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1. Introduction

Let S be the space of all subsets of the d-dimensional integer lattice Z“ Certain
continuous time Markov processes with state space S, known as interacting particle:
systems, have been studie« exiensively over the past decade (cf.[12, 24, 33, 37]). The
basic (one-dimensional) contact process, introduced by Harris [17], is perhaps the
simplest such interacting sysiem which exhibits a critical phenomenon. The dynamics
of the process can be described succinctly as follows. At any given time ¢ = 0 certain
sites x € Z are infected while the remainder are healthy. The set of infected sites is
denoted &, Infected sites recover at constant exponential rate 1, while healthy sites
are infected at an exponential rate proporticnal to the number of infected neighbor-
ing sites. Thus the infection rate at site x at each time ¢ is 0, A or 2A depending on
whether neither, one or both adjacent sites belong to £. Here A is the infection
parameter. In essence, the critical phenomenon is this: if A is sufficiently small,
infection tends to die out, whereas if A is sufficiently large infection tends to be
permanent. Iaterest in the model centers on the precise formulation of the dicho-
tomy, and on detailed analysis of the ergodic properties of the process in both
situations.

The present article is a more or less self-contained exposition of current know-
ledge concerning the basic contact process (£). In the next section we begin by
constructing contact processes with the aid of Harris’ graphical representations [19].
Duality equations, monotonicity and complete coupling properties are then
established; these are the principal tools of the theory. To illustrate their use, we
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conclude Se.tion 2 by formulating the essential qualitative aspects of the critical
phenomenon.

Section 3 surveys the difficult quantitative problem: to determine the critical value
A. below which infection dies out and above which infection persists. Lower bounds
for A. are relatively easy to derive; we give an extremely simple argument that

Ac=1.

That A.<0, i.e. that infection can be permanent, is probably the deepest known
result about contact processes. Three different proofs have been found. The first, due
to Harris [17], gave no readily computable upper bound. The second, a remarkable
argument by Holley and Liggett [21] shows that

Acs2.

A third approach, less powerful but of wider applicability than the Holley-Liggett
method, is due to Gray and Griffeath [8]; for the basic contact process it gives

Ac<T.

We sketch both the Holley-Liggett and Gray-Griffeath methods, since various
estimates from those papers will be needed later in our study.

In Section 4 we begir: analyzing the edge process, i.e. the rightmost (or leftmost)
infected site when there is initially infectionon {...., -2, -1, 0} ({0, 1, 2, .. .}).
Making use of results due to Durrett [5], Liggett [25] and the author [10, 11], we
obtain a good understanding of the ergodic behavior of (£,) at all parameter values
except A =A.. In particular, we prove a complete convergence theorem and a
complete pointwise ergodic theorem.

The next two sections, 5 and 6, contain a number of new results. We have
attempted to identify, insofar as possible, iust what is known about the ‘next level’ of
the ergodic theory, i.e. rates of convergence and mixing and velocity of the edge
processes. As will be seen, the picture below A. is much more complete than that
above A.. For instance, we are able to obtain exponential convergence to the state
@ =‘all healthy’ whenever A <A, but exponentizl convergence to the limiting
equilibrium of permanent infection starting from Z = ‘all infected’ is only known for
sufficiently large A.

In Section 7 we address the critical contact process. Some partial results are
discussed briefly. Then a result on convergence rates and sample path behavior is
proved. As one would expect, the critical case must differ qualitatively from the
subcritical case.

Approximation of contact processes by analogous mcdels on the N-torus Sy = {0,
1,..., N-1} is the subject of Section 8. The latter models are finite Markov chains
with @ absorbing; we consider the expected time ey to absorption when the Nth
process starts with infection everywhere on Sy. The finite approximations reflect the

critical phenomenon of the limiting infinite system in terms of the growth rate of ey
as N » o0,



D. Griffeath | The basic contact processes 153

Section 9 deals with discrete time contact processes, and their connection with
oriented percolation in the plane. In fact, discrete time contact processes were
studied by Stavskaya and Piatetskii-Shapiro [35], Toom [38], Vasilev [42] and others
several years before the continuous time theory emerged. Moreover, a totally
equivalent model of oriented percolation in a quadrant of Z> was studied by
Mauldon [27] and Bishir [1] almost twenty years ago. It is therefore satisfying that
some of the results from Sections 4 and 6 apply equally well in discrete time to solve
an open problem in oriented percoiation (cf. [31]):

Pt = DPn,

i.e. if the cluster of sites wetted by a source at the origin is finite with probability one,
then the expected cluster size is finite. We conclude Section 9 by mentioning a
two-dimensional growth model of Richardson [29] for which Durrett and Liggett [7]
have shown that a discrete time contact process comes into play in an intriguing
manner.

Finally, Section 10 addresses open problems and generalizations. We identify
what seem to us the most important unresolved questions about (£,). Foremost
among these are the ergodicity of the critical processes and the ‘explicit’ evaluation of
A; both problems are probably quite difficult. We conclude the paper with a brief
discussion of contact processes on Z 4 d>1, where much less is known.

2. Graphical representation and elementary properties

Following Harris [19], we begin by constructing the basic contact processes from
independent ‘exponential alarm clocks’ with the aid of a random graph ? = 2(A)
called the percolation substructure. Start with the ‘space-time diagram’ Z x [0, o).
For each x € Z, draw three infinite sequences of graphical devices as follows. First
draw arrows from (x — 1, 71..) to (x, 71.,), from (x — 1, 72 ) to (x, 73..), etc., where the
values 71, 73 . —Tix . ..are independent exponential random variables with mean
A. Second, draw arrows from (x +1, 72, to (x, ré,,), (x+1, 75,,) to (x, T%,x) etc.,
where the 73, occur at rate A. Finally, put down a sequence of &’s at (x, T
(x, 'rﬁ,x), ..., the 70, ozcurring at rate 1. The arrows will transmit infection tossite x if
it is present at a neighboring site, while the 8’s will kill infection if it is present at x. A
generic realization of *he graph 2 obtained in this manner is shown in Fig. 1. Say
there ;s a path up from (y, s) to (x, ) in @, x, y € Z, 0 < s <t <00, if there is a chain of
upward vertical and directed horizontal edges in the resulting graph which leads from
(y, §) to (x, t) without passing (vertically) through a 8. (By convention, there is & path
up from (y, s) to (y, s).) Thus the §’s may be thought of as obstructions to the flow (or
‘percolation’) of liquid. Now define

£ ={x: there is a path up from (y, 0) to (x, 1)
for some y € A}, AeS. (D
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The process (¢1 )0 is called the basic contact process with parameter A starting from A
(i.e. with infection initially on A.) The reader should check that (£2) is Markov, and
that its dynamics are precisely those described in the introduction.

Our first theorem will identify some of the key properties of contact processes
which follow easily from the graphical representation. These properties will be the
main tools in the analysis to be carried out. It is important to emphasize that (1)
defines all the (¢7*), A € S, simultaneously on one probability space ({2, %, P), at least
when A is fixed. As we will soon see, processes with differing A can also be defined on
the same space by augmenting slightly the percolation substructure. Thus 2 ‘couples’
the evolutions of different contact processes; couplings of this sort turn out to be
remarkably powerful. A few words about notation are in order here. When the role
of ine parameter A is being stressed we write £;*(A). Also, some particularly
important processes will be abbreviated:

&=¢&0, & =& =4
Finally, it will be convenient to write ¢5 = ¢\ for the process starting with the single
infected site x. (In general, we write x for {x} whenever it is convenient.)

