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A b s t r a c t - - - - C o n t i n u o u s - t i m e  Markov processes with a finite-state space are generally considered 
m . to model degradable fault-tolerant computer systems. The finite space is part i t ioned as Ui__IB,, 

where Bi s tands for the  set of states which corresponds to the  configuration where the system has a 
performance level (or reward rate) equal to r~. The performability Yt is defined as the  accumulated 
reward over a mission t ime [0, t]. In this paper, a renewal equation is established for the  performability 
measure and solved for bo th  "standard" and uniform acyclic models. Two closed form expressions 
for the  performability measure are derived for the two types of models. Furthermore, an algori thm 
with a low polynomial computational complexity is presented and applied to a degradable computer  
system. 
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1. I N T R O D U C T I O N  

As recognized in a large number of studies, the quantitative evaluation of degradable computer 

systems requires dealing simultaneously with aspects of both performance and reliability. As part 
of these studies, Meyer [1] introduces a unified measure called performability which combines the 
two aspects of performance and reliability. Performability is defined as the accomplishment level 
of the system over a specified time period t. The distribution F{Yt E B} is then the probability 
that the system performs at a level in B, where B is a set of accomplishment levels. 

Formally, the system fault behavior is assumed to be modeled by a homogeneous Markov pro- 

cess (Xs)s>0 over a finite-state space E = {0, 1,..., n}. A reward rate p(i) (or performance 
level) is associated with each state i E E. This reward measures how well the system per- 
forms in the corresponding configuration. Since we consider degradable systems, it must be that 
p(i) ~_ p(j) if a transition is possible from state i to state j. Therefore, we can number the states 
so that i ~ p(i) becomes an increasing function (i.e., p(i) >_ p(j) if i > j) and a transition from 
state i goes only to a state j satisfying j < i. Since two different states may have the same 
reward rate, we denote by r,n > r,n-1 > "" > r0 the m+ 1 different reward rates (m _< n). With 
the above notations, the performability, or the accumulated reward over the mission time [0, t], 

is defined by 
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/o /o t Yt = p(Xs)  ds = p(i) l {x ,=i )  ds, 
i----0 

where lc -- 1, if condition c is true and 0 otherwise. 
The random variable Yt takes its values in the interval [rot, rmt] and we wish to derive 

]P{Yt > s). The reward rates ri are arbitrary real numbers, but we can assume r0 -- 0, without 
loss of generality. This is obtained by replacing ri by r~ - r0 and s by s - rot. Henceforth, we 

take r0 -- 0. 
The distribution of performability has been studied in previous papers for acyclic models, which 

correspond to nonrepairable computer systems, and also for cyclic models, which correspond to 
repairable computer systems. Several methods have been proposed to compute the probability 
distribution of performability during an interval of time [0, t]. For cumulative operational time 
(i.e., when the reward rates are either 0 or 1), De Souza e Silva and Gail [2] compute the 
distribution of interval availability using the uniformization technique [3]. The computational 
complexity of this method has been improved in [4,5]. In [6], a system of integral equations is 
established for the interval availability for a semi-Markov process. The distribution of cumulative 
operational time is then computed for a two-unit system with sequential preventive maintenance 
by solving the integral equations via a two-point trapezoidal rule. In [7], a closed form expression 
is obtained for the joint distribution of cumulative operational time and the number of visits to 
up states during [0, t]. Time-discretization is also considered as a technique for the computation 
of the distribution of the cumulative operational time [8,9]. 

