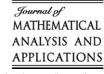


Available online at www.sciencedirect.com SCIENCE DIRECT.

J. Math. Anal. Appl. 300 (2004) 1-11



www.elsevier.com/locate/jmaa

Extremal solutions of periodic boundary value problems for first order integro-differential equations of mixed type

Guang-Xing Song $^{\mathrm{a},*},$ Xun-Lin Zhu $^{\mathrm{b}}$

^a Department of Mathematics, University of Petroleum, Dongying, Shandong 257061, PR China ^b Zhengzhou Institute of Light Industry, Zhengzhou 450002, PR China

Received 25 November 2003

Submitted by H.R. Thieme

Abstract

This paper investigates the maximal and minimal solutions of periodic boundary value problems for first order nonlinear integro-differential equations of mixed type by establishing a comparison result and using the monotone iterative technique.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Integro-differential equation; Periodic boundary value problem; Comparison theorem; Monotone iterative technique; Extremal solution

1. Introduction

In [1-4,7,8], the existence of solutions to periodic boundary value problems for differential equations and integro-differential equations has been investigated. In this paper, we shall study the following periodic boundary value problems (PBVP for brevity) for first order nonlinear integro-differential equations of mixed type

Corresponding author. E-mail address: sgx8396829@163.com (G.-X. Song).

$$\begin{cases} u' = f(t, u, Tu, Su), & t \in J, \\ u(0) = u(1), \end{cases}$$
 (1)

where $f \in C[J \times R \times R \times R, R], J = [0, 1],$

$$Tu(t) = \int_0^t k(t,s)u(s) ds, \qquad Su(t) = \int_0^1 h(t,s)u(s) ds,$$

 $k(t,s) \in C[D,R^+]$, $h(t,s) \in C[J \times J,R^+]$, $D = \{(t,s) \in R^2 \colon 0 \le s \le t \le 1\}$, $R^+ = [0,+\infty)$, $k_0 = \max\{k(t,s) \colon (t,s) \in D\}$, $h_0 = \max\{h(t,s) \colon (t,s) \in J \times J\}$. In the special case where f dose not contain Su, i.e., (1) is a PBVP of Volterra type, the extremal solutions of (1) have been obtained by means of the monotone iterative technique based on a comparison result (see [1,2,4,8]). But, it is easy to see that the method for obtaining a comparison result is not applicable in the general case. Therefore, in this paper, we shall obtain a comparison result for the general case by a completely different way. And then, using standard monotone iterative technique (see [3-5,7,8]), an existence theorem of minimal and maximal solutions of PBVP (1) is obtained. Finally, we give several examples for applying this existence theorem.

2. Several lemmas

In this section we combine the ideas in [6] together with those in [7] to obtain a new comparison result.

The following comparison results play an important role in this paper.

Lemma 1 (Comparison theorem). Assume that $u = u(t) \in C^1[J, R]$ satisfies

$$\begin{cases} u'(t) \ge -Mu(t) - N \int_0^t k(t, s)u(s) \, ds - L \int_0^1 h(t, s)u(s) \, ds, & t \in J, \\ u(0) \ge u(1), \end{cases}$$
 (2)

where $M, N, L \geqslant 0$ are constants and satisfy

$$(Nk_0 + Lh_0)(e^{2M} - 1) < M^2. (3)$$

Then $u(t) \ge 0, \forall t \in J$.

Proof. Let $p(t) = u(t)e^{Mt}$, $t \in J$. Thus, by (2) we have that

$$p'(t) \ge -N \int_{0}^{t} e^{M(t-s)} k(t,s) p(s) ds - L \int_{0}^{1} e^{M(t-s)} h(t,s) p(s) ds,$$

$$p(0) \ge e^{-M} p(1). \tag{4}$$

If $\min\{p(t): t \in J\} < 0$, the continuity of p(t) implies that there exists $t_0 \in (0, 1)$ and $t_1 \in J$ such that

$$p(t_0) < 0$$
, $p(t_1) = \max \{ p(t) : t \in J \} \equiv \lambda$.

