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Abstract

In this paper, we generalize Szegő’s theorem for orthogonal polynomials on the real line to infinite gap
sets of Parreau–Widom type. This notion includes Cantor sets of positive measure. The Szegő condition
involves the equilibrium measure which in turn is absolutely continuous. Our approach builds on a canonical
factorization of the M-function and the covering space formalism of Sodin–Yuditskii.
© 2011 Elsevier Inc. All rights reserved.
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Keywords: Szegő integral; Eigenvalue sums; Parreau–Widom sets

1. Introduction

Let dν = w(θ) dθ
2π

+ dνs be a finite positive measure on the unit circle ∂D, with dνs singular
to dθ . A classical result of Szegő [44] reads

inf
p∈P

{∫
|1 − p|2 dν

}
= exp

{ 2π∫
0

logw(θ)
dθ

2π

}
, (1.1)

where P is the set of polynomials vanishing at zero. So the infimum on the left-hand side is > 0
if and only if the integral on the right-hand side, also known as the Szegő integral, is convergent
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(i.e., > −∞). Strictly speaking, Szegő only considered absolutely continuous measures but one
can allow for a singular part too.

There are many equivalent forms of Szegő’s theorem, see, e.g., [39, Chap. 2], and it is bound
up with asymptotics of Toeplitz determinants. From the point of view of orthogonal polynomials,
perhaps the most suitable formulation is due to Verblunsky [46]. It replaces the left-hand side
in (1.1) by

∞∏
n=0

(
1 − |αn|2

)
,

where {αn}∞n=0 are the recurrence coefficients of the associated monic orthogonal polynomials.
Without any problems, one can carry over the result of Szegő to measures supported on an inter-
val of the real line. Let dμ = f (t) dt + dμs be a probability measure supported on [−2,2] and
let {an, bn}∞n=1 be the recurrence coefficients of the associated orthonormal polynomials. Then

inf
n∈N

(a1 · · ·an) > 0 ⇐⇒
2∫

−2

logf (t)√
4 − t2

dt > −∞. (1.2)

It is possible to allow for point masses of dμs outside [−2,2] as long as the mass points {xk}
satisfy the condition

∑
k

√
(xk + 2)(xk − 2) < ∞,

see [28,41] for details. If infinite in number, the xk’s thus have to accumulate sufficiently fast at
the endpoints ±2.

The aim of this paper is to establish a version of Szegő’s theorem on sets in R much more
general than an interval, namely what we shall call Parreau–Widom sets. The notion of such sets
will be introduced in Section 2 and we shall only give a brief description here. Among all regular
compact subsets of R, the Parreau–Widom condition (2.6) singles out those for which the values
of the Green’s function at critical points are summable. In particular, it allows for a great number
of sets with infinitely many components.

Our main result, Theorem 2 (in Section 5), goes beyond the recent monograph [40] of Simon
as to generalizing the Szegő–Shohat–Nevai theorem, using the language of [40]. The situation of
‘finite gap sets’ was studied in [5,6], inspired by Widom’s famous paper [47] and the landmark
paper [29] of Peherstorfer and Yuditskii. For a finite gap set e, the product in (1.2) has to be
replaced by

a1 · · ·an

Cap(e)n
, (1.3)

where Cap(e) is the logarithmic capacity of e. Moreover, the Szegő condition takes the form

∫
logf (t) dμe(t) > −∞, (1.4)
e
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where dμe is the equilibrium measure of e. For comparison, dθ/2π is the equilibrium measure
of ∂D and dμ[a,b] is a scaled arcsine distribution. While [47] uses multiple-valued functions,
[29] makes heavy use of the covering space formalism introduced by Sodin and Yuditskii [42].
The present paper also builds on [42], as do [5,6], and we give some background on uniformiza-
tion theory in Section 2.

The core of [29,30] is to establish Szegő asymptotics of orthogonal polynomials on the so-
called homogeneous sets in R. This is done under the Szegő condition and a Blaschke condition
(similar to (1.5)) by comparing the solutions of two extremal problems. As a by-product, the im-
plication ‘⇐’ of (1.2) (or rather (1.6) below) is obtained. In contrast, the main tool of the present
paper is a step-by-step sum rule obtained from a canonical factorization of the M-function.
This technique was developed by Killip and Simon [19] and is applied repeatedly in the mono-
graph [40]. We shall establish the desired factorization in Section 3 and arrive at the step-by-step
sum rule in (3.32)–(3.33). As pointed out in Section 4, the Szegő integral is a relative entropy
(up to some constant), and known properties of relative entropy combined with uniform upper
bounds on certain eigenvalue sums allow us to iterate the step-by-step sum rule and pass to the
limit. With all preparations in place, the proof of Theorem 2 presented in Section 5 is merely half
a page.

Every now and then we shall use the language of Jacobi matrices rather than the one of
measures. As is well known, there is a one–one correspondence between compactly supported
(nontrivial) probability measures on R and bounded Jacobi matrices. Given dμ, the associated
Jacobi matrix is given by

J =

⎛
⎜⎜⎜⎝

b1 a1
a1 b2 a2

a2 b3 a3
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

where {an, bn}∞n=1 ∈ (0,∞)N × R
N are the recurrence coefficients of the orthonormal polyno-

mials Pn(x, dμ). When supp(dμ) is compact, these coefficients are bounded. The spectrum of
J , viewed as an operator on �2(N), coincides with supp(dμ) and we shall often refer to dμ as
the spectral measure of J . In the language of Jacobi matrices (and with g the Green’s function
for C \ E), the main result of the paper reads:

Theorem. Let J = {an, bn}∞n=1 be a Jacobi matrix with spectral measure dμ = f (t) dt +dμs and
let E ⊂ R be a Parreau–Widom set. Assume that σess(J ) = E and denote by {xk} the eigenvalues
of J outside E, if any. On condition that

∑
k

g(xk) < ∞, (1.5)

we have

lim sup
n→∞

a1 · · ·an

Cap(E)n
> 0 ⇐⇒

∫
logf (t) dμE(t) > −∞. (1.6)
E
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Moreover, if one and hence both of the equivalent conditions in (1.6) hold true, then

0 < lim inf
n→∞

a1 · · ·an

Cap(E)n
� lim sup

n→∞
a1 · · ·an

Cap(E)n
< ∞.

While the Szegő integral relates to relative entropy and allows for defining an outer function
(see Section 3), the product a1 · · ·an is the reciprocal of the leading coefficient in Pn(x, dμ). So
if E is rescaled to have capacity 1, the leading coefficients in the orthonormal polynomials are
bounded above and below.

