=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com -
Journal of

4
L 3 .’ . .
*.” ScienceDirect Differential
sl Equations
ELSEVIER 1. Differential Equations 246 (2009) 320-339 _—

www.elsevier.com/locate/jde

Gevrey hypoellipticity for linear and non-linear
Fokker—Planck equations

Hua Chen ®*!, Wei-Xi Li?, Chao-Jiang Xu *°

a School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
Y Université de Rouen, UMR 6085 CNRS, Mathématiques, Avenue de I’ Université,
BR.12, 76801 Saint Etienne du Rouvray, France

Received 30 January 2008; revised 28 April 2008
Available online 23 July 2008

Abstract

This paper studies the Gevrey regularity of weak solutions of a class of linear and semi-linear Fokker—
Planck equations.
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1. Introduction

Much attention has been paid to the study of the spatially homogeneous Boltzmann equation
without the angular cut-offs in recent years (see [2,3,8,20] and references therein). These studies
demonstrate that the singularity of the collision cross-section improves the regularity on weak
solutions for the Cauchy problem. For instance, one can obtain, from these studies, the C*
regularity of weak solutions for the spatially homogeneous Boltzmann operator when there are
no angular cut-offs. In the local setting, the Gevrey regularity has been first proved in [19] for the
initial data that has the same Gevrey regularity. A more general result on the Gevrey regularity is
obtained in [15] for the spatially homogeneous linear Boltzmann equation with any initial Cauchy
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data. Hence, one sees a similar smoothness effect for the homogeneous Boltzmann equations as
in the case of the heat equation.

The consideration for the inhomogeneous equation seems to be a relatively open field. There
is no general result in this study yet. A recent work in [1] investigated a kinetic equation with
the diffusion term as a non-linear function of the velocity variable. In [1], making use of the
uncertainty principle and microlocal analysis, a C* regularity result was obtained when there is
no angular cut-off in the linear spatially inhomogeneous Boltzmann equation.

In this paper, we study the Gevrey regularity of the weak solutions for the following Fokker—
Planck operator in R?" !

L=08+v- 3 —alt,x,v)Ay, (1.1)

where A, is the Laplace operator in the velocity variables v and a(¢, x, v) is a strictly positive
function in R2*+1,

The motivation of studying such an equation is related to the study of inhomogeneous Boltz-
mann equation without angular cut-offs, Landau equation (see [14]) and a non-linear Vlasov—
Fokker—Planck equation (see [11,12]).

To state our main results, we first recall the definition of Gevrey class functions. Let U be
an open subset of RY and f be a real function defined in U. We say f € G*(U) (s > 1) if
f € C*®(U) and for any compact subset K of U, there exists a constant C = Cg, depending
only on K, such that for all multi-indices « € NV and forall x € K

0% F ()] < (jalt)’. (1.2)

Denote by U the closure of U in RN. We say f € G*(U) if f € G*(W) for some open neigh-
borhood W of U. The estimate (1.2) for x € K is equivalent to the following L’-estimate (see,
for instance, Chen and Rodino [5,6] or Rodino [16]):

10% £ 2y < C (lal)™

In what follows, we shall use the definition based on the above LZ2-estimate for the Gevrey
functions.

We say that an operator P is G*-hypoelliptic in U if for any u € D" and Pu € G*(U) it then
holds that u € G*(U). Likewise, we say an operator P is C*°-hypoelliptic in U if for any u € D’
and Pu € C*°(U) it then holds that u € C*®°(U).

When the operator L satisfies the well-known Hormander condition, then a famous result of
Hormander [13] says that £ is C*°-hypoelliptic. In the aspect of the Gevrey class, Derridj and
Zuily [7] studied the G*-hypoellipticity for the second-order degenerate operators of Hormander
type, and proved that £ is G*-hypoelliptic when s > 6.

In this paper, we first improve the result in [7] for the Fokker—Planck operator (1.1). In fact,
similar to the result of [17], we have obtained the following optimal estimate for Gevrey index
s >3

Theorem 1.1. For any s > 3, if the positive coefficient a(t, x, v) is in G* (R2"*1), then the oper-
ator L given in (1.1) is G*-hypoelliptic in R**+1,
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Remark 1.2. Our proof of Theorem 1.1 actually shows that the result in Theorem 1.1 holds even
for the following more general operators:

n
L=8+A©) -0 — ) ajlt.x, )3,
J.k=1

defined over a domain U in R?**! Here, A isa non-singular n X n constant matrix, (a (¢, x, v))
is a positive definite matrix over U with all entries being in the G* (U)-class.

Remark 1.3. Our result in Theorem 1.1 is of the local nature. Namely, if there exists a weak
solution in D', then this solution is in the Gevrey class in the interior of the domain. Hence,
interior regularity of a weak solution does not depend much on the regularity of the initial Cauchy
date.

