-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

: Tournalof
T SCIENCE@DIREGT” MAT‘[_{EMATICAL
, @r A ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 300 (2004) 1-11 APPLICATIONS

www.elsevier.com/locate/jmaa

Extremal solutions of periodic
boundary value problems for first order
integro-differential equations of mixed type

Guang-Xing Sond*, Xun-Lin Zhu®
@ Department of Mathematics, University Petroleum, Dongying, Shandong 257061, PR China

b Zhengzhou Institute of Light Industry, Zhengzhou 450002, PR China
Received 25 November 2003

Submitted by H.R. Thieme

Abstract

This paper investigates the maximal and minimal solutions of periodic boundary value problems
for first order nonlinear integro-differential equations of mixed type by establishing a comparison
result and using the monotone iterative technique.
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1. Introduction

In [1-4,7,8], the existence of solutions to periodic boundary value problems for differ-
ential equations and integro-differential equations has been investigated. In this paper, we
shall study the following periodic boundary value problems (PBVP for brevity) for first
order nonlinear integro-differential equations of mixed type
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u'=f@t,u,Tu,Su), telJ, (1)

u(0) =u(l),
wheref e C[J x Rx R x R, R], J =0, 1],

t 1
Tu(t) =/k(t,s)u(s) ds, Su(t) =/h(t,s)u(s)ds,
0 0

k(t,s) € C[D, R, h(t,s) € C[J x J,RT], D={(t,s) e R% 0<s <t <1}, RT =
[0, +00), ko = max{k(t,s): (t,s) € D}, ho =maxh(t,s): (t,s) € J x J}. In the special
case wheref dose not contairfu, i.e., (1) is a PBVP of Volterra type, the extremal so-
lutions of (1) have been obtained by means of the monotone iterative technique based on
a comparison result (see [1,2,4,8]). But, it is easy to see that the method for obtaining a
comparison result is not applicable in the gead case. Therefore, in this paper, we shall
obtain a comparison result for the generalechy a completely different way. And then,
using standard monotone iterative technique (see [3-5,7,8]), an existence theorem of mini-

mal and maximal solutions of PBVP (1) is obtained. Finally, we give several examples for
applying this existence theorem.

2. Several lemmas

In this section we combine the ideas in [6] together with those in [7] to obtain a new
comparison result.
The following comparison results play an important role in this paper.

Lemma 1 (Comparison theorejnAssume that = u(z) € C1[J, R] satisfies
{ W (@) > —Mu(t) — Nf(;k(t, u(s)ds — Lfolh(t, Hu(s)ds, tel, @)
u(0) > u(),
whereM, N, L > 0 are constants and satisfy
(Nko + Lho)(e? — 1) < M2, 3)
Thenu(t) >0,Vre J.

Proof. Let p(r) = u(t)eM’,t € J. Thus, by (2) we have that
‘ 1
P> —N/eM(’f“')k(t, $)p(s)ds — L/eM(tfs)h(t, s)p(s)ds,
0 0
p©) =eMp(). (4)

If min{p(t): t € J} < 0, the continuity of p(¢) implies that there existg € (0, 1) and
11 € J such that

p(t0) <0, p(tr)=max{p(): t€J}=1.



G.-X. Song, X.-L. Zhu / J. Math. Anal. Appl. 300 (2004) 1-11 3

We now show that > O.

Assume that. < 0, by (4) we know that’(r) > 0, r € J, hence,p(0) < p(r0) < 0.
Thus by (4), we have that(0) < p(1) < 0, which contradict (1) < e p(0) < 0. Hence,
we obtaini > 0.

Evidently, the relationships betweenands; must be one of the following two cases:

Case 1:11 < 1o;
Case 2:19 < 11.
Case 1. By (4), we have that
fo
0> p(to) = p(t1) + f p'(s)ds

n
o s

> — N/ ds/eM(S*”k(s, )p(t)dt
4 0

o 1
—L/ ds/eM(S*’)h(s,t)p(r)dt
1 0

to s to 1
>A|:1—Nko/eM“ ds/e*Mfdz —Lho/eM" ds/erdz]
1 0 5% 0
Nko+ Lh
2)\|:1_ Nko+ Lo . (EM _ ]_)i|
M2

Thus,M?2 < (Nko + Lho) - (M — 1), which contradicts (3).