With (1.1) as a starting point, Hayashi [16] set out to generalize Szegő’s theorem to Riemann
surfaces. Naturally, such a generalization may not be as clean and explicit as (1.2) or (1.6).
Interestingly, the results of [16] simplify when the Riemann surface R is of Parreau–Widom type.
Let dωτ be the harmonic measure on ∂R for a point τ ∈ R. When h � 0 belongs to L1(∂R, dωτ ),
Hayashi proves that

inf
f ∈H∞

τ (R)

{∫
|1 − f |phdωτ

}
� C exp

{ ∫
∂R

loghdωτ

}
, (1.7)

where H∞
τ (R) is the set of bounded analytic functions on R vanishing at τ , and C > 0 is some

constant depending on τ . Provided that ∂R ⊂ R, and if the infimum on the left-hand side can
be related to a1 · · ·an/Cap(∂R)n, this inequality may prove the implication ‘⇒’ of (1.6) when
dμs = 0. In order to be able to include a singular part of the measure, [16] needs an extra as-
sumption on R which is equivalent to the Direct Cauchy Theorem. We shall not discuss this issue
here but refer the reader to [15] and the recent paper [49].

2. Parreau–Widom sets and uniformization theory

In this section we start by introducing the notion of a Parreau–Widom set on the real line. This
notion covers a large class of compact subsets of R and allows for a set to have infinitely many
‘gaps’, yet no isolated points. The precise definition will be given below. It relies on potential
theory and key roles will be played by the Green’s function and the equilibrium measure. We
refer the reader to [10,12,20,26,43,45] for background and more details on potential theory.

In the second part of the section, we give a brief account on uniformization theory. The uni-
versal covering map will be brought into play and we relate the Green’s function to Blaschke
products of the underlying Fuchsian group. See, e.g., [1,25] or [40, Chap. 9] for further details.

2.1. Parreau–Widom sets

Let E ⊂ R be a compact set. We shall always assume that the logarithmic capacity of E,
denoted Cap(E), is positive so that the domain Ω = C \ E has a Green’s function. For fixed
y ∈ Ω , we let gΩ(· , y) be the Green’s function for Ω with pole at y. Recall that this function is
positive and harmonic on Ω \ {y}. Moreover,

gΩ(· , y) + log | · −y| (2.1)
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is harmonic at y. The special case y = ∞ will be of particular interest to us and we write g

instead of gΩ(· ,∞). Not only is g(·) − log | · | harmonic at ∞, but we also have the expansion

g(x) = log |x| + γ (E) + o(1), (2.2)

where γ (E) = − log(Cap(E)) is the so-called Robin’s constant for E.
There is a unique probability measure on E of minimal logarithmic energy. This measure is

called the equilibrium measure of E and will be denoted dμE. It minimizes the integral

I (dμ) =
∫ ∫

log
1

|s − t | dμ(t) dμ(s)

among all probability measures dμ on E and the minimal energy is given by I (dμE) = γ (E).
The logarithmic potential of dμE brings us back to the Green’s function through the relation

g(x) = γ (E) −
∫

log
1

|t − x| dμE(t). (2.3)

Besides E having positive logarithmic capacity, we will assume that each point of E is a
regular point for Ω , that is,

lim
Ω	x→t

g(x) = 0 for all t ∈ E. (2.4)

This in particular means that E has no isolated points (as such points are irregular for Ω). In
short we say that E is regular when (2.4) holds. Equivalent to this is the Green’s function being
continuous on all of C.

It will often be useful to write E in the form

E = [α,β]∖⋃
j

(αj ,βj ), (2.5)

where
⋃

j is a countable union of disjoint open subintervals of [α,β] and α < αi 
= βj < β

for all i, j . We shall refer to (αj ,βj ) as a ‘gap’ in E and to (2.5) as the infinite (or finite) gap
representation of E. While the Green’s function vanishes on E and in particular at the endpoints αi

and βj , it is strictly concave on each of the gaps. Since g cannot be constant on any interval in
R \ E, this follows from (2.3) and the fact that log is concave. Hence there is a unique point
cj ∈ (αj ,βj ) at which g attains its maximum on (αj ,βj ). The cj ’s are the critical points of g

since g′(cj ) = 0 for each j and g′ never vanishes outside [α,β].

Definition. Suppose E ⊂ R is a compact set of Cap(E) > 0 and suppose E is regular. We call E a
Parreau–Widom set if

∑
j

g(cj ) < ∞, (2.6)

where g is the Green’s function for C \ E with pole at ∞ and {cj } are the critical points of g.
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Remark. Note that the definition is independent of which y ∈ Ω is taken as pole of the Green’s
function. If the values of gΩ(· , y) at critical points are small enough to be summable for one y,
the same applies to all y. The choice of y = ∞ is made for convenience.

The above terminology is inspired by the monograph [15] of Hasumi. In comparison, we say
that E ⊂ R is a Parreau–Widom set if the domain Ω = C \ E is a Riemann surface of Parreau–
Widom type in the language of [15, Chap. 5]. While originally introduced by Parreau in [27],
Widom [48] showed that such surfaces have sufficiently many analytic functions. See, e.g., [15]
for more details.

One can show that a Parreau–Widom set automatically has positive Lebesgue measure (cf.
Proposition 2 below). Following Levin [21–23], it is possible to give a clear geometrical in-
terpretation of the condition (2.6) using conformal mappings. By a comb-like domain we un-
derstand a semi-strip S = {z: a < Re z < b, Im z > 0} with countably many cuts of the form
Hj = {tj + iy | 0 < y � hj }, where a < tj < b and hj > 0. Since E is regular, there is a confor-
mal map ψ of the upper half-plane C+ onto a comb-like domain S \ ⋃

j Hj such that

ψ
(
(−∞, α)

) = {a + iy | y > 0}, ψ(E) = [a, b], ψ
(
(β,∞)

) = {b + iy | y > 0},

and such that each (αj ,βj ) is mapped onto Hj in a two-to-one fashion (except at cj ). We can
fix ψ uniquely by taking a = 0 and b = π . Then a simple argument shows that Imψ coincides
with the Green’s function in the upper half-plane (see, e.g., [7] or [8] for details). Hence the
Parreau–Widom condition (2.6) is equivalent to

∑
j hj < ∞, that is, finite total length of the

‘teeth’ in the corresponding comb-like domain S \ ⋃
j Hj .

Clearly, any finite gap set (cf. [4–6]) is a Parreau–Widom set. But the notion goes way beyond.
Jones and Marshall [18, Sect. 3] proved that it includes infinite gap sets E which are homogeneous
in the sense of Carleson [3]. By definition, this means there is an ε > 0 such that

|(t − δ, t + δ) ∩ E|
δ

� ε for all t ∈ E and all δ < diam(E). (2.7)

Carleson introduced this geometric condition to avoid the possibility of certain parts of E to be
very thin, compared to Lebesgue measure. See [9,50] for further results on homogeneous sets.