Theorem 1. The following four properties hold :
(i) additivity:

PP =gf UEP, A,BeS, t=0; ()
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(ii) set monotonicity:

£ <E’ifACB, 120 (3)
(iii) A-monotonicity: (On a suitably enlarged probability space),

£ M) EPMN)if ho<A, AES, t=0; 4)
(iv) self-duality:

PE NB#0)=P¢’nA#0), A, BeS, t=0. (5)

Proof. To get addivity simply notice ...t by definition (1), site x belongs to the set on
either side of (2) if and only if there is a path up from (A, 0) or (B, 0) to (x, t)in ?." Set
monotonicity follows from (2) since, for A < B, we have

B Au(B-A) A «B—~A A
& =€ =& V& =y

A randomizing device can be used to establish A-monotonicity as follows. Given
Ao <A, consider the graphical representation 2(A). Independently, color each arrow
green with probability Ao/A and leave the arrow uncolored with probability (A -
Ao)/A. The green arrows together with the §°s in 2(x) constitute a version of P (A,), so
we can define £ (1) by (1) and £ (Ao) by

£2(Ao) ={x: 32 path up from (A, 0) to (x, ¢) in
P (L) using only green arrows}.

From the construction, (4) is immediate. Self-duality is proved using a ‘time/arrow
reversal’ trick. Fix A, ¢, and consider the restriction of ?(A) to Z x[0, t]. The key
observation is that by letting time run ‘down’ instead of ‘up’, and by reversing the
directions of all arrows, we get another substructure @()«)szm,,l with preciseiy the
same law as P(A )| zxo... (The piece of (A ) corresponding to the piece of (A ) from
Fig. 1 is shown in Fig. 2.) Thus, for 0 <s =<1t we can set

£B = {x € Z: 3 path down from (B, t) to (x, t—s) in P(A)},

BeS, and (£2)o<;<, is a version of the basic contact process with parameter A,
starting in B and running up to time ¢. Eq. (5) now follows from the construction,
since the events on both sides coincide with the event that there is a path (up or down}
connecting (A, 0) and (B, t) in the joint representation.

Using the properties of Theorem 1, we now indicate the qualitative nature of the
critical phenom.enon for contact processes. First, note that § = ‘all healthy’ is a trap,
so the measure 8, concentrated at @ is invariant. The hitting time for @ will be denoted

r* =min{t: £*(A)=0} (=0 if nosuch ¢ exists).

! The reader should be on the alert for hybrid space-time notation. For instance, (A, 0) means A x {0},
while (x, 00) X 0 means the spatial interval (x, ) cross {0}.
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By taking A = Z and B € S, = {finite subsets of Z}in the self-duality equation (5), we
find that

P& NB#W) =P’ #0)=P(r">1) | P(r® = 00)
as 7 - 00, By inclusior—exclusion it follows that
’lltg P&nB=C)=v(- nB=0C),
C < B e &, for some measure v = v, on §. In terms of weak convergence,
P(& e )=>v ast->00,
where » is determined by
v(- "B #@)=P(r® = 0).
In particular, the density p of v satisfies
p=v(0e-)= P(7-°=oo).

(The measures P(£, € +) and the limit » inherit translation invariance from P; we will
use translation invariance properties repeatedly in this paper without further com-
ment.) If p =0, then for any A € S, by set-monotonicity

PP N B #0)<P(£,n B #0)
=P(x € ¢ for scme x € B)

<|B|P(0€ &) |Blp = 0.
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Evidently » = 84, and
P(¢le )6, ast>00 YAES.

In this case the Markov family {(£}); Ae S}issaid tobe ergodic, since processes with
arbitrary initial state converge to the unique equilibrium 8. Note also that

P(rP<w)=1 VBeS,

in the ergodic case. If p(A)>0, then clearly » # 85 so there are two distinct
equili>ria. In this case {(£{)} is said to be nonergodic. By set-monotonicity we have

P(r°=00)=P(r’=w)=p>0 VYBeS, B#0
in ti.e nonergodic case. Finally, from A-monotonicity it follows that
P(r°(Ao) =) <P(r°(A) =00) if Ao=A,
SO
p is an increasing function of A.
Thus there is a critical value A.,
Ac=sup{A: p(A)=0},

such that {(¢;")} is ergodic if A <A.and nonergodic if A > A.. Note that the possibility
A =00 has not been ruled out as of yet. We summarize our findings in the form of a
theorem.

Theorem 2. There is a critical value A. such that
(@) for A <A (subcritical case),
P&l e )=>8p ast->0 VAES,
P(rA<0)=1 YAeS,;
(b) fer A > A (supercritical case),
P& e )=y, #8p as:—>0,

P(r2=00)>0 VAeS, A#0.

(For a discussion of the critical case A = A, see Section 7 below.)

3. Numerical bounds for the critical value

In this section we discuss briefly the known lower and upper bounds for A.. First,
let us show that for sufficiently small positive A, the contact processes with parameter
A tend to die out, i.e. form an ergodic family. From the last section we know that
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ergodicity is equivalent to
P(r’<o0)=1.

This property is quite easy to verify for A <1. Simply observe that if £&0=AeS,,
|A}= 2, then the diameter of £ increases by one 2t vate 2\ and decreases by at least
one at rate 2. Thus, for A <1, the diameter is majorized by a random walk with mean
2(A — 1) <0. It follows that |£ | = 1 repeatedly as long as the process lives, and hence
that the process dies eventually with probability one. We conclude that

Ac=1.

One can do better; in [12], for example, there is a simple proof that

1+v37

=—=1.18.
A 6

The technique described there can be pushed further, but the computations rapidly
become insurmountable.

The problem of upper bounds for A. is much more difficult. The best known bound
is
Ac<2,

due to Holley and Liggett [21]. Here is a sketch of their remarkable approach. If u is
a measure on S, define

0, (A)=u{-nA#0}, AeS,
and note that 8, < 1;4.¢. Now, for B € S, consider the functions
hs(t)=E[6,(£)]

(E the_expectation operator corresponding to P). If one can find a translation
invariant measure u with positive density such that

hg(t)=0 forallt=0, BeS,, 6)
then

PP #0)=hp()=hp(0)=p{de-}>0
for all t =0. Hence
P(r®=0)>0, BeS,,

i.e. nonergodicity holds. Using the Markov property it is easy to see that

hs()= ¥ P& =A)hA(0).