Case 2. By (4), we have that

fo

0> p(10) = p(0) +/p/(5)ds

0
10 N

> p(0) —/[N/EM(S_T)k(s,t)p(r)dt
0 0

1
+L/eM("t)h(s,t)p(r)dt] ds
0

fo s 1
>p(0)—)»/eMS|:Nko/eMrdf—i—th/eMtdtj| ds

0 0 0
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Nko+ Lho
217(0)—)»'7]”2 (eM -1,
ie.,
Nko+ Lho
p@ <. MOT L (o _y) ®

1

A=p(t1)=p@d — / p'(s)ds
5%
1 s

< p(l)+/|:N/EM(S_T)k(s,t)p(r)dt

41 0

1
+L/eM(S_T)h(s,t)p(r)dt:| ds
0

1 s 1
gp(1)+)\/er [Nkc,/e—Mfertho/e—Mfdz] ds
141 0 0
Nko+ Lho M
<P+ 4 o (M - 1),

Hence, by (4) and (5), we know that

Nko+ Lho
A [1— —7 (eM — 1)} < p) <eMp(0)
Nk
5 NkotLho u
M2
Thus,M?2 < (Nko+ Lho) - (¢2™ — 1), which contradicts (3).
Hencep(t) >0, Vit € J andu(t) > 0forr e J.

(eM — 1).

X

Lemma 1 is proved. O

For anyo (¢) € C[J, R] and nonnegative real numbe¥s N, L, we consider the linear
periodic boundary value problems for first ordetegro-differential equations of mixed

type

{u’(t)+Mu(t)+Nfék(t,s)u(s)ds—i—LfOlh(t,s)u(s)ds=cr(t), ted, (g
u(0)=u(l).

Lemma 2. If nonnegative real numbers M, N, L satisfying

(Nko + Lhg)eM < M?, (7)

then(6) has a unique solution ig’[J, R].
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Proof. Letv(r) = u(t)e™’,t € J. Thus, by (6) we have that

V() =o1(t) — Nfé eMU=k (1, s)v(s)ds — L foleM(’f“')h(t, $v(s)ds,
teld, (8)
v(0) =e M. y(1),

whereoy (1) = o (t)eM 1 € J.
Obviously,v(z) is a solution of (8) if and only if«(r) = v(r)e ™" is a solution of (6),
andwv(z) is a solution of (8) if and only ib(r) satisfies the integral equation

1 K
v(r) = eM—l_lf[ol(s) —N/eM(S_T)k(s,t)v(r)dt
0 0

1
— L/eM(S*’)h(s, r)v(t)dr:| ds
0

+

o

[al(s) —N/eM(S_T)k(s,t)v(r)dt
0

1
— L/eM(S*’)h(s, r)v(t)dr:| ds
0

= Fu(1). )
Obviously, thev*(¢) is a solution of (8) if and only ib* is a fixed point of theF, i.e.,
Fv* =v*.
For anyu, v € C[J, R], by (9) we have that
|Fu@) — Fo@)| <llu—vlc
K 1

1
1
: /eMS NkO/e—Mfdr +Lh0/e—Mfdr ds
eM—1
0

0 0

t s 1
+/eMS (Nko/eM’dt—i—Lho/eM’dr) ds:|

0 0 0
< Nko+ Lho .
M?2

eM o u—v|e, Viel.

