
Stochastic Processes and their Applications 11 (1981) 151-185 
North-Holland Publishing Company 

I. ifntroduction 

David GRIFFEATH 
Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A. 

Received 25 September 1980 

AMS (1970) Subject Class.: Primary 60 K 35 =;;izi 

Let S be the space of all subsets of the d-dimensional integer lattice Zd. Certain 
continuous time Markov processes with state space S, known as interacting particle 
systems, have been studiecj extensively over the past decade (cf. [ 12,24,33,37]). The 
basic (one-dimensional) contact process, introduced by Harris [17]/, is perhaps the 
simplest such interacting system which exhibits a critical phenomenon. The dynamics 
of the process can be described succinctly as follows. At any given time t a 0 certain 
sites x E Z are infected while the remainder are healthy. The set of infected sites is 
denoted &. Infected sites recover at constant exponential rate 1, while healthy sites 
are infected at an exponential rate proportional to the number of infected neighbor- 
ing sites. Thus the infection rate at site x at each time t is 0, A or 2h depending on 
whether neither, one or both adjacent sites belong to & Here A is the infection 
parameter. In essence, the critical phenomenon is this: if A is sufficiently small, 
infection tends to die out, whereas if A is sufficiently large infection tends to be 
permanent. Interest in the model centers on the precise formulation of the dicho- 
tomy, and on detailed analysis of the ergodic properties of the process in both 
situations. 

The present article is a more or less self-contained exposition of current know- 
ledge concerning the basic contact process (&). In the next section we begin by 
constructing contact processes with the aid of Harris’ graphical representations [ 191. 
Duality equations, monotonicity and complete coupling properties are then 
established; these are the principal tools of the theory. To illustrate their use, we 
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conc!ude Se\*tion 2 by formulating the essential qualitative aspects of the critical 
phenomenon. 

Section 3 surveys the difficult quantitative problem: to determine the critical value 
AC below which infection dies out and above which infection persists. Lower bounds 
for h, are relatively easy to derive; we give an extremely simple argument that 

That A,< a, i.e. that infection can be permanent, is probably the deepest known 
result about contact processes. Three different proofs have been found. The first, due 
to Harris [17], gave no readily computable upper bound. The second, a remarkable 
argument by Holley and Liggett [21] shows that 

A third approach, less powerful but of wider applicability than the Holley-Liggett 
method, is due to Gray and Griffeath [8]; for the basic contact process it gives 

A,<7. 

We sketch both the Holley-Liggett and Gray-Griffeatb methods, since various 
estimates from those papers will be needed later in our study. 

In Section 4 we begin, analyzing the edge process, i.e. the rightmost (or leftmost) 
infected site when there is initially infection on {. . . . , -2, -1, 0) ((0, 1, 2, . . .}). 

Making use of results due to Durrett [S], Liggett [25] and the author [lo, 111, we 
obtain a good understanding of the ergodic behavior of &) at all parameter values 
except A = A,. In particular, we prove a complete convergence theorem and a 
complete pointwise ergodic theorem. 

The next two sections, 5 and 6, c*ontain a number of new results. We have 
attemptedl to idenrify, insofar as possibl.e, just what is known about the ‘next level’ of 
the ergsdic theory, i.e. rates of convergence and mixing and velocity of the edge 
processes. As will be seen, the picture below A, is much more complete than that 
above A,. For instance, we are able to obtain exponential convergence to the state 
(b = ‘all healthy’ whenever A < A,, but exponential convergence to the limiting 
equilibrium of permanent infection starting from Z = ‘all infected’ is only known for 
sufficiently large A. 

In Section 7 we address the critical contact process. Some partial results are 
!discussed briefly. Then a result on convergence rates and sample path behavior is 
proved. As one would expect, the critical case must differ qualitatively from the 
subcritical case. 

Approximation of contact processes iby analogous models on the N-torus SN = (0, 
1 , N.al} is the subject of Section 8. The latter models are finite Markov chains 
6;li 0 absorbing; we consider the expected time t?N to absorption when the Nth 
process starts with infection everywhere on &. The finite approximations reflect the 
critical phenomenon of the limiting infinite system in terms of the growth rate of i?N 
as N-,00. 



D. Griffeath / The basic con tact processes 153 

Section 9 deals with di:jcrete time contact processes, and their connection with 
oriented percolation in the plane. In fact, discrete time contact processes were 
studied by Stavskaya and Piatetskii-Shapiro [35], Toom [38], Vasilev [42] and others 
several years before the continuous time theory emerged. Moreover, a totally 
equivalent model of oriented percolation in a quadrant of Z* was studied by 
Mauldon [27] and Bishir [l] almost twenty years ago. It is therefore satisfying that 
some of the results from Sections 4 and 6 apply equally well in discrete time to solve 
an open problem in oriented percolation (cf. 1311): 

PT = PI-I, 

i.e. if the cluster of sites wetted by a source at the origin is finite with probability one, 
then the expected cluster size is finite. We conclude Section 9 by mentioning a 
two-dimensional growth model of Richardson [29] for which Durrett and Liggett [7] 
have shown that a discrete time contact process comes into play in an intriguing 
manner. 

Finally, Section 10 addresses open problems and generalizations. We identify 
what seem to us the most important unresolved questions about (&). Foremost 
among these are the ergodicity of the critical processes and the ‘explicit’ evaluation of 
A,; both problems are probably quite difhcult. We conclude the paper with a brief 
discussion of contact processes on Zd, d > 1, where much less is known. 

2. Graphical representation and elementary properties 

Following Harris [19], we begin by constructing the basic contact processes from 
independent ‘exponen+ial alarm clocks’ with the aid of a random graph P = P(h) 
called the percolation wbstructure. Start with the ‘space-timle diagram’ Z x [0, ~a). 
For each x E 2, draw three infinite sequences of graphical devices as follows. First 
draw arrows from (X - 1, &) to <x, &), from (X - 1, &) to (x, &), etc., where the 
values &, 7:,, - &, a u . are independent exponential random variables with mean 
A. Second, draw arrows from (X + 1, &) to (x, &), (X + 1, &,) to (x, &) etc., 
where the T;,~ occur at rate h. Finally, put down a sequence of S’s at (s, &J, 

Cx, &), ’ l ’ 9 the & ol,:curring at rate 1. The arrows will transmit infection to site s if 
it is present at a neighbD:ring site, while the S’s will kill infection if it is present at X. 
generic realization of ‘the graph P obtained in this manner is shown in Fig. 1. Say 
there :s a path up from :y, s) to (x, t) in 9, x, y E 2, 0 s s G t < 00, if there is a chain of 
upward vertical and directed horizontal edlges in the resulting graph which leads from 
(y, s) to (x, t) without passing (vertically) through a S. (By convention, there is a pat 
up from ( y, s) to ( y, s).) Thus the S’s may be thought of as obstructions to the flow (or 
‘percolation’) of liquid. Now define 

e: = {x: there is a path up from 1. y, 0) to (x, t) 

for some y E A}, A c: S. w 
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Fig. 1. 