A€So
To establish (6) it therefore suffices to show

h5(0)=0, BeS,,
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or equivalently
d B
E;E[F'{'ﬂft =ﬂ}]|t=050, BeS,. )]

It turns out that there is a renewal measure which satisfies (7) if A is large enough. A
renewal measure u; on S is determined by a prebability density f = (fi)x-1 such that
M =Y kfi. <o0, by means of the basic cylinder prescriptions

prls Nl x+yi+Fyd=x+y,. o xHyi o+ y))
=M l[llfw

Evidently uy is translation invariant with density M ~!. The method of Holley and
Liggett is to choose (fi) so that (7) holds with equality in case B =[x, y] for some
¥ <y, and then to prove the inequality for arbitrary B € So with u = usso chosen. The
second step is difficult; see [21]. But to find the desired f, note that when B is a block,
say B =[0, m — 1], the contact process gains one site at either end with rate A, while
aninfectedsite k €[0, m — 1]recovers at rate 1. Putting F,, =¥, -, .1 fi a calculation
therefore shows that equality in (7) for all blocks is equivalent to

m-—1
ZAFm—_- Z Fka—k-h m=1 (F0=1).
k=0

One can solve for F to get

em .
Fr= imr ) 2A

so F is summable for A =2. Over ihis parameter range
M =Y Fi=A- JAT=2a.
The conclusion is that for A =2, the contact processes with parameter A have a
nontrivial equilibrium #,, ar1 that the density p(A) of v, satisfies
1 11

) = —1=—- — — =2, 3
eA)=M 2+ YL A=2 (3)

More generalily, when A =2 we obtain the bounds
v{+ "B #@}=P(r® = 0) = lim P(¢7 # )

= ha(0) = ud N B #}. 9)

We will see later in the paper that for blocks B, these inequalities turn out to be
useful.
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A second method of proving nonergodicity for large A is based on what is known as
f i nise h

en b

equivalent to th

=L a4l
ImiccCii

@]

the contour meihod. As we have seen, permanence
condition

P(+'<00)<1 forsome A €S,

so we seek upper bounds for these extinction probabilities. To keep matters simple
we Degln Dy td'(mg A= 1U }, the contour method pr oduces the desired bound uy
analyzing the boundary of the reglon infected by (0, 0) in the space-time dnagram for

\C?} nerc lb an Uull]llc U.l lﬂc dppllhdllull lU Ud.blb LUllldL«l pl ULCIOD. I"Ul inore UC lallb
and a more general setting see Gray and Griffeath [8]. First, embed Z X [0, %) in
R %[0, 00), introduce

E={(y,1): |y —x|<iforsomexe ¢’ t=0},

and let E be E with all its holes filled in. On {r° < o0}, E is a bounded set; we dznote
by I the boundary of E oriented clockwise. On {r” = 00} it is convenient to define
I' =. A representative picture of the contour I' is shown in Fig. 3. With probability
one, I' consists of 4n alternating vertical and horizontal edges for some n =1, which
we encode as follows. A curve with 4n edges will be described by a direction vector

D =(D,...,Dy,)

and a length vector
L=(Lq,...,L,).

The D; are one of the seven triples:
dld, drd, dru, ulu, uru, urd, dlu.

Here 4, u, | and r stand for down, up, left and right respectively. To determine the
direciion vector for a contour I” we start at (—3, 0) and proceed clockwise around the

12
L b
Ly L 7 Lg £Lml L,
?
t
L, !
9 .
L, | Ly
L5
L
L3 16
'(n=10) LZ ‘1'18 117
L
L

.___ff Lo ?

Fig. 3.
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curve, reading off the sequence of directions of I in triples starting with successive
vertical directions. Thus the direction vector for the I of Fig. 3 is:

wlu, ulu, ulu, ulu, urd, dru, urd, dru, uru, uru,

urd, drd, drd, dld, dld, drd, did, dld, did, dlu.

Note that uld cannot occur in [, and that diu occurs only as the value of D.,. The
value L; is the length of the vertical segment corresponding to the first direction in the
triple D;; the L; are shown for the I” of Fig. 3. (Of course the horizontal edges of I" are
all of length one with probability one.) Let N; through N be the respective numbers
of direction vectors of the above types in I', 4N the total number of edges. It is not
hard to see that (P—a.s.)

N1+N4=N—1, N2+N3+N5+N6=N, N6=N3+1,

so the 6-tuple (N, ..., Ng) is determined by N;, N, and N.

Now the key observation is that the shape of I' is intimately connected with the
behavior of the independent exponential alarm clocks at nearby space-time points.
This gives rise to an upper estimate on the “density” of I". Namely, if / is a 2n-vector
of possible vertical lengths, then

P(D(F), L(r)edl’ (Nl(r)’ LI ’NG(F))z(nl’ LI ] nb))

1

dl; (10)

<o MTierk o AT iendiy mtns z'ﬁ

i=1
where I; = {i: the first letter of D; is d}, I, = {i: the first letter of D; is u}. Briefly, the
argument for (10) is as follows. Along each downward edge of I" we know that no
right directed arrow emanates from the site immediately to the left and no 8 occurs
there over a time interval of length [;; the probability of this is e '**".. Similarly,
along each upward edge no left directed arrow emanates from the site immediately to
the right over a time interval of length /;; the probability of this is e "*". Also, a right
directed arrow arrives at the site immediately to the left of each vertex of I', where the
direction changes from down to left except for the 4nth vertex, and a left directed
arrow arrives at the site just to the left of each vertex where the change is from up to
left. Thus thcre are n; + ny events of these sorts, each with ‘probability’ Adl. Finally,
just to the right of each vertex where I" turns to the right a § occurs; there are
r2+n3+ns+ ne such events, each with probability dl;.. Moreover, the independence
properties of the exponential variabies involved imply that all of the above events are
independent. Note that we cannot make use of the lack of 8’s immediately to the
right of up edges in I', since in certain casc. this coincides with the iack of §'s to the left
of down edges. Avoiding this dependence, however, we arrive at the ‘mulitiplicative’
estimate (10). For more details, see [8]. Next, we change variables by replacing the
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final [, iel,, with k=%, , I, and integrate over the region {¥,.,, ;.2 I <h} to get

P(D(I'); Ny =n,, N2 =n3, N3=n3)

o PR S A8
$A"—l j —{1+2A)h dh
0 (|L|=1)! (Ls]—1)
2n-2 o 2n-1
= n—1 +2A 2n I)SC( )An,
(g A rsel, L ) as
where
1+2A A
C"'[ A ] AO_(1+2A)2'

Hence, putting
# (n1, na, n3) =|{D: N1(D)=ny, No(D) = na, N3(D) = n3}|,

we have
PU=0<3 $ #mmn) G 2" )ap
n=1 ny,n3,13 n; +n2+n3
Observe next that

(ni+n,+ n;;)! (n4+n.5+n6)!

#(ny, n2, n3) < P Ty
nilnains! R4insine!

since any direction vector D is completely determined by the ordering of its triples
beginning with u and the ordering of its triples beginning with d. Thus

AS[ y 2n-1)! ]

ninans N1lN2In3ngnsing!

P #0)<C, i

1
Now the bracketed sum is at most 3 - 32", since it can be written as
y (2n-—1)(n1+n4)(n2+n3+n5+n6)(n2+ns)(n3+n6)
nl,n;,n;; H1+ng4 ni ni+ng n, ns
_ 2n-—1[ (n—l)][ { (n—2n3—1)]( n ‘(2n3+1)]
(n—l) :L;. ny "23 ,.22 n, 2n;+1) ni

S22n——1'2n—1[}: 2n-2n3-1( n )22n3+1]
n3

2n3+1

= 22n-—1 . 2n—1 . 22n
Setting

321
A =3 o cre———
1=3240 (1+22)%
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we conclude that if A; <2, then

A,
P(r°<0) =P #0) < <1,
(1<) =PI #) <7 <1
so nonergodicity holds. Better bounds are obtained by doing analogous compu-
tations starting from the blocks A =[0, m —1]: we get

@(m)=P(r'"" V<)< C(\)AT, (11)

for some constant C(A). By taking m large we see that nonergodicity holds whenever
A1<1, so that

A <Z+2V3<7.

The bound (11) is the contour method counterpart of (9).