Example. Remove the middle 1/4 from the interval [0,1] and continue to remove subintervals
of length 1/4n from the middle of each of the 2n−1 remaining intervals. Let E be the set of what
is left in [0,1]; this is a fat Cantor set of |E| = 1/2. One can show that |(t − δ, t + δ) ∩ E| � δ/4
for all t ∈ E and all δ < 1.

2.2. Uniformization theory

When E has at least one gap, the domain Ω = C \ E is not simply connected. So only in
the trivial case of E being an interval, Ω is conformally equivalent to the unit disk. For general
Parreau–Widom sets, we shall employ uniformization theory as in the seminal paper [42] of
Sodin and Yuditskii. There is a map x : D → Ω , which is onto but only locally one-to-one, and a
Fuchsian group Γ of Möbius transformations on D so that

x(z) = x(w) ⇐⇒ ∃γ ∈ Γ : z = γ (w). (2.8)
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This map is called the universal covering map and we fix it uniquely by requiring

x(0) = ∞, x∞ := lim
z→0

zx(z) > 0. (2.9)

Note that Γ is isomorphic to the fundamental group π1(Ω) and hence a free group on as many
generators as the number of gaps in E.

Since Cap(E) > 0, it follows from a theorem of Myrberg (see, e.g., [45, Chap. XI]) that Γ is
of convergent type. This means

∑
γ∈Γ

(
1 − ∣∣γ (w)

∣∣) < ∞ for all w ∈ D,

and hence the Blaschke products defined by

B(z,w) =
∏
γ∈Γ

|γ (w)|
γ (w)

γ (w) − z

1 − γ (w)z
(2.10)

are convergent for z,w ∈ D. By convention, a factor in (2.10) reduces to z if γ (w) = 0. Note that
B(· ,w) is analytic on D with simple zeros at {γ (w)}γ∈Γ . The link back to potential theory is
given by

∣∣B(z,w)
∣∣ = exp

{−gΩ

(
x(z),x(w)

)}
for z,w ∈ D. (2.11)

In particular, the Green’s function can be written as

g
(
x(z)

) = − log
∣∣B(z)

∣∣, (2.12)

where B is shorthand notation for B(· ,0). We point out that

B(z) = Cap(E)

x∞
z + O

(
z2) (2.13)

near z = 0. Since B ′(0) = ∏
γ 
=id |γ (0)| > 0 and x(z) = x∞/z + O(1) around z = 0, this follows

from (2.2) and (2.12).

3. A canonical factorization of the M-function

Let E ⊂ R be a Parreau–Widom set and consider a Jacobi matrix J = {an, bn}∞n=1 with
σess(J ) = E. The spectrum of J thus contains E and besides it consists only of isolated eigenval-
ues. We denote these eigenvalues, if any, by {xk}. Should there be infinitely many of them, the
xk’s accumulate nowhere but at some (or all) of the endpoints of E, viz., α,β and αj ,βj in the
representation (2.5).

Let dμ = f (t) dt +dμs be the spectral measure of J and introduce the m-function (or Stieltjes
transform of dμ) by

m(x) := mμ(x) =
∫

dμ(t)
, x ∈ C \ supp(dμ). (3.1)
t − x
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It is well known that m is a Nevanlinna–Pick function (i.e., m is analytic in C\R and Imm(x) ≷ 0
for Imx ≷ 0). Since dμ is compactly supported, we readily see that

m(x) = −1/x + O
(
x−2) (3.2)

near ∞. In fact, one can write down the Laurent expansion of mμ around ∞ in terms of the
moments of dμ. More importantly, the boundary values m(t + i0) := limε↓0 m(t + iε) exist for
a.e. t ∈ R and

1

π
Immμ(t + iε) dt

w−→ dμ as ε ↓ 0. (3.3)

To be even more specific, we have f (t) = 1
π

Immμ(t + i0) a.e. and

μs
({t}) = lim

ε→0
ε Immμ(t + iε) for all t ∈ R. (3.4)

The m-function remains analytic in the gaps of E and also below α and above β , except at the
eigenvalues {xk} where it has simple poles. Moreover, m is real-valued and strictly increasing on
any interval in R \ σ(J ) as its derivative is > 0 there. So the poles and zeros of m interlace on
each of the intervals in R \ E and the same applies to m(x) − a for any a ∈ R.

A major role in what follows will be played by the function

M(z) := −m
(
x(z)

)
, z ∈ D. (3.5)

Here x is the covering map defined in (2.8)–(2.9). Compared to m, the function M has the advan-
tage of being meromorphic on D rather than C \ E. It follows immediately from (2.9) and (3.2)
that

M(z) = z

x∞
+ O

(
z2) (3.6)

near z = 0. As a direct consequence of (2.8), M is automorphic with respect to Γ (i.e.,
M(γ (z)) = M(z) for every z ∈ D and all γ ∈ Γ ). The poles of M are situated at the points
p ∈ D for which x(p) ∈ {xk}. To better keep track of this set, we introduce a fundamental set
for Γ as follows. Consider first the open set

F := {
z ∈ D:

∣∣γ ′(z)
∣∣ < 1 for all γ 
= id

}
(3.7)

which is known as the Ford fundamental region. Geometrically, F is the unit disk with a number
of orthocircles (and their interior) removed. More precisely, one has to remove two orthocircles
for each generator γj of Γ (or one for γj and one for γ −1

j ) since the action of γj can be described
as inversion in some orthocircle Cj in the upper half-plane following complex conjugation, and
γ −1
j acts similarly with respect to the conjugate circle in the lower half-plane. Besides being

symmetric in the real line, the set F has the important properties that

1) no two of its points are equivalent under Γ (i.e., if z ∈ F then γ (z) /∈ F ),
2)

⋃
cl(γ (F )) = D, where ‘cl’ refers to closure within D.
γ∈Γ
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We can preserve these two properties and even get a disjoint union in 2) without taking closure
by considering

F := F ∪
(⋃

j

Cj ∩ D

)
. (3.8)

This is a fundamental set for Γ as it contains one and only one point of each Γ -orbit.
Returning to the poles of M , let pk be the unique point in F such that x(pk) = xk . Then we can

write the collection of poles as {γ (pk)}k,γ∈Γ . Note that pk either belongs to (−1,1) \ {0} or lies
in one of the Cj ’s, depending on whether xk is situated outside [α,β] or contained in (αj ,βj )

for some j . The minus sign on the right-hand side in (3.5) ensures that ImM(z) ≷ 0 when z ∈ F

and Im z ≷ 0.
We now aim at establishing an all-important result about M , namely that it is a function of

bounded characteristic on D with no singular inner part (under a certain condition on the poles
{xk}, also known as the Blaschke condition). This result can also be found in [42, Sect. 5] but we
include a complete proof of the statement here, partly due to its importance and partly to make
the present paper more self-contained.