The process (SF) c20 is called the basic contactprocess with parameter A starting from A 
(i.e. with infection initially on A.) The reader should check that (& is Markov, and 
that its dynamics are precisely those described in the introduction, 

Our first theorem will identify some of the key properties of contact processes 
which follow easily from the graphical representation. These properties will be the 
main tools in the: analysis to be carried out. It is important to emphasize that (1) 
defines all the (Sp), A E S, simultaneously on one probability space (0, @, P), at least 
when A is fixed. As we will soon see, processes with differing A can also be defined on 
the same space by augmenting slightly the percolation substructure. Thus 9 ‘couples’ 
the evolutions of different contact processes; couplings of this sort turn out to be 
remarkably powerful. &4 few words about notation are in order here. When the role 
of ;he parameter A is being stressed we write [f’(A). Also, some particularly 
important processes will be abbreviated: 

IGnally, it will be convenient to write [: = Six’ for the process starting with the single 
infected site x. (In general, we write x for {x} whenever it is convenient.) 

The following four properties hold : 
(i) additivity : 

(2) 
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(ii) set monotonicity : 

(iii) A-wronotonicity : (On a suitably enlarged probability space), 

&~&J&(A)if hoc& AES, ta0; (4) 

(iv) self-duality : 

(5‘;nR#0)= (&%A#@, A&ES, t>O. (3 

Proof. To get addivity simply notice tLt by definition (I), site x belongs to the set on 
either side of (2) if and only if there is a path up from (A, 0) or (B, 0) to (x, t) in 9.’ Set 
monotonicity follows from (2) since, for A c B, we have 

A randomizing device can be used to establish A-monotonicity as follows. Given 
ho < A, consider the graphical representation g(A). Independently, color each arrow 
green with ljrobability &/A and leave the arrow uncolored with probability (A - 
Ao)/A. The green arrows together with the S’s in P(X) constitute a version of g(Ao), so 

we can define t:(A) by (1) and &Ao) by 

&AQ) = {i: 3 path up from (A!, 0) to (x, t) in 

9 (A) using only green arrows}. 

From the construction, (4) is immediate. Self-duality is proved using a ‘time/arrow 
reversal’ trick, Fix A, t, and consider the restriction of g(A) to 2 x [0, t]. The key 
observation is that by letting time run ‘down’ instead of ‘up’, and by reversing the 
directions of all arrows, we get another substructure @(h;)lzXto,r~ with precisely the 
same law as g(A) 1 zx~o,tl. (The piece of @(A) corresponding to the piece of @(A:) from 
Rig. 1 is shown in Fig. 2.) Thus, for 0 s s G t we can set 

i: ={x ~2: 3 path down from (B, t) to (x, t-s) in @(A)}, 

B ES, and (iB) s oessr is a version of the basic contact process with parameter A, 

starting in B and running up to time t. Eq. (5) now follows from the construction, 
since the events on both sides coincide with the event that th’ere is a path (lup or down) 
connecting (A, 0) and (B, t) in the joint representation. 

Using the properties of Theorem 1, we now indicate thle qualitative nature of the 
critical phenomenon for contact processes. First, note that 43 =: ‘all healthy’ is a trap, 
so the measure &concentrated at 0 is invariant. The hitting time for 0 will be denote 

?eA = min{t: 6;: (h) = 8) (=a~ if no such t exists). 

The ae:ader should be on the alert for hybrid space-time notation. For instance, (A, 4)) ~~~~$ 
while (x, 00) x 0 means the spatial interval (x, a~) cross (0). 
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Fig. 2. 

By taking A = 2 and B E So = {finite subsets of Z}in the self-duality equalion (5), we 
find that 

as t+m. By inclusion-exclusion it follows that 

lim P(& A B = C) = V( l n B = C), t+m 

C c 1% E So, for some measure u = uA on S. In terms of weak convergence, 

P&E +=3v as t-,00, 

where Y is determined by 

In particular, the density 11 of u satisfies 

p=v(OEq=P(7D=03). 

(The measures P(S, E a) anti! the limit u inherit translation invariance from 9; we will 
use translation invariance properties repeatedly in this paper without further com- 
ment.) If p = 0, then for any A E S, by set-monotonicity 

(&Bf0)6 
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Evidently v = 80, and 

(5 ~E’)+c!Q ast+m VA&‘. 

In this case the Markov family ((5:‘); A E S} is said to be ergodic, since processes with 
arbitrary initial state converge to the unique equilibrium 60. Note also that 

(TB<OO)=l VBES* 

in thi:: ergodic case. If p(h) > 0, then clearly u + Sg so there are two distinct 
equililxia. In this case {(&} is said to be nonergodic. By set-monotonicity we have 

P(TB = ~)~Ip($‘=a~)=p>O VBES~, B#ld 

in tP,e nonergodic case. Finally, from A-monotonicity it follows that 

P(*O(A,)=OO)sP(?o(h)=OO) if A&A, 

so 

p is an increasing function of A. 

Thus there is a critical value A,, 

A,=sup{A:g(A)=O}, 

such that {<&} is ergodic if A < A, and nonergodic if A > AC. Note that the possibility 

AC = 00 has not been ruled out as of yet. We summarize our findings in the form of a 
theofern. 

Theorem 2. There is a critical value A, such that 
(a) for A < A, (subcritical case), 

P&%*)=+80 ast-+m VAES, 

P(rAca)=l VA&; 

(b) fcrr A > A, (supercritical case), 

(For a discussion of the critical case A = A,, see Section 7 below.) 

3. Numerical bounds for the critical value 

In this section we discuss briefly the known lower and upper bounds for A,. First, 
let us show that for sufficiently small positive A, the contact processes with parameter 
A tend to die out, i.e. form an ergodic family. From the last section we know that 
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ergodicity is equivalent to 

(7O<oo)=l. 

This propi;y is quite easy to verify for A < 1. Simply observe that if ,Cy = A E SO, 
IAl. 2, then the diameter of &) increases by one a : 0 taste 2A and decreases by at least 

one ;pti rate 2. Thus, for h c 1, the diameter is majorized by a random walk with mean 
2(~ - 1) < 0. It follows that I[: I= 1 repeatedly as long as the process lives, and hence 
that the process dies eventually with probability one. We conclude that 

One can do better; in [12], for example, there is a simple proof that 

h J+%11$$ 
C- 

6 ” 

The technique described there can be pushed further, but the computations rapidly 
become insurmountable. 

The problem of upper bounds for A, is much more difficult. The best known bound 
is 

h,s2, 

due to Holley and Liggett [21]. Here is a sketch of their remarkable approach. If p is 
a measure on S, define 

e,(A)=p{mA#fl}, AE&, 

and note that 6& G 1 (&@j}. Now, for B E So, consider the functions 

hs(t) = E[e,(531 

(E the expectation operator corresponding to P). If one can find a translation 
invariant measure p with positive density such that 

hb(t)aO for all t20, B do, (6) 

then 

for all t 20. Hence 

P(TB =oo)>O, 

i.e. nonergodicity holds 

J-so, 

Using the Markov property it is easy to see that 

(6; = A)h;(O). 
AESO 

To establish (6) it therefore su%ces to show 
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or equivalently 

It turns out that there is a renewal measure which satisfies (7) if A is large enough. A 
renewal measure pf on S is determined by a probability density f = (fk)F= 1 such that 
1M = C kfk < 00, by means of the basic cylinder prescriptions 

Evidently pf is translation invariant with density M-‘. The method of Holley and 
Liggett is to choose (fk) so that (7) holds with equaZ@ in case B = [x, y] for some 
x s y, and then to prove the inequality for arbitrary B E So with fi = qf so chosen. The 
second step is difficult; see [21]. But to find the desired f, note that when B is a block, 
say B = [0, m - 11, the contact process gains one site at either end with rate A, while 
an infected site k E [0, m - 1] recovers at rate 1. Putting F, = CTzm+l fk, a calculation 
therefore shows that equality in (7) for all blocks is equivalent to 

2AF, = mjjl Fk~m_k_I, m 3 I (F. = I). 
k-0 

One can solve for F to get 

El 
CM! (2A j-m 

=-- 

m!(m + l)! 5 

so F is summable for A 2 2. Over this parameter range 

M=&Fk=A-JAZ-zr. 