The distribution of accumulated reward over a finite mission time (with general reward rates) 
is more complex to obtain. Meyer [10] obtains a closed form expression for the distribution of 
performability for a degradable computer system with N processors and a buffer with finite ca- 
pacity. Furchtgott and Meyer [11,12] define/-resolvable vectors to characterize the trajectories of 
an acyclic semi-Markovian process corresponding to a certain performance level. By enumerating 
all the possible trajectories of the system, they derive an integral expression for performability 
which they solve numerically. However, the complexity of such an algorithm is exponential in the 
number of states of the process. Beaudry [13] gives a method for the computation of performabil- 
ity in a Markovian process until absorption. Ciardo et al. [14] generalize Beaudry's approach to a 
semi-Markov reward process and remove the restriction requiring only the absorbing states to be 
associated with a zero reward rate. Iyer et al. [15] propose an algorithm to compute recursively 
the moments of the accumulated reward over the mission time, with a polynomial computational 
complexity in the number of states. In [16], Nabli and Sericola present an algorithm, based on 
the uniformization technique and the result of [17], to compute this distribution for block acyclic 
models which are more general than acyclic one's. They determine new truncation steps which 
improve the execution time of their algorithm. Goyal and Tantawi [18] derive a closed form 
expression (precisely, a finite sum of exponential functions) for the performability of degradable 
heterogeneous systems. They also give an algorithm with a polynomial complexity O(d(n + 1) 3) 
in the number (n -t- 1) of states and in the number d of components in the system. They consider 
at first the homogeneous case (i.e., only transitions between state i to state i - 1 are allowed). 
However, their generalization to the nonhomogeneous, or heterogeneous, case is not clear. A 
method which follows an approach similar to the one used by Goyal and Tantawi will be pre- 
sented in Section 2. An algorithm to compute the probability distribution of performability, with 
a low computational complexity in comparison with the algorithm of Goyal and Tantawi, will be 
derived. 

The remainder of this paper is organized as follows. In the next section, we give a solution 
for computing performability for acyclic Markovian models. We also discuss the computational 
complexity of the algorithm. Section 3 is dedicated to the performability measure for uniform 
acyclic models. Such models are characterized by the uniformity of the yield between the output 
rate - ) h i  of state i and the reward rate p(i) associated to the state i (i.e., for all i E E,  ( - )~ iJp( i ) )  
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are equal). An algorithm with a low polynomial complexity will be presented. A numerical 
example for a degradable computer system is presented and solved for a given performability 
measure in Section 4. The main points are summarized in the concluding section. 

2. M O D E L  S O L U T I O N  

We consider a nonrepairable computer system with d types of components. Mathematically, 
that  means that  the connectivity degree of the matrix A is equal to d. Each state i • {0, 1 , . . . ,  n} 
may be described by a vector ( k l , . . . ,  kd) where k~ is the number of functioning components of 
type l, I = 1 , . . . ,  d. The sequence of states visited is governed by the transition rates Aij 
( i , j  • E,  i ~ j ) .  The homogeneous Markov process (Xs),>0 is entirely determined by its 
infinitesimal generator (A~j)~,jeE and its initial state which is assumed to be X0 = n. That  
means tha t  the system starts in state n which has the largest reward rate. Because the system 
is nonrepairable, the infinitesimal generator is an upper triangular matrix. 

Our approach consists of expressing the distribution of Yt with a closed form expression. More 
exactly, we will evaluate the performability measure by means of a finite sum of exponential 
functions each affected by.coefficients calculated by recurrence. We will use the same closed form 
expression derived by Goyal and Tantawi [18]. In return, we give recurrence formulas which lead 
to a lower computational complexity (see Section 2.2). 

2.1. R e n e w a l  E q u a t i o n  

Let us define the following notations: 

= n , for s • [0, rmt[, 

0, if s -  r j t  < 0 or p(n)  = rj ,  

Tn,j = s - r j t  otherwise, 
p ( n )  - r j '  

and 
i - 1  

Ai = -Aii = Z Aij = Z Aij : the output rate of state i. 
j~i  j=o 

We note that  Fn( s , t )  = 1 if s < 0 and Fn(s , t )  = 0 if s > rmt.  This remark leads us to consider 
the distribution only for s E [0, ra t [ .  It is well known (see [18], for example) that  the distribution 
Fn(s ,  t) satisfies the following renewal equation: 

~ ~s/(p(n)) 
Fn(s ,  t) = e -(A~/p(n))" + e-A"~An#Fi (s - p(n)u ,  t - u) du. 

i---1 0 

(1) 

Equation (I) gives a recursive relation upon the index n. Our analysis consists of obtaining a 
recursive relationship not only upon index n but also upon index j by considering the partition 
[0, rmt[ = U~n=1 [rj_lt, rjt[. For this purpose, we define 

Seeing that  two different states may have the same reward rate, we define, for each j  E {1 , . . . ,  m}, 
the index Cj = min{k E E / p ( k )  = r j} .  Cj stands for the first state for which the reward rate 
is rj .  We also denote by wl the index satisfying p(l) = rwz. With these notations, we have the 
following lemma. 