Proposition 1. Let J and E be given as above. In addition, assume that the eigenvalues {xk}
satisfy the condition

∑
k

g(xk) < ∞, (3.9)

where g is the Green’s function for C \ E with pole at ∞. Then the function M defined in (3.5)
has bounded characteristic.

Remark. The condition (3.9) is equivalent to

∑
k

gΩ(xk, y) < ∞ for all y ∈ C \ σ(J ). (3.10)

For by (2.12), it implies

∏
k,γ∈Γ

∣∣γ (pk)
∣∣ =

∏
k

∣∣B(pk)
∣∣ > 0,

so that
∏

k B(z,pk) converges to an analytic function on D with simple zeros at {γ (pk)}k,γ∈Γ .
As none of these zeros belong to F \ {pk}, the product

∏
k |B(pk, z)| is > 0 there. Hence (3.10)

follows from (2.11).
Since every compact set K ⊂ C \σ(J ) is the image (under x) of a compact subset of F \ {pk},

we also have a uniform bound of the form

∑
k

gΩ(xk, y) � C for all y ∈ K. (3.11)
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Before the proof, let us briefly recall the notion of bounded characteristic (see, e.g., [17] or
[26]). For a meromorphic function h, one defines the proximity function by

m(r,h) =
2π∫

0

log+∣∣h(
reiθ

)∣∣ dθ

2π

and the counting function by

N(r,h) =
r∫

0

n(t, h)

t
dt,

where n(t, h) is the number of poles of h in |z| < t (counted with multiplicity). If these poles are
denoted {pk}, the above integral can also be written as

N(r,h) =
∑

k

log
r

|pk| . (3.12)

The sum

T (r) := T (r,h) = m(r,h) + N(r,h) (3.13)

is called the characteristic function of h and if limr↑1 T (r) < ∞, we say that h has bounded
characteristic in |z| < 1.

When z = 0 is not a pole of h, the Cartan identity states that

T (r) =
2π∫

0

N

(
r,

1

h − eiθ

)
dθ

2π
+ log+∣∣h(0)

∣∣.

This formula, obtained by applying Jensen’s formula to h(z) − eiθ and integrating over the unit
circle, becomes very useful when the solutions to h(z) = eiθ are under control for all θ . In a
similar way and by use of potential theory, Frostman [11] established the more general estimate

T (r) =
∫
K

N
(
r,1/(h − a)

)
dμK(a) + O(1) as r → 1, (3.14)

valid for any set K ⊂ C of Cap(K) > 0 and where dμK is the equilibrium measure of K (see
[26, Chap. 6]). This estimate in particular tells us that if N(r, 1

h−a
) � C for r < 1 and all a in a

set of positive logarithmic capacity, then T (r) is bounded.

Proof of Proposition 1. The plan is to show that N(1, 1
M−a

) � C for all a in some interval of
the real line. Given a ∈ R, let {pk(a)} be the unique points in F such that {x(pk(a))} are the
a-points of m in R \ E (i.e., the solutions of m(x) = a). Clearly, the points xk(a) := x(pk(a))
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interlace with the poles of m and the collection {γ (pk(a))}k,γ∈Γ accounts for all the a-points
of −M in D. Recalling (3.12) and (2.12), we have

N

(
1,

1

M + a

)
=

∑
k,γ∈Γ

log
1

|γ (pk(a))| = −
∑

k

log
∣∣B(

pk(a)
)∣∣ =

∑
k

g
(
xk(a)

)
.

Hence the task is reduced to dealing with values of the Green’s function. Due to interlacing, we
immediately see that

∑
k: xk(a)∈(αj ,βj )

g
(
xk(a)

)
� g(cj ) +

∑
k: xk∈(αj ,βj )

g(xk). (3.15)

So the a-points in gaps of E do not present any problems. Outside [α,β], most of the a-points
interlace with poles too. But for a > 0, there may be an a-point (xmin(a), say) of m below the
smallest eigenvalue of J and for a < 0, there may be an a-point above the largest eigenvalue.
However that may be, we always have a pointwise (in a 
= 0) estimate of the form

∑
k: xk(a)∈R\[α,β]

g
(
xk(a)

)
� C(a) +

∑
k: xk∈R\[α,β]

g(xk) (3.16)

for some constant C := C(a) depending on a. For the choice of C = g(xmin(1)), the estimate
holds uniformly for a � 1. Combining (3.15) and (3.16), we thus arrive at

N

(
1,

1

M + a

)
�

∑
j

g(cj ) +
∑

k

g(xk) + C,

valid for a ∈ [1,2], say. This completes the proof. �
As a function of bounded characteristic, M has angular boundary values M(eiθ ) a.e. on the

unit circle and admits a factorization of the form

M(z) = π1(z)

π2(z)
exp

{ 2π∫
0

eiθ + z

eiθ − z
log

∣∣M(
eiθ

)∣∣ dθ

2π
+

2π∫
0

eiθ + z

eiθ − z
dρ(θ)

}
, (3.17)

where π1, π2 are Blaschke products corresponding to zeros and poles of M , and dρ is a singular
measure on ∂D. In particular, log |M(eiθ )| belongs to L1(∂D). Naturally, M(eiθ ) coincides a.e.
with m(t + i0) for suitable t ∈ E. As eiθ runs through ∂F := F∩ ∂D, the corresponding values of
t cover E precisely twice and the same applies when eiθ traverses γ (F)∩ ∂D for arbitrary γ ∈ Γ .
With reference to Pommerenke [33], see also [37], we have

∑
γ∈Γ |γ (F) ∩ ∂D| = 2π (since E is

a Parreau–Widom set) and

2π∫
h
(
x
(
eiθ

)) dθ

2π
=

∫
h
(
x
(
eiθ

)) ∑
γ∈Γ

∣∣γ ′(eiθ
)∣∣ dθ

2π

0 ∂F
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whenever h ◦ x is integrable on ∂D. Moreover, by preservation of the equilibrium measure under
the covering map (see, e.g., [15, Chap. 3] or [10, Chap. 2]),

∫
E

h(t) dμE(t) =
2π∫

0

h
(
x
(
eiθ

)) dθ

2π
(3.18)

for every h ∈ L1(E, dμE).
The exponential of the integral in (3.17) that involves log |M(eiθ )| is called the outer part

of M while exp of the second integral is referred to as the singular inner part of M . The following
result will be crucial to us.