Our second result is concerned with the Gevrey regularity of a non-linear version of (1.1). We
consider the following semi-linear equation:

Lu=0u—+v -Viu—a(t,x,v)Ayu=F(t,x,v,u, Vyu), (1.3)

where F(t,x,v,w, p) is a non-linear function of real variables (¢, x, v, w, p). We prove the
following:

Theorem 1.4. Let u be a weak solution of Eq. (1.3). Assume that u € Li’&(RZ”H) and Vyu €
LS (R¥"+1). Then

u e G* (R

for any s >3, if the positive coefficient a(t,x,v) € G*(R*'*1) and the non-linear function
F(t,x,v,w, p) € GS(R¥1+2+n),

Remark 1.5. If the non-linear term F (¢, x, v, w, p) is independent of p or F is of the form
VvG(t,x,v,u), then it is enough to suppose in Theorem 1.4 that the weak solution u €
Lo° (R2n+] )

loc .

The paper is organized as follows: In Section 2, we obtain a sharp subelliptic estimate for the
Fokker—Planck operator £ via a direct computation. We then prove the Gevrey hypoellipticity
of L. In Section 3, we prove the Gevrey regularity for the weak solution of the semi-linear
Fokker—Planck equation (1.3).

2. Subelliptic estimates
As usual, we write || - ||,k € R, for the classical Sobolev norm in H* (R2"+1), and (h, k)

for the inner product of &, k € L2(R*"*1). For f, g € C§°(R*"+1), by the Holder and Young
inequalities, we have that for any & > 0,

elnlZ  lgl*,
2 2¢

|(fo )| <Nhlleligl—e < (2.1)
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We also recall the following interpolation inequality in the Sobolev space: For any ¢ > 0 and
r1 < rp < r3, it holds that

allyy < ellllry 46~ /G2 p],, 22

Let £2 be an open subset of R+, We denote by §™ = §™(£2), m € R, the symbol space of
the classical pseudo-differential operators and P = P(¢t, x, v, Dy, Dy, D,) € Op(S™) a pseudo-
differential operator of symbol p(z, x,v; 7,&,n) € ™. If P € Op(S™), then P is a continuous
operator from Hf (£2) to ng;’"(g). Here H/ (£2) is the subspace of H*(R¥+1 consisting of

the distributions having their compact support in §2, and H; ™ (£2) consists of the distributions /

such that ¢h € H<="(R>"*+1) for any ¢ € C(°(£2). For more properties concerning the pseudo-
differential operators, we refer the reader to the book [18]. Observe that if P; € Op(S™!), P> €
Op(S™2), then [Py, P,] € Op(S™itma—1y,

We next prove a sharp subelliptic estimate for the operator £. Our proof is based on the work
of Bouchut [4] and Morimoto and Xu [14].

Proposition 2.1. Let K be a compact subset of R*'*1. Then for any r > 0, there exists a con-
stant Cg ,, depending only on K and r, such that for any f € Cj°(K),

£ < Cr o {IL fllr—2/3 + 1 fllo]}- (2.3)
For brevity, we will write, in this section, Ck for a constant that may be different in a different

context. We proceed with the following three lemmas, which establishes the regularity result in
the variables v, x and t, respectively.

Lemma 2.2. For any r > 0, there exists a constant Cg , such that for any f € Cj°(K),

Vo £llr < Crr (L F Ul + 1 F 7).

Moreover, one has

Vo fllr < CK,r(IIEfII,_% + ||f||,+%)-

Lemma 2.2 indicates the regularity gain of order 1 in the variable v. It can be obtained directly
by the positivity of the coefficient a and the compact supported property of f. For the space
variable x, we have the following subelliptic estimate:

Lemma 2.3. There exists a constant Ck such that for any f € C3°(K),

102 £[l, < Cx (1L F1lo + 1 £lo)

where D§/3 =(=A)3.
This result is due to [4]. It follows from the estimates

2/3 1/3 2/3
1D Flly < Crllauf g 18, f +v -8, fll
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and

1Ay fllo < Cx (I£ o+ 1 £llo)-

For the time variable 7, we have the regularity result of order 2/3, namely, we have the fol-
lowing:

Lemma 2.4. There exists a constant Ck such that for any f € C3°(K),

18 fll-1/3 < Cx (1L o + 1 f lo)-

In fact, we have

18 fll—13 = Ao f|l g < A7 @ +v- 80 f]| o+ [ 470 s

where A = (1 + |D;|? + | Dy|?> + | Dy|*)'/2. From Lemma 2.3, we have
|a=v -8, |, < Cx | D7 fly < Cx (1L fllo + 11 £1lo).-

The estimate for the term ||A~Y/3(3; + v - 8y) f|lo can be obtained by a direct computation as
in [14].