4. The edge process and its applications

The simple proof of ergodicity for A <1 given at the beginning of the last section
was based on the observation that the rightmost infected site ¢ of &, tends to drift to
the left, and by symmetry the leftmost site I; drifts right. Consideration of the
extreme sites

I# =min{x: x € &}, ri* =max{x: x € £},

turns out to be a very effective approach to the detailed ergodic theory of contact
processes. An analysis along these lines was initiated in papers by Harris [19],
Griffeath [10] and Liggett [25], and most fully realized in a recent paper by Durrett
[5]. This section is essentially an overview of Durrett’s theorems for the edge
processes, and the resulting ergodic theorems. The reader is referred to {S] for
several of the proofs, which are nice but rather involved.

Recall that & = £Z, &7 = ¢0°0 &7 = £ Denote by r; and /] the rightmost site
of £; and the leftmost site of £; respectively. It is more convenient to study r; and I,
than r? and [?, since the former processes are defined for all £ =0 whereas the latter
are only defined on {r° > t}. The first result of this section, which we call the complete
coupling property, shows that &? is intimately connected with &, & and &;.

Theorem 3. On {r°>1},

& =&, ], 0eAcz (12)
and

=8 = (13)
Thus,

& =6nlll,X1=¢ ngl on{r°>1} (14)
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Proof. If 7°> ¢, then there is a path up from (0, 0) to (1%, t)and a path from (0, 0) to
(r2, 1) If xe &2 ALY, r?), then there is a path up from (A, 0) to (x, #). This last path
must intersect one of the first two, and so there is a ‘composite path’ from (0, 0) to
(x, t). Therefore x € &7, and so XA, e £2. The reverse inclusion holds by
set-monotonicity. This proves (12). The argument for (13) is similar. Namely, if
r? = x <ry, then there is a path from (0, 0) to (x, ¢) and a path from (-0, 0) X0 to
(x, 00) X ¢. But this yields a composite path from (0, 0) to (x, %) X #, contradicting the
definition of r?. Thus r; <r). The reverse inequality again follows from set-
monotonicity, so r; =r;. The proof for the left edge is analogous. Now the first
equation of (14) is the special case of (12), where A = Z, and the second follows from
(12) and (13):

£ =& Al D& Al )
=& n& Al 1=E g nlll i )=60 Nl
Using Theorem 3, one can anaiyse ergodicity of contact processes in terms of

the behavior of r,. Roughly speaking, if r, drifts left ergodicity holds, whereas
nonergodicity holds if 7, drifts right. Thus we introduce the expected displacements

a,=E[r;] (=-E[[).
A key property of «a, is subadditivity:
au<arta, Lu>0. (15)

In fact, the process (r; ).=o is itself subadditive in the following sense: for any ¢, u =0
there is a random variable s,,, independent of r, and with the same distributionasr,,
such that

reeusr, +s, as.foreacht,u=0. (16)

To sec this, consider
S =max{x: 3 path from (—00, r; ]x{t} to (ry +x, t +u)}.

By translation itvariance, s, is r,-distributed. Moreover, if y is a path up’to
(revw t+u)in €, then y, <r/,sothere is a path from (—oo, r; ] x{t}to (r.5., t+u),i.e.
(16) holds. If ¢, u >0, then since there is a positive probability of a path from
(=00, r; ) x{t} to (r.+., ) X {t + u}, by taking expectations in (16) we get (15). Now by
a well-known theorem on subadditive sequences,
_ . e OM .

L v
(Note that a = —00 is a possibility.) We call a the asymptotic velocity of the right edge.
By using the stochastic subadditivity (16) and related ideas, Durrett [5] has proved
two useful properties concerning a = a(A):

r_;°~>a a.s. (andin L") as ¢ > 0o, 17)
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and
a,A+8)=a,(A)+6t A, 6,t=0,

so that
a(A+8)=a(d)+8, A,6=0. (18)

(Here —00+ 8 =—00.) The result (17) asserts that the right edge settles down to its
asymptotic speed with probability one. It is not hard to see that

. r .
lim sup —t'—s @ as.(andinL");

{—-»00

Durrett proves the much more difficult inequality

R 4
hmmf-i—za

t—->00

by constructing a stationary ergodic process with mean a which ‘lies to the ieft’ of r, .
Inequality (18) states that the speed is a strictly increasing function of the infection
parameter A assoon as a (A ) > —00. This is derived by a clever coupling argument. We
refer the reader to [5] for the proofs of both theorems.

With the aid of Durrett’s results, we now show that the critical value A, for the
contact processes is precisely the value of A at which the asymptotic velocity of the
right edge changes from negative to positive.

Theorem 4. A.=sup{A: a(A)<0}=sup{r: a(A)<O}.
Proof. Put Ay =sup{A: ar(A) <0}, A, =supapApy. It follows easily from the
definition of () that

Ay =sup{r: a(A) <0}

Thus we will prove that A, =sup{A: a(A)<O0}=A.. If A>A,, choose A'e(AgA);
then ax(A')>0 for all M, and so a(A')=0. By (18), a{A)>0, and hence A=
sup{A: a(A)=<0}. Moreover, (17) yields

re(A)=>+7 a.s.
and by symmetry,

I7(A)»>—-0 a.s.
Hence we can choose N large enough that

Pir; ever<—N)=P(l} ever>N)=¢ <3.
Now (14) generalizes easily to

[-N,N -N, —oo,N
¢ ]=£tm[ll; Noo],rt( * ]]

- ﬁ»—oo.N] h§E—N.00) on {‘r{_N'N]>f}, (19)
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and from (19) it is not hard to deduce that
7NN = min{e: /7N < 17N (20)
(=00 if no such ¢ exists). Using (20) and translation invariance we get
P(r5 ™M <0) < P(ri N ever <0) + PN ever>0)
<2e<l1.

By set additivity and translation invariance again,

P(+MN = 0)>0.

4]
=Pl =)=
We have therefore proved that if A > A, then A > A_. In other words, A.<A,.

To get the opposite inequality we argue as follows. If A <A, then aiA) <0 for
some integer M. Fix such an M, and let (R¥:n =0, 1, ...) be the random walk with
negative mean ays having displacement distribution P(r3; € +), (L) the random walk
with positive mean —ays having displacement distribution P(/3; € +). Then copies of
(R¥) and (LY) can be defined on our percolation substructure & in such a way that
rom <Ry and [;p =LY for all n P—a.s. This is accomplished by ‘filling in the holes’
of £7 and ¢, when ¢ is a multiple of M, just as in the argument for (16). By the law of
large numbers,

Rf‘,"-» o0 and L,':"—> —00 A.s.
This forces

P(rop— i <O forsome n)=1. 21)
Together, (21) and (20) with N = 1 imply that p = P(7° = 00) = 0. Thus, if A <A, then
A <A ie. Ay <A.. The proof is finished.

Remark. A straightforward argument shows that aas(A) is continuous for each M.
By (18) aps is strictly increasing, sc Ay is the unique root of ap(A)=0. Thus
an(A4) =0 for each M, and hence a(A,)=0. Since A, = A, we conclude that

a(A)=0. (22)
(In fact, @ (A;) = 0. See Section 7.)
We are now prepared to present two fundamental limit theorems for nonergodic

contact processes. Since the proofs have already appeared elsewhere, we will only
sketch them. The first result is known as the complete convergence theorem.”