Theorem 1. In the setting of Proposition 1, the function M has no singular inner part. In other
words, it can be factorized as

M(z) = B(z)
∏
k

B(z, zk)

B(z,pk)
exp

{ 2π∫
0

eiθ + z

eiθ − z
log

∣∣M(
eiθ

)∣∣ dθ

2π

}
, (3.19)

where zk and pk belong to the fundamental set F and are chosen in such a way that {x(zk)} and
{x(pk)} are the zeros and poles of m in R \ E.

Proof. We start by showing that M − ε has no singular inner part for ε > 0. The result will then
follow taking ε ↓ 0. Given ε > 0, write mε := m + ε in the form

mε(x) = ∣∣mε(i)
∣∣ exp

{∫
R

(
1

t − x
− t

t2 + 1

)
ξ(t) dt

}
,

where ξ is defined a.e. on R by ξ(t) = 1
π

Argmε(t + i0). The trick is to split the integral into two
parts, namely i)

∫
E and ii)

∫
R\E. We consider each of the two parts separately:

i) m1(x) = exp

{∫
E

(
1

t − x
− t

t2 + 1

)
ξ(t) dt

}
.

Since E is compact, the behaviour of m1 is controlled by the function

ϕ(x) :=
∫
E

ξ(t)

t − x
dt.

As a Stieltjes transform, ϕ is holomorphic in C \ E and vanishes at ∞. Hence ϕ ◦ x is analytic
on D and in order to show that exp{ϕ ◦ x} has no singular inner part, it suffices to prove that ϕ ◦ x
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belongs to the Hardy space H 1. For every f ∈ H 1 has a complex Poisson representation of the
form

f (z) = i Imf (0) +
2π∫

0

eiθ + z

eiθ − z
Ref

(
eiθ

) dθ

2π
, z ∈ D.

A simple computation shows that

∣∣Imϕ(x)
∣∣ � | Imx|

∫
E

ξ(t)

|x − t |2 dt � | Imx|
∫
R

dt

|x − t |2 � π

since 0 � ξ(t) � 1. So the imaginary part of ϕ ◦ x is bounded and by M. Riesz’ theorem on
conjugate functions (see, e.g., [36, Chap. 17]), this implies that ϕ ◦ x ∈ Hp for all p < ∞.

ii) m2(x) = exp

{ ∫
R\E

(
1

t − x
− t

t2 + 1

)
ξ(t) dt

}
.

Since mε is real-valued (on R) away from σ(J ), the function ξ only takes the values 0 and 1 in
R \ E (except at poles and zeros where it is not defined). More precisely, ξ = 1 on every interval
of the form (xk, yk), where xk is a pole and yk the following zero or some βj , whichever comes
first. Furthermore, if limt↓αi

mε(t) < 0 for some i, then ξ = 1 on the interval (αi, y), where y is
the first zero after αi (or some βj ). Otherwise ξ = 0, and this in particular means that ξ vanishes
below x− (= the minimum of α and the smallest pole) and above y+ (= the maximum of β and
the largest zero). Hence it suffices to consider the function

ψ(x) := exp

{ ∫
I\E

ξ(t)

t − x
dt

}
, I := [x−, y+]. (3.20)

Let P := {xk} denote the set of poles of m. In case these poles accumulate at all endpoints
of E, we can write ψ as

ψ(x) =
∏
k

x − yk

x − xk

, (3.21)

where yk by definition is the first zero to the right of xk . The behaviour of m at ∞ ensures that

1) no zero can come before the smallest pole in (−∞, α),
2) there will always be a zero after the largest pole in (β,∞).

The representation in (3.21) remains valid in general if we abuse notation and allow for certain
xk’s and yk’s to coincide with suitable αi ’s or βj ’s. In all circumstances, the interval (xk, yk)

is either contained in a gap of E or in R \ [α,β]. So each factor in (3.21) – and hence the full
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product – is positive on E, except perhaps at certain endpoints where it vanishes or is not defined.
Naturally, the xk’s can be ordered and we set

ψn(x) =
∏
k�n

x − yk

x − xk

. (3.22)

Since
∑

k(yk − xk) � y+ − x−, the finite product in (3.22) converges uniformly to ψ(x) on
compact subsets of C \ P .

The strategy for showing that m2 ◦ x has no singular inner part is as follows. We know that
ψ ◦ x admits a factorization of the form (3.17), involving a ratio of Blaschke products and a
singular measure dρ. Move the Blaschke products to the left-hand side, take the logarithm and
compare the real parts. Because of (2.11), we get

log
∣∣ψ(

x(z)
)∣∣ +

∑
k

(
gΩ

(
x(z), yk

) − gΩ

(
x(z), xk

))

=
2π∫

0

1 − |z|2
|eiθ − z|2 log

∣∣ψ(
x
(
eiθ

))∣∣ dθ

2π
+

2π∫
0

1 − |z|2
|eiθ − z|2 dρ(θ), z ∈ D. (3.23)

The goal is to show that the harmonic function on the left-hand side is the Poisson integral of its
boundary values (i.e., the first integral on the right-hand side since gΩ(· , y) vanishes on E for
all y ∈ Ω). This clearly implies dρ to be the trivial measure. As it seems hard to tell whether the
harmonic function in question is the real part of an Hp-function for suitable p > 1, we proceed
by approximation.

For 0 < δ1, δ2 < 1, consider the function

φn;δ1,δ2(x) = log

∣∣∣∣ δ1 + ψn(x)

1 + δ2ψn(x)

∣∣∣∣ +
∑
k�n

(
gΩ

(
x, yk(δ1, n)

) − gΩ

(
x, yk(1/δ2, n)

))
, (3.24)

where {yk(δ, n)} are the zeros of δ + ψn(·). It is clear that yk(δ, n) ∈ (xk, yk) for all k, and
yk(δ1, n) ↗ yk as δ1 ↓ 0 while yk(1/δ2, n) ↘ xk as δ2 ↓ 0. Since

δ1 + ψn(x)

1 + δ2ψn(x)
= 1 + δ1

1 + δ2

∏
k�n

x − yk(δ1, n)

x − yk(1/δ2, n)
,

we see from (2.1) that φn;δ1,δ2 is harmonic on Ω and continuous throughout C. Hence its max-
imum and minimum is assumed on E (= the boundary of Ω). The Möbius transformation
z �→ (δ1 + z)/(1 + δ2z) maps R+ onto the interval (δ1,1/δ2) and since gΩ(· , yk(δ, n)) vanishes
on E, we therefore have

log(δ1) � φn;δ ,δ (x) � log(1/δ2), x ∈ Ω. (3.25)
1 2
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The uniform convergence of ψn implies (by Hurwitz’s theorem) that yk(δ, n) → yk(δ) as
n → ∞, where {yk(δ)} are the zeros of δ + ψ(·). We claim that φn;δ1,δ2 converges locally uni-
formly on Ω to

