aiRi, { &}), where, for some bounded A, 

g(x) = 
i 

Xi 1x1 <A 
L sgn x; 1x1 >A’ 

and where I xi ai I < c, for some given c > 0. Therefore, 

Let EPO{ [X,- ?,,I’} denote the mean squared error induced by the 
estimate gn, when the Gaussian nominal observation process is acting. Let 
E,( [X, - 2n J*} be the same error, when some process in class 9” is 
acting instead. Let y” and zn denote sequences that are respectively 
generated by the processes cl0 and p. Given some set A” in R”, and in 
connection with (A.5) and the Schwartz inequality, we have 

E,{[X,-&]* lz”~A”} 

=E,~{~Jz”EA”)-~E~{x,~~)~“EA”} 

+E,{[&]*(z”EA”} 

Gc+~E”~(~Iz”EA”) E’~‘~[~~]*~z~EA”)+E~([~~J*~~~~A~) 

<c+2~c”*(c+ l)+P(c+ l)‘= [c”*+JI(c+ l)]’ 4 c. (A.61 

Due to (A.6) and considering ergodic and stationary observation 
processes in conjunction with .Fm, we obtain: given q > 0, there exists n,, 
such that 

Vn>n,;E,{[X,-f”]*} 

~(l-~+~)E{[X,-~~]~I[#i:~~(zi~~,yj~~)>~] 

d n&, ~“ER”} + EC, (A.7) 

where, for independent m-size outliers, there exists some E, > 0, such that 

E{[X,-~,,]21[#i:ym(zj~~,yj~~)>~]<ne, y” E R”} 

<E,o(CXn-~J2) +EC; VJE < Ed, Vn > n,. (A.81 



OUTLIER RESISTANT FILTERING AND SMOOTHING 189 

From (A.7) and (A.8) we conclude: Given q = s/2, there exist n, and 
s>O, such that 

Thus, given 6 > 0, there exist, n,, and E:O < E < min(E,, 28/5(Z), such that 

nn, p”(Po> PI < E implies IE,{[x,-~~]2}-Ep,{[Xn-~,,]2}1 ~6; 
Vn>n, 

The proof of theorem is now complete. 

Proof of Theorem 3. From (26) we conclude that (X,} is a Markov 
process. Thus, to prove asymptotic stationary, it suffices to show that, 
given any distribution for X,, the distribution of X, converges weakly to a 
unique distribution in Rk, as n --, 03. 

Let p,(x) be an arbitrary density function, VXE Rk. Let then the 
sequence (p,(x), n > 0) be defined as 

where n(x, w) denotes the conditional density function of x, given o, when 
x =f(o, v), and where o is independent of v, and p(v) is the density 
function of v at v E R’. Let us now define the sequence { n(“)(x, o), n > 1 }, 
as 

A(‘)(x, w) = A(x, w) 

n(“+‘)(X,*)=/Rk 
(A.lO) 

Acn)(x, z) A(‘)(z, w) dz. 

Then, we can write 

CL,(X) = fRk A(‘% 0) PO(~) da (A.1 1) 

To show weak convergence of the sequence (p,(x)>, we need to show 
that there exists a density function p(x); xc Rk, such that, for any con- 
tinuous and bounded function, g(x) in Rk, we have 

s Rk g(x) P,(X) dJl x s Rt g(x) P(X) dx. (A.12) 
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Let us define the sequence { g,(x), R > 0}, as 

Then 

Let us define 

go(x)=g(x) 

g,(x) = JRk 4 2, xl g,,- l(z) dz. 
(A.13) 

SR*g(X)Pn(X)h(=SR*g.(X)~o(X)dY. (A.14) 

U” P sup 6-I sup I g,(z) -&WI). (A.15) 
6>0 Ilo-zll~~ 

Without lack of generality, we will assume that the quantities {un} are 
all finite. (This is true if, for example, the functions g,(x) satisfy a Lipshitz 
condition.) From (26) and (A.13) we obtain 

g,(x)=SRi6’,-1(f(x,v))p(v)dv. (A.16) 

From (A.15) and (A.16) we conclude 

sup 
Il~--oll~~ 

d I RkwMv) 
i 

sup (cwv)I-’ sup I g,-l(x)-g,-l(@J)I) dv 
6>0 Ux-oll<6h(r) 1 

=?A n-1 I h(v)p(v)~=5u,-,, r:<l. (A.17) 
Rk 

From (A.17), we conclude that U, -0, as n -+ 00, and that 
g,(x) + g(x) = constant on Rk, as n + co. Thus, 

lRk g(x) P&I dx = lRk Ax) PO(X) d+i - constant. (A.181 

Due to (27), the sequence (~Jx)} is tight. Thus, there exists a sub- 
sequence {h,,(x)}, and a density function p(x) in Rk, such that for every 
continuous and bounded function g(x), we have 

f Rk PAX) g(x) dx m f p(x) g(x) dx. (A.19) 
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From (A.18) and (A.19) immediately follows that 

I R” g(x) CL,(x) dx n-oo’ s Rk g(x) P(X) dx 
and the proof of the theorem is now complete. 
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