% One way to define (¢1') for nondeterministic initial y is to enlarge the underlying probability space to
support an independent -distributed random subset A of S, and to set £ = £ on {4 = A).
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Theorem 5. If A > A, u is any probability measure on S, and if (£*) is the contact
process with parameter A and initial distribution u, then

P(£f e ) > P(r" <0)8p+P(r* =)y ast->00. (23)

(7* is the hitting time for @ of (¢1').) In particular, any invariant measure for {(¢*)} isa
mixture of 8y and v.

Sketch of proof. For simplicity, consider u = 80;. To get (23) in this case, it suffices to
show that

}Lrg P nA #ﬂire=00)=v(- NA#0), AecSy;

weak convergerce then follows by inclusion—-exclusion. Since A > A, a(A)>0 by
Theorem 4. Hence,

I; 5—© and r;, > as.
by (17). Thus, for all sufficiently large ¢,
A<, ],
so that by (14), a.s. on {r° = 0} we have
E A=l rT1InA=6nA (24)

for all sufficiently large ¢ It is therefore enough to show that the distribution of
& |{r° = o0} converges to ». Now we know that the unconditioned distribution of ¢,
converges to »; using only this fact and set-monotonicity, it is not hard to finish the
proof for u = 8(g;. The extensions, first to u = 84 (A € Sp), thentou =84 (A € §),and
finally to general u, are all straightforward. Details may be found in [5] or [12].

We close this section with a second limit theorem for the nonergodic case, the
complete pointwise ergodic theorem. This result states, for instance, that the
proportion of time in [0, t] when the origin is infected, given that infection survives
forever, converges to p as { -> o0 with probability one.

Theorem 6. If A > A, if u is any probability measure on S, and if f is any continuous
function on S, then

1 ¢ f@  ast->o0a.s. on {r" <o},
7 L f(¢4)ds - (25)

Ifdv ast- %0 a.s. on {r" =0},
s

Sketch of proof. The first line of (25) is obvious. To prove the second, one combines
Birkhoff’s ergodic theorem with a coupling argument. Namely, it follows from the
complete convergence (23) 2nd the Feller property of contact processes that the
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stationary process (¢£/) is Birkhoff ergodic (in fact, mixing), so that

1] f(§§)ds—>jfdu as.feL'(»). (26)
tJo s

Also, assuming A > A, property (24) generalizes to A€ S, A € So:
EANA=¢nA  foralllarge t as. on {r* = c0}. (27)

Clearly 7* =0 a.s. for each A € So =5 — Sy, and it is easy to check that v(S») = 1.
Hence

& nA=¢nA foralllargetas. (28;
Combining (27) and (28) we get
ErNA=¢&NA foralllarge f as. on{r* = oo}. 29

For u = 64 and f depending only on sites in the finite set A, the second line of \.5)
follows easily from (26) and (29). The extensions to general & and continuous f ay:
routine. See [11] or [12] for more details.

5. Convergence rates in the subcritical case

In this section we prove a theorem giving rates of ergodicity for subcritical contact
processes. Our result asserts that exponential ergodicity takes place forallA <A.. As
a sample path consequence, we find that infection dies out not only in the weak sense,
but in fact it eventually disappears forever from any finite set A.

Theorem 7. If A <A, then there are positive constants Ko and K, depending only on
A, such that for each A € S,

sup [P(£7 A e ) —8lall < KolA| e ", t=0. (30)
AefS
Thus, forany A€ S, A€ S,,

P& N A =0 for all sufficiently large t) = 1. (31)

Froof. If A <A, then from the proof of Theorem 4 we know that as (A) <0 for some
integer M, and hence that there are random walks R " and LY with means a, (1) and
- ap(A) respectively, such that

P(°>n)<PRYM-LYM=0)<P(R¥=0 or L)' <0).

By a standard large deviaiions result for random walks, the last term is at most
2K e %", for some constants K, K, depending only on A. By monotoricity,

P(r°>1)<2K KX =0, (32)
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Next, for any A € 8, A € So, we can write
i nae}=Uef na=41)

for some finite collection of disjoint subsets A,, of A. For A, # 0, choose x,, € A,. Then
PP nAe)<PE nA =(Z})+P(LnJ {x. egf‘}).

Therefore, by set monotonicity, translation invariance, duality and (32),

P&} nAe )= 844l

<20(U (resf)) < zp(g xe£}) =214IP0<£)

xeA
=2|A|P(+°> ) <4K X2 e,
Thus (30) holds with K; =4K ¢*2. The claim (31) follows easily from (30) by a

Borel-Cantelli argument.

As a consequence of Theorem 7, we get the following result for the subcritical
asymptotic velocities.

Theorem 8. If A <A, then a(A)=—00.
Proof. We will prove astronger assertion: if A <A, thenthereisaC =C(1)>0 such
that

P(r; >—-e“)>0 exponentially as ¢ - co. (33)

Thus the right edge of (¢; ) runs off to —o0 exponentially fast in the subcritical case.
To see this, simply note that

P(r; >—e)=P(r; >e)+P(r; (-, e“])
<P(r; >e)+ P& U(-e“, e"]#0).

The first probability on the left side tends to 0 exponentially fast for any C >0 since
r7 moves right with speed at most A. According to Theorem 7, the second probability
is majorized by

(2K0 eCf) e—Klt’
with Ko and K; as in (30). Thus (33) holds for any C <K.
As noted previously (cf. (22)), it is e.'y to see that a(A:)=0. In faci, as a

consequence of a result from the next section, a(Ac) =0. Thus & is discontinuous at
A =A.. For A =A. we know from (18) that « is strictly increasing. Being also the
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infimum of the continuous functions aas/M, a is right continuous. Presumably a is
concave, and hence continuous, on [A, ©0), but these prope{ties are not known.

In the nonergodic case one wants upper and lower bounds for . Since r;, moves
right one unit at rate A and moves left at least one unit at rate 1, the easy upper bound
is

a(A)sAa-1, A:=1,
From (8) and (18) one gets the lower bound

a(A)=A-2, A=2,

6. Convergence and mixing rates in the nonergodic case

In contrast to the subcritical case, expon=ntial convergence rates are not known for
all values A > A.. This undoubtedly reflects the inadequacy of available techniques
rather than the presence of slower rates just above the critical value. In any case, we
will have to be content in this section with results which hold for sufficiently large A.

Two key quantities for our purposes are

() =P(t<7°(A) <), t=0,
and (cf. (11))
er(m) =P 1) <0), m=1.
If we define
Ay =inf{2 > A_: ¢, (¢) > 0 exponentially in ¢},
and
Ao =1nf{A: @r(m) - 0 exponentially in m},
then presumably A, = A, = A.. The best rigorous bounds, however, are
Au<T, (34)
A, <2. (35)

To get (34) we use the contour calculus. Adopting the notation of Section 3, we
note thatif 1 <7 <0, then a contour I' # @ such that h =Y ,_, I; >t occurs. Hence we
arrive at the estimate

P <r’< )
© 32" A\m!
= A
=1 4 2n-1)!
e N = (39))"

YRR N sy

o0
—(1+2A -
J‘ e (14 )thn 2dh
t

j’w e‘(l+2)ﬂ)h(t+h)2n~2 dh
0



D. Griffeath | The basic contact processes 171

e—(l+2A)t 0 (32A)" 2n-—2(2n—2) k (2n—2—k)!