The conclusion is that for A a2, the contact processes with parameter A have a 
nontrivial equilibrium uA, an j that the density p(A) of uA satisfies 

1 
P(A)~M-‘=~+ J 

1 1 
4-2h’ A32, 

More generAlly, when A 2 2 we obtain the bounds 

u(‘nB #8)= = 00) = lim P(&f # 0) t+m 

ahA(0)=gf{. nBfd}. 19J . . 

We will see later in the paper that for blocks B, these inequalities turn out to b 
useful. 
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A second method of proving nonergodicity for large A is based on what is known as 
the contour method. As we have seen, permanence of infection is equivalent to the 
condition 

(7” < 00) < 1 for some 11 E SO, 

so we seek upper bounds for these extinction probabilities. To keep matters simple 
we begin by taking A = (0); the contour method produces the desired bound by 
analyzing the boundary of the region infected by (0,O) in the space-time diagram for 
(6:). Here is an outline of the application to basic contact processes. For more details 
and a more general setting see Gray and Griffeath [8]. First, embed 2 x [0, x>) in 
R x [0, a), introduce 

E = {(y, 0: Iy -xl ~$forsomex&,t20}, 

and let I? be E with all its holes filled in. On {r” C m), & is a bounded set; we denote 
by J’ the boundary of I!? oriented clockwise. On (7” = 00) it is convenient to define 
I’ = 8. A representative picture of the contour I’ is shown in Fig. 3. With probability 
one, r consists of 4n alternating vertical and horizontal edges for some n 2 1, which 
we encode as follows. A curve with 4n edges will be described by a, direction vector 

D = WI,. -. 3 D2n) 

and a length vector 

L = (L*, . . . , L,,). 

The Di are one of the seven triples: 

did, drd, dru, u/u, uru, urd, dlu. 

Here d, u, I and r stand for down, up, left and right respectively. To determine the 
direct;.on vector for a contour r we start at (- 3, 0) and proceed clockwise around the 

r(n = 10) 

Fig. 3. 
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curve, reading off the sequence of directions of r in triples starting with successive 
vertical directions. Thus the direction vector for the I’ of Fig. 3 is: 

ulu, u/u, u/14, ulu, urd, dru, urd, dru, uru, uru, 

urd, drd, drd, dld, dld, drd, did, did, dld, dlu. 

Note that uld cannot occur in I?, and that dlu occurs only as the value of &. The 
value Li is the length of the vertical segment corresponding to the first direction in the 
triple Di; the Li are shown for the r of Fig. 3. (Of course the horizontal edges of I’ are 
all of length one with probability one.) Let N1 through NT be the respective numbers 
of direction vectors of the above types in r, 4N the total number of edges. It is not 
hard to see that (P-a.s.) 

Nl+N4=N-1, N2cN3+N5+N6=N, N6=N3+1, 

so the 6-tuple (N1,. . . , N6) is determined by N1, Nz and N3. 
Now the key observation is that the shape of r is intimately connected with the 

behavior of the independent exponential alarm clocks at nearby space-time points. 
This gives rise to an upper estimate on the “density” of IY Namely, if I is a 2n-vector 
of possible vertical lengths, then 

p(w), L(r) E dh @h(r), . . . , Ndr)) = h . . . 9 ha 

2n-1 
Se 

--(‘+A)Ci,~d’i e-hEip[u1ihnl+n4 
n dli 
i = 1 

where Id = {i: the first letter of d)i is d}, IU = {i: the first letter of Di is 14). Briefly, the 
argument for (10) is as follows. Along each downward edge of r we know that no 
right directed arrow emanates from the site immediately to the left and no CF occurs 
there over a time interval of length Zi ; the probability of this is e-“+A”t. Similarly, 
along each upward edge no left directed arrow emanates from the site immediately to 
the right over a time interval of Iength fi ; the probability of this is e-*(. Also, a right 
directed arrow arrives at the site immedialtely to the left of each vertex of E, where the 
direction changes from down to left except for the 4Qnth vertex, and a left directed 
arrow arrives at the site just to the left of each vertex w:here the change is from up to 
left. Thus there are n 1 + n4 events of these sorts, each with ‘probability’ Adlie Finally, 
just to the right of each vertex where r turns to the right a S occurs; there are 
~2 + 123 + n5 + n6 such events, each with probability dli. Moreover, the independence 
properties of thee exponential variables involved imply that all of the above events are 
independent. Note that we cannot make use of the lack of S’s immedi 
right of up edges, in r, since in certain cast. this coincides with the ixk of S 
of down edges. Avoiding this dependence, however, we arrive at th 
estimate (10). For more details, see [S]. Next, we change variables 
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final lip i E I,, with Ck = Ci,lU Zip and integrate over the region (Cich,i+Zn Zi < h} to get 

(D(r); Nl = n1, N2 = n2, N3 = n3) 

I 
00 

s h n-l e-CI +2A)h 
h&,1--1 h&k-l 

0 (I&J - l)! (l&l - l)! dh 

= A 2n-1 
tZl+fI2+tZ3 

where 

co= 
1+2h 

[ 1 A 

A ’ A”=(1+2A)2* 

Hence, putting 

# h, n2, n3) = I(U: MD) = ~21, MD) = n2, MD) = ndl, 

we have 

W’+ON f C #h, n2, m3G nlyni:n3) 4. 
tl=l nl,n2,li3 ( 

Observe next that 

#(nh n2, n3)Q 
(nl+n2+n3)! (n4+n5+n& 

- nl!n2!n3! n4!rpj!n6! ’ 

since any direction vector D is completely determined by the ordering of its triples 
beginning with u and the ordering of its triples beginning with d. Thus 

W’#@~C’o f A:[ C 
(2n - l)! 

n=l 1 nl,nl,ng nl!n2!n3!n4!ns!n~! ’ 
Now the bracketed sum is at most $0 32”, since it can be written as 

c 
nl.n2,n3 

( ,‘yn)( y:,)( ““;:;;;+““)( “‘,+.“‘)( n3;3n6) 
Ir 

G! 2n-1, 2”-’ [g 2”-‘“3-‘( 2n;+ l)22n3+1] 

-5 2 2n-1 . y4.p 

Setting 

32h 
4=32440=(1+2A)2’ 
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we conclude that if Al < $, then 

so nonergodicity holds. Better bounds are obtained by doing analogous compu- 
tations starting from the blocks A = [0, m - 11: we get 

(T”~~-~’ < 00) s C(h)A;“, (W 

for some constant C(A). By taking m large we see that nonergodicity holds whenever 
Al < 1, so that 

h,=+2&7. 

The bound (11) is the contour method counterpart of (9). 

4. The edge process and its applications 

The simple proof of ergodicity for A < 1 given at the beginning of the last section 
was based on the observation that the rightmost infected site ry of 6: tends to drift to 
the left, and by symmetry the leftmost site Zy drifts right, Consideration of the 
extreme sites 

rP =min{x:x&}, rP = max{x: x E St}, 

turns out to be a very effective approach to the detailed ergodic theory of contact 
processes. An analysis along these lines was initiated in papers by kiarris [19], 
Griffeath [lo] and Liggett [25], and most fully realized in a recent paper by Durrett 
[5]. This section is essentially an overview of Durrett’s theorems for the edge 
processes, and the resulting ergodic theorems. The reader is referred to [S] for 
several of the proofs, which are nice but rather involved. 