We now show that $\lambda > 0$.

Assume that $\lambda \le 0$, by (4) we know that $p'(t) \ge 0$, $t \in J$, hence, $p(0) \le p(t_0) < 0$. Thus by (4), we have that p(0) < p(1) < 0, which contradicts $p(1) \le e^M p(0) < 0$. Hence, we obtain $\lambda > 0$.

Evidently, the relationships between t_0 and t_1 must be one of the following two cases:

Case 1: $t_1 < t_0$; Case 2: $t_0 < t_1$.

Case 1. By (4), we have that

$$0 > p(t_0) = p(t_1) + \int_{t_1}^{t_0} p'(s) \, ds$$

$$\geqslant \lambda - N \int_{t_1}^{t_0} ds \int_{0}^{s} e^{M(s-\tau)} k(s,\tau) p(\tau) \, d\tau$$

$$- L \int_{t_1}^{t_0} ds \int_{0}^{1} e^{M(s-\tau)} h(s,\tau) p(\tau) \, d\tau$$

$$\geqslant \lambda \left[1 - Nk_0 \int_{t_1}^{t_0} e^{Ms} \, ds \int_{0}^{s} e^{-M\tau} \, d\tau - Lh_0 \int_{t_1}^{t_0} e^{Ms} \, ds \int_{0}^{1} e^{-M\tau} \, d\tau \right]$$

$$\geqslant \lambda \left[1 - \frac{Nk_0 + Lh_0}{M^2} \cdot (e^M - 1) \right].$$

Thus, $M^2 < (Nk_0 + Lh_0) \cdot (e^M - 1)$, which contradicts (3).

Case 2. By (4), we have that

$$0 > p(t_0) = p(0) + \int_0^{t_0} p'(s) \, ds$$

$$\geqslant p(0) - \int_0^{t_0} \left[N \int_0^s e^{M(s-\tau)} k(s,\tau) p(\tau) \, d\tau \right]$$

$$+ L \int_0^1 e^{M(s-\tau)} h(s,\tau) p(\tau) \, d\tau \, ds$$

$$\geqslant p(0) - \lambda \int_0^{t_0} e^{Ms} \left[N k_0 \int_0^s e^{-M\tau} \, d\tau + L h_0 \int_0^1 e^{-M\tau} \, d\tau \, d\tau \right] ds$$

$$\geqslant p(0) - \lambda \cdot \frac{Nk_0 + Lh_0}{M^2} \cdot (e^M - 1),$$

i.e.,

$$p(0) \leq \lambda \cdot \frac{Nk_0 + Lh_0}{M^2} \cdot (e^M - 1), \tag{5}$$

$$\lambda \equiv p(t_1) = p(1) - \int_{t_1}^{1} p'(s) \, ds$$

$$\leq p(1) + \int_{t_1}^{1} \left[N \int_{0}^{s} e^{M(s - \tau)} k(s, \tau) p(\tau) \, d\tau \right] ds$$

$$+ L \int_{0}^{1} e^{M(s - \tau)} h(s, \tau) p(\tau) \, d\tau \, ds$$

$$\leq p(1) + \lambda \int_{t_1}^{1} e^{Ms} \left[Nk_0 \int_{0}^{s} e^{-M\tau} \, d\tau + Lh_0 \int_{0}^{1} e^{-M\tau} \, d\tau \, d\tau \, dt \right] ds$$

$$\leq p(1) + \lambda \cdot \frac{Nk_0 + Lh_0}{M^2} \cdot (e^M - 1).$$

Hence, by (4) and (5), we know that

$$\lambda \cdot \left[1 - \frac{Nk_0 + Lh_0}{M^2} \cdot \left(e^M - 1\right)\right] \leqslant p(1) \leqslant e^M p(0)$$
$$\leqslant \lambda \cdot \frac{Nk_0 + Lh_0}{M^2} \cdot e^M \cdot \left(e^M - 1\right).$$

Thus, $M^2 \le (Nk_0 + Lh_0) \cdot (e^{2M} - 1)$, which contradicts (3). Hence $p(t) \ge 0$, $\forall t \in J$ and $u(t) \ge 0$ for $t \in J$.