Therefore, we have that

Nko+ Lho

—_ . e
M2

By (7) and (10), we know thaF is a contraction operator ofi[/, R]. Consequently,
by the contraction-mapping theorem has a unique fixed point*, obviously, thev*(¢) is

[Fu— Fvllc < e =vllc. (10)
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a unique solution of (8), i.eu*(r) = v*(¢) - e =" is a unique solution of (6). Lemma 2 is
proved. O

Lemma 3. u(r) € C1[J, R] is a solution of PBVR1) if and only ifu(r) € C[J, R] and it
is a solution of the following integral equation

e

—Mt
u(t) = —

M_1

e

1
o/eM“'[f(s,u(s), Tu(s), Su(s)) —I—Mu(s)] ds
0
t

+e M. /eMS[f(s, u(s), Tu(s), Su(s)) + Mu(s)] ds.
0
The proof of Lemma 3 is easy, so we omit it.

3. Main results

In this section we shall use the monotone iterative technique to prove the existence
of minimal and maximal solutions of the PBVP (1). Assume ti@tvg € C[J, R] with
ug(®) <wvo(t), Vi € J. Set

[uo. vol = {u € C[J, R]: uo(t) <u(t) <wvolt), Vi € J},
= {(u, v, w): u € [ug, vol, ve[Tug, Tvgl, w € [Sug, Svo]}.

We obtain the existence of extremal solutions for PBVP (1) in the next result.

Theorem. Let ug, vg € C[J, R] such thatug(z) < vo(¢) in J. Assume that the following
conditions hold
(Hy) ug(t) < f(r,uo(®), Tuo(t), Suo(®)), t€J,  uo(0) <uo(l);

vo() = f(r, vo(1), Tvo(2), Svo()), teJ,  vo(0) = vo(1).

(H2) Whenever € J andu;, v;, w; € 2 (i =1,2) andus > u1, vo > vy, w2 > wy,

f
f

VoA

[t uz,v2, w2) — f(t,u1,v1, wi)
= —M(u2—u1) — N(v2 —v1) — L(wz — wa),

whereM, N, L are honnegative real constants and satisfy

(Nko+ Lho) - eM < M2, if 0<M <inlty®,

11
(Nko + Lho) - (M — 1) < M2, if M>zn1+—2¢3. (1

Then PBVR1) have the minimal solutiom* and maximal solution* in [ug, vo]. More-
over, there exist monotone iteration sequenegs:)}, {v,(t)} C [1o, vo] such that
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u,(t) = u* (@), wv,(t) = v*@), asn— oo uniformlyonz e J,
where{u, (1)}, {v,(¢)} satisfy

u, (1) = ft, up—1(t), Tup—1(t), Sup—1(t)) — M (up — up—1)()
—NT(uy, —up—1)@) — LSy —up—1)(), tel, (12)
u,O)=u,(1) (n=1223,..),

v, (1) = f(t,vp-1(0), Tvp—1(1), Svp—1(1)) — M (vy — vp—1)(F)
—NT (vy —vp—1)(t) = LS(vp —v—1)(1), t€J, (13)
1) =v,() (n=1,2,3,..)),

and

up<ur < Sy < <uF <V <<y <o < v < oo (14)

Proof. First, it is easy to see by (11) that (3) and (7) hold.

For anyu,_1,v,—1 € C[J, R], by Lemma 2, we know that Egs. (12) and (13) have
unigue solutions,, andv, in C[J, R], respectively.

In the following, we will show by induction that

Up_1<uUp,<v,<vu—1, n=123,.... (15)

By (12), (13), and the conditiong{1) and(H>), we have that

(u1 —u0)'(t) > —M(u1 — uo)(t) — N [y k(t,s)(u1 — uo)(s) ds
— L [y h(t,$)(u1— uo)(s)ds, te€l,
(u1—u0)(0) = (u1 — uo)(1);

(vo — v1)' (1) = =M (vo — v1) () — N [gk(t,$)(vo — v1)(s) ds
— L [y h(t,s)(vo— v1)(s)ds, 1€,
(vo —v1)(0) = (vo — v1)(D);

(v1—u1) (1) > —M(v1—u1)(t) — N [y k(t,5)(v1 — u1)(s)ds
— L [y h(t, )01 —u1)(s)ds, tel,

(v1 —u1)(0) > (v1 —u1)(D).

Thus, by Lemma 1 we have thag < u1 < v1 < vp.

