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SUMMARY

Recent data support the notion that a group of key
transcriptional regulators involved in tumorigenesis,
includingMYC, p53, E2F1, andBMI1, share an intrigu-
ing capacity to simultaneously regulate metabolism
and cell cycle. Here, we show that another factor, the
multifunctional protein E4F1, directly controls genes
involved in mitochondria functions and cell-cycle
checkpoints, including Chek1, a major component of
the DNA damage response. Coordination of these
cellular functions by E4F1 appears essential for the
survival of p53-deficient transformed cells. Acute
inactivation of E4F1 in these cells results in CHK1-
dependent checkpoint deficiency and multiple mito-
chondrial dysfunctions that lead to increased ROS
production, energy stress, and inhibition of de novo
pyrimidine synthesis. This deadly cocktail leads to
the accumulation of uncompensated oxidative dam-
age to proteins and extensive DNA damage, ending
in cell death. This supports the rationale of therapeutic
strategies simultaneously targetingmitochondria and
CHK1 for selectivekillingofp53-deficient cancer cells.
INTRODUCTION

E4F1 transcription factor was found to regulate the viral E4 and

E1A promoters (Lee and Green, 1987; Fernandes and Rooney,

1997), but its cellular target genes remain largely unknown. Char-

acterization of E4F1 protein indicated that, in addition to its
220 Cell Reports 11, 220–233, April 14, 2015 ª2015 The Authors
intrinsic transcriptional activities, E4F1 is also an atypical ubiqui-

tin E3 ligase for the p53 tumor suppressor. Surprisingly, E4F1-

mediated ubiquitylation does not control p53 protein stability,

but regulates its transcription functions (Le Cam et al., 2006).

The central role of E4F1 in the p53 pathway also is underscored

by its direct interactions with p14ARF (Rizos et al., 2003), the pol-

ycombmember BMI1 (Chagraoui et al., 2006), and the product of

the p53 target gene FHL2 (Paul et al., 2006). Compelling evi-

dence supports the implication of E4F1 in carcinogenesis as

illustrated by its interactions with pRB (Fajas et al., 2000),

RASSF1A (Fenton et al., 2004), HNF1 (Dudziak et al., 2008),

HMGA2 (Tessari et al., 2003), Smad4 (Nojima et al., 2010), and

TCF3 (Ro and Dawid, 2011). Through its multiple activities, the

E4F1 protein plays key roles in cell proliferation and survival of

somatic, stem, and cancer cells, and is essential for both embry-

onic development and adult tissue homeostasis (Chagraoui

et al., 2006; Fajas et al., 2000, 2001; Hatchi et al., 2011; Lacroix

et al., 2010; Le Cam et al., 2004, 2006; Paul et al., 2006).

Here we show that the multifunctional protein E4F1 directly

controls on one hand mitochondria homeostasis and metabolic

functions, and on the other hand the CHK1-dependent check-

point, both functions being required for cell survival of cancer

cells. These data provide a molecular explanation for the essen-

tial role of E4F1 during cell-cycle control and cell survival and

open new questions related to its role in metabolism.

RESULTS

E4F1 Is Necessary for the Survival of p53KO

and Transformed MEFs
Our previous data showed that E4F1 inactivation induces

massive cell death in cdkn2a�/� myeloid tumor cells, suggesting
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Figure 1. E4F1 Is Essential for the Survival

of p53KO and Transformed MEFs

(A) E4F1KO cells show proliferation defects. Pro-

liferation curves upon Cre-mediated acute inacti-

vation of E4F1 in E4F1+/f (CTL) and E4F1�/f

(E4F1KO) primary MEFs (first), in isogenic p53KO

primary MEFs (second), in MEFs transformed by

LTAg + HaRasV12 (third), and in p53KO MEFs

transformed by HaRasV12 alone (fourth) are shown.

Data represent the mean ± SEM of six experi-

ments.

(B)E4F1 inactivation in primaryMEFs leads to p53-

dependent growth arrest. Cell-cycle profiles were

analyzed by FACScan (BrdU/propidium iodide [PI]

stainings) 5 days after Cre-mediated inactivation

of E4F1. Data represent the mean ± SEM of four

experiments.

(C) E4F1 inactivation in transformed cells leads to

cell death. FACScan analysis of annexin-FITC-

positive cells, 6 days after Cre-mediated inacti-

vation of E4F1, is shown. Data represent the mean

± SEM of six experiments.

(D) Fraction of the cell population of transformed

MEFs harboring abnormal mitosis upon Cre-

mediated inactivation of E4F1, as monitored by

videomicroscopy on living cells (n = 3), is shown.

(E) Acute inactivation of E4F1 impairs tumor

growth in vivo. Tumor growth (n = 3) in nude

mice upon injection of RERT;E4F1+/f (CTL) and

RERT;E4F1�/f MEFs, both fully transformed by

LTAg + HaRasV12, is shown. In measurable tu-

mors, acute inactivation of E4F1 was induced by

topical skin application of tamoxifen (3 mg/mouse/

day during 3 days, gray bar). Data represent the

mean ± SEM of six experiments.

(F) Immunoblot analysis of cleaved-caspase 3 in

protein extracts prepared from tumors, upon

tamoxifen-induced in vivo inactivation of E4F1, is

shown.

(See also Figure S1.)
that E4F1 is required for the survival of tumor cells deficient for

the p53 pathways (Hatchi et al., 2011).

In this report, we compared the effect of the conditional

inactivation of E4F1 in normal, p53�/�(p53KO), and transformed

mouse embryonic fibroblasts (MEFs). Primary MEFs were

derived from E4F1�/flox and p53KO;E4F1�/flox embryos bearing

a null and conditional E4F1 alleles (Caramel et al., 2011; Hatchi

et al., 2011; Lacroix et al., 2010). E4F1�/flox or control E4F1+/flox

MEFs were fully transformed by SV40-LargeT (LTAg) or

E1A12S oncogenes in combination with Ha-RasV12, while

p53KO;E4F1�/flox or control p53KO;E4F1+/flox MEFs were trans-

formed by Ha-RasV12 alone. Efficient depletion of E4F1 protein

was obtained in these primary or transformed MEFs upon trans-

duction with a self-excising retroviral vector encoding the Cre re-

combinase (Silver and Livingston, 2001; Figures S1A and S1B).