Lemma 1 is proved. \Box

For any $\sigma(t) \in C[J, R]$ and nonnegative real numbers M, N, L, we consider the linear periodic boundary value problems for first order integro-differential equations of mixed type

$$\begin{cases} u'(t) + Mu(t) + N \int_0^t k(t, s) u(s) \, ds + L \int_0^1 h(t, s) u(s) \, ds = \sigma(t), & t \in J, \\ u(0) = u(1). \end{cases}$$
 (6)

Lemma 2. If nonnegative real numbers M, N, L satisfying

$$(Nk_0 + Lh_0)e^M < M^2, (7)$$

then (6) has a unique solution in C[J, R].

Proof. Let $v(t) = u(t)e^{Mt}$, $t \in J$. Thus, by (6) we have that

$$\begin{cases} v'(t) = \sigma_1(t) - N \int_0^t e^{M(t-s)} k(t,s) v(s) \, ds - L \int_0^1 e^{M(t-s)} h(t,s) v(s) \, ds, \\ t \in J, \\ v(0) = e^{-M} \cdot v(1), \end{cases}$$
 (8)

where $\sigma_1(t) = \sigma(t)e^{Mt}$, $t \in J$.

Obviously, v(t) is a solution of (8) if and only if $u(t) = v(t)e^{-Mt}$ is a solution of (6), and v(t) is a solution of (8) if and only if v(t) satisfies the integral equation

$$v(t) = \frac{1}{e^{M} - 1} \int_{0}^{1} \left[\sigma_{1}(s) - N \int_{0}^{s} e^{M(s - \tau)} k(s, \tau) v(\tau) d\tau \right]$$

$$- L \int_{0}^{1} e^{M(s - \tau)} h(s, \tau) v(\tau) d\tau ds$$

$$+ \int_{0}^{t} \left[\sigma_{1}(s) - N \int_{0}^{s} e^{M(s - \tau)} k(s, \tau) v(\tau) d\tau \right]$$

$$- L \int_{0}^{1} e^{M(s - \tau)} h(s, \tau) v(\tau) d\tau ds$$

$$\equiv F v(t). \tag{9}$$

Obviously, the $v^*(t)$ is a solution of (8) if and only if v^* is a fixed point of the F, i.e., $Fv^* = v^*$.

For any $u, v \in C[J, R]$, by (9) we have that

$$\begin{split} \left\| Fu(t) - Fv(t) \right\| & \leq \| u - v \|_{C} \\ & \cdot \left[\frac{1}{e^{M} - 1} \int_{0}^{1} e^{Ms} \left(Nk_{0} \int_{0}^{s} e^{-M\tau} d\tau + Lh_{0} \int_{0}^{1} e^{-M\tau} d\tau \right) ds \\ & + \int_{0}^{t} e^{Ms} \left(Nk_{0} \int_{0}^{s} e^{-M\tau} d\tau + Lh_{0} \int_{0}^{1} e^{-M\tau} d\tau \right) ds \right] \\ & \leq \frac{Nk_{0} + Lh_{0}}{M^{2}} \cdot e^{M} \cdot \| u - v \|_{C}, \quad \forall t \in J. \end{split}$$

Therefore, we have that

$$||Fu - Fv||_C \le \frac{Nk_0 + Lh_0}{M^2} \cdot e^M \cdot ||u - v||_C.$$
 (10)

By (7) and (10), we know that F is a contraction operator on C[J, R]. Consequently, by the contraction-mapping theorem, F has a unique fixed point v^* , obviously, the $v^*(t)$ is

a unique solution of (8), i.e., $u^*(t) = v^*(t) \cdot e^{-Mt}$ is a unique solution of (6). Lemma 2 is proved. \Box

Lemma 3. $u(t) \in C^1[J, R]$ is a solution of PBVP (1) if and only if $u(t) \in C[J, R]$ and it is a solution of the following integral equation:

$$u(t) = \frac{e^{-Mt}}{e^{M} - 1} \cdot \int_{0}^{1} e^{Ms} \left[f(s, u(s), Tu(s), Su(s)) + Mu(s) \right] ds$$
$$+ e^{-Mt} \cdot \int_{0}^{t} e^{Ms} \left[f(s, u(s), Tu(s), Su(s)) + Mu(s) \right] ds.$$

The proof of Lemma 3 is easy, so we omit it.