Proof of Proposition 2.1. By Lemmas 2.2-2.4, we have

£ 23 < Cx {IILfllo+ 11 fllo}- (2.4)

Moreover, choose a function ¥ € C3° (R?>"*1) with ¥|x = 1 and supp ¥ being contained in a
neighborhood of K. Then, for any f € C3°(K) and r > 0, we have

1A =10l < Cx AP flly s + 1A 9] f 5
By virtue of (2.4) and the interpolation inequality (2.2), we have
Lf N < Cr{ Lo AP f o+ 1f llr—23)
S Cox (LA 2P f o+ 1f o} +ell £l
Letting ¢ sufficiently small, we get

Ll < Ck{ILFll—2s3 + I Fllo+ [[£.w A2 £] 0 )-

Next, a direct calculation yields

+ “[avj J [av/‘ ) ‘/fAr_ZB]] + 2a[8,,j ) 1/’Ar_2/3]3v1‘ }-
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From Lemma 2.2, it thus follows that

I[c. v AP f], < Cx { 123+ ||av,f||r_z/3}

=1
S Cr{ILf r=2s3 + 1 fllr—2/3}-

From the estimates above, we deduce that

1A < CR{ILFllr—23 4+ 1 fllo+ L Fllr—2/3)-

Applying the interpolation inequality (2.2) again and making ¢ small enough, we see the proof
of Proposition 2.1. O

We next consider the commuting property of £ with differential operators and cut-off func-
tions.

Proposition 2.5. Let K be a compact subset of R**t1. Then for any r > 0, there are constants
Ck.r,» Ck rp sSuch that for any f € C(‘)>o (K), we have

L, D1f |, < Cr AANLS Irs1-2/3+ 1.f N0}
and

L, o1f |, < Cikrp{ILFNr—1/3 + 110}
Here ¢ € C° (R2"+1Y and D is one of the differential operators: 9;, dx or d,.
Proof. By using the positivity of the coefficient a, we have

1A fll- < Cr AL+ 1 Fllr1]-

Notice that [£, D] =[0; + v - 9y, D] — [a, D]A,. We have

|12, DIf||, < Cx {1 fllrs1 + 180 £}
The first estimate of Proposition 2.5 is thus deduced by the two inequalities above and the subel-
liptic estimate (2.3).

To treat ||[£, ¢]f]l, we use the second inequality in Lemma 2.2 and the subelliptic esti-
mate (2.3), which gives

IVofllr S Cr (L fllr=173 + N fllr41/3) < Cx (1L f =173+ 11 fll0)-

Now a simple verification shows that
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lic.e1r], < CK{ufur +y ||av_,f||r}

Jj=1

< Cr AILS =173+ 11 fllo}-
This completes the proof of Proposition 2.5. O

We are now at a position to prove the Gevrey hypoellipticity of £. We need the following
result due to M. Durand [9]:

Proposition 2.6. Let P be a linear partial differential operator of second order with smooth co-
efficients in RC’ and let g, ¢ be two fixed positive numbers. If for r > 0, compact subset K € RN
and ¢ € C®(RN), there exist constants Cg , and C (@) such that for all f € Cy°(K), the
following conditions are fulfilled:

(Hy) £ < Cror (IPFllr—o + 1l £llo),
(Ha) 1P, DS, < Ckor(IPflrs1-c + 1 fllo),
(Hs) P, @1f ], < Ckr@(IPFfllr—¢ + 11 ll0).
where
D; = 9 i=1,2 N
j—?gj, j— PV /R ,

then for s > max(1/¢,2/0), P is G*(RN)-hypoelliptic, provided that the coefficients of P are in
the class of G*(RV).

Proposition 2.1 shows that the operator £ satisfies condition (H;) with o = 2/3. Proposi-
tion 2.5 assures the conditions (H») and (Hz) with ¢ = 1/3. Thus, £ is G* (R***1)-hypoelliptic
for s > 3. This completes the proof of Theorem 1.1.

3. Gevrey regularity of non-linear equations

Let u € LY (R*"*1) be a weak solution of (1.3). We will prove u € C*(R?*™!). To this aim,
we need the following non-linear composition result (see for example [21]):

Lemma 3.1. Let F(t,x,v,w,p) € COR*+24") and r > 0. If u, Vyu € LE R N
H[ (R>"1), then F(-,u(), Vyu()) € Hf (R*"1) with

|1 F (- u), Vou®) |, < C{ligaully + g2 Voull,}, 3.1

where ¢1, ¢ € Cy° (R2*1), ¢y = 1 on the support of 1, and C is a constant depending only on

r,¢1, 2.
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Remark 3.2. If the non-linear term F is independent of p or in the form of
Vo(F(t,x,v,u))
and if u € L (R*"+1) N H] (R*"1), then it holds that F (-, u(-), Vyu()) € Hf, (R*"*1).