Upon E4F1 inactivation, primary MEFs (Cre-treated E4F1�/flox

cells, hereinafter referred to as E4F1KO cells) gradually ceased

proliferating (Figure 1A), failed to incorporate BrdU (Figure S1D),

and showed a total DNA content indicative of a cell-cycle

arrest in G0–G1 and G2/M phases (Figure 1B). Importantly,

E4F1KO-arrested MEFs showed no sign of increased cell death
(annexin-V-positive cells, Figure 1C) or of premature senes-

cence (SA b-galactosidase-positive cells, Figure S1F). E4F1KO

cells undergo a p53-dependent G2 arrest (Taylor et al., 1999)

rather than an M-phase arrest, as shown by their 4n DNA con-

tent and concomitant absence of phospho-histone H3 staining

and (Figure S1E) lack of CYCLIN B1 and CDK1 expression

(Figure S1H). This G2/M arrest was not detected in E4F1KO;

p53KO double knockout (KO) cells nor in E4F1KO transformed

cells (LTAg;Ha-RasV12 or p53KO;Ha-RasV12 MEFs) (Figures 1B,

S1D, and S1H). However, their growth curves (Figures 1A and

S1C) and microscopic observation (Figure S1M) indicated

they still exhibited severe proliferation defects compared to

control cells (Figures 1A, S1C, and S1M). Time-lapse imaging

confirmed that these cells died during mitosis, following one

or several unsuccessful attempts to divide (Figures 1D and

S1N). This resulted in a gradual increase in cell death, as indi-

cated by annexin-V labeling (Figures 1C and S1I) and by the

presence of a large number of floating dying cells with a sub-

G1 DNA content (Figure 5F). These cells also released cyto-

chrome c from mitochondria (Figure S1L), suggesting that

they died by apoptosis.
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Figure 2. E4F1 Controls a Limited Set of Genes that Define at Least Two Subprograms Involved in Mitochondrial Homeostasis and

Metabolism and in Stress Response and Checkpoints

(A) E4F1-binding sites identified by ChIP-seq are mainly located nearby TSS. E4F1 ChIP-seq read densities in the 10-kb regions surrounding the TSS of the

closest genes located nearby E4F1-binding sites, as identified in p53KO;HaRasV12 transformed MEFs, are shown.

(B) Venn diagram of the overlaps among all E4F1-bound genes identified by ChIP-seq in p53KO;HaRasV12 transformed MEFs (GSE57228, in red) and genes

differentially expressed (transcriptiome arrays GSE57240) between E4F1WT and E4F1KO cells (p53KO;E4F1KO versus p53KO;E4F1WT primary MEFs [blue] and

p53KO;HaRasV12;E4F1KO versus p53KO;HaRasV12;E4F1WT transformed MEFs [green]) is shown. These genome-wide analyses were performed at a time when

(legend continued on next page)
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Next, we assessed the capacity of E4F1WT and E4F1KO cells to

grow in soft agar and form tumors in nude mice. To bypass the

usual low efficiency of infection by Cre-retroviruses in these as-

says, we performed these experiments on LTAg and Ha-RasV12

transformed MEFs derived from E4F1+/flox;Cre-ERT2 KI/KI and

E4F1�/flox;Cre-ERT2 KI/KI mice that express a 4-hydroxy-tamox-

ifen (4OHT)-inducible CreERT2 recombinase (Lacroix et al.,

2010). 4-OHT-mediated acute inactivation of E4F1 in these

transformed cells led to a strong reduction of their capacity to

form colonies in soft agar (Figure S1J) and strongly decreased

their tumorigenic potential in nude mice (Figures 1E and S1K).

Altogether, these data indicate that E4F1 depletion leads to a

p53-dependent cell-cycle arrest in normal MEFs and to p53-

independent mitotic cell death in immortalized or transformed

cells deficient for the p53 pathway.

E4F1 Target Genes, a Limited Set of Genes Involved
in Mitochondrial Homeostasis, Metabolism,
and Checkpoints
E4F1 chromatin immunoprecipitation (ChIP) combined with

deep sequencing (ChIP-seq) and differential transcriptomic ana-

lyses of E4F1KO and E4F1WT cells were performed to identify

the p53-independent program directly controlled by E4F1. We

identified the full repertoire of endogenous target DNA sites

bound by E4F1 in primary MEFs and p53KO;Ha-RasV12 trans-

formed MEFs (Table S1) by ChIP-seq using a previously charac-

terized anti-E4F1 rabbit polyclonal antibody (Fajas et al., 2000;

Figure S1A). E4F1-binding regions were defined by combining

bioinformatic toolboxes provided by CisGenome and Qeseq

software systems. Raw sequencing data are available on Gene

Expression Omnibus (GEO) dataset repository (GSE57228).

Genome sequences significantly enriched (Table S1) by this

E4F1 ChIP-seq were then annotated according to the transcrip-

tion start site (TSS) of the closest gene (Table S2). Peak read

densities, displayed as a heatmap (Seqminer 1.3.3) of the 10-

kb (Figure 2A) or 100-kb window (Figure S2C), centered on

gene TSS. Our analyses identified 126 E4F1-binding sites that

are mainly located in the promoter (<1,000 bp from TSS),

50UTR, or first exons (Figure S2B) of 111 genes that are distrib-

uted along all chromosomes (Figure S2A). Strikingly, this ChIP-

seq profile was very similar in primary and p53K0;Ha-RasV12

MEFs, indicating this E4F1 cistrome is independent of p53 and

of cell transformation (Figure S2F).

In parallel, we performed differential transcriptomic analyses

(microarray GEO dataset GSE57240) on E4F1WT;p53KO and

E4F1KO;p53KO cells or their Ha-RasV12 transformed counter-

parts. Gene lists identified by these transcriptomic analyses

were intersected with the list of genes directly bound by

E4F1 according to our ChiP-seq (Figure 2B). This led to the
all cells (E4F1KO and E4F1WT) were still viable (annexin-V negative) and actively gr

cell lines.

