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Abstract

A new boundary element model for transient dynamic analysis of 2D structures is presented. The dual reciprocity
method (DRM) is reformulated for the 2D elastodynamics by using the multiquadric radial basis functions (MQ). The
required kernels for displacement and traction particular solutions are derived. Some terms of these kernels are found
to be singular; therefore, a new smoothing technique is proposed to solve this problem. Hence, the limiting values of rel-
evant kernels are computed. The validity and strength of the proposed formulation are demonstrated throughout several
numerical applications. It is proven from the results that the present formulation is more stable than the traditional DRM,
which uses the conical (1 + R) function, especially in predicting results in the far time zone.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural dynamic analysis is one of the main required tasks for an engineer to accomplish in the analysis
of buildings. Many numerical methods are available in this field such as the finite element method (FEM),
(Bathe, 1982), which has some disadvantages such as: the need for discretizing the entire problem domain,
and the inaccuracies found in cases of stress concentration. The boundary element method (BEM), (Brebbia
et al., 1984), has been used to overcome these problems since it only requires the discretization of the boundary
and produces excellent results for stress concentration cases. BEM can also offer easy solution for complex
structures in less time and high accuracy.

There are many BEM formulations for treating structures under dynamic loading (Dominguez, 1993). These
formulations include the time domain, the Laplace transform, and the domain integral techniques. The main
problems of these formulations are the mathematical complications found in the first two and due to the required
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domain integrations in the last one. To overcome these drawbacks, Nardini and Brebbia (1982) developed a new
formulation, which is named later the dual reciprocity method (DRM). In the DRM, the integral equation of the
body is presented in terms of its boundary variables and includes a domain integral corresponding to the body
inertia forces. This integral can be transformed to the boundary (i.e. excluding the domain terms from calcula-
tions) using a new collocation scheme to approximate the field accelerations, or consequently the field displace-
ments. Nardini and Brebbia (1982) suggested the conical (1 + R) function to be used in this approximation. After
that, the DRM has been used to solve various types of differential equation problems including potential, fluid
dynamics, and heat transfer problems (Partridge et al., 1992). The using of DRM in solving elastodynamics is
reported in few publications (for more details, see Dominguez, 1993). Among these publications is the work
of Bridges and Wrobel (1994) where spline functions are used in modeling structural free vibrations. Rashed
(2002a) used the Gaussian function to solve transient problem then he extended his formulation to the compact
support functions (Rashed, 2002b). The nonlinear applications are also studied in the works of Kontoni and Bes-
kos (1993), Telles and Carrer (1994), and Coda and Venturini (2000). Perez-Gavilan and Aliabadi (2000)
extended the DRM to Galerkin-type collocation method.

The choice of suitable approximation function is very important in the DRM formulation since it directly
affects the result accuracy. Among all proposed function, is the conical (1 + R) function, which is commonly used
in many applications. According to Golberg and Chen (1994), this function is just one from a class of functions
called the radial basis functions (RBFs). The thin plate spline function (TPS) is another function which was cho-
sen by other researchers. In their applications, Bridges and Wrobel (1994), Golberg (1995), Chen (1995), and Kar-
ur and Ramachandran (1995) concluded that the TPS function had much improved the results accuracy. But, in
contradiction to this conclusion, Agnantiaris et al. (1996) compared the behavior of polynomial RBFs against
thin plate splines (R2 ln R) for 2D elastodynamics. They (Agnantiaris et al., 1996) concluded that the conical
(1 + R) function produces the best numerical results. Therefore, such function is implemented inside the commer-
cial software package—BEASY (Niku and Adey, 1996). Several studies were carried out in order to rank the
radial basis functions according to their best interpolation of multivariate data or functions. An interesting study
in this field was introduced by Franke (1982) who reviewed all available radial basis functions for interpolating
scattered data sets. Among the tested functions, Multiquadrics (MQ), (R2 + C2)1/2 (Hardy, 1971; Hardy, 1990,
and Wendland, 2002), were ranked the best in accuracy, followed by Duchon’s thin plate splines (TPS). The rea-
son for considering the MQ function to be the best in interpolations is for its exponential convergence rate (Pow-
ell, 1994), whereas this rate is just linear in the case of the TPS function (Madych and Nelson, 1992).