Now we assume that (15) is true fbr> 1, i.e.,u;—1 < ur < vx < vg—1, and we prove
that (15) is true fok + 1 too. In fact, by (12), (13), and the conditioH>), we have that

(k1 — u) () = =M (1 — u) () — N [y k(t,5) (ups1 — ug)(s) ds
— L [ ht,5) (1 —u)(s)ds, 1€,
(tr+1 — ur)(0) = (up41 — ur)(1);

(vk — Vi)' (1) = —M (vk — V1) () — Nf(; k(t,s)(vk — vig1)(s)ds
— L [y h(t,$)(vk — vip1)(s)ds, 1€,
(v — ve+1)(0) = (vg — ve+1) (D);
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(V1 — uks 1) (1) = =M (Vpp1 — i) (1) = N Jo k(t, 5) (Vg1 — ug42)(s) ds
— L [y h(t,$) (ks — ws1) () ds, 1€,
(Vi1 — uk+1)(0) = (Vg1 — ug+1) ().
Thus, by Lemma 1 we have that < ugt+1 < vkr1 < vk. S0, by induction, (15) holds for
all positive integen.
Itis easy to know by (15) that

UK UL S Sy < KUy <o S VLK 0 (16)

By (12), (13), and the conditio¢H>), we have that

f(t,uo, Tug, Sug) — 2M (vo — ug) — 2N T (vo — ug) — 2L S(vo — ug)
< u;l(t) < f(t, vo, Tvo, Svg) + M (vo — uo) + NT (vo — ug) + LS(vo — up).

Thus, {u}, ()} is uniformly bounded. Also, similarly to the above we can show that
{v), ()} is uniformly bounded.

From the above we know thét,} and{v,} are uniformly bounded and equicontinuous
in [uo, vo]. By Arzela—Ascoli theorem and (16), we can see that the sequéngeand
{v,} are uniformly convergentid. Let

Ii_)mOo un(t) =u™(t), nli_)moo v (1) =v*(2). a7)

Obviously,u*, v* € [ug, vo] and (14) holds.
Furthermore, by (12) and (13), we have that

e

—Mt

1

e

1
: /eMS[f(s, Un—1(5), Ttn-1(s), Sun—1(s)) + Mup_1(s)
0
= NT (up — un-1)(s) — LS(up — un—1)(s)| ds
t
+e M f ML f (5, un—-105), Tun-1(s), Sun-1(5)) + Mu_1(s)

0
— NT (up — tn-1)(s) — LS(up —up—1)(s)]ds, telJ, (18)

1

—Mt

v (1) = ei,[ 1 : /eMS[f(Sa vp—1(8), Tvy—1(s), Svn—l(s)) + Muv,_1(s)
0

— NT vy — vp-1)(s) — LS(vy — va-1)(5)] ds
t
e~ M o/eM" [f (5, va=1(5), Tvp—1(5), Sva_1()) + Mv,_1(s)
0
— NT (vy — vp—1)(s) — LS (v — vu—1)(s)]ds, 1€ J. (19)

Taking limits asn — oo, by (17), we have that
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1
—Mt
W (1) = 54 1 feMS[f(s, w*(s), Tu*(s), Su*(s)) + Mu*(s)] ds
0
t
+e M /EMS[f(s, u*(s), Tu*(s), Su*(s)) + Mu*(s)] ds,
0
1
i e Mt Ms " % * *
v (r)=eM_1-fe [f (5. 0% (), T*(s), Sv*()) + Mv*(s)] ds
0
13
+e M /EMS[f(s, v*(9), Tv*(s), Sv*(s)) + Mv*(s)] ds.
0

From the above, by Lemma 3, we know thé&tandv* are solutions of PBVP (1) ifuo, vo].
Next we prove that* andv* are the minimal and maximal solutions of the PBVP (1)
in [uo, vol, respectively.
In fact, suppose € [ug, vo] is also a solution of the PBVP (1), i.e.,

{w'(t) =f{t,w, Tw,Sw), teJ,

w(0) =w(l). (20)