(C) MEME logo sequence analysis of the DNA fragments bound by E4F1 reveals

(D) ChIP-qPCR validation of E4F1 target genes in E4F1WT and E4F1KO cells 3 d

percentages of input (data are means ± SEM of four experiments).

(E) List of the 38 E4F1 direct target genes identified in (B). Table provides informa

(ratio KO/WT), the presence of an E4F1 consensus motif near the gene promot

proteins (Mito) or for factors involved in cellular stress response and checkpoints
identification of a common set of 38 genes, the expression of

which depends on the presence of E4F1 nearby or on their

TSS, in all tested cell populations. Notably, 36 of these 38

genes were downregulated upon E4F1 inactivation, suggesting

that E4F1 acts mainly as a transactivator for its target genes

(Figure 2E).

A set of 26 genes was further validated as direct targets

for E4F1 by ChIP-qPCR experiments performed in E4F1WT

and E4F1KO MEFs. These assays confirmed the presence of

the E4F1 protein on the TSS region of these genes in E4F1WT,

but not in E4F1KO MEFs (Figures 2D and 2E; Table S2). A selec-

tion of E4F1 genes was further validated by ChIP-qPCR in pri-

mary, immortalized (p53KO) and transformed (p53KO;Ha-RasV12)

MEFs (Figure 2D).

Analyses of DNA sequences bound by E4F1 unveiled a

hitherto unidentified consensus motif (Figure 2C) present in

most of these target sequences (Figure 2E). Noteworthy, this

new E4F1 motif was detected in many but not all of the 128

DNA regions initially identified by ChIP-seq, with an enrichment

in regions located in the close vicinity of TSS (Table S2). In

contrast, most peaks located further than 1 kb relative to the

TSS did not harbor such an E4F1motif and turned out to be false

positive in our ChIP-qPCR validation experiments performed on

E4F1WT and E4F1KO cells (Table S2). Finally, we confirmed by

electrophoretic mobility shift assays (EMSAs) that this new motif

is recognized by recombinant E4F1 protein in vitro (Figure S2D).

Interestingly, the E4F1 gene itself contains this consensus motif

nearby its own TSS and was identified as a direct target of the

E4F1 protein by our ChIP-seq (Figure 2E), indicating that E4F1

controls its own expression.

Ontology analysis of this list of 38 genes, bound and tran-

scriptionally controlled by E4F1, revealed an unexpected

enrichment for nuclear genes encoding mitochondrial pro-

teins (Dnajc19, Taz, Ndufs5, Dlat, Hax1, Mrpl15, Brp44l,

4930402E16Rik/Pdpr, and 2510003E04Rik/KBP) and for genes

involved in DNA damage response and cell-cycle checkpoints

(Chek1, Rad52, Senp8, BC019943/Tti2, and 2310003H01Rik/

Faap100) (Figure 2E). To challenge the evolutionary conserva-

tion and specificity of this dual E4F1 transcriptional program,

we monitored by ChIP-qPCR the presence of E4F1 at the

human orthologous region of the Dnajc19, Ndufs5, Dlat,

Chek1, and Rad52 genes in human U2OS cells. This assay

confirmed that E4F1 was recruited on these genes in human

cells (Figure S2E).

Altogether, our data indicate that, regardless of the p53 status

of the cells, E4F1 is bound to a novel regulatory motif located

nearby the TSS of a limited set of genes involved in mitochondria

homeostasis and stress responses, and it exerts a positive

control on their expression.
owing. The overlap defines a set of 38 genes bound and regulated by E4F1in all

a novel E4F1 consensus motif.

ays after Cre-mediated inactivation of E4F1. Enrichments are represented as

tion about the differential expression of transcripts in E4F1WT and E4F1KO cells

er and its distance to TSS, and whether these genes codes for mitochondrial

(DDR/Chk). (See also Figure S2 and Tables S1 and S2.)
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Figure 3. E4F1 KO in Transformed MEFs Results in Mitochondria Dysfunctions that Lead to Energy Stress and Inhibition of De Novo

Pyrimidine Synthesis

(A) mRNA levels of E4F1 target genes coding for mitochondrial proteins are downregulated in E4F1KO cells, as measured by qRT-PCR 3 days after Cre-mediated

inactivation of E4F1 (E4F1KO) in primary MEFs, p53KO MEFs, or p53KO;HaRasV12 transformed MEFs. In each case, corresponding Cre-treated E4F1+/f cells that

retain an E4F1 WT allele were used as controls (CTL). Data represent the mean ± SEM of seven experiments.

(B) ATP level (left) and AMP/ATP ratio (right) are altered in E4F1KO cells, as measured 3 days after Cre-mediated inactivation of E4F1 (E4F1KO) in p53KO;HaRasV12

transformed MEFs (n = 3). As in (A), corresponding Cre-treated E4F1+/f transformed cells (CTL) were used as controls. Data represent the mean ± SEM of three

experiments.

(C) AMPK and p38 are activated in E4F1KO cells. Immunoblots show the levels of AMPK, AMPKp, p38, p38p, DNAJC19, and TAFAZZIN on extracts from E4F1WT

and E4F1KO transformed MEFs, treated as in (B).

(D) Representative experiment (n = 3) of an OCR performed on transformed E4F1WT and E4F1KO MEFs (top). Values for basal and maximal respirations, spare

respiratory capacity, and nonmitochondrial respiration (evaluated upon injection of the ATP synthase inhibitor oligomycin, the uncoupling agent FCCP, and the

(legend continued on next page)

224 Cell Reports 11, 220–233, April 14, 2015 ª2015 The Authors



E4F1 KO Results in Mitochondria Dysfunctions that
Lead to Energy Stress and Inhibition of De Novo
Pyrimidine Synthesis
The qRT-PCR validation experiments on Dnajc19, Ndufs5, Dlat,

Taz, Hax1, andMrpl15 transcripts confirmed that the E4F1 mito-

chondrial sub-program identified by our arrays and ChIP-seq

experiments was strongly downregulated in all E4F1KO cells

(Figure 3A). These genes are involved in various biological pro-

cesses and their concomitant downregulation in E4F1KO cells

should result in mitochondrial dysfunctions, with consequences

on energy production, nucleoside synthesis, or redox homeosta-

sis, processes important for cell proliferation and survival.