Recall that & = SF, 6; = [~-oo*03, 5: = &“*“‘. Denote by r, and Z,’ the rightmost site 
of $T and the leftmost site of 6; resplectively. It is more convenient to study tr and !t 
than ry and Zy, since the former prolicesses are defined for all t 2 0 whereas the latter 
are only defined on (7’ > t}. The first: result of this section, which we call the complete 
coupling piqerty, shows that 6: is intimately connected with SE) &” and 6:. 

Theorem 3. On {TO> t}, 
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roof. If ? > t, then there is a path up from (0,O) to (Zy, t) and a path from (0,O) to 
(rp, t). If x E 6: n [fy, $3, then there is a path up from (A, 0) to (x, t). This last path 
must intersect one of thle first two, and so there is a ‘composite path’ from (0,O) to 
(x, t). Therefore x E (‘I’, and so 6:’ n [Zy, $I(= 5:. The reverse inclusion holds by 
set-monotonicity. This proves (12). The argument for (13) is similar. Namely, if 

0 
fr = rcr,, then there is a path from (0,O) to (x, t) and a path from (-00,0) ~0 to 
(x, 00) x L But this yields a composite path from (0,O) to (x, 00) x t, contradicting the 
definition of ry. Thus r: s r:. The reverse inequality again follows from set- 
monotonicity, so rT := ry. The proof for the left edge is analogous. Now the first 
equation of (14) is the special case of (12), where A = Z, and the second follows from 
(12) and (13): 

Using Theorem 3, one can analyse ergodicity of contact processes in terms of 
the behavior of rl. Roughly speaking, if r, drifts left ergodicity holds, whereas 
nonergodicity holds if rl drifts right. Thus we introduce the expected displacements 

aI = E[rF] (= -Eil;‘]). 

A key property of cyr is subadditivity : 

Qt+u < ffr + au, t, u >o. (15) 

In fact, the process (rl) Iao is itself subadditive in the following sense: for any t, u 2 0 
there is a random variable s,, independent of rt and with the same distribution as ri, 
such that 

C+, Sr, +s, a.s. for each t, u 30. (16) 

To set this, consider 

S, = max{x: 3 path from (-cc, r,] X {t} to 6 +x, t +u)). 

By translation invariance, s, is r, -distributed. Moreover, if y is a path up’to 

(CL, t+u)ine_,thenr, G r,, so there is a path from (-a, rJ x {t} to (r&, g + u), i.e. 
(86) holds. If t, u > 0, thlen since there is a positive probability of a path from 

(-0% rT ) x 01 to (rt+u, 00) x {t + u}, by taking expectations in (16) we get (15). NOW by 
a well-known theorem on subadditive sequences, 

a! = inf aM=lim%!. 
M>O M t+oo t 

(Note that (Y = --00 is a possibility.) We call cy the asymptotic velocity of the right edge. 
By using the stochastic subadditivity (16) and related ideas, Durrett [5] has proved 
two useful properties concerning 0 = a(h): 

h 
---+ cy 
t 

a.s. (and in L') as t -+ 00, (17) 
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and 
cw,(h +S)%!,(h)+St A, 6, tao, 

so that 
a(h +6)&Y(h)+& A, 620. (181 

(Here -03 + 8 = -06.) The result (17) asserts that the right p,dge settles down to its 
asymptotic speed with probability one. It is not hard to see that 

limsup+ck as. (and in L’); 
t+oO 

Durrett proves the much more difhcult inequality 

1iminfLa 
t+co t 

by constructing a stationary ergodic process with mean cy which ‘lies to the left’ of r, . 

Inequality (18) states that the speed is a strictly increasing function of the infection 
parameter A as soon as Q! (A) > --06. This is derived by a clever coupling argument. We 
refer the reader to [S] for the proofs of both theorems. 

With the aid of Durrett’s results, we now show that the critical value A, for the 
contact processes is lirecisely the value of A at which the asymptotic velocity of the 
right edge changes from negative to positive. 

Theorem 4. A, = sup{A: a(A)<O}=sup{A: a(A)s 

Proof. Put AM = sup{A: &A) < 0}, A, = sup~h~. It follows easily from the 
definition of a(A) that 

A,=sup{A: (x(A)<@ 

Thus we will prove that A, =sup{A: a(h)~O}=h,. If A >A,, choose Ak(A*,A); 
then LYE (A ‘) > 0 for all M, and so cy (A ‘) 2 0. By (US), cy (A ) > 0, arId hence A* = 
sup{A : CY (A j s 0). Moreover, (17) yields 

r;(A)++- - - C&.9. 

and by symmetry, 

l:(A) + -40 a.s. 

Hence we can choose N large enough that 

P(r, ever < -IV) = P(Zr ever > N) =,E c $. 

Now (14) generalizes easily to 

f-N,N] 
5; =&nEL 

I--Ns’l +-ao.N] 
, r ] 

= s;--a*N] n &-““’ on {$N.Nl> t), 
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and from (19) it is not hard to deduce that 

pW1 =min{t: rt (--ww < pml} (20) 

( = 00 if no ssuch t exi:$ts). Using (20) and translation invariance we get 

wo FN*N1 C 90) S P(r~-m*N3 ever < 0) + P(Z5-N’“’ ever > 0) 

C2&<1. 

By set additivity and translation invariance again, 

p=P(7°=co)>- 
2;+1 p( 

+NsN’ = 00) > 0, 

We have therefore proved that if A > A,, then A > AC. In other words, A, c A+. 
To get the opposite inequality we argue as follows. If A < A%, then aM(A) <= 0 for 

some integer M Fix such an M, and let (RF; n = 0, 1, . . .) be the random walk with 
negative mean aM having displacement distribution P(r& E a), (Ly) the random walk 
with positive mean -c&M having displacement distribution P(& E l ). Then copies of 
(Rfz”) and (Lr) can be defined on our percolation substructure 9 in such a way that 
r,MGR; and 1’ nM 2 Lz for all n P - a.s. This is accomplished by ‘filling in the holes’ 
of 6; and S;’ when t is a multiple of M, just as in the argument for (16). By the law of 
large numbers, 

R;+CO and L:+-oo 8.8. 

T’his forces 

P(riM - &M < 0 for some n) ‘= 1. (21) 

Together, (21) and (20) with M = 1 imply that p = P(T’ = 00) = 0. Thus, if A < A,, then 
A s A,, i.e. A* s AC. The proof is finished. 

:emark. A straightforward argument shows that tag is continuous for each M. 
By (18) ct!M is strictly increasing, so A M is the unique root of aM(A) =O. Thus 
a&A*)>0 for each M, and hence C&A,) 20. Since A* = A,, we conclude that 

a(A,) a 0. (22) 

(In fad, 0 (A,) =: 0. See Sectim 7.) 

We are now prepared to present two fundamental limit theorems for nonergodic 
contact processes. Since the proofs have already appeared elsewhere, we will only 
sketch them. The first result is known as the complete convergence theorem.* 

* One way to define (5:) for nondeterministic initial F is to enlarge the underlying probability space to 
support an independent cc.distributed random subset A of S, and to set (r = (f on {A = A}. 
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If h > A,, p is any probability measure on S, and if (6:) is the contact 
press with parameter h and initial distribution p, then 

(P is the hitting time for 0 of $r).) In particular, any invariant measure for ((6: )) is a 
mixture of 6% and v. 