φδ1,δ2(x) = log

∣∣∣∣ δ1 + ψ(x)

1 + δ2ψ(x)

∣∣∣∣ +
∑

k

(
gΩ

(
x, yk(δ1)

) − gΩ

(
x, yk(1/δ2)

))
. (3.26)

It suffices to consider compact sets K ⊂ Ω for which the intersection K ∩ (R \ E) is a closed
interval, say L = [a, b]. There are only finitely many yk(δ)’s in this interval and if none of them
are endpoints of L (i.e., = a or b), we have precisely the same number of yk(δ, n)’s in L for n

large enough (again, by Hurwitz’s theorem). Clearly,

∑
k: yk(δ,n)∈L

(
gΩ

(
x, yk(δ, n)

) + log
∣∣x − yk(δ, n)

∣∣) (3.27)

is bounded on K , uniformly in n, and the claim will follow by dominated convergence if we can
find C > 0 such that

∑
k: yk(δ,n)/∈L

gΩ

(
x, yk(δ, n)

)
� C

for all x ∈ K and n sufficiently large. By concavity of the Green’s function and with {cx,j } the
critical points of gΩ(· , x), it follows that

∑
k: yk(δ,n)/∈L

gΩ

(
x, yk(δ, n)

)
� gΩ(a − η,x) + gΩ(b + η,x)

+
∑

k: xk /∈L

gΩ(xk, x) +
∑

j : cj /∈L

gΩ(cx,j , x) (3.28)

for η > 0 small and n sufficiently large. We thus get the desired C on the lines of the remark after
Proposition 1.

The estimate (3.25) continues to hold in the limit n → ∞ so that φδ1,δ2 ◦ x is a bounded
harmonic function on D. Hence it can be written as the Poisson integral of its boundary values,
that is,

φδ1,δ2

(
x(z)

) =
2π∫

0

1 − |z|2
|eiθ − z|2 log

∣∣∣∣ δ1 + ψ(x(eiθ ))

1 + δ2ψ(x(eiθ ))

∣∣∣∣ dθ

2π
, z ∈ D. (3.29)

All that remains is now to let δ2 ↓ 0 and then δ1 ↓ 0 in (3.29) and (3.26). Recalling that ψ � 0
a.e. on E, we get by monotone convergence that

lim
δ1↓0

lim
δ2↓0

φδ1,δ2

(
x(z)

) =
2π∫

1 − |z|2
|eiθ − z|2 log

∣∣ψ(
x
(
eiθ

))∣∣ dθ

2π
, z ∈ D.
0
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Since yk(δ) converges to yk as δ ↓ 0 and to xk as δ ↑ ∞, it follows from (3.26) that

lim
δ1↓0

lim
δ2↓0

φδ1,δ2(x) = log
∣∣ψ(x)

∣∣ +
∑

k

(
gΩ(x, yk) − gΩ(x, xk)

)
, x ∈ Ω

if we use dominated convergence as above. In conclusion, ψ ◦ x has no singular inner part.
For ε > 0 small enough, the largest zero of mε lies to the right of β and when ε ↓ 0, it

converges to ∞. We therefore get the extra factor B(z) in (3.19). �
Along the lines of [19,38] we shall now rewrite (3.19) to a nonlocal step-by-step sum rule

and introduce first some notation. Let Jn be the n times stripped Jacobi matrix (i.e., the matrix
obtained from J by removing the first n rows and columns) and denote by dμn = fn(t) dt +
dμn,s its spectral measure. In particular, J1 = {an+1, bn+1}∞n=1 and we let m1 be the associated
m-function. More generally, mn denotes the m-function for Jn (or Stieltjes transform of dμn)
and Mn is short for −mn ◦ x. Furthermore, we use {xn,k} to denote the eigenvalues of Jn (or
poles of mn) in R \ E and write pn,k for the points in F for which x(pn,k) = xn,k .

Related to coefficient stripping is the Stieltjes expansion

m(x) = 1

−x + b1 − a2
1m1(x)

(3.30)

which by iteration leads to a continued fraction representation of m. As a direct consequence
of (3.30), we see that the zeros of m coincide with the poles of m1. Moreover, taking boundary
values of the imaginary parts and recalling that m(t + i0) 
= 0 a.e., we get that

Imm(t + i0)

|m(t + i0)|2 = a2
1 Imm1(t + i0) for a.e. t ∈ R.

Pulled back to ∂D, this means

a2
1

∣∣M(
eiθ

)∣∣2 = ImM(eiθ )

ImM1(eiθ )
for a.e. θ,

provided that ImM1(e
iθ ) 
= 0 a.e. or, equivalently, ImM(eiθ ) 
= 0 a.e. on ∂D. When the set

{θ : ImM(eiθ ) 
= 0} has full measure (i.e., f (t) > 0 for a.e. t ∈ E), we can therefore write (3.19)
in the form

a1M(z) = B(z)
∏
k

B(z,p1,k)

B(z,pk)
exp

{
1

2

2π∫
0

eiθ + z

eiθ − z
log

(
ImM(eiθ )

ImM1(eiθ )

)
dθ

2π

}
. (3.31)

This representation, relating M and M1, provides us with step-by-step sum rules. For our purpose
it suffices to compare the constant terms.

If we divide by B(z) in (3.31) and let z → 0, the left-hand side reduces by (3.6) and (2.13) to
a1/Cap(E). According to (2.12), the logarithm of the Blaschke product (over k) on the right-hand
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side simplifies to
∑

k(g(xk) − g(x1,k)) and the integral becomes
∫

E log(f/f1) dμE, using (3.18).
So we end up with

log

(
a1

Cap(E)

)
=

∑
k

(
g(xk) − g(x1,k)

) + 1

2

∫
E

log

(
f (t)

f1(t)

)
dμE(t). (3.32)

Iteration now leads to

log

(
a1 · · ·an

Cap(E)n

)
=

∑
k

(
g(xk) − g(xn,k)

) + 1

2

∫
E

log

(
f (t)

fn(t)

)
dμE(t), (3.33)

provided that either logf or logfn is integrable with respect to dμE. The underlying assump-
tion (3.9) automatically implies that

∑
k g(xn,k) < ∞ for all n (cf. Proposition 3).

4. Preparatory results

In this section we present the last results needed to prove our main theorem. Throughout,
E will denote a Parreau–Widom set. As is crucial for the Szegő condition, the equilibrium mea-
sure of E has no singular part.