We found that E4F1KO transformed cells showed signs of

energetic stress compared to controls, as shown by the alter-

ation in the total ATP level and the AMP/ATP ratio (Figures

3B and S3). These defects led to the induction of a p38 stress

response and activation of the energy sensor AMP-activated

protein kinase (AMPK) (Figure 3C). As a readout of potential

mitochondrial alterations in transformed E4F1KO cells, we

determined their oxygen consumption rate (OCR). Compared

with control cells, transformed E4F1KO cells exhibited a strong

decrease in O2 consumption (at all levels, i.e., basal respiration

and maximum respiratory capacity as well as nonmitochondrial

respiration, spare respiratory capacity, and ATP turnover)

(Figures 3D and S3).

Mitochondrial dysfunction also has been described to entail

impairment of pyrimidine de novo synthesis via a key enzyme

of this pathway, the mitochondrially bound and respiratory-

chain-coupled dihydroorotate dehydrogenase (DHODH). A

screen for alterations in metabolites selectively affected in

E4F1KO transformed cells revealed that E4F1 inactivation re-

sulted in a significantly decreased level of several intermediates

in pyrimidine biosynthesis, including orotate and its downstream

metabolite UMP (Figure 3E), the latter being considered as

the first pyrimidine and precursor of other nucleosides. As a

consequence of this downregulation in de novo UMP synthesis,

the levels of the pyrimidine nucleosides, thymidine and cytosine,

were also significantly decreased in E4F1KO cells. Unconnected

to mitochondria, the neosynthesis of the purine nucleosides,

guanosine and adenosine, were unaffected in these cells

(Figure 3E).

E4F1 KO Results in ROS Production, Uncompensated
Oxidative Damage to Proteins, and an Accumulation
of DNA Damage in Transformed MEFs
Next, we assessedwhether thesemitochondrial defects resulted

in increased reactive oxygen species (ROS) production that

can cause irreversible damage to cellular components. Using

the CM-H2DCFDA probe that reacts with a broad spectrum

of ROS, we confirmed that E4F1KO transformed cells exhibited

an increase in the global level of ROS (Figure 4A). In addition,

we compared the kinetics of production of superoxide by
inhibitor of the complex I rotenone) after normalization to total protein levels are sh

are represented as the mean ± SD of five wells (bottom).

(E) De novo pyrimidine synthesis is altered in E4F1KO cells. Metabolite concentrat

transformed MEFs treated as in (B). (See also Figure S3.) Data represent the me
mitochondria in E4F1WT and E4F1KO cells using the mitochon-

dria-specific and redox-sensitive dyeMitosox (Figure 4B). These

analyses indicated that E4F1 depletion resulted in a significant

increase in mitochondrial ROS production.

Interestingly, at least two of the E4F1 target genes, Dnajc19

and Taz, have yeast orthologs that have been reported to impact

on redox homeostasis (Chen et al., 2008; Mokranjac et al., 2006).

Dnajc19 codes for an inner membrane-associated J-domain

protein involved in the motor machinery of the protein translo-

case complex that imports cytoplasmic proteins into mitochon-

dria. Taz codes for the cardiolipin-modifying enzyme TAFAZZIN,

which impacts on the function of multiple mitochondrial proteins

requiring lipid and membrane association. Immunoblotting

confirmed that DNAJC19 and TAFAZZIN protein levels were

decreased in transformed E4F1KO MEFs (Figure 3C). Small

hairpin RNA (shRNA)-mediated depletion of either DNAJC19 or

TAFAZZIN in E4F1WT transformed cells (Figure 4D) resulted in

ROS overproduction (Figure 4C) and activation of p38 and

AMPK in these cells (Figure 4D). These data support the notion

that the downregulation of several E4F1 targets collectively

contributes to the oxidative and energetic stresses observed in

E4F1KO cells.

We next assessed whether the burst of mitochondrial ROS

detected in E4F1KO cells had induced detrimental oxidative

damages to intracellular proteins and DNA. Protein carbonyla-

tion is an indicator of such severe oxidative damage because it

is irreversible and results in proteasomal degradation. Carbony-

lated proteins and total proteins were labeled with hydrazide

Cy5 or CyDyesTM N-hydroxysuccinimide, respectively, and

then co-resolved by two-dimensional (2D) electrophoresis

(Figure 4E; Baraibar et al., 2011). Abundant proteins that were

differentially carbonylated between E4F1KO and E4F1WT trans-

formed MEFs were then purified and identified by tandem

mass spectrometry (MS/MS) (Figures 4F and S4A). This analysis

revealed that both mitochondrial (M) and cytoplasmic (C) pro-

teins that are known to be targeted and damaged by ROS,

including VDAC2, GRP75/Mortalin, SODM, EF2, and G3P,

were increasingly carbonylated upon E4F1 depletion (Figure 4F),

indicative of extensive and uncompensated oxidative damages

to proteins in E4F1KO transformed cells. High levels of ROS

and decreased neo-synthesis of nucleosides both have been

described as potent sources of DNA damage. Therefore, we

also checked by comet assay whether E4F1KO cells contained

DNAdamage.We observed that E4F1KO primaryMEFs exhibited

increased comet assay tail moment (Figures 4G and S4B), and

this defect was exacerbated in E4F1KO transformed MEFs.

In accordance with the presence of extensive DNA damage,

we detected higher levels of g-H2AX (Figure 4H) in E4F1KO trans-

formed cells.