Sketch of proof. For simpiicity, consider p = J&O). To get (23) in this case, it suffices to 
show that 

weak convergence then follows by inclusion-exclusion. Since A > A,, a(A) > 0 by 
Theorem 4. Hence, 

l;‘+-00 and a.s. 

by (17). Thus, for all sufficiently large t, 

A c K, 61, 

so that by (14), as. on (7’ = 00) we have 

(24 

for all sufficiently large t, It is therefore enough to show that the distribution of 

6 I{ t To= 00) converges to V. Now we know that the unconditioned distribution of & 
converges to V; using only this fact and set-monotonicity, it is not hard to finish the 
proof for p = &. The extensions, first to fi = & (A E So), then to JA = 8~ (A E S), and 
finally to general g, are all straightforward. Details may be found in [S] or [ 121. 

We close this section with a second limit theorem for the nonergodic case, the 
complete pointwise ergodic theorem. This result states, for instance, that the 
proportion of time in [0, t] when the origin is infected, given that infection survives 
forever, converges to p as t + 00 with probability one. 

Theorem 6. If A ;r A,, if cc is any probability measure on S, and if f is any continuous 
function on S, then 

1 t 
I 

f(0) as t + 00 a.s. Dn (F C 001, 

7 o f(C) ds + 

I 

(2 
fdv ast. ma.s.on(P=m). 

s 

The first line of (25) is obvious. To prove the second, one 
Birkhoff’s ergo& theorem with a coupling argument. Namely, it follow 
complete convergence (23) and the Feller property of contact processes that th 
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stationary process (6:) is Birkhoff ergodic (in fact, mixmg), so that 

fj%G)ds+/ l’dy a.s. fE L’(V). 
0 S 

(26) 

Also, assuming h > A,, property (24) generalizes to A E S, A E So: 

6:’ nA = & n/i for all large t a.s. on {rA = 00). (27) 

Clearly ?A = 00 a.s. for each A E So0 = S - So, and it is easy to check that v(&) = 1. 

Hence 

5; TP A = & n A for all large t as. (2.@ 

Combining (27) and (28) we get 

45: n A - 6; n A for all large t a.s. on {7A = 00). (23) 

For p =I SA and f depending only on sites in the finite set A, the second line of ,Q.Srj 
follows easily from (26) and (29). The extensions to general or. and continuous f ar;t 
routine. See [ 1 t] or [ 121 for more details. 

5. Convergence rates in the subcritical case 

In this section we prove a theorem giving rates of ergodicity for subcritical contact 
processes. Our result asserts that exponential ergodicity takes place for all A < A,. As 
a sample path consequence, we find that infection dies out not only in the weak sense, 
but in fact it eventually disappears forever from any finite set d. 

Theorem 7. If h c A,, then there are positive constants KO and KI, depending only on 
A., such that for each A E So9 

supllP(t$'nAE •>-seln!l~KolAIe-"l', tM. 
AES 

(30) 

?%us, for any A E S, A E So, 

P(@ n A = ld for all sufficiently large t) = 1. (31) 

‘roof. If A <:: A,, then from the proof of Theorem 4 we know that CYM(A) < 0 for some 
integer M, and hence that there are random walks pi! i’ and Ly with means ~l’~(h) and 
- aM (A ) respectively, such that 

By a standard large deviations result for random walks, the last term is at most 
2M eeKln, for some constants K, Kr depending only on A. By monotonicity, 

eK2 eWK2*, t 30. (32) 
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Next, for any A E S, A E So, we can write 

for some finite collection of disjoint subsets A,, of A. For A, f 8, choose xn E A,,. Then 

Therefore, by set monotonicity, translation invariance, duality and (32), 

IIP(6: n A E . ) - &IA II 

G 2P( u {x E &) s 2P( u {x fs et}) = 2l4P(O E &I 
XEft XEA 

= 21A (P(7’ > t) G 4K eK2 emKZ’. 

Thus (30) holds with K1 = 4K eK2. The claim (31) follows easily from (30) by a 
Borel-Cantelli argument. 

As a consequence of Theorem 7, we get the following result for the subcritical 
asymptotic velocities. 

Theorem 8. If A <A,, then a(A) = --a. 

Proof. We will prove a stronger assertion: if A < A,, then there is a C = C(A) > 0 such 
that 

P(rl > -ect) + 0 exponentially as t + 00. (33) 

Thus the right edge of (&) runs off to --OO exponentially fast in the subcritical case. 

To see this, simply note that 

P(rl > 9) = P(r[ > e”) + P(rl E (-ect, ect]) 

G P(r, > ect) + P(& u (-ect, e”] # 0). 

‘H”k first probability on the left side tends to 0 exponentially fast for any C > 0 since 
r, rljoves right with speed at most A. According to Theorem 7, the second probability 
is majorized by 

(2Ko ec’) eVKlr, 

&h K. and PC1 as in (30). Thus (33) holds for auy C <KI. 

.k~.s noted previalusly (cf. (22)), it is e, ‘y to see that cr(A,) 3 0. In 
consequence of a result from the ne section, cy (A,) = 0. Thus Q i 

A = AC. For A 2 A, we know from ( ) that cy is strictly increasin 
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infimum of the continuous functions CT&M, cy is right continuous. Presumably cy is 
concave, and hence continuous, on [A,, OO), but these propefties are not known. 

In the nonergodic case one wants upper and lower bounds for cy. Since r, moves 
right one unit at rate A and moves left at least one unit at rate 1, the easy upper bound 
is 

&&A-l, A 221. 

From (8) and (18) one gets the lower bound 

cu(A@=A -2, A 32. 

6. Convergence and mixing rates in the nonergodic case 

In contrast to the subcritical case, exponmtial convergence rates are not known for 
all values A > AC. This undoubtedly reflects the inadequacy of available techniques 
rather than the presence of slower rates just above the critical value. In any case, we 
will have to be content in this section with results which hold for sufficiently large A, 

Two key quantities for our purposes are 

$dt)=P(t<~O(A)<~), ta0, 

and (cf. (11)) 

<p&n) = P(T'~."-'~(A) Coo), m a 1. 

If we define 

A+ = inf(A > A,: #A (t) + 0 exponentially in t}, 

and 

lb = inf{A : qA (m ) -) 0 exponentially in m}, 

then presumably A+ = A, = AC. The best rigorous bounds, however, are 

h6 7, (34) 

To get (34) we use the contour calculus. Adopting the notation of Section 3, we 
note that If t c 7 < ~0, then a contour J’ # $3 such that h = Ci,IU li > t occurs. Hence we 
arrive at the estimate 

a0 3zn A”-’ * 
6 c 

n=~T (2n-l)! 
e-(1+2h)h 2n-2 h dh 

e-(P+2n)h(t + h)2n-2 & 
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n 
1 

k/2+1 

G 4h (pl F exp{-(1 + 2A)(l- JTiJt} 
L -A 11 

+ 0 exponentially in t, 

provided that Al = 32A/ii + 2A)2 < 1. Thus (34) holds. As noted in (1 l), the contour . 
method also shows that A, < 7, but in this case the Holley-Liggett approach yields 
the better bound (35). Suppose A > 2, and consider the renewal measure JQ con- 
structed in Section 3. According to (9), 

q9h (m) = lim P(&*‘“-” 
r-Q3 

=8)rpf{* n[O, m -1]=0}. 