3. Main results

In this section we shall use the monotone iterative technique to prove the existence of minimal and maximal solutions of the PBVP (1). Assume that $u_0, v_0 \in C[J, R]$ with $u_0(t) \leq v_0(t), \forall t \in J$. Set

$$[u_0, v_0] \equiv \{ u \in C[J, R] : u_0(t) \leqslant u(t) \leqslant v_0(t), \ \forall t \in J \},$$

$$\Omega \equiv \{ (u, v, w) : u \in [u_0, v_0], \ v \in [Tu_0, Tv_0], \ w \in [Su_0, Sv_0] \}.$$

We obtain the existence of extremal solutions for PBVP (1) in the next result.

Theorem. Let $u_0, v_0 \in C[J, R]$ such that $u_0(t) \leq v_0(t)$ in J. Assume that the following conditions hold:

$$(H_1) u'_0(t) \leqslant f(t, u_0(t), Tu_0(t), Su_0(t)), t \in J, u_0(0) \leqslant u_0(1);$$
$$v'_0(t) \geqslant f(t, v_0(t), Tv_0(t), Sv_0(t)), t \in J, v_0(0) \geqslant v_0(1).$$

(H₂) Whenever $t \in J$ and $u_i, v_i, w_i \in \Omega$ (i = 1, 2) and $u_2 \ge u_1, v_2 \ge v_1, w_2 \ge w_1$,

$$f(t, u_2, v_2, w_2) - f(t, u_1, v_1, w_1)$$

 $\geq -M(u_2 - u_1) - N(v_2 - v_1) - L(w_2 - w_1),$

where M, N, L are nonnegative real constants and satisfy

$$\begin{cases} (Nk_0 + Lh_0) \cdot e^M < M^2, & \text{if } 0 < M < ln \frac{1 + \sqrt{5}}{2}, \\ (Nk_0 + Lh_0) \cdot (e^{2M} - 1) < M^2, & \text{if } M \geqslant ln \frac{1 + \sqrt{5}}{2}. \end{cases}$$
(11)

Then PBVP (1) have the minimal solution u^* and maximal solution v^* in $[u_0, v_0]$. Moreover, there exist monotone iteration sequences $\{u_n(t)\}, \{v_n(t)\} \subset [u_0, v_0]$ such that

$$u_n(t) \to u^*(t), \quad v_n(t) \to v^*(t), \quad as \ n \to \infty \text{ uniformly on } t \in J,$$

where $\{u_n(t)\}, \{v_n(t)\}$ satisfy

$$\begin{cases} u'_{n}(t) = f(t, u_{n-1}(t), Tu_{n-1}(t), Su_{n-1}(t)) - M(u_{n} - u_{n-1})(t) \\ - NT(u_{n} - u_{n-1})(t) - LS(u_{n} - u_{n-1})(t), & t \in J, \\ u_{n}(0) = u_{n}(1) & (n = 1, 2, 3, ...), \end{cases}$$
(12)

$$\begin{cases}
v'_{n}(t) = f(t, v_{n-1}(t), Tv_{n-1}(t), Sv_{n-1}(t)) - M(v_{n} - v_{n-1})(t) \\
- NT(v_{n} - v_{n-1})(t) - LS(v_{n} - v_{n-1})(t), & t \in J, \\
v_{n}(0) = v_{n}(1) & (n = 1, 2, 3, ...),
\end{cases}$$
(13)

and

$$u_0 \leqslant u_1 \leqslant \dots \leqslant u_n \leqslant \dots \leqslant u^* \leqslant v^* \leqslant \dots \leqslant v_n \leqslant \dots \leqslant v_1 \leqslant v_0. \tag{14}$$

Proof. First, it is easy to see by (11) that (3) and (7) hold.