Altogether, these data indicate that E4F1KO cells have accu-

mulated uncompensated oxidative damage to proteins and

extensive DNA damage.
own. Vertical bars indicate the time of injection of the indicated compound. Data

ions were analyzed (n = 8) by LC/MS and GC/MS in E4F1WT (CTL) and E4F1KO

an ± SEM of eight experiments.
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Figure 4. Mitochondrial ROS, Uridine, and Depletion of CHK1 Contribute to the Cell Death Induced by the Inactivation of E4F1 in

p53-Deficient Transformed Cells

(A) Cellular ROS levels are increased in E4F1KO cells. ROS levels were measured by FACScan with the fluorescent dye DCFDA in E4F1WT (CTL) and E4F1KO

transformed MEFs 6 days after E4F1-mediated inactivation.

(B) Mitochondrial ROS production is increased in E4F1KO transformed cells. ROS production was measured by FACScan with the mitochondrial ROS-specific

fluorescent dye Mitosox in E4F1WT (CTL) and E4F1KO transformed MEFs treated as in (A).

(C) The individual shRNA-mediated depletion of two E4F1 target genes,Dnajc19 or Taz, is sufficient to generate higher levels of cellular ROS. ROSwasmeasured

with the fluorescent dye DCFDA upon transduction of p53KO;HaRasV12 transformed MEFs with lentiviral particles encoding shRNAs directed against DNAjc19,

Taz, or an irrelevant sequence (shCTL).

(D) Immunoblotting shows the partial depletion of DNAJC19 and TAFAZZIN (Taz product) proteins and the stimulation of AMPK and p38 phosphorylation

(AMPKp and p38p) in cells treated by shRNAs as in (C).

(legend continued on next page)
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E4F1 Directly Controls Chek1 Gene Expression with
Impact on the CHK1-Dependent DNADamage Response
Our list of E4F1 target genes indicated the existence of a second

E4F1 transcriptional sub-program involved in DNA damage

responses and cell-cycle checkpoints (Figure 2) that pointed to

the Chek1 gene. We decided to further investigate this unde-

scribed E4F1-CHK1 pathway, considering that, together with

mitochondrial dysfunctions, it could explain the extensive DNA

damage and G2/M checkpoint defects observed in transformed

E4F1KO cells (Figures 1 and 4).

Our data clearly identified E4F1 on the TSS of the Chek1 gene

in primary, p53KO, and transformed MEFs (Figures 2D, 2E, and

5A). In contrast, E4F1 was undetectable at the Chek2 gene

that codes for the partially redundant checkpoint kinase CHK2,

as illustrated in the ChIP-seq experiments (Figure 5A) and

ChIP-qPCR validations (Figure 2D). Consistent with a role of

E4F1 as an essential transcriptional activator of Chek1, expres-

sion arrays (Figure 2E) and qRT-PCR analyses (Figure 5B)

showed that Chek1 mRNA level was decreased in E4F1K0 cells.

To confirm that E4F1was activatingChek1 transcription, we also

testedwhether ectopic expression of E4F1was able to activate a

luciferase reporter construct driven by the Chek1 promoter

sequence. This reporter assay showed that full-length E4F1,

but not a mutant devoided of its DNA-binding domain (DDBD)

(Le Cam et al., 2006), stimulated this Chek1 reporter construct

in a dose-dependent manner (Figure 5C).

Importantly, CHK1 level also was decreased in E4F1K0;p53KO

and transformedMEFs, whileChek2mRNA and protein levels re-

mained unchanged (Figures 5B and 5D). Of note, the control of

E4F1 on the basal expression of Chek1 extends beyond MEFs,

since CHK1 protein downregulation also was detected by immu-

nocytochemistry in tumor sections prepared from a previously

described mouse model of histiocytic sarcomas (Hatchi et al.,

2011) undergoing acute inactivation of E4F1 in vivo (Figure 5E).

In addition, we observed in human cell lines (HEL and HL60)

that CHK1 level was strongly decreased upon shRNA-mediated

depletion of E4F1 (Figure S5), confirming the E4F1-CHK1

connection in human cells (Figure S2E).

As previous reports showed that the CHK1-dependent check-

point is particularly important for the survival of p53-deficient

cancer cells exposed to DNA-damaging agents inducing replica-

tive stress (McNeely et al., 2014), we next evaluated the sensi-

tivity of p53-deficient E4F1KO transformed MEFs to hydroxyurea

(HU). As expected, E4F1WT transformed control cells massively

arrested in S and G2/M phases upon the addition of HU (Fig-

ure 5F). According to a major role of CHK1 in this checkpoint,

inhibition of CHK1 kinase activity by the pharmacological inhib-

itor AZD7762 partially bypassed this cell-cycle arrest and re-
(E) Increased protein oxidation in p53KO;HaRasV12 transformed MEFs upon inact

and E4F1KO transformed cells treated as in (A). Carbonylated proteins (red spots)

N-Hydroxysuccinimide, respectively, and then co-resolved by 2D electrophores

p < 0.05) in E4F1KO cells.

(F) Identification by mass spectrometry of the proteins that are increasingly carb

(G) E4F1KO cells accumulate DNA damages. Alkaline comet assay was performe

transformed MEFs (p53KO;HaRasV12). Histograms represent the percentage of c

Figure S4.) Data represent the mean ± SEM of three experiments.

(H) g-H2AX is activated in E4F1KO cells. Immunoblots show the level of g-H2AX
sulted in massive cell death (Sub-G1 DNA content). Consistent

with a role of E4F1 in the basal expression of CHK1, E4F1KO

transformed cells treated with HU only exhibited a profile indic-

ative of a compromised arrest in S and G2/M and of enhanced

cell death (Sub-G1) that was similar to that of control cells

treated with both HU and the CHK1 inhibitor (Figure 5F).

Altogether, these data strongly support a direct role for E4F1

in regulating CHK1 expression, with impact on the CHK1-depen-

dent checkpoint response to DNA damage.

The Abnormal Levels of Mitochondrial ROS, Pyrimidine
Neosynthesis, and CHK1 Contribute to E4F1KO Cell
Phenotype
Next, we addressed in rescue experiments the relative contribu-

tion of mitochondrial dysfunctions (oxidative stress and pyrimi-

dine neosynthesis) and of CHK1 depletion in the growth arrest

and cell death resulting from E4F1 inactivation. Addition of the

antioxidant ascorbate (ASC) partially bypassed the cell-cycle

arrest of primary E4F1KO MEFs and improved, at least in the

short term, their capacity to proliferate (Figures 6A and 6B).