44 H. NABLI 

LEMMA 2.1. For all jo E {1 , . . . ,  m} and for a//8 E [rio_It, riot[, we have 

F g ° ) ( s , t )  = e -('x"/o(n))s + e -~"u ~ An,~F~J)(s - p ( n ) u , t - u ) d u .  
j = l  J ifdp# 

PROOF. According to equation (1) and the definition of Tnj, we have 

n-- 1/v,~,o 
Fn(s,  t) = e -(x"/p(n))s + ~ e-A"UAn,iFi (s - p(n)u,  t - u) du. 

i= l  

Our goal is to express this equation in accordance with Fg) ( . ,  .) instead of F~(., .). So, since 
F~(s - p ( n ) u , t  - u) = 0 when s - p (n)u  > r j ( t  - u) and j > w~, we obtain 

Fi (s - p(n)u,  t - u) = Fi (s - p(n)u,  t - u) Z l{rj-,(t-u)<8-p(n)u<rj(t--u)} 
j = l  

oJi 

= F? ) ( $ -  
j----1 

wi 

j = l  

The indicator function above verifies the following equality: 

l { r j _ l ( t - u ) < _ s - p ( n ) u < r j ( t - u ) }  = l{r,.j<u_<r..j_~). 

Now we use the hypothesis: s is in the interval [rio_it , riot [. According to the strict monotony 
of sequence (r j) je~,  the coefficient rn j -1  becomes strictly negative once j over-steps j0 + 1. So, 
we obtain 

and therefore 

Hence, 

l{r..j<u<~,.j_~}l{u>0} = 0, for j > j0 + 1, 

F g ) ( s  - rnu, t - u)l{u>o} = O, for j _> jo + 1. 

So equation (1) becomes as follows: 

min(wl ,Jo) 

F g)  (s - p(n)u, t - u) 1{. . , ,<.<. . , ,_,}.  
j = l  

n--1 min(wl,jo) 

i----1 j = l  
j) (s  - p ( n ) u , t  - u)  du.  

,J 
(2) 

x ' ~ n - 1  ~'~min(wi,jo)[ jo n - 1  On the other hand, we can prove that  z-,iffil z-~j=l ~-- • ) = ~jffix ~-'~i=~ ( ' . .  ). The lemma 
follows by taking into account the last equality in equation (2). | 

By considering the initial condition F (1) (s, t) = e -AI'/~ l{0_<8<rlt}, we can prove by recurrence 
that the renewal equation in Lemma 2.1 allows only one solution. Theorem 2.2 will give a simple 
closed form expression for Fg°)(s,t). 
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2.2. Solution and Algorithmical Aspects  

Before stating the solution of our model, we propose to give some notations 

Ak - A~ a(k , j )=-  p(k) -p(j)'  
and 

l~(k,j) = Akp(j) - Ajp(k) for all k , j  such that  p(k) ~ p(j). 
p ( k ) - p ( j )  ' 

We remark that  a(k, O) = --Ak/rk and f~(k, 0) = 0 since p(0) = r0 = 0 and A0 = 0 (the state 0 
is an absorbing state). Without  loss of generality, we suppose that  0 is the unique state i which 
satisfies p(i) = O. 

Our goal is to evaluate the probability distribution of the performability over [0, t]. Theorem 2.2 
states a closed form expression for the distribution of Yr. 

THEOREM 2.2. Under the condition (Ai - Aj)/(p(i) - p(j)) # (Ak -- Aj)/(p(k) - p(j)) for a/l 

0 __~ j __ (~m-I  ar id  for  a / / C w j + l  <~ k <~ i ~_ n, we have: for all jo E { 1 , . . . , m }  and for all 
s • [rjo_lt , riot[, 

d~jo - 1 n 

F(J°)(s't) = Z E b(J)(n,k)exp(a(k,j)s + ~(k, j ) t ) ,  
jffiO k----~ o 

where b(J)(n,k) axe real numbers given by the following set of recursive expressions: for all 
0 _~ j _~ Cjo - 1, we have 

for k = C j o , . . . , n -  1 , 

b (~)(n, k) = 

for  k = n, 

1 n--1 
An + p(n)a(k,j) +/?(k,j) Z An,'b(J)(i' k), 

i=k  

O~j -- 1 n -- I 
b(J)(n,n) = l{j=o} + Z b(l)(n'J)- E b(J)(n'k)" 