The use of the MQ function within the context of the DRM can be summarized as follows: Golberg et al.
(1996) utilized the MQ function in approximating the forcing term of Poisson’s differential equation to be able
to solve potential problems in Laplacian form. They concluded that the obtained results using the MQ inter-
polation are highly accurate. Later, Agnantiaris et al. (2001) used the MQ function to investigate the behavior
of 3D non-axisymmetric and axisymmetric structures under the effect of free vibrations. However, the appli-
cation of MQ function in 2D elastodynamics has never been reported previously.

In this paper, the application of the DRM in dynamic analysis of 2D elastic structures is formulated using
the MQ radial basis functions. The dynamic problem is analyzed by considering first the homogeneous equa-
tion (the static case) to be solved using the well-known static fundamental solution as a complementary one.
The non-homogeneous state (the dynamic case) is solved using a particular solution developed from a MQ
collocation scheme. The expressions for displacement and traction particular solutions for the MQ interpola-
tion are derived. A smoothing technique is introduced in order to solve the singularity problem appeared in
some terms of the formerly derived expressions. This treatment leads to final smooth forms of displacement
and traction particular solutions, which will be used in the calculations in this paper. The limiting case (as
R! 0) is studied and the values of particular solutions at this case are obtained in explicit form. Finally, sev-
eral numerical problems are studied to demonstrate the validity and accuracy of the proposed formulation.

2. Integral equations of 2D elastodynamics

Consider the 2D structure shown in Fig. 1 with domain X and boundary C is being under general dynamic
loading. The equilibrium equations at a general point x on this body in terms of displacements (Navier’s equa-
tions), and in absence of body forces, are given by (Brebbia et al., 1984):
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Fig. 1. Body geometry and boundaries.
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Gui;jjðxÞ þ
G

ð1� 2mÞ uj;jiðxÞ ¼ q€uiðxÞ ð1Þ
where the tensor (indicial) notation is used; the comma denotes derivatives with respect to spatial coordinates,
and the index repetition means summation G is the shear modulus, m is the Poisson’s ration, q is the mass den-
sity, and üi(x) is the acceleration at the point x (the over dots denotes derivatives with respect to time).

Consider the displacement solution of Eq. (1) to be divided into two parts; the complementary part uc
i ðxÞ,

and the particular part up
i ðxÞ. The complementary solution, uc

i ðxÞ, is the solution of the homogeneous part of
Eq. (1) that satisfies the body boundary conditions. The particular solution, up

i ðxÞ, on the other hand, is the
solution that satisfies the non-homogeneous part of Eq. (1) with no boundary conditions. Applying the con-
cept of the DRM (Nardini and Brebbia, 1982), the final integral representation can be obtained as follows:
cijðnÞujðnÞ þ
Z

CðxÞ
T ijðn; xÞujðxÞdCðxÞ ¼

Z
CðxÞ

Uijðn; xÞtjðxÞdCðxÞ

þ cijðnÞup
j ðnÞ þ

Z
CðxÞ

T ijðn; xÞup
j ðxÞdCðxÞ �

Z
CðxÞ

Uijðn; xÞtp
j ðxÞdCðxÞ

" #

ð2Þ
where n is a source point, x is a field point, and cij (n) is the jump term; cij (n) = dij/2 if n 2 C (smooth bound-
ary), and cij (n) = dij if n 2 X. The kernels Uij(n,x) and Tij(n,x) are the two-point Kelvin fundamental solutions
for displacements and tractions, respectively (Brebbia et al., 1984). tj(x) is the traction at the field point cor-
responding to the field displacement uj(x), while tp