ASC also significantly decreased cell death in transformed

E4F1KO MEFs (Figure 6C), resulting in a limited but significant

restoration of proliferation (Figure 6A), observed up to 2 weeks

after E4F1 conditional inactivation (Figure S6A). Importantly,

similar partial rescue of cell death was observed with mito-

TEMPO, a mitochondria-targeted antioxidant (Figure 6C).

Collectively, these results indicate that mitochondrial ROS is,

at least in part, responsible for the proliferation defects and

loss of viability of E4F1KO cells.

Because pyrimidine depletion due to mitochondrial defects

also has been reported to induce cell death, we then tested

whether the addition of uridine, a product of the pyrimidine neo-

synthesis pathway that bypasses the mitochondrial step of this

synthesis, could also protect E4F1KO cells. As observed with

antioxidants, uridine addition markedly decreased cell death in

transformed E4F1KOMEFs (Figure 6D). Notably, the combination

of Mito-TEMPO and uridine did not further improve the survival

of these cells (data not shown).

Finally, we tested whether ectopic restoration of CHK1 protein

level in E4F1KO transformed cells also could rescue cell death.

Expression of HA-tagged CHK1 in these cells clearly enhanced

their short-term survival (Figures 6E and S6B). Moreover, similar

rescue was observed by transducing E4F1KO transformed cells

with retroviruses expressing GFP-CHK1 (Figure S6C). The

protective effect of CHK1 was detected up to 2 weeks after

Cre-mediated inactivation of E4F1 (Figure S6C). Noteworthy,

similar CHK1 re-expression in primary MEFs did not rescue their

capacity to proliferate (data not shown), likely because these
ivation of E4F1. Oxiproteome (red) and total proteome (green) of E4F1WT (CTL)

and total proteins (green spots) were labeled with CyDye hydrazide and CyDye

is. White arrows indicate protein spots increasingly oxidized (at least 2-fold,

onylated upon E4F1 inactivation, as revealed in (A), is given.

d 5 days after Cre treatment of E4F1�/f (E4F1KO) and E4F1+/f (CTL), primary or

ells with Tail moment of the fourth class (as defined in Figure S4B). (See also

on extracts from E4F1WT and E4F1KO transformed MEFs.
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Figure 5. E4F1 Directly Controls Chek1 Gene Expression with Impact on the CHK1-Dependent DNA Damage Response

(A) E4F1 is bound to the promoter region of the Chek1 gene, but not of the Chek2 gene. E4F1 ChIP-seq read densities at the Chek1 and Chek2 genes in

p53KO;HaRasV12 transformed MEFs are shown.

(B) Chek1 mRNA level is downregulated in E4F1KO cells. Chek2 and Chek1 transcripts were measured by qRT-PCR 3 days after Cre-mediated E4F1 inactivation

(E4F1KO) in primary E4F1�/f;p53KO MEFs and in E4F1�/f;p53KO;HaRasV12 transformed MEFs. Cre-treated primary and transformed E4F1+/f cells were used as

controls (CTL). Data represent the mean ± SEM of six experiments.

(legend continued on next page)
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cells contained p53 and were therefore still checkpoint profi-

cient. This result is consistent with our data showing that the

growth arrest of these cells mainly relies on p53 (Figure 1).

Altogether, these experiments indicate that the control of E4F1

on mitochondrial homeostasis and CHK1 expression are both

required for the survival of transformed cells.

DISCUSSION

By combining ChIP-seq and differential transcriptomic analyses

in E4F1KO and E4F1WT MEFs, we show that E4F1 is bound to a

limited set of genes. Characterization of E4F1-binding sites

defined a new DNA motif, present nearby the TSS of these

genes, that is significantly different from the one originally

identified in the viral E4 promoter (Fernandes and Rooney,

1997). The decreased expression of most E4F1 target genes

we identified indicate that E4F1 mainly acts as a transcriptional

activator. These genes define at least two programs involved in

mitochondrial homeostasis and checkpoint.

Surprisingly, one of four E4F1 target genes is coding for mito-

chondrial proteins involved in multiple biological processes,

including components of the protein translocase (Dnajc19), the

OXPHOS respiratory complexes (Ndufs5), the mitochondria

transport machinery (2510003E04Rik/Kbp1), the pyruvate dehy-

drogenase (PDH) complex (Dlat, 4930402E16Rik, and Brp44l),

the cardiolipin synthetic pathway (Taz), an anti-apoptotic com-

plex (Hax-1), and mitochondrial ribosomes (Mrpl15). Although

E4F1 previously was described as a cell-cycle regulator,

these results identify E4F1 as a novel regulator of mitochondrial

homeostasis. The decreased expression of this program in

E4F1KO transformed cells correlates with alterations in several

biological processes that require functional mitochondria,

including ATP production, pyrimidine nucleotide neosynthesis,

and redox homeostasis. We believe these pleiotropic and com-

plexmitochondrial dysfunctions result from the combined deple-

tion of several E4F1 target genes, including Dnajc19 and Taz,

the depletion of which is sufficient to recapitulate the abnormal

level of ROS detected in E4F1KO cells. In addition, recent work

confirms our data showing that DNAJC19 downregulation in-

creases ROS levels (Sinha et al., 2014). Interestingly, mutations

in the coding sequence of several of these E4F1 target genes

(Taz, DNAJC19, Dlat, Brp44l, and Hax1) have been implicated

in monogenic human syndromes characterized by various and

complex mitochondrial dysfunctions (Schlame, 2013; Davey

et al., 2006; Imbard et al., 2011; Bricker et al., 2012; Klein, 2011).

In E4F1KO cells, abnormal ROS levels and nucleotide depletion

results in alterations of multiple cellular macromolecules, accu-
(C) E4F1 acts as a transactivator for the Chek1 promoter. Reporter assay (top) in U

promoter (�846 + 1,110) and increasing amounts of E4F1-GFP or of an E4F1 mu

analysis (bottom) of overexpressed E4F1-GFP proteins is shown.