By the construction and translation invariance of of, the rightmost term equals 

Jo{ 1 at 01, all O’s on [ 1, k]} 
k=m 

+ 0 exponentially in m. 

Hence (35) holds. 
We now discuss applications of the exponential bounds on q+(t) and rp(t). First, we 

easily derive exponential convergence to v for the nonergodic contact processes with 
A 2 7 and initial state 2. 

Theorem 9. rf A > A,, then for each A E So there are cowtavzts KO = .&~~A) and 

K1 =&(A), such that 

Proof. By inclusion-exclusion, it suffices to,show that 

1% E St) - P (X )I + 0 exponentially in t. 

Using self-duality, note that the above differt qce is in fact equal to @it). 

An exponential convergence theorem allowing a more general class of init~ 
requires some work. A good deal of this work has been done by Harris, as we now 
explain. 
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Remark. In [ 191, Harris has used graphical methods to obtain exponential estimates 
foi* nonergodic contact processes. Because our continuous time contour calculus was 
not avai1abi.e when [ 191 was written, he resorted to certain discrete approximations. 
Consequently, his results hold only for extremely large A. However his ideas can now 
be z(Jmbined with continuous contour techniques to prove results such as: 

!E h > h,, then there is a C = C(A) c 00 such that 

Pl,j(x E [0, m - 11: 7’ = QO}l< Cm)+0 

exponentially in m, 
and 

If h 2 14, then there is a C’ = C’(A) < 00 such that 

(36) 

exponentially in t. 

By Borel-Cantelli and (36), one gets Harris’ Growth Theorem for A 2 14: 

B ( 
0 

lim inf It I ~>O+o = 1. 
t+ao > 

Next, let pe be Bernoulli product measure with density 6 > 0. Using self-duality, it is 
not hard to see that 

lb E et> - P(x E &ye)1 = E[( 1 - @)‘*:‘, 7’ > t]. 

For A a 14, one can apply (36) to check that the right side tends to 0 exponentially in 

t, and hence that Theorem 9 holds for @ye), 8 :B 0. 
We now turn our attention to the spatial dependence structure of tlit: invariant 

measure Y. In [S], Durrett gives a simple proof that each uA, A > A,, is ergodic. The 
next result asserts that the Z.Q are asymptotically uncorrelated, and that the cor- 
relations decay exponentially for A > A,. 

Theorem 10. Introduce the correlation function (P* (A) = z+ ( l n A = 8), qPh (m) = 
q&O, m - 11). Then for each A > A,, 

(37) 

A E S, B E So, where d(A, B) = min{lx - y 1: x E A, y E 8; is the distance between A 
and B. Thus the correlations decay exponentially if A > A,. 

roof. It sufices to prove (37) for arbitrary finite A and finite B, both of which we fix 
in the argument which follows. If we use independent substructures PI and & to 
define the subfamily {([PO); A 0 C= A} and {(rF”); ES0 Z= B}, and if we define 

-AoBo 7 = min{t: rf” v rB” = @. (38) 
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then copies of the processes ([pou’()) can be defined in terms of P1 and P2 so that the 
following properties hold: 

and 

t s r(&, &) = min{f : @ n sF() z 0}, 

for all f. 

For more on this construction, see [12]. 
Combining (38)-(41), we have 

(41) 

(42) 

At this point it is convenient to return to the canonical representation of {@); A c 
2) in terms of a single substructure 9. Introduce: 

Setting 

E, = {Vx E A: 7(x, y) s .(‘*” < a}, 

we claim that E, c ~~~~~~~~ < 00) u ~~~~~~~~~ < 00). This is so because on E, the contour of 
one of the processes (~‘xY’y’) or (&“““‘) ’ IS ‘enclosed- by the contour of some (e,(“’ ’ 1, 
x E A. Thus, from (42) we have 

cp(AuB)-cp(A)cp(B)~IBIsupP(E,) 
VEB 

Since [x/, y] and [y, xl’] are blocks of length at least d(A, B), the desired result (37) 
follows by translation invariance. By self-duality lim,,, q(m) = ~((0)). From the 
complete convergence theorem (Th:;orem S), or from more elementary monotoni- 
city considerations, we know that v and S are extreme. Hence ~((0)) = 0 if A B A,, and 
so the correlations delcrease to 0. By definition of A,, the rate is exponential if A > A,. 

The proof is finished. 

Rewrrark. General limit theorems for random fields (see e.g. 6261) yield a central limit 
theorem whenever the correlations decay exponentially. Thus, lettin 
distributed, if we write 

Sm +FCO U [--4 m]l, a’, = var(S,,), 
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then for A 2 2 it follows that 

l im 1 s, -E[Sml 
=JGa = I J a (2 n ) 

-l/2 * 

A e 
-u*/2 due 

m-+00 Qm --co 

Whether ZQ obeys the central limit theorem, for all A > A, remains an open proble:m. 

7. The critical contact process 

The problem of ergodicity at A = A, may be viewed as a question about the 

equilibrium density function p(A). Since p(A) = 0 for A < A, and p(A) > 0 for A > A,, 
the family of critical contact processes is ergodic if and only if p is continuous at AC. 
Before confronting the critical case% we note that it is relatively easy to prove 
continuity of p away from AC. 

Theorem 11. p(A) is cosdnuous on (A,, 00). 

Proof. Here is an argument 
considerations show that for 
invariant measures Y- and V’ 

which we learned from Larry Gray. Compactness 
any ho there are sequences A’fAa and A”&Ao, and 
for {(&ho))}, such that 

VA’ * v-, VA” * v+. 

In particular letting p- and p+ denote the respective densities of v- and v+, 

PW’~-, p(A”) Jp+. 

Since 

necessarily v+ = vA,,. Moreover, for ho > A,, 

p_3$np(A’)>O. , 

Thus if p were discontinuous 

O<p-Cp+=p(Ao). 

at A~, then we would have 
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By Theorem 5, V- would have to be a mixture of 60 and vAO, evidently nontrivial, 
forcing v-(0}> 0. But, as noted in the proof of Theorem 9, u*{lzj} = 0 for all A > AC, so 

by A -monotonicity, 

This contradiction implies the desired continuity at ho. 

Let us now turn to the critical contact processes {[p (A,)}. Current research has led 
to a couple of partial results. The analysis is quite involved, so we will not go into it 

here. Instead we simply mention the progress we have made so far. We have 
succeeded in proving: 

(a) if Q! (A ) > 0, then A > A,, and 
(b) if p(A) > 0, then r, + 00 in probability as t -, 00 [3]. 
Result (a) shows that cy (A,) = 0. It is based on a percolation idea which we learned 

from H. Kesten (cf. the important paper [23] in this connection). Result (b) says, in 
spirit, that if the right edge process visits the negative half-line infinitely often with 
positive probability, then (6: (A )) dies out with probability one. This assertion should 
be plausible in light of Theorem 3; the rigorous proof involves O-l law considera- 
tions. One can show using (h) that if the critical processes are nonergodic, then (23) 
holds at A = AC. 

Of course (a) and (b) are both consistent with either ergodicity or nonergodicity, 
and there is really no compelling evidence one way or the other. Based on very loose 
analogies with other systems one is inclined do suspect that ergodicity occurs. This is 
surely the premiere open problem in the theory. 