/ffiO k=¢~+1 

PROOF. The condition done on the rate transitions Ai and the reward rates p(n) in the begin- 
ning of Theorem 2.2 permits us to have a sense to the fraction 1~(An + p(n)a(k,j) + ~(k,j)).  
Moreover, according to Lemma 2.1, we have 

F(J°)(s, t) = e-(X"/"(")) '  + e -~"~' ~ An,,F (j) ( s - p ( n ) u , t - u ) d u  
j-~ l ,Y, i=qb 1 

= e-(X"/°(n))s + e - ~ u  E An,i 
j----1 ,J i=~bj 

"-- ~ "  ] 
x . - -  _ _  b ( O ( i , k ) e x p ( a ( k , O  (s - p ( n ) u )  + e(k,O(t- d,~. 

L 1=0 k=~b~ 

The indexes j ,  i, l, and k verify the following inequation systems: 

C j < i < n - 1  ¢,~,+l < _ k - < n - 1  
0 < l < ¢ j - 1  ¢:~ k < i ~ n - 1  

Cj _< k < i wt + 1 < j _< inf(j0, wk) 

0 < l < Cjo - 1 
¢# ¢~+1 _< k < CJo - 1 

k < i < n - 1  
w t + l  <_j <_wk 

or  

0 < l < dpj o - 1 

CJo < k < n - 1 
k < i < n - 1  

wt + l < j < jo. 
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So, the distribution F (~°) (s, t) becomes equal to 

F(n~°)(s,t) = exp(a(n,O)s + ~(n,O)t) since ~(n,O) = -A.. , p--~ and fl(n, O) = 0 

~bjo-1 ~bjo-1 .*--1 

+ ~ E ~ A..,ib (t)(z," k) exp (a(k,l)s + fl(k,l)t) 
t=O k=4'~,+x i=k  

Wk ~ , ~ - -  1 
x E exp [- (An + p(n)a(k, l) + fl(k, l)) u] du 

j=wl+ l  -d 

~bjo-1 .*-1 .*-1 

+ ~ ~ ~ A..,,b(l)(i,k)exp(aCk, l)s + ~(k,l)t) 
1=0 k=¢~o i f k  

jo r-.,j-* 

× E / ~  exp[-(A..+p(n)a(k,l)+~(k,l))u] du 
j=wl+ l  ,J 

= exp(a(n, O)s + fl(n, O)t) 

@.~o - 1 4'.~o - I .*- I 

+ ~ E ~ A'*,'b(t)(i'k)exp(a(k'l)s +~(k'l)t) 
1=0 k=~bwl+l i=k  

Tn,w l 
x exp [-(A.. + p(n)a(k, l) + ~(k,/))u] du 

~" Trt,w k 

CJo -1  .*--1 .*-1 

+ E ~ ~A'*Jb(O(i'k)exp(a(k'l)s +B(k'l)t) 
/=0 kf~bjo i l k  

f o  ~'* ,',q 
x exp [ - ( ~ . .  + e(n)~(k, t) + ~(k, t))ul d~, since 7"..,j o = O. 

On the other hand, we can easily prove that 

a(k, l)s + [3(k, l)t - (Am + rma(k, l) + fl(k, l)) rm,k = a(m, k)s + ~(m, k)t 

and 
a(k, l)s + ~(k, l)t - (Am + rma(k, l) + ~(k, l)) rm,t = a(m, l)s + fl(m, l)t. 