j ðxÞ is the traction particular solution corresponding to the
displacement particular solution up

j ðxÞ.
In order to obtain the particular solutions, up

i ðxÞ and tp
i ðxÞ, consider that the inertia term in Eq. (1) is

approximated according to the following functions:
qu
$

jðxÞ ¼
Xm

k¼1

f ðx; ykÞajðykÞ ð3Þ
where f(x, yk) is chosen as any suitable function, yk(k = 1! m) are new field points, and al(yk) are unknown
coefficients related to the mentioned new field points. Substituting Eq. (3) into Eq. (1) with no boundary con-
ditions yields:
Gup
i;jjðxÞ þ

G
ð1� 2mÞ u

p
j;jiðxÞ ¼

Xm

k¼1

f ðx; ykÞajðykÞ ð4Þ
Representing the displacement particular solution, up
i ðxÞ, by the following collocation scheme:
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up
j ðxÞ ¼

Xm

k¼1

Wjlðx; ykÞalðykÞ ð5Þ
where Wjl(x,yk) is a displacement kernel between the field points x and yk. And substituting Eq. (5) into Eq.
(4), the relationship between Wjl(x,yk) and f(x,yk) can be obtained as follows:
GWij;llðx; ykÞ þ
G

ð1� 2mÞWil;ljðx; ykÞ ¼ f ðx; ykÞdij ð6Þ
Following a similar procedure, the traction particular solutions, tp
i ðxÞ, is presented by the following collocation

scheme:
tp
j ðxÞ ¼

Xm

k¼1

gjlðx; ykÞalðykÞ ð7Þ
where gjl(x,yk) is a traction kernel between the field points x and yk, and could be derived from the displace-
ment kernel, Wjl(x,yk) as follows (Rashed, 2002a):
gijðx; ykÞ ¼ G
2m

ð1� 2mÞ dilWjb;bðx; ykÞ þWji;lðx; ykÞ þWjl;iðx; ykÞ
� �

nlðykÞ ð8Þ
where dij is the unity matrix which equals zero when i 5 j and equals one when i = j, and nl is the component
of the outward surface normal at the field point yk. Substituting Eqs. (5) and (7) into Eq. (2) and recall Eq. (3),
the final integral form can be obtained as follows:
cijðnÞujðnÞ þ
Z

CðX Þ

T ijðn; xÞujðxÞdCðxÞ ¼
Z

CðX Þ

U ijðn; xÞtjðxÞdCðxÞ

þ
Xm

k¼1

cijðnÞWjlðn; ykÞ þ
Z

CðX Þ

T ijðn; xÞWjlðx; ykÞdCðxÞ
"

�
Z

CðX Þ

Uijðn; xÞgjlðx; ykÞdCðxÞ
#
� q

Xm

k¼1

f �1ðx; ykÞ u
$ ð9Þ
Eq. (9) is used in the analysis. However, the expressions for Wjl(x,yk), and gjl(x,yk) have to be developed first.

3. Multiquadric approximation function and the corresponding Wjl and gjl

The function f in Eq. (3) is selected in this paper to be the multiquadric radial basis function (MQ), i.e.:
f ¼ f ðx; ykÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
ð10Þ
where R = R(x,yk) is the Euclidian distance between the two field points x and yk as shown in Fig. 1, and C is
an arbitrary constant defined as the shape parameter (Golberg et al., 1996). In order to obtain the correspond-
ing particular solution kernels of the MQ function, Wij(x,yk) and gij(x,yk), the following procedure is pro-
posed: consider that the displacement kernel Wij(x,yk) is represented in terms of Galerkin vector
components such as:
Wijðx; ykÞ ¼ V ij;mmðx; ykÞ �
1

2ð1� mÞ V im;jmðx; ykÞ ð11Þ
where the Galerkin vector Vij(x,yk) can be evaluated according to the following equation:
V ijðx; ykÞ ¼
1

G
gðx; ykÞdij ð12Þ
in which the function g(x,yk) in the former equation is the particular solution of the following bi-harmonic
equation:



M.F. Samaan, Y.F. Rashed / International Journal of Solids and Structures 44 (2007) 8517–8531 8521
r4gðx; ykÞ ¼ f ðx; ykÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
ð13Þ
where $4 = $2$2 is the 2D bi-harmonic operator. A suitable scalar particular solution of Eq. (13) can be ob-
tained as follows:
g ¼ ð5R2 � 2C2ÞC3

60
ln

R

Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
 !