Proposition 2. The equilibrium measure dμE is absolutely continuous with respect to Lebesgue
measure.

This result – a proof of which is included in Appendix A – immediately shows that |E| > 0.
But it also enables us to relate the Szegő integral to relative entropies. For we can write dμE =
fE(t) dt and it follows from (3.18) and the fact that dμE is reflectionless on E (cf. Lemma 2 in
Appendix A) that

∫
E

logfE(t) dμE(t) =
2π∫

0

log
∣∣ME

(
eiθ

)∣∣ dθ

2π
− logπ > −∞. (4.1)

Hence the Szegő integral (i.e.,
∫

E logf dμE) is a relative entropy up to some additive constant,
specifically

S(dμE | dμ) := −
∫
E

log

(
fE(t)

f (t)

)
dμE(t) =

∫
E

logf (t) dμE(t) −
∫
E

logfE(t) dμE(t). (4.2)

Returning to the end of the previous section, if either logf or logfn belongs to L1(E, dμE) then
we can write the integral in (3.33) as

∫
E

log

(
f (t)

fn(t)

)
dμE(t) = S(dμ) − S(dμn), (4.3)

where S(·) is short notation for the relative entropy S(dμE | ·).
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Next we establish upper bounds for eigenvalue sums like the one in (3.9), but now for Jacobi
matrices that are different from – and yet related to – the original J . Let Pn denote the projection
on the subspace spanned by the first n basis vectors in �2(N) (i.e., the vectors e1 = (1,0,0, . . .),
e2 = (0,1,0, . . .), etc). The following result applies to Jacobi matrices in general.

Lemma. Let J be a bounded Jacobi matrix and suppose that σess(J ) ∩ (a, b) = ∅ for some
a < b. If J has no eigenvalues in (a, b), then both PnJPn and (1 − Pn)J (1 − Pn) have at most
one eigenvalue between a and b.

Remark. Note that J (n) := PnJPn is the upper left n × n corner of J while (1 − Pn)J (1 − Pn)

is equal to Jn, the n times stripped matrix.

Proof of Lemma. By the spectral mapping theorem, J has no eigenvalues in (a, b) if and only
if (J − a)(J − b) � 0. Put differently, this means

(
J − a + b

2

)2

�
(

b − a

2

)2

.

Given a projection P , write (PJP )2 = PJ 2P − PJ(1 − P)JP in order to get

(
PJP − a + b

2

)2

= P

(
J − a + b

2

)2

P − PJ(1 − P)JP

� P

(
b − a

2

)2

P − PJ(1 − P)JP,

where all operators are restricted to Ran(P ). When P = Pn or P = 1 − Pn, the perturbation
PJ(1 − P)JP has rank one and introduces at most one eigenvalue in (a, b). �

In what follows, we specialize to the situation where J = {an, bn}∞n=1 has essential spectrum
equal to E (i.e., the setting of Section 3). For arbitrary J̃ without eigenvalues, let J̃ (n) be the finite
rank perturbation given by

J̃ (n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1
a1 b2 a2

. . .
. . .

. . .
. . . bn an

an �

| J̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.4)

Denote by x
(n)
k the finitely many eigenvalues of J (n) and by x̃

(n)
k the eigenvalues of J̃ (n). The

following result gives the desired upper bound on eigenvalue sums.

Proposition 3. Assume that ∑
g(xk) < ∞. (4.5)
k
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Then there is a constant C > 0 such that∑
k

g(xn,k),
∑

k

g
(
x

(n)
k

)
,
∑

k

g
(
x̃

(n)
k

)
� C (4.6)

for all n � 1.

Proof. For the first two series, the choice of

C = 2
∑

k

g(xk) +
∑
j

g(cj ) < ∞

works. This follows immediately from the above lemma. To estimate the third, consider first
J (n) ⊕ J̃ (i.e., set an = 0 in J̃ (n)). Since J̃ has no eigenvalues, this direct sum has the same
eigenvalues as J (n). The rank two perturbation coming from an > 0 can be written as(

0 an

an 0

)
= an

2

(
1 1
1 1

)
+ an

2

(−1 1
1 −1

)
.

Near the right end of a gap, the negative rank one perturbation
( −1 1

1 −1

)
interlaces the eigenvalues

and the positive rank one perturbation
( 1 1

1 1

)
then moves the eigenvalues to the right. Near the left

end of a gap, a similar argument applies. Hence,∑
k

g
(
x̃

(n)
k

)
�

∑
k

g
(
x

(n)
k

) + 2
∑
j

g(cj )

and the result follows. �
In the next section, we take J̃ to be the Jacobi matrix corresponding to the equilibrium mea-

sure of E.

5. Szegő’s theorem

We are now ready to prove the main result of the paper.

Theorem 2. Let J = {an, bn}∞n=1 be a Jacobi matrix with spectral measure dμ = f (t) dt +
dμs and let E ⊂ R be a Parreau–Widom set. Assume that σess(J ) = E and denote by {xk} the
eigenvalues of J outside E, if any. On condition that

∑
k g(xk) < ∞, we have∫

E

logf (t) dμE(t) > −∞ (5.1)

if and only if

lim sup
n→∞

a1 · · ·an

Cap(E)n
> 0. (5.2)

In particular, (5.1) is equivalent to a1 · · ·an/Cap(E)n � 0 for measures dμ supported on E.
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Proof. Assume first that the Szegő condition (5.1) holds. Then S(dμ) > −∞ and by (3.33)
together with (4.3), we have

log

(
a1 · · ·an

Cap(E)n

)
=

∑
k

(
g(xk) − g(xn,k)

) + 1

2

(
S(dμ) − S(dμn)

)
. (5.3)

According to Proposition 3, the eigenvalue sum
∑

k g(xn,k) is bounded above, uniformly in n,
and the relative entropy S(dμn) is � 0 for all n. Hence the right-hand side of (5.3) is bounded
below and thus

lim inf
n→∞

a1 · · ·an

Cap(E)n
> 0. (5.4)

So much the more, (5.2) is true.
To prove that lim sup > 0 implies the Szegő condition, let JE be the Jacobi matrix of dμE and

set J̃ = JE in (4.4). Then J̃ (n) reduces to JE if we coefficient strip n times. By Proposition 3
and because logfE is integrable with respect to dμE, cf. (4.1), the iterated step-by-step sum
rule (3.33) applies to J̃ (n). Since dμE has no eigenvalues and S(dμE) = 0, we arrive at

log

(
a1 · · ·an

Cap(E)n

)
=

∑
k

g
(
x̃

(n)
k

) + 1

2
S(dμ̃n), (5.5)

where dμ̃n is the spectral measure of J̃ (n). Clearly, J̃ (n) converges strongly to J as n → ∞ and
thus dμ̃n

w−→ dμ. As relative entropy is weakly upper semi-continuous, we therefore have

lim sup
n→∞

S(dμ̃n) � S(dμ).