(D) Immunoblotting shows that CHK1 protein level, but not CHK2 protein level, i

treated as in (B).

(E) Immunocytochemistry shows CHK1 expression in E4F1KO and E4F1WT (CTL)

RERT;E4F1+/f;cdkn2a�/� or RERT;E4F1�/f;cdkn2a�/� fetal liver cells. E4F1was ac

Bar, 1 mm (left) and 300 mm (right).

(F) E4F1KO cells have an altered response to DNA-damaging agents. DNA content

G2/M phases of the cell cycle (bottom), in exponentially growing E4F1KO and E

damaging agent HU and to CHEK1 chemical inhibitors (AZD7762), are shown. (S
mulation of uncompensated oxidative damage in cytoplasmic

and mitochondrial proteins, and extensive DNA damage that

eventually lead to proliferation defects or cell death. Strikingly,

our data clearly indicate that E4F1 also regulates another sub-

program involved in genome surveillance pathways required

to cope with such damages, which includes Chek1, Rad52,

Senp8, BC019943/Tti2, and 2310003H01Rik/Faap100. How

metabolism and cell-cycle control are coordinated remains

poorly understood, but recent data stressed that several onco-

genes or tumor suppressors impinge on both cellular processes

and thereby contribute to the complex rewiring of tumor meta-

bolism. This notion is well illustrated by the p53 pathway, where

both p53 and BMI1, which were initially implicated in cell-cycle

control and cell death, are now recognized as major transcrip-

tional regulators of several metabolic pathways and mitochon-

dria homeostasis (Liu et al., 2009; Maddocks and Vousden,

2011; Jiang et al., 2013). Similarly, E2F/RB,MYC, and OCT1 pro-

tein families recently have been shown to control genes involved

in energy production, redox homeostasis, and anabolic pro-

cesses (Blanchet et al., 2011; Chen and Russo, 2012; Dang,

2011). Like E4F1, they impinge on various metabolic pathways

linked to mitochondrial functions (Chen and Russo, 2012).

It raises important but still poorly explored questions about

the overlapping, complementary functions and coordination of

these metabolic and checkpoint programs.

Our rescue experiments, combined with those reported by

Grote et al. in this same issue (Grote et al., 2015), indicate that

the control exerted by E4F1 on CHK1 kinase occurs at multiple

levels and is central for the survival functions of E4F1 in trans-

formed MEFs and hematopoietic stem cells. Grote et al. show

that E4F1 directly interacts with CHK1 protein and regulates its

stability. In addition, we show that E4F1 is a potent transcrip-

tional activator bound at the Chek1 promoter in actively prolifer-

ating cells. Our data, together with previous reports showing the

role of E2Fs (Carrassa et al., 2003; Yang et al., 2008), p53 (Gotti-

fredi et al., 2001; Kho et al., 2004), NF-kB (Barré and Perkins,

2007), and BCL6 (Ranuncolo et al., 2008) in Chk1 transcription,

suggest that the Chek1 promoter is an important and common

hub for several oncogenic pathways. Since CHK1- and p53-

dependent checkpoints are partially redundant, the upregulation

of CHK1 is usually seen as the way cancer cells compensate

for p53 inactivation and ensure the maintenance of a proficient

checkpoint required for survival (Verlinden et al., 2007; Höglund

et al., 2011). This notion is the rationale for ongoing therapeutic

strategies targeting pharmacologically CHK1 kinase activity,

together with genotoxic agents, in p53-deficient tumors

(McNeely et al., 2014). We propose that the inactivation of
2OS cells co-transfected with a luciferase reporter construct driven by Chek1

tant deleted from its DNA-binding domain (DDBD-E4F1) is shown. Immunoblot

s downregulated in E4F1KO cells. Total cell extracts were prepared from cells

hystiocytic sarcoma sections developed in the lung of mice transplanted with

cutely inactivated in pre-formed tumors by treating mice with 4-OH tamoxifen.

analyses (PI, top) and quantifications of the Sub-G1 (dying cells), G0/G1, S, and

4F1WT (CTL) cells transformed by p53KO;HaRasV12 and exposed to the DNA-

ee also Figure S5.)
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Figure 6. Mitochondrial ROS and CHK1 Depletion Both Contribute to the Cell Death Induced by E4F1 Inactivation in Transformed Cells

(A) Antioxidant partially restores the growth of E4F1KO cell populations. Proliferation curves of Cre-treated E4F1�/f (E4F1KO) and E4F1+/f (CTL) MEFs or of E4F1�/f;

p53KO;HaRasV12 and E4F1�/f;p53KO;HaRasV12 transformed MEFs were established as in Figure 1A, in the presence or absence of ASC (100 mM). Histograms

represent the ratio of the cell numbers counted with or without ASC 10 days after Cre treatment. Data represent the mean ± SEM of three experiments.

(B) Antioxidant partially restores the capacity of E4F1KO primary MEFs to proliferate. BrdU incorporation was measured in Cre-treated E4F1�/f (E4F1KO)

and E4F1+/f (CTL) MEFs cultured in the presence of ASC (100 mM) 6 days after Cre-mediated inactivation of E4F1. Data represent the mean ± SEM of three

experiments.

(legend continued on next page)
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E4F1 in p53-deficient transformed cells results in multiple

damages originating from mitochondria defects combined with

deficiencies in both CHK1 and p53-dependent checkpoints,

resulting in a deadly cocktail. Of note, the proficiency of the

p53-mediated checkpoint in primary MEFs results in growth

arrest and appears sufficient to limit the expansion of these

damages (Figure 6F).

Our data support the notion that the E4F1-CHK1 regulatory

axis is essential for the survival of p53-deficient cells, including

transformed cells. This also points to a potential involvement

among E4F1, CHK1, and p53, with complex feedback loops.

Indeed, while we and Grote et al. (2015) reveal that E4F1 regu-

lates positively CHK1 expression, previous reports have shown

the following: (1) p53 represses chek1 at the transcriptional

level (Gottifredi et al., 2001; Kho et al., 2004); (2) CHK1 kinase

regulates p53 phosphorylation (Shieh et al., 2000) and the

transcriptional elongation of one of its main targets, p21 (Becker-

man et al., 2009); and (3) E4F1 directly controls p53 transcrip-

tional activities through atypical ubiquitination (Le Cam et al.,

2006).