Lemma 3.3. Let u, Vyu € Hl. (R*"T1) r > 0. Then we have

llo1Voullr < Cllgaullr, (3.2)

where @1, g2 € C° R+, @y =1 on the support of g1, and C is a constant depending only on
r, @1, 02.

Proof. Given ¢ and ¢; as required above, we choose three functions ¢1, ¢2, ¢3 € Cgo (]RZ"Jrl ),
satisfying @1 |suppp; = 1, @2lsuppgs =1 and @11 lsuppy; = 1 for j =1, 2. Thus we have

o1 Voull, < || [Vo, @1lu|, + I Vogrull,.
There are two terms on the right-hand side of the estimate above, the first term is bounded by

C|l@aull,, and we can use the second inequality in Lemma 2.2 and the subelliptic estimate (2.3)
to estimate the second term, i.e.

IVoprull < C(I1Lo1ull =13 + I Voprully+13) < C(1Lo1ull—1/3 + liull,)
< C(lg1 Lully—1/3 + ||IL. <P1]u||,_1/3 + llgiullr),

where C is used to denote different constants depending only on r, ¢ and ¢>. Notice that Lu(-) =
F(-,u(-), Vyu(-)), then the estimate above together with (3.1) implies that

IVogrull, < C(llgr1 Voullr—1/3 + lIdrull-).
Hence one has
lo1Voullr < [[Vo. @1lu|, + 11Vo@rull, < C(I¢1Voullr—1/3 + lo2ull,).
Similarly, it holds that
g1 Voullr—1/3 < C(I¢2Voullr—2/3 + llpaull)
and
2 Voullr—2/3 < C(llg3Voull -1 + llg2ull;) < Cligaull,-

Combining the estimates above, the estimate (3.2) can be deduced directly, which completes the
proof of Lemma 3.3. O
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Now we are ready to prove

Proposition 3.4. Let u be a weak solution of (1.3) such that u, Vyu € Ly, (R2*TYY Then u is in
Cc® (R2n+l )

Proof. In fact, from the subelliptic estimate (2.3) and the fact that Lu(-) = F (-, u(-), Vyu(-)), it
follows that

IW1ullrr23 < C{| W2 F (- uC), Vo) |, + Iaullo}, (3-3)

where ¥, Y2 € C(° (R?"*1) and v, = 1 on the support of ¥r;. Combining (3.1), (3.2) with (3.3),
we have u € H} (R?"*1) by the standard iteration procedure. This completes the proof of Propo-
sition 3.4. O

Now starting from a smooth solution, we prove the Gevrey regularity. It suffices for us to work
on the open unit ball

2 ={(t,x,0) R 2 4 x4 o < 1}.
Set

2,={.x,v)e: (t2+|x|2—i-|v|2)1/2 <l-p}, 0<p<l

Let U be an open subset of R*"*!. Denote by H" (U) the space consisting of the functions
which are defined in U and can be extended to H" (R?*+1). Define

IM”H’(U) = inf{||12||HS(Rn+1): uc HS(R2n+1)s mU = Lt}
We denote ||ull,v = |lull gr @) and

[D7ul, = > [DPul,

1Bl=J

In order to treat the non-linear term F on the right hand of (1.3), we need the following two
lemmas. The first one (see [21] for example) concerns weak solutions, and the second is an
analogue of Lemma 1 in [10]. In the sequel, C; > 1 will be used to denote constants depending
only on n or the function F.

Lemma 3.5. Let r > 2n + 1)/2 and uy, uy € H (R¥'*1). Then uyus € H" (R**), moreover

lurually < Cllurllluzllr, (34

where C is a constant depending only on n, r.

Lemma 3.6. Let M be a sequence of positive numbers. Assume that for some By > 0, the M ;
satisfy the monotonicity condition

Jj!
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Suppose F(t,x,v,u, p) satisfies that for j,m +12>2,

|(D] 4.0 DL DY F) (-, u(), Vou() <M oMy, (3.6)

||r+n+l 2 <

where r is a real number satisfying r +n + 1 > (2n + 1)/2. Then there exist two constants
C», C3 such that for any Hy, Hy satisfying Hy, Hy > 1 and Hy > Cy Hy, if u(t, x, v) satisfies the
following conditions:

[D7u], 1 g, < o O<j<T, ()
|D7ull,y1 0, < HoH{ M2 2<j <N, (3.8)
[DoDIul,y1 0, < < HoH]7°M;_5, 2<j<N, (3.9)
then for all @ with |a| = N
| ww DY[F (- u (), VouC)] |, iy < C3HOHY My 2, (3.10)

where Yy € Ci°(825) is an arbitrary function.