For any $u_{n-1}, v_{n-1} \in C[J, R]$, by Lemma 2, we know that Eqs. (12) and (13) have unique solutions u_n and v_n in C[J, R], respectively.

In the following, we will show by induction that

$$u_{n-1} \leqslant u_n \leqslant v_n \leqslant v_{n-1}, \quad n = 1, 2, 3, \dots$$
 (15)

By (12), (13), and the conditions (H_1) and (H_2) , we have that

$$\begin{cases} (u_1 - u_0)'(t) \geqslant -M(u_1 - u_0)(t) - N \int_0^t k(t, s)(u_1 - u_0)(s) \, ds \\ -L \int_0^1 h(t, s)(u_1 - u_0)(s) \, ds, & t \in J, \\ (u_1 - u_0)(0) \geqslant (u_1 - u_0)(1); \end{cases}$$

$$\begin{cases} (v_0 - v_1)'(t) \geqslant -M(v_0 - v_1)(t) - N \int_0^t k(t, s)(v_0 - v_1)(s) \, ds \\ -L \int_0^1 h(t, s)(v_0 - v_1)(s) \, ds, & t \in J, \\ (v_0 - v_1)(0) \geqslant (v_0 - v_1)(1); \end{cases}$$

$$\begin{cases} (v_1 - u_1)'(t) \geqslant -M(v_1 - u_1)(t) - N \int_0^t k(t, s)(v_1 - u_1)(s) \, ds \\ -L \int_0^1 h(t, s)(v_1 - u_1)(s) \, ds, & t \in J, \\ (v_1 - u_1)(0) \geqslant (v_1 - u_1)(1). \end{cases}$$

Thus, by Lemma 1 we have that $u_0 \le u_1 \le v_1 \le v_0$.

Now we assume that (15) is true for k > 1, i.e., $u_{k-1} \le u_k \le v_k \le v_{k-1}$, and we prove that (15) is true for k + 1 too. In fact, by (12), (13), and the condition (H_2) , we have that

$$\begin{cases} (u_{k+1} - u_k)'(t) \geqslant -M(u_{k+1} - u_k)(t) - N \int_0^t k(t, s)(u_{k+1} - u_k)(s) \, ds \\ -L \int_0^1 h(t, s)(u_{k+1} - u_k)(s) \, ds, \quad t \in J, \\ (u_{k+1} - u_k)(0) = (u_{k+1} - u_k)(1); \end{cases}$$

$$\begin{cases} (v_k - v_{k+1})'(t) \geqslant -M(v_k - v_{k+1})(t) - N \int_0^t k(t, s)(v_k - v_{k+1})(s) \, ds \\ -L \int_0^1 h(t, s)(v_k - v_{k+1})(s) \, ds, \quad t \in J, \\ (v_k - v_{k+1})(0) = (v_k - v_{k+1})(1); \end{cases}$$

$$\begin{cases} (v_{k+1} - u_{k+1})'(t) \geqslant -M(v_{k+1} - u_{k+1})(t) - N \int_0^t k(t, s)(v_{k+1} - u_{k+1})(s) \, ds \\ - L \int_0^1 h(t, s)(v_{k+1} - u_{k+1})(s) \, ds, \quad t \in J, \\ (v_{k+1} - u_{k+1})(0) = (v_{k+1} - u_{k+1})(1). \end{cases}$$

Thus, by Lemma 1 we have that $u_k \le u_{k+1} \le v_k$. So, by induction, (15) holds for all positive integer n.