� C3R2

12
lnðCÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
900

ð4R4 þ 48R2C2 � 61C4Þ ð14Þ
According to Eq. (12), the expressions of Vij,mm(x,yk) and Vim,jm(x,yk) can be derived as follows:
V ij;mm ¼
dij

G
C3

3
ln

R

CðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ R2

p
Þ

 !
þ 20R6 þ 120R4C2 þ 135R2C4 þ 14C6

180ðR2 þ C2Þ3=2

"

� ð25R4 þ 28R2C2 � 4C4ÞC3

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
þ ð5R2 � 2C2ÞC3R2

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

#
ð15Þ

V im;jm ¼
1

G
C3

6
ln

R

CðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ R2

p
Þ

 !
þ

 
4R6 þ 36R4C2 þ 39R2C4 þ 7C6

180ðR2 þ C2Þ3=2

"

þð5R2 � 2C2ÞC3

60R2
� ð5R4 þ 3R2C2 � 2C4ÞC3

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

!
dij

þ ð5R2 � 2C2ÞC3R2

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2
� ð15R2 þ 22C2ÞC3R2

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

 

þð12R4 þ 48R2C2 þ 57C4ÞR2

180ðR2 þ C2Þ3=2
þ ð5R2 þ 2C2ÞC3

30R2

!
R;iR;j

#
ð16Þ
Substituting from Eqs. (15) and (16) into Eq. (11), the final expression of Wij can be obtained as follows:
Wij ¼
dij

2ð1� mÞG
C3

6
ln

R

CðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ R2

p
Þ

 ! 
þ ð15R2 þ 2C2ÞC3

60R2

"

þ 16R6 þ 84R4C2 þ 96R2C4 þ 7C6

180 R2 þ C2
� �3=2

� ð20R4 þ 25R2C2 � 2C4ÞC3

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

þ ð5R2 � 2C2ÞC3R2

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

!
þ ð1� 2mÞ C3

3
ln

R

CðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ R2

p
Þ

 ! 

þ C3

3
þ 20R6 þ 120R4C2 þ 135R2C4 þ 14C6

180 R2 þ C2
� �3=2

� ð25R4 þ 28R2C2 � 4C4ÞC3

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

þ ð5R2 � 2C2ÞC3R2

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

!#
� R;iR;j

2ð1� mÞG

"
ð5R2 þ 2C2ÞC3

30R2

þ ð12R4 þ 48R2C2 þ 57C4ÞR2

180ðR2 þ C2Þ3=2
� ð15R2 þ 22C2ÞC3R2

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

þ ð5R2 � 2C2ÞC3R2

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

#
ð17Þ
Substituting in Eq. (8), the final expression for gij can be obtained as follows (where the relevant derivatives of
Wij are listed in Appendix A):
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gij ¼ ðN iR;j þ dijR;NÞ
"
ð5R2 � 2C2ÞC3

30R3
þ ð10R4 þ 15R2C2 � 2C4ÞC3R

20ðR2 þ C2Þ2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

þ ð28R6 � 20R4 þ 152R4C2 � 144R2C2 þ 75R2C4 þ 61C4 þ 56C6ÞR
300ðR2 þ C2Þ5=2

� ð10R4 þ 25R2C2 þ 22C4ÞC3R

20ðR2 þ C2Þ5=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
� ð5R2 � 2C2ÞC3R3

30ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ3

� m
1� m

� � ð5R2 þ 2C2ÞC3

30R3
þ ð12R4 þ 48R2C2 þ 57C4ÞR

180ðR2 þ C2Þ3=2

 

� ð15R2 þ 22C2ÞC3R

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
þ ð5R2 � 2C2ÞC3R

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

!#

þ NjR;i

"
m

1� m

� �
:
ð5R2 � 2C2ÞC3

30R3
þ ð10R4 þ 15R2C2 � 2C4ÞC3R

20ðR2 þ C2Þ2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

 

þ ð28R6 � 20R4 þ 152R4C2 � 144R2C2 þ 75R2C4 þ 61C4 þ 56C6ÞR
300ðR2 þ C2Þ5=2

� ð10R4 þ 25R2C2 þ 22C4ÞC3R

20ðR2 þ C2Þ5=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
� ð5R2 � 2C2ÞC3R3

30ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ3

!

� ð5R2 þ 2C2ÞC3

30R3
� ð12R4 þ 48R2C2 þ 57C4ÞR

180ðR2 þ C2Þ3=2

þ ð15R2 þ 22C2ÞC3R

60ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
� ð5R2 � 2C2ÞC3R

60ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

#

þ R;iR;jR;N
m

1� m

� � ð10R2 � 8C2ÞC3

30R3
� ð10R4 þ 15R2C2 � 2C4ÞC3R

20ðR2 þ C2Þ2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

"

� ð28R6 � 20R4 þ 152R4C2 � 144R2C2 þ 75R2C4 þ 61C4 þ 56C6ÞR
300ðR2 þ C2Þ5=2

þ ð10R4 þ 25R2C2 þ 22C4ÞC3R

20ðR2 þ C2Þ5=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ
þ ð5R2 � 2C2ÞC3R3

30ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ3

þ ð12R4 þ 48R2C2 þ 57C4ÞR
60ðR2 þ C2Þ3=2

� ð15R2 þ 22C2ÞC3R

20ðR2 þ C2Þ3=2ðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ

þ ð5R2 � 2C2ÞC3R

20ðR2 þ C2ÞðCþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
Þ2

#
ð18Þ
It has to be noted that the above expressions for Wij and gij cannot be evaluated at R = 0 since they both con-
tain singular terms. To overcome this problem, a developed procedure for eliminating these singular terms is
proposed in the next section.

4. Suggested technique for singularity canceling

First, the singular terms that appeared in the expression of Wij are isolated. This can be done by decompos-
ing Wij into two parts; Wsingular

ij and Wnon�singular
ij , in which:
Wnon�singular
ij ¼ Wij �Wsingular

ij ð19Þ
where Wsingular
ij contains the singular terms of order (ln R) and (1/R2), and is given by:
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Wsingular
ij ¼ 1

2ð1� mÞG
ð3� 4mÞC3dij

6
ðln RÞ þ ðdij � 2R;iR;jÞC5

30

1

R2

	 
� �
ð20Þ
The proposed canceling technique is based on the idea that: particular solutions are not unique; therefore, any
chosen particular solution, which must satisfies the Navier equation (Eq. (6)), can be added to Wij to form a
new set of particular solution. Thus, the new set of smoothed particular solution Ŵij is defined as follows:
Ŵij ¼ Wij þ c1U ij þ c2r2U ij ð21Þ

where c1 and c2 are arbitrary constants, and U ij and r2Uij are chosen particular solutions of order (ln R) and
(1/R2), respectively. These solutions must satisfy Navier equations as follows:
GU ij;ll þ
G

ð1� 2mÞU il;lj ¼ 0 ð22Þ
and:
Gr2U ij;ll þ
G

ð1� 2mÞr
2U il;lj ¼ 0 ð23Þ
The solution U ij is chosen to be the displacement fundamental solution in terms of R, which can be expressed by:
Uij ¼
1