Our next result gives a maximal convergence rate for the c6tical conttict process 
(&), and a sample path consequence. In contras~t to the subcritical case, weak 
convergence to 60 must occur slowly, and the infected set & includes each finite 
subset of 2 at arbitrarily large times with probability one. (This result is only of 
interest if the critical processes turn out to be ergodic.) 

Theorem 12. There is a positive constant K such that the critical r’ontact promss 
(&(A,)) satisfies 

P(x E &(A,)) aK(l+ t)-‘. 

Moreover, for any A E SO, 

(/11 c &(A,) for arbitrarily lwg times t) = 1 o 

y CY(A~) 2% 0 and (17), we can choose k > 

P(r,ever<-t-k)=P(f,‘ever>t+k)=p<+. 
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Making use of (20) 2nd translation invariance, for any n it follows that 

Now set additivity gives 

E 

a2(n+k)+1* 

Finally, by monotonicity, (43) holds with K = $/(k + 1). The argument for (44) is 
based on one in [ 121, but is simple enough that we can give it here. First we note that it 
suffices to prove (44) for A = (0); since 

P(A c (7) > 0 for any 11 E So, 

the general case will then follow by set monotonicity and a standard application of 
the Markov property. Define 

a; = minis at:O~&} (-mifnosuchsexists), 

and note that 

(0 E & for arbitrarily large s} = lim lim {gt E [t, u]}. 
t-+00 u+ao 

Thus we need only show that 

lim P(u, E [t, u]) = 1 for each t Z= 0. 
U+a 

Intraduce 

e$ = E[time in [t, u]: 0 c Sf], z 
et,, = et,,. 

Applying the strong Mairkov property and set monotonicity, we get 

et,,, = P(GQ E dr, &, E dA)e&-, 

(43 

Thus, 

(utE[t, U])bS= I-2. 
eou @OU 

(46) 
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BY (431, 

I 

CL 

ecu 3 K(l+r)-‘dr+oo asu+oo. 
0 

177 

(47) 

Use (46) and (47) to check (45), and the proof is finished. 

pproximation y finite systems 

Let {&f(h)); A c [0, N)} be the contact system with parameter h on the torus of 
sites [0, N)={O, 1,. . . , N-l}, where 0 and N - 1 are neighbors. For each N, this 
family of finite Markov chains has the single absorbing state 0, and hence 

ejv (A) = E[&ovN)] < a. 

The critical phenomenon which occurs in the infinite systems is reflected in the finite 
systems by the growth rate of e N, as N + 00. Namely, for small A eN grows logarith- 
mically, whereas for large A the growth is exponential. We now establish this 
phenomenon, which was noted for related discrete time systems by Stavskaya and 
Piatetskii-Shapiro [35] and Toem [38], as an application of techniques developed in 
carlier sections. 

Theorem 13. If A < A,, then 

If A > 7, then there are constants 1 < cA < Ch < OQ such that 

liI$ ‘,“f CANeN > 0, (4’9 ) 
+ 

lim sup CiNe,(h) < 00. 
N-*W 

Proof. Abbreviate PN(f) = P(M”*~’ > t). All of the inequalities are derived by first 

estimating p&t), and then using the tail formula 

I 
a0 

e,u = m(t) dt. 
0 

The left inequality of (48) is based; on comparison with a system where infected sites 
recover independently at rate 1, but infection cannot occur. Let T,, 0 s x s 
the time until a S appears at site x in the %raphical representation of ~~r~~*~~ 

(70G r)lN =: 1 -(l -e-t)N. 
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Using (5 l), 

eN 3 log NpN (log N) 3 bg N [ -(I+)*]. 1 

We conclude that 

The right inequality of (48) is, of course, more involved. To begin, define a 
compariGxr process ($y*“’ ) on [0, N) in terms of the contact process (&OSN’) on 2 by: 

‘OsN’ x~$p~~‘iff x+kNe& for some k E 2. 

It is not hard to see that (N&5”‘“‘) can be contitructed on the same probability space as 

(&‘*“‘) in such a way that 

N& 
[QN c ft -IckN) for all t. 

Then 

1 rpsN) c 0 and lpsN’ 3 N} 

c {&“‘N’ = ld) c {s’[rO’N) = 8) = {&O*N) zg t}. 

Hence we arrive at the estimate 

pN(t) s 2P(r; > -N). 

Now assume h < A,, and let C be as in (43). Writing N(t) = ecf, for t 2 C-’ log N we 
have 

pN(t) spN(f)(t) s 2P(r, > -N(t)) s 2C1 e-c2t 

for some positive Cl and C2. Hence, from (Sl), 

I 

og 
eN s C-l log N + 2Cl e -c2t dt. 

C-‘log N 

We conclude that 

lim sup - - 
eN(h&-l 

N+OD N 
<=4 

as desired. 
The derivation of (SO) is based on comparison with a system where infected sites 

recover at rate 1 and healthy sites become infected at rate 2A, independently of all 
other sites. Using this comparison, it is easy to see thart for any A c: [0, 

N 
-(1+2A) )I 9 
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the right side being the probability that the independent system starting from [0, Iq) is 
in state fl at time 1. Thus, by a standard Markov chain argument, 

i [ 

1 Nn 

pN(n)s l- - 
1+2h -e 

(1 
-(1+2A) )I I l 

By (W, 

1 E pN(n) s [m (1 -e-(L+2A))] 
-N 

eNs . 
n=O 

Thus (50) holds with CA = (1 + 2h)/( 1 - e-(1+2A) ). For the: remaining inequality (49), 
we make use of contours. In the graphical represental:ion of (N@*N’), the event 

INa ‘o*N) G t} implies that there is a ‘contour’ starting at some (0, s), s G t, labelled with 
a S, and then wrapping around the torus. The estimate (11) applies when A 2 7 to 
yield 

I 
t 

PNW 2 1 - C(h)Ayds=l-C(h)Ayt. 
0 

Thus, from (Sl), 

I 

C-‘(A)A; N 

eN(h) a 
0 

[l-C(A)A~t]dt=&,4~N. 

We conclude that (49) holds with ch = Al’. 

Remark. At A = A, one can use ideas from Theorem 12 to show thlat 

lim inf eNo>O. 
N+m N 

Presumably N is the correct critical growth rate, and presumably eN(A) 
exponentially for all A > AC. 

9 Discrete time, oriented percolation and growth modeb 

There are two discrete models, essentially equivalent, which are amenable to much 
of the analysis we have carried out. The first is the system of one-sided discrete tfme 
contact processes, often called the ‘Russian lamps’ [35, 38, 41, 42, 
p E [0, 11, for each ,4 c 2 a discrete time S-valued Markov process (I$ (~~~ is 
inductively as follows. To begin, &( p, = A. At time n a 1, a coin w 
of heads is flipped independently at each site x E 2. If et-1 n (x 3 1) 
coin turns up heads, then x E 6:. Otherwise x 

The second modiel is called oriented site percolation in the plane [ 1 b 4, 
311. Here we let E;L,> be Bermop -‘i product measure on Z* with density p 



180 D, Grifeath / The basic con tact processes 

introduce the oriented graph st:ructure: 

(x,y)hasneighbors(x+l,y)and(x,y+l), (x,y)~Z*. 

Let q be a @,-distributed randolm field of O’s and l’s on 2*. Define random subsets 
CA of Z*, A c Z*, by 

(x, y) E CA iff there: is a nearest neighbor path from some site 

of A to (x, y ) arriving only at l’s in q. 