Using induction, by (12), (13), the conditiqil) and Lemma 1, it is not difficult to
prove that

up <w<v, n=123.... (21)
Thus, lettingn — oo in (21) and by (17), we have that
u* <w < v,

i.e., u® andv* are the minimal and maximal solutions of the PBVP (1) in the interval
[uo, vo], respectively.
The proof of the theorem is completer

4. Examples

Example 1. Consider the PBVP of first order nonlinear integro-differential equations of
mixed type:

W' (1) = &t — u®)P+ g52[12 — [g 2tsu(s) ds]5
+ 8—%5[t2 — /01 3(t5)2u(s) ds]7, teld, (22)
u(0) =u(l).

Conclusion 1. PBVP (22) has the minimal solutiari () and maximal solution*(7) such
that 0< u*(¢r) < v*(r) <1 for 0<r < 1 and there exist monotone iteration sequences
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{un, ()}, {va (1)} C [uo, vo] such that

u,(t) = u*@), v,(t) > v*@®), asn— oo uniformlyont e J,
whereug(t) =0,v9(t) =1,Vt € J.

Proof. Let
2 3, 1.3 5 1 5 7
f(t,u,v,w)—l—S(t—u) +§5(t —v) +ﬁ(t —w),
M—2 N=L= !
5 7128

Obviously,ug(t) < vo(t), and

ug(t) < f(t,uo(t), Tuo(r), Suo(r)),  uo(0) = uo(1);

vo(0) = £ (2, vo(0), To(1), Svo(1)), v0(0) = vo(1);

f@u,v,w)— fEu,v,w)>2-Mu—u)—N@w-—0v)— Lw—w),
where up(t) < it < u < vo(t), (Tug)(t) < v < v < (Twvo)(), (Sup)(t) < w < w <
(Svo)(t),Vt e J.

It is easy to compute that@ M = £ < In HT[S ko=max2s: 0<s<r<1}=2,
ho =max(3(ts)%: t,s € J} =3 and
2 3 1 4
M2y 3 st a4,
(Nko+ Lhog) - ™ < (125+ 125) e 55 e < 25 M

Hence, the PBVP (22) satisfies all conditions of Theorem, it follows by Theorem that
our conclusions hold. The proof is completax

Example 2. Consider the PBVP of first order nonlinear integro-differential equations of
mixed type:
u'(t) = %[t —u®P+ z—éo[t?’ - fé 2tsu(s) ds]5
+ Ziso[tz - /01 3(15)%u(s) ds]7, tel, (23)
u(0)=u(l).
Conclusion 2. PBVP (23) has the minimal solutiarf () and maximal solutiom*(z) such

that 0< u*(¢) < v*(r) <1 for 0<t < 1 and there exist monotone iteration sequences
{un ()}, {va (1)} C [uo, vo] such that

u, (1) = u*(@), wv,(t) > v*(@¢), asn— oo uniformlyon: e J,
whereug(t) =0,v9(t) =1,Vr € J.
Proof. Let

e Loy 2w
f(t,u,v,w)_s(t u) +200(t U) +280(t w),
1

’ 40
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Obviously,ug(t) < vo(t), and

up(t) < f(t,uo(t), Tuo(t), Suo(t)),  uo(0) = uo(l);
vo(®) = £ (¢, vo®), Tvo(t), Svo(®)),  vo(0) = vo(1);
ft,u,v,w)— f(t,u,v,w)=>—-Mwu—u)— Nw-—0v)— L(w—w),

where uop(t) < u < u < vo(t), (Tug)(t) < v < v < (Tvo)(t), (Sup)(t) < w < w <
(Svo)(t),Vt e J.

It is easy to compute thatQ@ M =1 > In # ko=max{2ts: 0<s <r<1l}=2,
ho =max3(ts)%: t,s € J} =3 and

(Nko+ Lho) - (¢*™ — 1) =%-(e2—1) <1=M>

Hence, the PBVP (23) satisfies all conditions of Theorem, it follows by Theorem that
our conclusions hold. The proof is completax

Remark. In the same way, the similar example can be obtainedfet In HTﬁ
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