8pGð1� mÞ �ð3� 4mÞdij ln Rþ R;iR;j

� �
ð24Þ
and the corresponding Laplacian of U ij can be obtained as follows:
r2Uij ¼ U ij;ll ¼
1

8pGð1� mÞR2
½dij � 2R;iR;j� ð25Þ
Now, the constants c1 and c2 in Eq. (21) can be computed to cancel singular terms of the same order. This can
be done by comparing different terms in Eqs. (24) and (25) with those in Eq. (20) to give:
c1 ¼
2pC3

3
ð26Þ
and
c2 ¼ �
pC5

15
ð27Þ
It has to be noted that when R = 0, the new displacement kernel,Ŵij will not be singular since the singular
parts of Wij (i.e. Wsingular

ij ) are eliminated using the proposed superposition. Also the condition that Ŵij satisfies
Navier’s equation (Eq. (6)), is valid, in other words:
GŴij;ll þ
G

ð1� 2mÞ Ŵil;lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ C2

p
dij ð28Þ
is verified.
Similar to Wij, the same technique is used to cancel the singular terms in the traction kernel gij (Eq. (18)):

consider gij is divided into two parts as follows:
gnon-singular
ij ¼ gij � gsingular

ij ð29Þ
where gsingular
ij contains terms of order (1/R) and (1/R3) as follows:
gsingular
ij ¼ NiR;j

1� m
ð2m� 1ÞC3

6

1

R

	 

� C5

15

1

R3

	 
� �
þ NjR;i

1� m
ð1� 2mÞC3

6

1

R

	 

� C5

15

1

R3

	 
� �

þ dijR;N

1� m
ð1� 2mÞC3

6

1

R

	 

� C5

15

1

R3

	 
� �
� R;iR;jR;N

1� m
�C3

3

1

R

	 

� 4C5

15

1

R3

	 
� �
ð30Þ
The expression of the new smoothed traction kernel ĝij can be defined as follows:
ĝij ¼ gij þ c3T ij þ c4r2T ij ð31Þ
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where c3 and c4 are arbitrary constants that will be chosen to cancel all singular terms. T ij is a suitable traction
fundamental solution corresponding to the U ij field, which can be derived from Eq. (8) as follows:
T ij ¼ �
1

4pð1� mÞR ðð1� 2mÞdij þ 2R;iR;jÞR;n þ ð1� 2mÞðN jR;i � NiR;jÞ
� �

ð32Þ
It can be seen from Eq. (32) that T ij contains terms of order (1/R) which will be used in canceling similar terms
in Eq. (30). r2 �T ij is the Laplacian of T ij which is equal to:
r2T ij ¼ T ij;ll ¼ �
1

4pð1� mÞR3
NiR;j þ NjR;i þ dijR;n � 4R;iR;jR;n

� �
ð33Þ
It can be also seen that r2T ij contains terms of order (1/R3) which will be used in canceling similar terms in
Eq. (30). It is easy to show that choosing c3 = c1 and c4 = c2 will cancel all singularities in ĝij. Alternatively, the
expression for ĝij can be directly obtained from Ŵij using Eq. (8). The new smoothed kernels Ŵij and ĝij will be
used instead of Wij and gij in the general dynamic integral equation presented in Eq. (9).

5. Limiting case

In the collocation process, it is very important to compute the values of Ŵijand ĝij when R! 0, this can be
obtained as follows:
lim
R!0

Ŵij ¼
C3

72ð1� mÞG ½ð27� 32mÞ þ ð24m� 18Þ lnð2C2Þ�dij ð34Þ
and:
Lim
R!0

ĝij ¼ 0 ð35Þ
6. Boundary elements modeling

The boundary integral equation in Eq. (9) can be solved numerically by discretizing the boundary into ele-
ments. Quadratic shape functions are used along any element to represent its displacements and tractions. For
any collocating source point, ni, Eq. (9) can be rewritten as follows (Brebbia et al., 1984):
XN

j¼1

½Hðni; xjÞ�2N�2N ½uðxjÞ�2N�1 ¼
XN

j¼1

½Gðni; xjÞ�2N�6NE½tðxjÞ�6NE�1

þ
Xm

k¼1

XN

j¼1

½Hðni; xjÞ�2N�2N ½W
_ðxj; ykÞ�2N�2N

"