Hence,

lim sup
n→∞

a1 · · ·an

Cap(E)n
� C′ exp

{
1

2
S(dμ)

}
, (5.6)

where C′ is exp of the constant in (4.6). In this way, (5.2) implies (5.1). �
Corollary. In the setting of Theorem 2, if one and hence both of the equivalent conditions (5.1)–
(5.2) hold true, then

0 < lim inf
n→∞

a1 · · ·an

Cap(E)n
� lim sup

n→∞
a1 · · ·an

Cap(E)n
< ∞.

Proof. The statement follows immediately from (5.4) and (5.6). �
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Appendix A

In this appendix we give a direct proof of the following result stated in Section 4.

Proposition. When E is a Parreau–Widom set, the equilibrium measure dμE is absolutely con-
tinuous with respect to Lebesgue measure.

Remark. If
⋃

j in (2.5) is a finite union, then the result is well known (see, e.g., [40, Chap. 5]).
For homogeneous E, the result is contained in [3] (see also [18]).

Our proof relies on two lemmas, inspired by [13,24]. While the first applies to any probability
measure on R, the second is more specific to equilibrium measure. Alternatively, one can deduce
the result by considering the conformal map ψ introduced in Section 2.1.

Lemma 1. Let dρ = w(t) dt + dρs be a probability measure on R and let

mρ(x) =
∫
R

dρ(t)

t − x
, x ∈ C \ supp(dρ)

be its Stieltjes transform. If mρ(t + i0)/(t + i) belongs to L1(R), then dρ is absolutely continu-
ous (i.e., dρs = 0).

Proof. Recall that the boundary values mρ(t + i0) exist for a.e. t ∈ R and that w(t) =
1
π

Immρ(t + i0) a.e. on R. Our goal is thus to prove that

mρ(x) = 1

π

∫
R

Immρ(t + i0)

t − x
dt, x ∈ C \ R.

By the assumption on mρ(t + i0)/(t + i), the integral

1

2πi

∫
R

mρ(t + i0)

t − x
dt =: f (x)

defines a holomorphic function in C \ R. We readily see that

f (a + ib) − f (a − ib) = b

π

∫
R

mρ(t + i0)

(t − a)2 + b2
dt

and since the right-hand side has the same boundary values as mρ(a + ib) for b ↓ 0 (see, e.g.,
[35, Thm. 5.30]), it follows that

f (x) − f (x̄) = mρ(x)
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for x ∈ C+. Hence f (x̄) is holomorphic on C+, but so is f (x̄), and therefore f (x̄) must be
constant on C+. Indeed, f (x̄) = 0 for x ∈ C+ since f (−ib) → 0 as b → ∞. So we conclude
that

f (a + ib) =
{

mρ(a + ib) for b > 0,

0 for b < 0,

and the goal is now easily achieved noting that

1

π

∫
R

Immρ(t + i0)

t − x
dt = 1

2πi

∫
R

mρ(t + i0) − mρ(t + i0)

t − x
dt = f (x) + f (x̄) = mρ(x)

for x ∈ C \ R. �
Lemma 2. Let K ⊂ R be a regular compact set and denote by mK the Stieltjes transform of the
equilibrium measure dμK . Then the boundary values mK(t + i0) are purely imaginary for a.e.
t ∈ K .

Remark. Needless to say, the conclusion is empty unless |E| > 0. In the language of [13,14,31,
32,34], the lemma says that dμK (or mK ) is reflectionless on K . The statement is consistent with
the fact that the equilibrium potential is constant a.e. on K .

Proof of Lemma 2. Write

Kn = [α,β]∖ n⋃
j=1

(αj ,βj ), K := K∞.

It is known that mKn has the desired property for each n ∈ N (see, e.g., [40, Chap. 5]). By
passing to a subsequence, if necessary, we can assume that dμKn

w−→ dμK as n → ∞. Hence
mKn → mK , locally uniformly on C \ K .

The trick is now to consider the exponential representation of the m-function. We have

mKn(x)

|mKn(i)|
= exp

{∫
R

(
1

t − x
− t

t2 + 1

)
ξn(t) dt

}
, (A.1)

where ξn(t) = 1
π

ArgmKn(t + i0) a.e. on R. Obviously, ξn(t) = 0 for t < α and ξn(t) = 1 for
t > β . So the right-hand side in (A.1) reduces to

√
1 + β2

β − x
exp

{ β∫
α

(
1

t − x
− t

t2 + 1

)
ξn(t) dt

}
.

But more importantly, we have ξn(t) = 1/2 for all t ∈ Kn, n ∈ N. The uniform convergence
of mKn implies that

∫ γ

α
ξn(t) dt converges uniformly for γ in [α,β] (see, e.g., [2, Sect. 2]).

Equivalently, ξn(t) dt
w−→ ξ(t) dt as measures on [α,β] (where ξ is short for ξ∞). Since the
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Green’s function for C \Kn converges locally uniformly to the Green’s function for Ω := C\K ,
the critical points converge too. Therefore,

ξn(t)
pointwise−−−−−→

n→∞

⎧⎨
⎩

1/2 for t ∈ K,

1 for t ∈ (αj , cj ),

0 for t ∈ (cj , βj ),

where {cj } are the critical points of gΩ . We conclude that ξ(t) = 1/2 for a.e. t ∈ K and the result
follows. �
Proof of Proposition. By Lemma 1, it suffices to show that mE(t + i0)/(t + i) is integrable
on R. We split the integral into 3 parts, namely i)

∫
E, ii)

∫⋃
j (αj ,βj )

, and iii)
∫

R\[α,β].
i) According to Lemma 2, mE(t + i0) is purely imaginary a.e. on E. When restricted to E,

|mE(t + i0)| is therefore the absolutely continuous part of a finite measure. Hence,

∫
E

∣∣∣∣mE(t + i0)

t + i

∣∣∣∣dt < ∞.

ii) By (2.3), we can relate mE to the derivative of g in the gaps of E and get the estimate

∫
⋃

j (αj ,βj )

∣∣∣∣mE(t + i0)

t + i

∣∣∣∣dt � 2
∑
j

g(cj ).

Since E is a Parreau–Widom set, the sum on the right-hand side is < ∞.
iii) Recall from (3.2) that mE decays like −1/t at ∞. Therefore,

∫
R\[α,β]

∣∣∣∣mE(t + i0)

t + i

∣∣∣∣dt < ∞.

This completes the proof. �
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