EYY ,El @n-1! e\ k (1+2p0) 2 1%
—(l+2)\)t

® [(1+2A)

<& ¥ [( )e1* Z A

40 K=o k! k/2+1

4,‘(1 4llexp{—~(1+2)\)(1 \/Al)t}

-0 exponentially in ¢,

provided that A; =32A/{1+2A )2 < 1. Thus (34) holds. As noted in (11), the contour
method also shows that A, <7, but in this case the Holley-Liggett approach yields
the better bound (35). Suppose A >2, and consider the renewal measure u; con-
structed in Section 3. According to (9),

or(m)=lim PE*" " =) < pur{- A[0, m —1]=4).
By the construction and translation invariance of uy, the rightmost term equals

Y uAlat0,all 0’s on[1, kJ}
k=m

=% 2 kim(%)k=ai2(%)m

-0 exponentially in m.

Hence (35) holds.

We now discuss applications of the exponential bounds on ¢(¢) and ¢(¢). First, we
easily derive exponential convergence to » for the nonergodic contact processes with
A =7 and initial state Z.

Theorem 9. If A > A, then for each A€So there are constants Ko=KolA) and
= K(A), such that

P& NAE)—v|sll<KolA] e *

Proof. By inclusion-exclusion, it suffices to.show that

|P(x € &)—p(x)|>0 exponentially in .

Using self-duality, note that the above differc 1ce is in fact equal to ¢ ).

An exponential convergence theorem allowing a more general class of initial states
requires some work. A good deal of this work has been done by Harris, as we now
explain.
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Remark. In[19], Harris has used graphical methods to obtain exponential estimates
for nonergodic contact processes. Because our continuous time contour calculus was
not availabie when [19] was written, he resorted to certain discrete approxirnations.
Consequently, his results hold only for extremely large A. However his ideas can now
be combined with continuous contour techniques to prove results such as:

if A > A, then there is a C = C(A) <00 such that

Pl{xe[0,m—1]: 7" =0} <Cm)->0

exponentially in m,
and
If A =14, then there is a C' = C'(A) <o such that

P(£) < C't, 7’ =0)>0 (36)

exponentially in ¢
By Borel-Cantelli and (36), one gets Harris’ Growth Theorem for A =14:
0
P(limonf'—’i‘—'>o|r°= oo) ~1.

Next, let ug be Bernoulli product measure with density 8 > 0. Using self-duality, it is
not hard to see that

IP(x € &) —P(x € £4)| = E[(1- 8)¢", 7* > 1].

For A =14, one can apply (36) to check that the right side tends to 0 exponentially in
t, and hence that Theorem ¢ holds for (£1¢), 6 > 0.

We now turn our attention to the spatial dependence structure of tiie invariant
measuie v. In [5], Durrett gives a simple proof that each v, A > A, is ergodic. The
next result asserts that the v, are asymptotically uncorrelated, and that the cor-
relations decay exponentially for A > A,,.

Theorem 10. Introduce the correlation function @ \(A)=rv\(+ "nA=0), ex(m)=
¢ex ([0, m —1)). Tken for each A > A,

0<¢(A vB)-¢(A)e(B)<2|Blp(d(A, B)), (37)

A€S, BeSy, where d(A, B)=min{|x —y|: x€ A, y € B} is the distance between A
and B. Thus the correlations decay exponentially if A > A,

Proof. It suffices to prove (37) for arbitrary finite A and finite B, both of which we fix
in the argument which iollows. If we use independent substructures #; and %, to
define the subfamily {(¢:*°); Ao A} and {(£2°); Bo< B}, and if we define

74080 = min{r: £lto L gl =@ (38)
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o B

then copies of the processes (£;"
following properties hold:

®) can be defined in terms of 2, and 2, so that the

@©(AguU Bg) =P(r7"P < 0), (39)
@(Ao)@(Bo) = P(70F0 < 0), (40)
and

§A0\JBO {: éner (W] ftBO = T(Ao, BO) = min{t: 6:40 A 5‘3() # ﬂ}’

(41
cglougle foralle. )
For more on this construction, see [12].
Combining (38)-(41), we have
¢(AUB)—@(A)e(B)=P(r*"? <00, #*F = )
sP(U BxecA: rlx, y)< " < oo}). (42)
yeB

At this point it is convenient to return to the canonical representation of {(¢); A <
Z} in terms of a single substructure 2. Introduce:

x] =max{x <y:xeA}, x; =min{x >y: x e A}.
Setting
E,={VxeA:r(x,y)< 7" <o},

we claim that E,  {z"*"" < 0o} U {r**' < c0}. This is so because on E y the contour of
one of the processes (£7*?) or (¢"*") is ‘enclosed’ by the contour of some (¢£"*!),
x € A. Thus, from (42) we have

¢(AUB)-¢(A)e(B)<|B| sup P(E,)

<|B| sup [P(r"" " < c0) + P(+""* < o0)].
yeB

Since [x7, y] and [y, x}] are blocks of length at least d{A, B), the desired result (37)
follows by translation invariance. By self-duality lim,,.« ¢(m) = v({#}). Frcm the
complete convergence theorem (Theorem S), or from more elementary monotoni-
city considerations, we know that » and é are extreme. Hence v({#}) =0if A > A, and
so the correlations decrease to 0. By definition of A, the rate is exponential if A > A_..
The proof is finished.

Remark. General limit theorems for random fields (see e.g. [26]) yield a central limit
theorem whenever the correlations decay exponentially. Thus, letting £ be v,-
distributed, if we write

Sm=|bxU[~m, m]|, ol = var(Sm),
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then for A =2 it follows that

lim VA{WS a] =J' (2”)“’1/2e~u2/2 du.

n >0 Um -co

Whether v, obeys the central limit theorem for all A > A, remains an open problem.

7. The critical contact process

The problem of ergodicity at A =A. may be viewed as a question about the
equilibrium density function p(A). Since p(A) =0 for A <A and p(A)>0for A >A,,
the family of critical contact processes is ergodic if and only if p is continuous at A..
Refore confronting the critical case, we note that it is relatively easy to prove
continuity of p away from A..

Theorem 11. p(A) is continuous on (A, ).
Proof. Here is an argument which we learned from Larry Gray. Compactness

considerations show that for any A, there are sequences A'TAg and A"} Ao, and
invariant measures v~ and »* for {(£;' (Ao))}, such that

v, ve=>v’.
In particular letting p~ and p* denote the respective densities of »~ and v 7,
p(A)1e”,  p(A")p".

Since

v{i+nA #ﬂ}=}§g P& (Ag) N A #0)

= I’Ao{' ﬁA #ﬂ}
< A]jﬁl va{s NAZB=v"{- nA#0},
necessarily »” = v, ,. Moreover, for A¢> A,
S ,
p = lim p(1)>0.

Thus if p were discontinuous at Ao, then we would have

0<p™ <p"=p(Ao).
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By Theorem 5, v~ would have to be a mixture of &3 and v,,, evidently nontrivial,
forcing v~ {@} > 0. But, as noted in the proof of Theorem 9, »,{#} =0 forall A > A, so
by A-monotonicity,

v {0} < )\1,1?11'\10 v {0} =0.
This contradiction implies the desired continuity at A,.

Let us now turn to the critical contact processes {¢2 (A.)}. Current research has led
to a couple of partial results. The analysis is quite involved, so we will not go into it
here. Instead we simply mention the progress we have made so far. We have
succeeded in proving:

(a) if a(A)>0, then A > A, and

(b) if p(A)>0, then r; - c0 in probability as ¢ > o [3].