�
XN

j¼1

½Gðni; xjÞ�2N�6NE½g
_ðxj; ykÞ�6NE�2N

#

� q
XN

j¼1

½F�1ðyk; xjÞ�2N�2N ½€uðxjÞ�2N�1 ð36Þ
where [H] and [G] are the well-known boundary element influence matrices. [u] and [t] are the vectors of
boundary displacements and tractions, respectively, and N and NE are the number of boundary nodes and
elements, respectively. [W

_

] and [g
_

] are the matrices of displacement and traction particular solutions according
to Eqs. (21) and (31). [F] is a collocation matrix based on the MQ function (Eq. (10)) and [ü] is the acceleration
vector. The vector of collocation points xj, represent the N number of boundary nodes, whereas the other col-
location scheme yj, represent m number of field points which will be chosen to be equal to N (m = N) to obtain
square matrix. Eq. (36) can be written in compact form as follows:
½H�½u� ¼ ½G�½t� þ ½M�½€u� ð37Þ
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where [M] is mass matrix. It has to be noted that in Eq. (37) both the displacement and traction vectors are
defined at a certain time t, i.e. [u] = [u]t and [t] = [t]t. The acceleration in this equation [ü] will be expressed in
terms of [u] according to the following Houbolt finite difference scheme (Bathe, 1982):
½€u�tþDt ¼
2½u�tþDt � 5½u�t þ 4½u�t�Dt � ½u�t�2Dt

Dt2
ð38Þ
where Dt is the time step. Substituting Eq. (38) into Eq. (37), gives:
2

Dt2
½M� þ ½H�

� �
½u�tþDt ¼ ½G�½t�tþDt �

1

Dt2
½M�½5½u�t � 4½u�t�Dt þ ½u�t�2Dt� ð39Þ
where the former equation is solved for the unknown boundary displacements and tractions at time t + Dt.

7. Applications

In order to illustrate the validity and efficiency of the proposed MQ formulation, four different examples
are studied. The numerical integrations are carried out using four Gauss points. The results are compared
to other published results based on different approaches. The effect of the shape parameter value on the result
accuracy is investigated. Finally, the last application results are obtained and graphed within a long time zone
to examine the proposed interpolation stability. Internal points can be used to improve the accuracy (for
details, see Dominguez, 1993).

7.1. Infinite strip under tension

The first example is the infinite rectangular strip with the boundary conditions shown in Fig. 2. The strip
dimensions are: 2 m wide and 4 m height, and is subjected to a Heaviside tension step load. The material prop-
erties of the strip are: m = 0.25, G = 4 · 104 Pa, and q = 1 kg/m3. The boundary is discretized into 12 elements and
the time step Dt is taken to be 7.22 · 10�4 s. to allow the comparison of results with those obtained by Dominguez
(1993) for the both (1 + R) function and the analytical results (based on 1D solution). Fig. 3 demonstrates the
displacement history at point ‘‘A’’ for different values of C (0.01 and 1.0). Results for other values for C between
0.01 and 1.0 are studied and showed behavior between the chosen values of C. Therefore, only results for C = 0.01
and C = 1.0 are plotted in Fig. 3. The results of Dominguez (1993) are also plotted on the same graph. It can be
seen from the results that taking C = 0.01 gives the required efficient and stable results for the MQ function inter-
polation, therefore the value for C = 0.01 will be used in the next examples. This conclusion can be confirmed
when studying the normal traction history at point ‘‘B’’ shown in Fig. 4. Finally, it can be seen that the MQ results
are in excellent agreement with the analytical solution as much as the (1 + R) results.