It is easy to know by (15) that

$$u_0 \leqslant u_1 \leqslant \dots \leqslant u_n \leqslant \dots \leqslant v_n \leqslant \dots \leqslant v_1 \leqslant v_0. \tag{16}$$

By (12), (13), and the condition (H_2) , we have that

$$f(t, u_0, Tu_0, Su_0) - 2M(v_0 - u_0) - 2NT(v_0 - u_0) - 2LS(v_0 - u_0)$$

$$\leq u'_n(t) \leq f(t, v_0, Tv_0, Sv_0) + M(v_0 - u_0) + NT(v_0 - u_0) + LS(v_0 - u_0).$$

Thus, $\{u'_n(t)\}$ is uniformly bounded. Also, similarly to the above we can show that $\{v'_n(t)\}$ is uniformly bounded.

From the above we know that $\{u_n\}$ and $\{v_n\}$ are uniformly bounded and equicontinuous in $[u_0, v_0]$. By Arzela–Ascoli theorem and (16), we can see that the sequences $\{u_n\}$ and $\{v_n\}$ are uniformly convergent in J. Let

$$\lim_{n \to \infty} u_n(t) = u^*(t), \qquad \lim_{n \to \infty} v_n(t) = v^*(t). \tag{17}$$

Obviously, u^* , $v^* \in [u_0, v_0]$ and (14) holds.

Furthermore, by (12) and (13), we have that

$$u_{n}(t) = \frac{e^{-Mt}}{e^{M} - 1} \cdot \int_{0}^{1} e^{Ms} \left[f\left(s, u_{n-1}(s), Tu_{n-1}(s), Su_{n-1}(s)\right) + Mu_{n-1}(s) - NT(u_{n} - u_{n-1})(s) - LS(u_{n} - u_{n-1})(s) \right] ds$$

$$+ e^{-Mt} \cdot \int_{0}^{t} e^{Ms} \left[f\left(s, u_{n-1}(s), Tu_{n-1}(s), Su_{n-1}(s)\right) + Mu_{n-1}(s) - NT(u_{n} - u_{n-1})(s) - LS(u_{n} - u_{n-1})(s) \right] ds, \quad t \in J,$$

$$v_{n}(t) = \frac{e^{-Mt}}{e^{M} - 1} \cdot \int_{0}^{1} e^{Ms} \left[f\left(s, v_{n-1}(s), Tv_{n-1}(s), Sv_{n-1}(s)\right) + Mv_{n-1}(s) - NT(v_{n} - v_{n-1})(s) - LS(v_{n} - v_{n-1})(s) \right] ds$$

$$+ e^{-Mt} \cdot \int_{0}^{t} e^{Ms} \left[f\left(s, v_{n-1}(s), Tv_{n-1}(s), Sv_{n-1}(s)\right) + Mv_{n-1}(s) - NT(v_{n} - v_{n-1})(s) - LS(v_{n} - v_{n-1})(s) \right] ds, \quad t \in J.$$

$$(19)$$

Taking limits as $n \to \infty$, by (17), we have that

$$u^{*}(t) = \frac{e^{-Mt}}{e^{M} - 1} \cdot \int_{0}^{1} e^{Ms} \left[f\left(s, u^{*}(s), Tu^{*}(s), Su^{*}(s)\right) + Mu^{*}(s) \right] ds$$

$$+ e^{-Mt} \cdot \int_{0}^{t} e^{Ms} \left[f\left(s, u^{*}(s), Tu^{*}(s), Su^{*}(s)\right) + Mu^{*}(s) \right] ds,$$

$$v^{*}(t) = \frac{e^{-Mt}}{e^{M} - 1} \cdot \int_{0}^{1} e^{Ms} \left[f\left(s, v^{*}(s), Tv^{*}(s), Sv^{*}(s)\right) + Mv^{*}(s) \right] ds$$

$$+ e^{-Mt} \cdot \int_{0}^{t} e^{Ms} \left[f\left(s, v^{*}(s), Tv^{*}(s), Sv^{*}(s)\right) + Mv^{*}(s) \right] ds.$$

From the above, by Lemma 3, we know that u^* and v^* are solutions of PBVP (1) in $[u_0, v_0]$. Next we prove that u^* and v^* are the minimal and maximal solutions of the PBVP (1) in $[u_0, v_0]$, respectively.