Result (a) shows that a(A) = 0. It is based on a percolation idea which we learned
from H. Kesten (cf. the important paper [23] in this connection). Result (b) says, in
spirit, that if the right edge process visits the negative half-line infinitely often with
positive probability, then (£7(A)) dies out with probability one. This assertion should
be plausible in light of Tkeorem 3; the rigorous proof involves 0-1 law considera-
tions. One can show using () that if the critical processes are nonergodic, then (23)
holds at A = A..

Of course (a) and (b) are both consistent with either ergodicity or nonergodicity,
and there is really no compelling evidence one way or the other. Based on very loose
analogies with other systems one is inclined to suspect that ergodicity occurs. This is
surely the premiere open protlem in the theory.

Our next result gives a maximal convergence rate for the critical contzct process
(&), and a sample path consequence. In contrast to the subcritical case, weak
convergence to 8; must occur slowly, and the infected set £ includes each finite
subset of Z at arbitrarily large times with probability one. (This result is only of
interest if the critical processes turn out to be ergodic.)

Theorem 12. There is a positive constant K such that the critical contact process

(&(A.)) satisfies
Pxeé&(A))=KA+1) (43)
Moreover, for any A € Sy,

P(A < &(Ao) for arbitrarily lurg times t)=1. {44)

Proof. By a(A.)=0 and (17), we can choose k >0 large enough that

P(rever<—t—k)=P(l} ever>t+k)=p<3.



176 D. Griffeath | The basic contact processes

Making use of (20) #nd translation invariance, for any # it follows that

PR S gy S PO 2 0and I <0 Vrs<h)
=1-2p=¢>0.
Now set additivity gives

P(rlmn Rkl oy e

0 =
(> = oL 2R+l

Finally, by monotonicity, (43) holds with K = 3e/(k +1). The argument for (44) is
based or one in [12], but is simple enough that we can give it here. First we note that it
suffices to prove (44) for A ={0}; since

P(A<£])>0 forany A €S,

the general case will then follow by set monotonicity and a standard application of
the Markov property. Define

o, =min{s=¢:0e&} (—o0if nosuch s exists),
and note that
{0€ &, for arbitrarily large s} = tlug lir{.lo {ovelt, ul}

Thus we need only show that

31510 P(o.€[t,u])=1 foreacht=0. ' (45)

Introduce

e‘,‘,‘,. =E[timein [, u]:0e §f‘], ey = efu.

Applying the strong Markov property and set monotonicity, we get

P I f P(cedr, &, cdA)eg .-,
t S

< Jf I P(o.edr, &, edA)ey,,
t 7S

=P(o,€[t, u)eo,..
Thus,

Plo.c[t, u]) = G _ g Lo (46)

€0ou €0u
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By (43),

ecuzj K(Q+r)'droo asu-oo. 47)
0

Use (46) and (47) to check (45), and the proof is finished.

8. Approximation by finite systems

Let {n&(1)); A <[0, N)} be the contact system with parameter A on the torus of
sites [0, N)={0, 1,..., N —1}, where 0 and N —1 are neighbors. For each N, this
family of finite Markov chains has the single absorbing state @, and hence

en(A) = E[x7*V]<co.

The critical phenomenon which occurs in the infinite systems is reflected in the finite
systems by the growth rate of en, as N - 00. Namely, for small A ey grows logarith-
mically, whereas for large A the growth is exponential. We now establish this
phenomenon, which was noted for related discrete time systems by Stavskaya and
Piatetskii-Shapiro [35] and Tocm [38], as an application of techniques developed in
carlier scctions.

Theorem 13. If A <A, then

.. cen(d) en(A)
< ——=< ——< )
O<liminf o N =HImSUPI N 4e)
If A >, then there are constants 1 <c, < C) <0 such that
lim inf ¢ »en(A)>0, (49)
lim sup Cyen (1) < 0. (50)

N-»o0

Proof. Abbreviate py (1) = P(n'""! > 1). All of the inequalities are derived by first
estimating pn(t), and then using the tail formula

en = J. pn(2) de. (51)
0

The left inequality of (48) is based on comparison with a system where infected sites
recover independently at rate 1, but infection cannot occur. Let 7, 0 < xo f N-1,be
the time until a § appears at site x in the -raphical representation of {x¢ .My Clearly

0,
NN =max, 7, s0

pn()=1=-[P(ro<)]¥ =1-(1-e ).
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Using (51),

1

N.
en =log N pn(log N)=log N[l —(1 ——ﬁ) ]

We conclude that

eN(v\)> -1
/1— >0.
N €

lim inf
N-+x» log

The right inequality of (48) is, of course, more involved. To begin, define a
.~ z[0,N) . [0,N) .
comparison process (£; ") on [0, N) in terms of the contact process (§; ') on Z by:

xeEON i x + kN € ¢ for some k € Z.

It is not hard to see that (x¢.>¥’) can be constructed on the same probability space as
(€™ in such a way that

NN < EON) for all 1.
Then
{r" <0and [ =N}
Y =) {EN =0} = (N <1}
Hence we arrive at the estimate
pn(t)<2P(r, >—N).

Now assume A <A, and let C be as in (43). Writing N(¢) = e fort=C"" log N we
have

PN () <Pniy(t) <2P(r; >—N(1))<2C, e

for some positive C; and C,. Hence, from (51),

[ o}

en<C™! logN+2clj e “'dr.

C YogN

We conclude that

en(A)

lim sup <C '<w,

N-»o0

as desired.

The derivation of (50) is based on comparison with a system where infected sites
recover at rate 1 and healthy sites become infected at rate 22, independently of all
other sites. Using this comparison, it is easy to see that for any A <[0, N),

1 N

_a—(142A)
T32x 1€ )] ’

P(Nq-"sl)a[
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the right side being the probability that the independent system starting from [0, N) is
in state @ at time 1. Thus, by a standard Markov chain argument,

a1 _e—(1+2,\))] N}"‘

""(")s{l_[uu

By (51),

) 1 -N

< <|———1- —(1+2A)] .
en ngopn(n) [1+2A( e )
Thus (50) holds with C, = (1+2A)/(1—e™"*?"), For the remaining inequality (49),
we make use of contours. In the graphical representation of (x¢1%"), the event
{NT[O'N Y<t} implies that there is a ‘contour’ starting at some (0, s), s <¢, labelled with
a §, and then wrapping around the torus. The estimate (11) applies when A =7 to
yield

pn(t)=1 —j CMAYds=1-C(\)AML
(4]

Thus, from (51),
c-yaar 2
A ;I 1-CMATdt=——A7N,
en(A) | [ (A)At] dt C(A)Al

We conclude that (49) holds with ¢, = A7,

Remark. At A = A, one can use ideas from Theorem 12 to show that

eN(A)>0.

lim inf

N->o0
Presumably N is the correct critical growth rate, and presumably en(A) grows
exponentially for all A > A..

O Discrete time, oriented percolation and growth models

There are two discrete models, essentially equivalent, which are amenable to much
of the analysis we have carried out. The first is the system of one-sided discrete time
contact processes, often called the ‘Russian lamps’ [35, 38, 41, 42, 43]. Given
p &[0, 1], for each .A = Z a discrete time S-valued Markov process (&2 (p)) is defined
inductively as follows. To begin, £§ (p, = A. At time n =1, a coin with probability p
of heads is flipped independently at each site x € Z. If £5-y A {x =1, x} #@, and if the
coin turns up heads, then x € £2. Otherwise x€ &.