(By convention, A c CA.) 
The two models are equivalent in the sense that a representation of {@t(p))} is 

given b;y 

xEef(p) iff (X,n--x)&Q), 

where B =: {(y, -y): y E A). 

In particular, 

x E&p) iff (x, n -x)E CO(p). 

The central objects of study in both models are 

p(p) = P& # 0 for all ra j = P(ICOI = oo), 

and the critical constants 

PH =supb p(p) = o}, pT=bup{p: E[lC"l]-}. 

As for continuous contact systems, the edge processes 

6 = max{x E &co’ol}, 2: = min(x E &O@)}, 

and the expected displacement at time n: . 

an(p)-Pn(p)=E[r,(~)-~,+(p)l 

are central to the analysis. The discrete and continuous theories have a great deal in 
common, though each enjoys many features not shared by the other. 

We now present solutions to two outstanding problems in oriented percolation, 
both of which are easy in light of results and techniques from previous sections. 

erorem 14. (a) If pn is the unique solution of a,(p) = 0, then 

09 pr = PH- In fact, 

0 Clc II{ <% PCPPH 

=m, pap& 



L3. Griffeath / The basic contact processes 181 

Proof, (a) Just as in the proof of Theorem 4 one can show that supItpn = ptj. 
Moreover, the argument given there applies equally well to any subsequence (n’), 
since 

%(P> n(p)= lim -= inf a,‘P’ - 
n-al n ’ 

Thus supnt pnl= pH for any (n’), which proves (a). 
(b) Arguments similar to ones in Section 5 and 8 show that for p c pH, 

P(r” - ZP ever > n) -, 0 expionentially fast as n + 00, 

P(ei f 0) + 0 exponentially fast as n + 00, 

whereas for p 3pH, 

P(7*%+c(1+n)-1 forsomec>O. 

(52) 

(53) 

(54) 

Using (52) and (53), if p cpH, then 

P(lC”l > n*) G P(rP -1P ever>n or70>n) 

Thus 

+ 0 exponentially fast as n + 0. 

E[lC’l]s f (hz +1)P(IC”(Wz*)<~. 
n=O 

(Similarly, all moments of IC”l are finite for p <PH.) 
If p SpH, then since {Sz Z 0}c {IC”l > n), by (Sl), 

E[lC”l] a i P((O, + 0) = ofJ. 
n=O 

Rcmazks. In the discrete case the, an are polynomials, so the pn are computable as 
long as,one has the patience. Thus p1 = 3, p2 2 0.672, p3 a 0.676. Probably the pn are 
increasing, but this is not obvious. In the introduction to [27] it was implied that our 
(a) woluld be proved, but the proof was not given. While it is comforting to know that 
the pn converge to the critical constant, the method of ‘ceilings’ in [9] gives better 
bouncls for small n. Thus it is known (cf. [9]) that 

PH 2 0.688. 

Stochastic growth models have been widely studied, especially since the pioneer- 
ing paper by Richardson [29]. We refer the reader to [29] for a handful of different 
growth models. Here we will mention only one of his processes, for which the discrete 
time contact systems come into play in a olorful way. The so-called t.p m 
have in mind evolves as follows. &4t time 0 a sin infected site occupies oh 

Z*. At time n Z= 1, if site (x, y ) E %* is healthy a at least one of its f 
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infected, then (x, y) becomes infected at time n -I- 1 independently with probability 
p E [0, 11, and remains healthy with probability 1 -p. A site which is infected remains 
so forever. Let A,, c R2 be the set of infected sites at time n, together with a unit 
square centered at each such infected site, Clearly A, grows over time. Richardson 
[29] has proved that there is a norm fP on R2 such that for any E >* 0, 

lim p ( {f,Sl-E}C 
A,(P) 

n+m 
-c{fPsl+&} =I. 

n > 

Thus A, has an asymptotic shape: 

IXecently, Durrett and Liggett [7] have made the nice observation that 

i defines a one-sided contact process with the same parameter p. If p > pH, then with 
positive probability (6:) grows lineiarly in diameter forever, which means that the 
boundary of BP intersects the line x + y = 1 in an interval around ($, $). Moreover, by 
using the discrete time version of Theorem 7, Durrett and Liggett are able to show 
that sf pep H,thenB,n{x+y= 1) r= 0. Thus the critical value for ‘flat edges’ in the 
asymptotic shape of the Gp growth model is precisely PH. The reader is referred to [7] 
for details. 

10. Open problems; generalizations 

In this final section we indicate some possible directions for further research on 
contact processes. By now the reader should be aware that the theory of the basic 
contact process on 2 is fairly complete. Nevertheless, a number of open problems 
have emerged during the exposition. Here are 10 of the more important ones; most 
are probably rather difficult. 

Open problems : 
(I) Is p(A,) = O? 
(Z!) Can A, be ‘explicitly’ computed? 
(3) Is there an ‘explicit’ sequence of upper bounds for A, which converges to A,? 
(4) Is a (A) continuous (concave) for A > A,? 
(5) Is A, = A,? 
(6) 1s A+ = A,? 
(7) Does Harris’ Growth Theorem hold for all A > A,? 
(8) Does the central limit theorem hold for vA, for all A > A,? 
(9) Is the density of &(A,) of orlder l/t? 

(10) Does e&A) grow exponentialkx! in N for all A >A,? _ 
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Another possible avenue for further work is the analysis of more general contact 
processes. The basic system which we have discussed can be generalized in various 
ways. As long as the recovery rate is constant and the: rate of infection is 0 in a totally 
healthy local environment, then ([P> is still called a contact process [ 171. One can 
stick to the one dimensional nearest neighbor case, but consider a more general class 
of infectian rates. A great many of the methods of this paper will continue to apply as 
long as the infection rates are additive [ 191; some methods only req,uire monotonicity 
of the rates. As soon as one moves to the non-nearest neighbor case, however, most 
of the techniques we have used fail to apply. While the main theorems undoubtedly 
continue to hold in such cases, new ideas, as yet undiscovered, are needed. A recent 
paper by Bramson and Gray [2] studies an infinite range contact process, and raises 
some intriguing questions. 

Finally, one can consider systems in several dimensions. Of these, the simplest is 
the boric (nearest neighbor) contactprocess on Zd, for which infection takes place at a 
rate proportional to the number of infected neighbors. As for d =: 1, the propor- 
tionality parameter is h, and the recovery rate is 1. Again, the methods of this paper 
fail to apply for the most part. The existence of a critical A Ld’ can be proved just ass in 
the one dimensional case, but the ergodic theory is much less developed for d > 1. 
The lower bounds ALd’ 2 1/(2d - 1) are proved in [18] and [20]. The best known 
upper bound in two dimensions, A r*’ s 1, is in [21]. Recently, Halley and Liggett [22] 
h:ave obtained upper bounds for d 2 3 which are asymptotically equal to 1/2d as 
d + 00. Thus limd+, &id’ - ‘* - *, conceptually, interaction disappears in the limit. 
‘Virtua!ly all of the known convergence results in several dimensions are ‘due to 
Harris [18], [19]; unfortunately, he requires regularity assumptions on the initial 
state. A forthcoming paper of Durrett and Griffeath [6] will establish stronger 
theorems for the basic nonergodic processes with sufficiently large A. For example, it 
will be shown that complete convergence (23) holds in any dimension d provided that 
A > AL? More research along these lines would be welcome. 

Added in proof 

New results of Durrett and the author answer questions 5,6, 7, 8 ;irrd 10 in the 
affirmative. 
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