Proof. Denote p = (p1, p2,..., pn) = Vyu and k = (ky, kz, ..., k;). From Faa di Bruno’ for-
mula, Yy D*[F (-, u(-), Vyu(-))] is the linear combination of terms of the form

wNalotlJrlJrlle y ki p
v . HD/u HHDh(a ), (3.11)

txva“lapl 0P = i=1ji=1

where |@| + 1 + |k| < |«| and

Z%+Zzﬁh—a—a
i=1 ji

Choose a function 1} € C(‘)’O(.Qﬁ) such that 1} =l onsupp¢¥n.Noticethatn+1+r > 2n+1)/2.
Applying Lemma 3.5, we have

!

lﬁNala|+z+|k|F kn l—[Dyju 1_[ 1_[ DPii (By;10)

& 1
e, 0u 81"1 1 0Pn i=1 ji=1

r+n+1

l n

glal+H+Ikl ki _
t e IR N AT

& !
O x00U 31’1 1 0Pn j i=1 ji=1

r+n+l
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l n o ki
< C” 1//N(Z}Wl—i_l—i_‘k‘F) ||r+n+l ’ H||wDyjuHr+n+l X l_[ 1_[ ”wav, Dﬂji”“r—i—n—i—l
j=1 i=1j=1

[ n ki
< CO” (8|0¢|+1+|k|F) ||r+n+1,.Q ’ l_[HDVjM”r-i-n—H,Q/; x 1_[ 1_[ || 8Ui Dﬂji””r—i—n—i—l,ﬂﬁ' (312)
j=1 i=1ji=1

With (3.7)—-(3.9) and (3.12) at our disposal, our consideration is now similar to ;hat in [10].
Indeed, the only difference is that we need to replace the Holder norm |u|; by [|D/u|l, 4,41, 2;

and || DyDJu lrn+1 25 Hence, the same argument as the proof of Lemma 1 in [10] yields (3.10).
This completes the proof of Lemma 3.6. 0O

Proposition 3.7. Let s > 3. Suppose u € C®(82) is a solution of (1.3), a(t, x,v) € G* (R¥'*1),
F(t,x,v,w, p) € GSR*2M) and a > co > 0. Then there is a constant A such that for any
rel0,1]andany N €N, N > 3,

Alel-1 , |
(E)r,N || Dau||r+n+1,.Qp + “ DvDauHr—l/3+n+l,9p < m((hx' - 3)')kS (N/p)”’

V| =N, V0 < p < 1.
From (E), y, we immediately obtain
Proposition 3.8. Under the same assumption as in Proposition 3.7, we have u € G*(£2).

Proof. In fact, for any compact sunset K of £2, we have K C £2,, for some pg with 0 < pp < 1.
For any « with || > 3, letting » =0 in (E), y, we have

N N Alal=1 s Jer|+1 s
|D%u] oy <[1D%u ], 11, < W((W -3y < (@) (Ilelt)".

This completes the proof of Proposition 3.8. O
The result of Theorem 1.4 can be directly deduced from Propositions 3.4, 3.7 and 3.8.

Proof of Proposition 3.7. We apply an induction argument on N. Assume that (E), y—; holds

for any r with 0 <r < 1. We will show that (E), y still holds for any r € [0, 1]. For an « with

la| = N, and fora p with 0 < p < 1, choose a function ¢, y € C5°(£2 w-1),) such that ¢, y =1
N

in £2,. Itis easy to see that
sup| D? g | < Cy (/M)W <Cp(N /)1, .
We will verify the estimate in (E), y by the following lemmas.

Lemma 3.9. For r =0, we have

D%l 1 0+ |DuDu] < S (a3, o<p<1
Ulnt1.2, U e, S 53(a1=3) ((leel =3)1)", <p<L
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Proof. Write |«| = |8| + 1. Then |8| = N — 1. Denote NT_I,O by p. In the sequel, we will often
apply the following inequalities:

1

11 N \* _c
pSk<ﬁ=WX<m) gp—:;{, k=1,2,,N—3

Notice that ¢, y =1 1in §2,,. Hence
[D%ulls1,0, < loon D%ull, iy <lgonDPull i yy + [(P2p1)Du]
<G| Dﬂ”||1+n+1,g,3 +N/p) Dﬂ””n“,fzﬁ}'

Since (E), y—1 holds by assumption for any r with 0 <r < 1, we have immediately

| Dﬂ””1+n+1,9,; +(N/p)| Dﬂ””nﬂ,nﬁ

AlBI-1 oo AlBI-1 S
< g (A1 =3)) (VY + (V1) iy (161 3))
2412 g Y
< Sigar (11 = 3))" (V/(V =3))
CeAl*I=2

S o (al=3) ((lel =3)1)".
Thus

CsCeAlI2 A
[D%ul, 11 0, < W((W -3)))".