The second model is called oriented site percolation ir the plane (1, 4, 9, 14, 27,
31]. Here we let u, be Berno’ i product measure on Z2 with density p €[0, 1), and
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introduce the oriented graph structure:
(x, y) has neighbors (x +1, y) and (x, y +1), (x,y)eZ>

Let n be a u,-distributec random field of 0’sand 1’son Z ?. Define random subsets
C*of Z, Ac Z? by

(x, y)e C* iff there is a nearest neighbor path from some site
of A to (x, y) arriving only at 1’s in n.

(By convention, A < C*.)
The two models are equivalent in the sense that a representation of {(5,."{ p))}is
given by

xe&y(p) iff (x,n—x)e C®(p),
where B ={(y, —y): ye A}.
In particular,
xe&a(p)iff (x, n—x)e C°(p).
The central objects of study in both models are
p(p)=P(&, =@ for all n) = P(IC") = ),
and the critical constants
pu=sup{p:p(p)=0},  pr=sup{p: E[|C°|]<o}.
As for continuous contact systeras, the edge processes
r, =max{x € £,°%, I} = min{x ¢},
and the expected displacement at time n:
an(p)—Ba(p)=Elr, (p)— 15 (p)]
are central to the analysis. The discrete and continuous theories have a great deal in
common, though each enjoys many features not shared by the other.

We now present solutions to two outstanding problems in oriented percolation,
both of which are easy in light of results and techniques from previous sections.
Theorem 14. (a) If p,, is the unique solution of a,,(p) =0, then

Pn=>pu as n-oo.

(b) pr=pu. In fact,

<o, p<
Elcn{ S PP
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Proof. (a) Just as in the proof of Theorem 4 one can show that SUP, P = PH.

Moreover, the argument given there applies equally well to any subsequence (n'),
since

a(p)=lim —— ,.(p) = inf 31(—1—’2.

n->0 n>0 R

Thus sup,' p.' = py for any (n'), which proves (a).
(bj Arguments similar to ones in Section 5 and 8 show that for p < py,

P(r’ - 1° ever> n)->0 exponentially fast as n - o, (52)
P(E2#0)-0 exponentially fast as n » oo, (53)
whereas for p = py,
P(r°>n)=c{1+n)" forsome c>0. (54)
Using (52) and (53), if p <py, then
P(C>n?) <P’ -1° ever>nort®>n)
-0 exponentially fast as n - 0.

Thus
E[C%=< ¥ @n+1)P(C"|>n? <.
n=0

(Similarly, all moments of |C?| are finite for p < py.)
If p = py, then since {£} # 0} <{|C°|>n}, by (51),

E[C"l> T P} #0)=.

n=

Remarks. In the discrete case the a, are polynomials, so the p, are computable as
long as one has the patience. Thus p; =3, p,=0.672, p; =0.676. Probably the p, are
increasing, but this is not obvious. In the introduction to [27] it was implied that our
(a) would be proved, but the proof was niot given. While it is comforting to know that
the p, converge to the critical constant, the method of ‘ceilings’ in [9] gives better
bounds for small n. Thus it is known (cf. [9]) that

pu=0.688.

Stochastic growth models have been widely studied, especially since the pioneer-
ing paper by Richardson [29]. We refcr the reader to [29] for a handful of different
growth models. Here we will mention only one of his processes, for which the discrete
time contact systems come into play in a olorful way. The so-called Gp model we
have in mind evolves as follows. At time 0 a single infected site occupies the origin of
Z* Attime n =1, if site (x, y)eZ %is healthy and at least one of its four neighbors is
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infected, then (x, y) bccomes infected at time n +- 1 independently with probability
p € [0, 1], and remains healthy with probability 1 — p. A site which is infected remains
so forever. Let A, = R? be the set of infected sites at time n, together with a unit
square centered at each such infected site. Clearly A, grows over time. Richardson
[29] has proved that there is a norm f, on R? such that for any & >0,

A.(p)

lim P({f, <1-epe 2 Paff,<1+e}) =

Thus A, has an asymptotic shape:

B,={f,<1}
Recently, Durrett and Liggett [7] have made the nice observation that
fn={xeZ:(x,n-x)e A,(p)}

_defines a one-sided contact process with the same parameter p. If p > py, then with
positive probability (£5) grows linearly in diameter forever, which means that the
boundary of B, intersects the line x +y = 1 in an interval around (3, ). Moreover, by
using the discrete time versicn of Theorem 7, Durrett and Liggett are able to show
that if p <py, then B, n{x +y = 1} =0. Thus the critical value for ‘flat edges’ in the
asymptotic shape of the Gp growth model is precisely py. The reader is referred to [7]
for details.

10. Open problems; generalizations

In this final section we indicate some possible directions for further research on
contact processes. By now the reader should be aware that the theory of the basic
contact process on Z is fairly complete. Nevertheless, a number of open problems
have emerged during the exposition. Here are 10 of the more important ones; most
are probably rather difficult.

Open problems :

(1) Isp(A) =07
2) Can A be ‘explicitly’ computed?
(3) Is there an ‘explicit’ sequence of upper bounds for A, which converges to A.?
(4) Is @(A) continuous (concave) for A >A.?
(5) IsA,=A.?
(6) IsA,=A.?
(7) Does Harris’ Growth Theorem hold for all A >A_.?
(8) Does the central limit theorem hold for v,, for all A >A.?
(9) Is the density of &(A.) of order 1/¢?

(10) Does ex(A) grow exponentiallv in N for all A >A.?
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Another possible avenue for further work is the analysis of more general contact
processes. The basic system which we have discussed can be generalized in various
ways. As long as the recovery rate is constant and the rate of infection is 0 in a totally
healthy local environment, then (£7) is still called a contact process [17]. One can
stick to the one dimensional nearest neighbor case, but consider a more general class
of infection rates. A great many of the methods of this paper will continue to apply as
long as the infection rates are additive [19]; some methods only require monotonicity
of the rates. As soon as one moves to the non-nearest neighbor case, however, most
of the techniques we have used fail to apply. While the main theorems undoubtedly
continue to hold in such cases, new ideas, as yet undiscovered, are needed. A recent
paper by Bramson and Gray [2] studies an infinite range contact process, and raises
some intriguing questions.

Finally, one can consider systems in several dimensions. Of these, the simplest is
the basic (nzarest neighbor) contact process on Z*°, for which infection takes placeata
rate proportional to the number of infected neighbors. As for d =1, the propor-
tionality parameter is A, and the recovery rate is 1. Again, the methods of this paper
fail to apply for the most part. The existence of a critical A’ can be proved just as in
the one dimensional case, but the ergodic theory is much less developed for d > 1.
The lower bounds A” =1/(2d —1) are proved in [18] and [20]. The best known
upper bound in two dimensions, A&’ < 1, is in [21]. Recently, Holley and Liggett [22]
have obtained upper bounds for d =3 which are asymptotically equal to 1/2d as
d->00. Thus limy,. dA’ =3; conceptually, interaction disappears in the limit.
Virtually all of the known convergence results in several dimensions are due to
Harris [18], [19]; unfortunately, he requires regularity assumptions on the initial
state. A fortkcoming paper of Durrett and Griffeath [6] will establish stronger
theorems for the basic nonergodic processes with sufficiently large A. For example, it
will be shown that complete convergence (23) holds in any dimension d provided that
A > AP, More research along these lines would be welcome.

Added in proof

New results of Durrett and the author answer questions 5, 6, 7, & and 10 in the
affirmative.
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