In fact, suppose $w \in [u_0, v_0]$ is also a solution of the PBVP (1), i.e.,

$$\begin{cases} w'(t) = f(t, w, Tw, Sw), & t \in J, \\ w(0) = w(1). \end{cases}$$
 (20)

Using induction, by (12), (13), the condition (H_2) and Lemma 1, it is not difficult to prove that

$$u_n \leqslant w \leqslant v_n, \quad n = 1, 2, 3, \dots \tag{21}$$

Thus, letting $n \to \infty$ in (21) and by (17), we have that

$$u^* \leqslant w \leqslant v^*$$

i.e., u^* and v^* are the minimal and maximal solutions of the PBVP (1) in the interval $[u_0, v_0]$, respectively.

The proof of the theorem is complete. \Box

4. Examples

Example 1. Consider the PBVP of first order nonlinear integro-differential equations of mixed type:

$$\begin{cases} u'(t) = \frac{2}{15} [t - u(t)]^3 + \frac{1}{625} [t^3 - \int_0^t 2t s u(s) \, ds]^5 \\ + \frac{1}{875} [t^2 - \int_0^1 3(ts)^2 u(s) \, ds]^7, \quad t \in J, \\ u(0) = u(1). \end{cases}$$
 (22)

Conclusion 1. PBVP (22) has the minimal solution $u^*(t)$ and maximal solution $v^*(t)$ such that $0 \le u^*(t) \le v^*(t) \le 1$ for $0 \le t \le 1$ and there exist monotone iteration sequences

 $\{u_n(t)\}, \{v_n(t)\} \subset [u_0, v_0]$ such that

$$u_n(t) \to u^*(t), \quad v_n(t) \to v^*(t), \quad \text{as } n \to \infty \text{ uniformly on } t \in J,$$
 where $u_0(t) = 0, \, v_0(t) = 1, \, \forall t \in J.$

Proof. Let

$$f(t, u, v, w) = \frac{2}{15}(t - u)^3 + \frac{1}{625}(t^3 - v)^5 + \frac{1}{875}(t^2 - w)^7,$$

$$M = \frac{2}{5}, \qquad N = L = \frac{1}{125}.$$

Obviously, $u_0(t) \leq v_0(t)$, and

$$u'_{0}(t) \leq f(t, u_{0}(t), Tu_{0}(t), Su_{0}(t)), \qquad u_{0}(0) = u_{0}(1);$$

$$v'_{0}(t) \geq f(t, v_{0}(t), Tv_{0}(t), Sv_{0}(t)), \qquad v_{0}(0) = v_{0}(1);$$

$$f(t, u, v, w) - f(t, \bar{u}, \bar{v}, \bar{w}) \geq -M(u - \bar{u}) - N(v - \bar{v}) - L(w - \bar{w}).$$

where $u_0(t) \leqslant \bar{u} \leqslant u \leqslant v_0(t)$, $(Tu_0)(t) \leqslant \bar{v} \leqslant v \leqslant (Tv_0)(t)$, $(Su_0)(t) \leqslant \bar{w} \leqslant w \leqslant (Sv_0)(t)$, $\forall t \in J$.

It is easy to compute that $0 < M = \frac{2}{5} < \ln \frac{1+\sqrt{5}}{2}$, $k_0 = \max\{2ts: 0 \le s \le t \le 1\} = 2$, $h_0 = \max\{3(ts)^2: t, s \in J\} = 3$ and

$$(Nk_0 + Lh_0) \cdot e^M \le \left(\frac{2}{125} + \frac{3}{125}\right) \cdot e^{2/5} = \frac{1}{25} \cdot e^{0.4} < \frac{4}{25} = M^2.$$

Hence, the PBVP (22) satisfies all conditions of Theorem, it follows by Theorem that our conclusions hold. The proof is complete. \Box