The same argument as above shows that

(3.13)

C5C6A‘a|_2 K
I DvDa“||71/3+n+1,Q,, S PRCE) ((lel = 3)1)",

This along with (3.13) yields the conclusion. O

Lemma 3.10. For 0 <r < 1/3, we have forall 0 < p < 1

CysAlvI=2
“Dﬁlu ||r+n+l,.(2p + || DvDau ||

r—1/3+n+1,22, < W((Ial - 3)!)S(N/p)”.

Proof. We first verify Lemma 3.9 for r = 1/3, namely, we first show that forall 0 < p < 1

C35A|°‘|72 ‘ '
| Da”“1/3+n+1,.(2,, +] DvDa”“nH,Qp = W((M =3 (N/p)*.

We divide our discussions in the following four steps.
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Step 1. We claim that

CioAlI=2
102000 D Tut] -y i < ey (Il = 3))" /). (3.14)
/ PRI

In fact, write £ = Xo — aA, with Xg = 9; + v - 9. Then a direct verification shows that

I [E’%,NDQ]”H—l/HnH < | [XO"/’/J‘NDO[]”H—l/HnH + Ha[Av’9”ﬂ>NDa]“|‘—1/3+n+1

+ [ ¢po.n]a Da]Av””71/3+n+1
=:(I)+ D) + dID).

Denote [Xg, D¥] by D*°. Then |ag| < |o| and

(D) < |[1X0. 0o N1D%u, | + [ @0p.n Dul,, .,

< CS{(N//O) “ Da””n+1,95 + ” Da0”||n+1,.(z,-,}-
Notice that s > 3. By Lemma 3.9, we have
C A2 CoAloI~2

(1) < C3(N/p+ 1)W((Ial —3)1)° < W((m =3 (N/p)*3. (3.15)
Next we will estimate (IT). It is easy to see that

|[Av, 9. N1D"u H71/3+n+1
<2[[Dv, 9y NIDLD | _y 5y + [ [P, (v, 0p MDD |5y (B116)

We first consider the first term on the right-hand side. By Lemma 3.9 again, we have

|Dv. ¢p.n 1Dy D*u —134n1 S (N/p) | DyD*u ||—1/3+n+1,.(2,;

CrAlei-2 ,
< W/ (121 - 3))
CroAlel-2 .
S %((I‘” —3)) (N/p)*". (3.17)

Next we treat |[[Dy, [Dy, ¢, n11D%ull ~1/34n+1. We compute

[[Dw. [DU’(pP»N]]Dau“71/3+n+l
<| (DZ‘quN)Dﬁ”||2/3+n+1 +] (D3W0»N)Dﬁ””—1/3+n+1

<Cu{W/p)| Dﬂ””z/3+n+1,95 +W/p)*| Dﬂu”n-‘,—l,ﬂﬁ}
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Al .
< Cu{(N/P)2W((|,3| =3 />

AlBI-1 s
+(N/p)3m((lﬂl—3)!) }
A\a|72 P
< cu{(N/p)z(zv/m‘mm((lal -3)))
3 o A|a|—2 s
+(N/p) (N/p) W((|a|—3)!) }

Cle\a|—2

= W((lal - 3)!)S(N/p)s/3.

This along with (3.16) and (3.17) shows that

C13A|Ot|—2

o (al=3) ((|°‘| - 3)!)s(N/,0)S/3~ (3.18)

{an <

It remains to treat (/I1). By Leibniz’ formula,

an< Yy, (;‘) leo.n (DY) A D V] 5,
0<lyI<lel

< Z (3) ”DyaHnH,.@ ) H‘PP,NAUDO[_}/“HA/HHI’
O<lyI<le|

Since a € G* (R2**1), then
[D7al, o <CHT((IvI=3))" Iv1=3,
and
|pYal, ) o <Cu lyI=1.2.
Moreover, notice that [e| — |y |+ 1 < N. Applying Lemma 3.9, we have for any y, |y| < |o| — 2,

”‘/’p,NAvDa_y””—1/3+n+1 < ” DvDa_y+1“||—1/3+n+1,Q,;

((lel = Iy 1=2)1)°

CsAlel=lyi+1-2
= psal=lyi=2)

CyAlel=ly1+1-2
S T s al=1y D)

((lel =1yl =2)1)".