Further investigations will be required to evaluate whether

the complex connections among E4F1, CHK1, and p53 are

involved in embryonic and epidermal stem cells that require

E4F1 for proper homeostasis (Lacroix et al., 2010; Le Cam

et al., 2004). Noteworthy, Chek1- and E4F1-deficient embryos

die at a very similar developmental stage, i.e., soon after implan-

tation (Le Cam et al., 2004; Liu et al., 2000; Takai et al., 2000).

In conclusion, our data reveal an unexpected role for E4F1 in

coordinating mitochondria homeostasis and genome surveil-

lance checkpoints. The high sensitivity of p53-deficient trans-

formed cells to E4F1 inhibition highlights the potential interest

of exploring new anti-cancer strategies targeting E4F1, or phar-

macologically mimicking the deadly environment of E4F1 KO

cells by combining mitochondria and checkpoint inhibitors.

EXPERIMENTAL PROCEDURES

All experiments were approved by the University of Montpellier’s Ethics Com-

mittee for Animal Welfare.

ROS Detection, Protein Carbonylation, and 2D Map of the

Oxiproteome

Total and mitochondrial ROS levels were measured by flow cytometry on live

cells upon staining with CM-H2DFCDA and MitoSOX probes (Invitrogen), as

described previously (Hatchi et al., 2011). Kinetics of mitochondrial ROS

production shown in Figure 3F are expressed as the fold increase of time-

dependent changes in mean fluorescence intensity of the MitoSOX staining

measured by flow cytometry (FACSCalibur, Becton Dickinson). Detection

and identification of carbonylated proteins (2D Map of the oxiproteome)
(C) Antioxidant partially restores viability in E4F1KO transformed MEFs. E4F1�/f;p5

with or without ASC or Mito-TEMPO, were probed with annexin-V-FITC 7 days af

experiments.

(D) Uridine partially restores viability in E4F1KO transformed MEFs. E4F1�/f;p53KO

or without uridine (50 mg/ml), were probed with annexin-V-FITC 7 days after C

experiments.

(E) Exogenous re-expression of CHK1 partially restores viability in E4F1KO tr

or E4F1�/f;p53KO;HaRasV12 transformed MEFs were co-transfected with pcDNA

for cell death with annexin-V-alexa568. Data represent the mean ± SEM of five e

(F) Schematic representation of E4F1 functions in normal and p53-deficient or c
were performed as previously described (Baraibar et al., 2011) and as detailed

in the Supplemental Experimental Procedures.

Nucleotides Analysis and ATP/AMP Measurements

To determine the concentration of purine and pyrimidine intermediates in

p53KO;E4F1WT;Ha-RasV12 and p53KO;E4F1KO;Ha-RasV12 transformed MEFs

(2 3 107 cells), soluble extracts were prepared and analyzed by gas chroma-

tography-mass spectrometry (GC-MS) and liquid chromatography-tandem

mass spectrometry (LC-MS/MS) platforms (Metabolon) on eight independent

samples for each cell line. ATP and AMP concentrations (Figure 3B)

were measured by high-performance liquid chromatography (HPLC) from

5 3 106 cells lysed in 65% perchloric acid. ATP levels, normalized to total

protein levels, were confirmed on 2 3 104 cells using Cell Titer Glo (Promega)

luminescent assay. See Supplemental Experimental Procedures for addi-

tional detail.

ChIP-qPCR and ChIP-Seq

Detailed protocols and primer sequences used for ChIP, as well as Bio-

informatic tools and parameters used to treat ChIP-seq data and annotate

E4F1-bound regions, are detailed in the Supplemental Experimental

Procedures.

To identify the DNA consensus sequence bound by E4F1, ChIP-seq peak

DNA sequences were retrieved from bed files containing E4F1-bound region

coordinates and analyzed with MEME logo suite (http://meme.nbcr.net/

meme/).

qRT-PCR and Differential Transcriptomic Analyses

To identify genes with expression levels differentially expressed between

E4F1WT and E4F1KO cells, total RNA was recovered using RNeasy Mini kits

(QIAGEN). Of total RNA samples, 1 mg was amplified and Cy3- and Cy5-

labeled using Amino Allyl Message Amp II aRNA amplification kit (Ambion),

hybridized on mouse HD12 plex Nimblegen arrays (135,000 probes/44,170

genes, platform MGX-Montpellier GenomiX, www.mgx.cnrs.fr/), and scanned

on an Innoscan900 scanner (Innopsys). Raw data were normalized by

Loess (Limma Package) and differentially expressed genes identified with

both LIMMA and SAM packages with a false discovery rate (FDR) of 1% or

5%. Expression arrays are accessible at GEO dataset GSE57240.

For validation RT-PCR, total RNAs were isolated in TRIZOL (Invitrogen) and

used to generate cDNAs by SuperScript III reverse transcription (Invitrogen)

in the presence of random hexamers. Primers sequences and amplification

parameters are described in the Supplemental Experimental Procedures.

ACCESSION NUMBERS

The full series of data, including expression arrays and ChIP-seq data, re-

ported in this paper have been deposited in NCBI’s Gene Expression Omnibus

and are available through accession number GEO: GSE57242 (superseries).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2015.03.024.
3KO;HaRasV12 (CTL) and E4F1�/f;p53KO;HaRasV12 transformed MEFs, cultured

ter Cre-mediated inactivation of E4F1. Data represent the mean ± SEM of eight

;HaRasV12 (CTL) and E4F1�/f;p53KO;HaRasV12 transformed MEFs, cultured with

re-mediated inactivation of E4F1. Data represent the mean ± SEM of eight

ansformed MEFs. 24 hr after Cre-treatment, E4F1�/f;p53KO;HaRasV12 (CTL)

3-HaGFP and pcDNA3-HaChek1; 72 hr later, GFP-positive cells were probed

xperiments.

ancer cells is shown. (See also Figure S6.)
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