By taking into account of these two equalities in the last expression of F(nJ°)(s, t), we obtain 

Fn (j°) (s, t) = exp (c~(n, O)s + fl(n, O)t) 

~b#o-1 ~bJo--1 n-1 An,i fl(k,l) b(t)(i'k)exp(~(n'k)s+fl(n'k)t) 
1=0 k=~w/+a i l k  

¢ jo -1  .*--1 ,*--1 A..,~ 
l) b(O(i' k) exp (a(n, l)s + ~(n, l)t) 

- + + 
1----0 k=~b~,+a i=k  

+ ¢%-1~ ..-IE ,,-1~ An + p(n)a(k,l)A'*'~ + ~(k,l)b(O(i,k)exp(a(k,l)s+~(k,l)t)" 
/=0 k,=¢jo iffik 

Moreover, it is obvious that E~% -1 ~-~b#°-I ( ~'~b#°-I ~"~bwk-1 [ z-,k=¢.~+1 ~"" ) = z-~k--1 z-~/=o v.. ). Therefore, the func 
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tion F(~ j°) (s, t) will be equal to 

F(J°)(s, t) = exp (a(n, O)s +/~(n, 0)t) 

~o-1 .-1 [ ~  A.,, 
+ E E A. + p(n)a(k, 1) + ~(k,l) b(t)(i' k) 

L i : k  l=O k=~jo 

~bjo--1 [¢~.~1 n--1 An,i 

+ ~ , ~  ~ A. +p(~)~(k,l 
k=l  [. /=0 i=k 

+ Z(k, t) 
b (t) (i, k) 

exp (a(k, l)s +/~(k, l)t) 

exp (a(n, k)s + ~(n, k)t) 

= [k=¢wt+l i=k 

If we identify now this relation with the expression of F(J°)(s,t) in Theorem 2.2, we get the 
following recurrent expressions for the coefficients b(J)(n, k): 

for k = C j o , . . . , n -  1, 

b (j) (n, k) = 
n - I  

1 
An + p(n)a(k,j) + ~(k,j) E An,ib(J)(i' k), 

i=k 

f o r  k ~-- n ,  

b(J)(n, n) = l{j=o} + E An + p(n)a(j,l) + 13(j, l) E An,ib(t)(i,J) 
/=0 i = j  

n - 1  n - 1  
x ~ A.,,b(')(i,k), 

- E An+p(n)ot(k,j) +~(k,j)  
k=¢~j+l  i=k 

which is equivalent to 

b(J)(n,n) = l{j=0} + E b(t)(n'J)- E b(J)(n,k)" 
l=0 k=¢~+x 

The proof of this theorem is then completed. | 

In case the system is degradable homogeneous: when there is only one possible transition out of 
any state i, namely, to state i -  1 (i.e., it contains d = 1 type of component), the above recurrence 
formulas will be simplified since Air = 0 for l < i - 1. So, the sequence b(J)(n, k) becomes as 
follows: 

b(J) (n, k) = An,n-1 
An,n-1 + ;(n)a(k,j) + 3(k,j) b(j)(n - 1, k), f o r C j < k < n - 1 ,  

and 

bu)(~,.) = 1~=o~ + Z b(~)(",j) - Z b(~)(.,k). 
lffi0 k = ¢ ~ + t  

We observe that  these formulas are the same obtained by Goyal and Tantawi. However, their 
generalization to nonhomogeneous systems is not very clear. Furthermore, the coefficients which 
they evaluate by recurrence depend on four indexes instead of three indexes, which generates a 
greater computational cost. 
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The computation of the distribution of Yt mainly involves computing the coefficients b(D(i, k). 
Since indexes j,  i, and k vary, respectively, in {0 . . . .  ,¢jo - 1}, { 1 , . . . ,  n}, and the set {¢w#+1, 
. . . ,  i - 1}, the total number of required terms is 

¢1o - 1 .~bjo 1 
(n - ¢~,+1 + 1)(n - ¢~,+1 + 2) ~ (n - j)(n - j + 1) < 

A.~ 2 - 2 
j =o j =o 

_: nCjo(R -- ¢5o + 2) T ~ ) J o ( ¢ j o  - -  1)(¢jo -- 2) 
2 6 

Moreover, the computation of each vector b(2 (i, k), k ¢ n, requires at most O(d) operations (see 
equations in Theorem 2.2). Therefore, the total computational effort to evaluate the distribution 
of performability for this kind of model is 

O (dCJ° ( n ( n - ¢ j °  + + (¢Jo - 1)(¢Jo - 2 ) ) )  
6 

Theorem 2.2 gives, for instance, a new method to compute the distribution of performability for 
acyclic homogeneous Markov models. The main advantage supplied by our approach, in com- 
parison to Goyal and Tantawi's method, is that  the computational complexity of our algorithm 
depends on the value of s. The total effort is as low as the value of s is close to rlt (s "close 
to" r l t  ¢~ J0 "small"). On the other hand, the complexity of the method developed in [18] is 
O(d(n+l)3). The b (j) (n, k) recurrence depends only on three indexes, however in [18], the authors 
proposed a set of recurrence formulas based on four indexes. Moreover, these formulas, which 
come from the homogeneous case (only transitions between state i and state i - 1 are allowed), 
are not very clear when they are generalized to heterogeneous systems. This fact prevented us 
from comparing the time complexity of each method. 