Consequently, we compute
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O G | NP RN

2<lyI< el -2
” 5 CysAlel=lyI+1-2
< X (V)CIZ ((r1=2)) = e (e = Iy = 2))°
2<lyI<la] -2 P
CisAll—2 Cia\"! s—1 s—1
S ps(a=3) Z (T) |°‘|!((|V|_2)!)Y ((|O‘|_|V|—2)!)Y
2<yI<lal-2
Ci5Al%1-2 Cia\"! (el = D(le] - 2)
<=y ¥ (S e

2<lyIS -2

CreAle-2 . o Cra\ 7!
<SG (el =3 @i (7) _

2<ly ISl -2

Making A large enough such that Zzg\y\gm—z(%)lyl_l < 1, then we get

o —
DO ) | O ST R

2<lyi<lal—2
C16A|°‘|—2
h W((lal —3)))° (N/p)*"3.

For |y| =1, |¢| — 1 or |¢|, we can compute directly

o _ C17Al=2 ‘
(y) D7l 1 Loy 800"l o < S (= 3)) /).

Combination of the above two inequalities gives that
Cis A|a|—2

() < pS(\a|73>

((ll = 3)!)" (N /p)*/>.

This along with (3.15) and (3.18) yields the conclusion (3.14).
Step 2. We next claim that

Cy1 Al9I=2

e (el =3)) /e (3.19)

leo.nDU[F (- u(), Vou©)]| 13l S

We first prove F and u satisfy the conditions in (3.7)—(3.9) for some M ;. By Lemma 3.9, we
have

; ; C7AT 2 : .
HDJu”71/3+n+],.Q,; S ”D]””nﬂ,g,; S W((J -3))% 3<j<N, (3.20)
C7Aj72

}|sz)f'u}|_l/3+n+m/3 < m((,’ -3, 3<j<N, (3.21)
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and

I Dj“”71/3+n+1,.o,5 <@, 0<j<2 (3.22)

Since F € G (R x R), then for all k, m +1 > 3,
|(DFcau DR F) (), VO |y 3.0 < Co (R =3 (=31 (3.23)

Define M, Hy, H; by setting

((j—DY?*
Hy=(C7, H =A, My =C7, M]_w

’ /1'

We can choose A large enough such that H| = A > C, Hy. Then (3.20)—(3.23) can be rewritten
as

” Dj“||_1/3+n+1,.(25 SHy, 0<j<l, (3.24)

[D7ul yjyinis o, < HoH{ *Mjo2. 2<j<lal=N, (3.25)
[DeDIu| y)ypis o) < HoH{ *Mjo2. 2<j<lal=N, (3.26)
|(Dfc o0 D F) |y j3gnir0 < Cog ' Mi—2Mimri2. kom+1>2. (3.27)

For each j, notice that s > 3. Hence
Jj!

G 1 (=07 (G =i =0

J:
MiM;_; = ———
TG -

<GH(G =) U

J . . s=1 ~_g(j—1)
<——G - D! — !
G =1 G-DYG=D)" %

< M;. (3.28)

Thus M satisfy the monotonicity condition (3.5). In view of (3.24)—(3.28) and making use of
Lemma 3.6, we have

||90ﬂ»NDa[F(" “('))]H_]/Hnﬂ < C3H0H1|a‘_2M\OtI*2

C3C7 A2 P
< T (ol = 3))

Cr Al21=2 |
< A (el =3y /)P,
This completes the proof of conclusion (3.19).

Step 3. We verify in this step the following:

CoaAll-2 .
2050 D%l 101 € sy (lad =3)8 W) (3.9
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In fact,

”E‘Pp,NDa“”q/HnJrl < C22{” [E"PP,NDQ]“HA/HnH + U%,ND“ﬁu ”71/3+n+1}
=Conf| [‘C’(/’p,NDa]MH—l/3+n+l
+ H‘PP,NDQ[F("“(‘)’ Vv“('))]”—l/3+n+1}'

This along with (3.14), (3.19) in Steps 1 and 2 yields immediately the conclusion (3.29).
Step 4. We claim that

C31 A2

W((M —=3)) (N/p)*/3. (3.30)

”‘/’/J,NDO!“” 1/34n+1 + ”W»NDvDau ” 1/3—1/34+n+1 <
In fact, applying the subelliptic estimate (2.3), we obtain

loo.nDu] 134nt1 S Coaf ”'C‘PP,NDa”H—anH + H(p,O,NDaan+1 }-
Combining Lemma 3.9 and (3.29) in Step 3, we have

Cas Al

ey ((lel - 3)1) (N /p)* /3. 3.31)

||9"ﬂ>NDa”||1/3+n+1 <
Now it remains to treat ||¢, y Dy D%ull1/3-1/34n+1, and
”‘/’p,NDvDa“”1/3—1/3+n+1 < “ Dv‘/’p,NDa“”nH + H [va%,N]Da””nH'

First, we treat the first term on the right. By a direct calculation, it follows that

2

| Dogp.n Dul

=Re(Lop nDu,a” " A*" g, yDu) — Re(Xopp v D*u,a™' A" ¢, 1. D*u)

=Re(Lop nDu,a™' A", yD"u) — é(gap,ND“u, [a=' A2, Xo]pp, v D% u)

— %((Pp,NDau, [A2"+2,a_1]Xo(pp’ND“u)

2 2
S C26{H£¢0,ND(¥“”—1/3+n+1 + ”%»NDa””1/3+n+1}'
This along with (3.29) and (3.31) shows that

Cyr A2

— =y (121 =3)) /).