Example 2. Consider the PBVP of first order nonlinear integro-differential equations of mixed type:

$$\begin{cases} u'(t) = \frac{1}{3}[t - u(t)]^3 + \frac{1}{200}[t^3 - \int_0^t 2tsu(s) \, ds]^5 \\ + \frac{1}{280}[t^2 - \int_0^1 3(ts)^2 u(s) \, ds]^7, \quad t \in J, \\ u(0) = u(1). \end{cases}$$
 (23)

Conclusion 2. PBVP (23) has the minimal solution $u^*(t)$ and maximal solution $v^*(t)$ such that $0 \le u^*(t) \le v^*(t) \le 1$ for $0 \le t \le 1$ and there exist monotone iteration sequences $\{u_n(t)\}, \{v_n(t)\} \subset [u_0, v_0]$ such that

$$u_n(t) \to u^*(t), \quad v_n(t) \to v^*(t), \quad \text{as } n \to \infty \text{ uniformly on } t \in J,$$
 where $u_0(t) = 0, \, v_0(t) = 1, \, \forall t \in J.$

Proof. Let

$$f(t, u, v, w) = \frac{1}{3}(t - u)^3 + \frac{1}{200}(t^3 - v)^5 + \frac{1}{280}(t^2 - w)^7,$$

$$M = 1, \qquad N = L = \frac{1}{40}.$$

Obviously, $u_0(t) \leq v_0(t)$, and

$$u'_{0}(t) \leq f(t, u_{0}(t), Tu_{0}(t), Su_{0}(t)), \qquad u_{0}(0) = u_{0}(1);$$

$$v'_{0}(t) \geq f(t, v_{0}(t), Tv_{0}(t), Sv_{0}(t)), \qquad v_{0}(0) = v_{0}(1);$$

$$f(t, u, v, w) - f(t, \bar{u}, \bar{v}, \bar{w}) \geq -M(u - \bar{u}) - N(v - \bar{v}) - L(w - \bar{w}),$$

where $u_0(t) \leqslant \bar{u} \leqslant u \leqslant v_0(t)$, $(Tu_0)(t) \leqslant \bar{v} \leqslant v \leqslant (Tv_0)(t)$, $(Su_0)(t) \leqslant \bar{w} \leqslant w \leqslant (Sv_0)(t)$, $\forall t \in J$.

It is easy to compute that $0 < M = 1 > \ln \frac{1+\sqrt{5}}{2}$, $k_0 = \max\{2ts: 0 \le s \le t \le 1\} = 2$, $h_0 = \max\{3(ts)^2: t, s \in J\} = 3$ and

$$(Nk_0 + Lh_0) \cdot (e^{2M} - 1) = \frac{1}{8} \cdot (e^2 - 1) < 1 = M^2.$$

Hence, the PBVP (23) satisfies all conditions of Theorem, it follows by Theorem that our conclusions hold. The proof is complete. \Box

Remark. In the same way, the similar example can be obtained for $M = \ln \frac{1+\sqrt{5}}{2}$.

Acknowledgment

The authors thank the referee for his\her careful reading of the manuscript and useful suggestions.

References

- [1] V. Lakshmikantham, Remarks on first and second order periodic boundary value problems, Nonlinear Anal. 8 (1984) 281–287.
- [2] Y.-B. Chen, PBVP of Volterra integro-differential equations, Appl. Anal. 22 (1986) 133–137.
- [3] V. Lakshmikantham, S. Leela, Existence and monotone method for periodic solution of first order differential equations, J. Math. Anal. Appl. 91 (1983) 237–243.
- [4] D. Guo, J. Sun, Z. Liu, Functional Methods for Nonlinear Ordinary Differential Equations, Shandong Science and Technology Press, Jinan, 1995 (in Chinese).
- [5] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.
- [6] V. Lakshmikantham, G.S. Ladde, Differential and Integral Inequalities, vol. I, Academic Press, New York, 1969
- [7] L.H. Erbe, D. Guo, Periodic boundary value problems for second order integro-differential equations of mixed type, Appl. Anal. 46 (1992) 249–258.
- [8] H.-K. Xu, J.J. Nieto, Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces, Proc. Amer. Math. Soc. 125 (1997) 2605–2614.