3. U N I F O R M  A C Y C L I C  M O D E L S  

The method established in the previous section is valid under a certain condition between 
transition rates Ai and reward rates ri. The condition ( A i -  Aj) / (p( i ) -  p(j)) ~ ( A k -  Aj)/ 
(p(k) -p ( j ) )  was necessary 1 to define the coefficients b(J)(i, k). This property led us to s tudy 
the performability measure for acyclic models satisfying the condition (A~ - Aj)/(p(i) - p(j)) ---- 
(Ak -- )U)/(p(k) - p(j)). We limit our study to the case where two different states cannot have 
the same reward rate. 2 These two conditions are equivalent to (Ai/r~) = ()u/rj) and p(i) = r~ 
for all i, j e E\{0}.  

DEFINITION 3.1. An acyclic performability model is said to be uniform if we have 

A~ A s p(i) = p(j)' ~or ~1 i, j e E\(0} .  

The state 0 is the absorbing state. 

Note that  p(i)/Ai represents the mean reward in the state i. Therefore, the "uniform" condition 
means that  the mean reward for all states is equal. 

3.1.  M o d e l  S o l u t i o n  

In this section, we present a closed form expression for F~°)(s,t) for this kind of model. The 
solution follows from the renewal equation established in Lemma 2.1. It  appears as a finite sum 
of polynomial functions affected by coefficients which are evaluated by recurrence. 

1The d en o mi n a t o r  of t he  fract ion 1/[A~ + p( i )a (k , j )  + fl(k,j)] is not  equal  to  zero if and  only if (Ai - A j ) / ( p ( i ) -  
pCj)) ~ (xk - A~)/Cp(k) - pCj)). 
2For t h e  general  case (i.e., 3 i ~ j E {0, 1 . . . . .  n}  such t h a t  p(i) : p(j)) ,  see [16]. 
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THEOREM 3.2. For a/]jo • {1,... ,rn} and all s • [rio_it, riot[, we have 

p~--3o ( L k~O (81rl)k -~ a (j°) (m, k) k! \ rm / = 

5o-1  m - 1  ( ( ~  - s ) / ( r ~  - ~ l ) )  k 

+ k! 
l----1 k----1 

+ Z Z Z bJa, Cn, k ) (s-r,t)lCrj--rt)k(rjt--s)/(rj--r,) n-k 
l=~ ~=~o ,,=2 k=~ k ! ( n - k ) !  " 

c(JO) I m •. The  c°etticients a(J°) ( m , k  ), z t ,to), and bi~hl ( n , k  ) are real numbers  given by the following set  
o£ rectws/ve expressions: 

for k : 1 , . . . , m ,  

a(J°)(m,O) = 1, 

m--1 
a ( J ° ) ( m ' k ) =  r---1 Z A m i a ( J ° ) ( i ' k - 1 )  ' 

rm i-~k+jo-1 

for  l = 1 , . . . , j o -  1, j = l +  2,. . . , jo,  and k--  2 , . . . , m -  1, 

c~J)(m, 1) = r~-Aml, 

m - 1  

c~l-I-1)(fn, k) = r_~_l Z Am~c~ ' + l ) ( i ' k -  1), 
rm i=k+l-1 

- -  rj 

for n---- 2 , . . . , m - -  1 and k = 2 , . . . ,n ,  

bJr~ l'l ( k, k), 

I-1 ] 
bJ,~/(n, 1) = Aml rj  - r l  c } l + l ) ( j , n _  1) + ~ b~'h(n - 1 , n -  1) 

- r m  - -  r l  
h----1 

m - 1  
bJa ' (n ,  k )  = r .~  - r j  ~ a ' ( n ,  ~ - 11 + r~ - r ,  rm - rl rm - rl ~-~'--` Ami_'l.nb~ ( - 1, k - 1.) 