I Dv‘/’p,NDa””r—1/3+n+1 S

Moreover Lemma 3.9 yields
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1Dy, 9o N1D%u,,, | < C23(N/p) ”Dau”n-i-l,ﬂﬁ

CrgC7AlI=2 ‘ ,
s ZZSJT((IQI —3))’ (N/p)*?

Cro A2 s 3
From the above two inequalities, we have
D,D* & CooAl> 3)1) (N /p)*/3
|0 v DDty 130y < W(('“' —3))°(N/p)*>.
This completes the proof of Step 4.
Itis clear for any p, 0 < p < 1,
[ Da”“1/3+n+1,9,, + “DvDa””1/3—1/3+n+1,9p

< ||‘PP’NDa”“1/3+n+1 + ”‘/’P»NDvDau||1/3—1/3+n+1'

It thus follows from Step 4 that the conclusion in Lemma 3.10 is true for r = 1/3.
Moreover for any 0 < r < 1/3, using the interpolation inequality (2.2), we have

| Da”“r+n+1,9p <lepnD%ul,
<é|po,nD%u| 134nt1 T e g, N D],

C31A|a|—2

s _ . C A‘a|_2 s
sy (el =3)Y) (N/p) 3 4 e/ 13=n ERAT 2 10 ayye,

pSUlel=3)

~

Taking & = (N /p)*"~1/3), then

C33A|a‘72 )
| D“u, ;1 0, < W((M =3)1) (V/p)".

Similarly,

C34A|a|—2
[ DvDau||r_l/3+n+LQp < e (12l = 3)) (N /).

This completes the proof of Lemma 3.10. O
Inductively, we have the following

Lemma 3.11. For any r with 1/3 <r < 2/3, we have for all 0 < p < 1

o o C38A|a‘72 s sr
|D ”||r+n+1,(2,, +[ DD ”Hr—1/3+n+1,.(2p S W((M =3))(N/p)". (3.32)

Moreover, the above inequality still holds for any r with2/3 <r < 1.
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Proof. Repeating the proof of Lemma 3.10, we have (3.32) for 1/3 <r < 2/3. When 2/3 <
r < 1, the consideration is a little different. The conclusion in Step 1 in the above proof still
holds for r = 1. For the corresponding Step 2, we have to make some modification to prove

C36A|a\72

W((W' - 3)!)S(N/,0)s-

l0p v DU[F (). Vo) 3000 <
From (3.32) with 1/3 <r < 2/3, it follows that for 3 < j < N

|| Dju” 1/3+n+1,82; < W((] _ 3)')S(]/,0)S/3,

) . C3,7Aj_2 . L~
” DUD]””1/3+n+1,Qﬁ < ” DUD]M”2/371/3+}1+],.QI5 < W(U - 3)!)S(J/P)2‘T/3,

and that

|| Dj”||1/3+n+1,.rz,3 <Gy, 0<j<2

Hence we need to define a new sequence M ; by setting

- _ (G =DY

_ . ~\2s/3
Mo=Cyp.  Mj= == ((+2)/h) ",

jz1

For each j, notice that s > 3. Hence a direct computation shows that for 0 <i < j,

J!

((—=D) (G =i=D)

X (l + 2)28‘/3(‘] _ l + 2)2&‘/3['0*—A§‘(j—2)ﬁ—4s/3
g 4(1’)((] _ 2)|)Y_1(‘] + 2)25‘/3—1(]~ + 1)2S/3—1I(“)'—S(j—l)ﬁ—zs/?)ﬁs—zs/?)

_ 4G HDFET
(j — D!
< CyoM;.

G = DUG = DY 50D +2)/5)"

In the last inequality, we used the fact that s — 1 > 2s/3. Thus M j satisfy the monotonicity
condition (3.5). Now the remaining argument is identical to that in the proof of Lemma 3.10.
Thus (3.32) holds for r = 1 and thus for 2/3 < r < 1 by the interpolation inequality (2.2). This
completes the proof of Lemma 3.11. O

Recall C7, C35 and C35 are the constants appearing in Lemmas 3.9, 3.10 and 3.11. Now make
A sufficiently large such that A > max{C7, C35, C3g}. Then, by the above three lemmas, we
see that the estimate in (E), y holds for any r € [0, 1]. This completes the proof of Proposi-
tion3.7. O
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