~-----max(n, j+l)  

PROOF. (The proof of this theorem is too long. For more details, see [19].) II 
Y We assume here that a sum ~-]~p=x(" • ) is equal to zero if x > y. So if, for example, j0 = I, 

F~ ) (8, t) mainly involves computing the coefficients a (I) (m, k), for k = 0,..., m- 1. The number 

of cells a (#°) (m, k), c} j°) (m, k), and ~,Z(n, b) required in this method depends on J0 and therefore 
on the value of 8. Moreover, according to the strict monotonicity of the sequence (r~)~eE, it is 

obvious that the three sequences a (jo) (m, k), c~J°)(m, k), and ~J(n, k) are positive. 

4 .  N U M E R I C A L  E X A M P L E  

In this section, we present an application of the previous algorithm, related to acyclic uniform 
models, to a simple degradable computer system. It consists of a multiprocessor with n processors, 
each is subject to a random failure exponentially distributed with rate A = 10-6/sec. We suppose 
that each processor is self-testing, and in the presence of a single faulty processor, the system is 
able to recover, with a coverage rate c = 0.999, to an n - 1 processor configuration, provided that 
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n _> 2. The coverage rate is the probability tha t  the system successfully recover after a processor 
failure. When the system performs with a single processor (i.e., the n - 1 remaining processors 
are down), fault recovery is no longer possible. The system is considered to be down when no 

processor is available. Our goal is to calculate the distribution of the average number of available 

processors over a given mission time [0, t]. 

The Markov process which describes the behavior of the system is shown in Figure 1 when the 
number of processors is n = 3. Each state 0 < i < n corresponds to the number  of available 
processors in the system. The failure rate associated to each state i is iA, which is decomposed 

into icA, when the recovery is well functioning, and i(1 - c)A, when not. Since we are interested 
in the average number of available processors, we take the function ri = i as reward rate. This 

model still satisfies the condition Ai/r~ = A j / r j .  In fact, for all i e { 1 , . . . ,  n}, we have 

A_. i= icA + i(l-c)A _ iA _ iA =A. 

ri ri r~ i 

The accumulated reward averaged over t (i.e., Y j t )  represents, therefore, the average number of 

available processors over the mission t ime [0, t]. 

Figure  1. T rans i t i on  ra te  g raph .  

Figure 2 shows the probabili ty that  the average number of available processors over [0, t] is 
greater than 85% of the number of processors in the system. These curves are shown for many  

values of t and n. 
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Figure 2. Distribution of Yt/t. 

We observe from the three curves of Figure 2 tha t  the probability P { Y t / t  > 0.85n} increases 
with respect to n for t < 300000 sec and decreases with respect to n for t > 350000 sec. Tha t  
means that ,  for n = 10, 15, 20, the probability of the average number of available processors in 
the system over [0, t] increases with n so long as t is less than 3 x 105 sec, and conversely for 
t > 3.5 x 105 sec. For n = 10, we obtain j0 = n - 1 and for n = 15, 20, we obtain j0 = n - 2. 
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5. C O N C L U S I O N  

We have presen ted ,  in th is  paper ,  two me th ods  to  eva lua te  t he  pe r fo rmab i l i t y  d i s t r i b u t i o n  for 

d e g r a d a b l e  c o m p u t e r  sys tems.  T h e  first m e t h o d  follows the  same  app roach  deve loped  by  Goya l  

and  Tan tawi  [18] and  leads  to  a new a lgor i thm wi th  a low po lynomia l  c o m p u t a t i o n a l  complexi ty .  

I t s  m a i n  a d v a n t a g e  is a c o m p u t a t i o n a l  complex i ty  which de pe nds  on the  m i n i m u m  e x p e c t e d  

a c c o m p l i s h m e n t  l eve l  s T h e  second m e t h o d  concerns  a new class of  acyclic mode l s  which  we call  

un i form acycl ic  models .  Th is  m e t h o d  leads  to  a s imple  closed form for the  t r ans i en t  d i s t r i b u t i o n  

of  per formabi l i ty .  
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