7.2. Simply supported deep beam

In this example, the simply supported deep beam with span length L = 24 and height h = 6 (shown in
Fig. 5) is considered. The beam is subjected to a Heaviside uniform load with initial value w = 0.01, and its
P(t)

2m

P(t)

t

P

4m 

AB

Fig. 2. Infinite strip under tension example.
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material properties are: m = 0.333, E = 100, and q = 1.5. This problem was solved previously by Kontoni and
Beskos (1993) using the conical (1 + R) function. Due to symmetry, one half of the beam is analyzed using 24
boundary elements and restrained using the boundary conditions shown in Fig. 5. The results for the vertical
displacement history at point ‘‘A’’ (located on the middle of the beam center line) using the MQ function
(C = 0.01) are graphed in Fig. 6. The results obtained by Kontoni and Beskos (1993) for the same point using
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Fig. 5. The simply supported deep beam example.
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the (1 + R) function are also plotted in the same graph. The results are almost identical which proofs the valid-
ity of the present formulation.viside tension load with initial value P = 7500 N/cm2. The material properties
are: m = 0.3, E = 2.1 · 107 N/cm2, and q = 0.00785 kg/m3, and the time step Dt is taken to be 4 · 10�6 s. As it
can be seen from Fig. 7, that one-quarter of the symmetric plate is considered with the shown boundary con-
ditions. The boundary is discretized into 37 elements and 136 additional internal nodes are used to improve the
result accuracy as shown in Fig. 7. The results for the displacement history of point ‘‘A’’ obtained using the
MQ function (C = 0.01) is plotted in Fig. 8 and the results obtained by Agnantiaris et al. (1996) for the same
point using the (1 + R) function are also plotted on the same graph. As it can be seen from Fig. 8 that the
results of the MQ function are in excellent agreement with those of the (1 + R) function.
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Fig. 8. Dynamic displacement of point ‘‘A’’ in the gusset plate example.
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7.3. Interpolation function performance study

The validity of the present formulation is confirmed for different problems as presented in the previous
examples. The purpose of this example is to demonstrate the superiority of the proposed formulation against
the traditional (1 + R) function. A comparison between the results obtained for the first example (infinite strip
under tension) using MQ and (1 + R) function are set up in the long time zone. The (1 + R) function is chosen
to be compared to as it gives the best accuracy among other functions, according to the conclusion of Agn-
antiaris et al. (1996). It is easy to observe that both function results match each other at early times (t = 0 to
t = 0.1 s, as can be seen from Figs. 3 and 4). Therefore, this example focused on the behavior of these func-
tions in the far time zone (t = 1.3 to t = 1.8 s. for displacement results, and t = 0.4 to t = 0.85 s. for traction
results). The results of this study are shown in Figs. 9 and 10 for the displacement at point ‘‘A’’ and for the
traction at point ‘‘B’’, respectively. It can be seen from these figures that the (1 + R) function (as most of other
functions) fails to give good interpolation scheme (oscillates) in the far time zone, whereas the interpolation
using MQ function with C = 0.01 gives accurate and stable results along the whole studied time zone.

8. Conclusions

In this paper, a new formulation for the transient analysis of 2D elastodynamics is introduced. The DRM
was successfully implemented using the MQ function in the interpolation of the inertia terms. The relevant
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expressions for displacement and traction particular solutions were derived, and then the singularities in the
final expressions were canceled using a developed technique. The new formulation was examined throughout
different applications and showed excellent performance. The results demonstrated that the MQ function is
quite suitable for modeling different problems including stress concentration cases. Moreover, when the results
of MQ function is being compared with those of the traditional (1 + R) function in long time zone, the MQ
function succeeded to give more stable and more accurate results. This leads to the conclusion that: the MQ
function, as previously confirmed for surface generations from scattered data (Franke, 1982) and for potential
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problems (Golberg et al., 1996), is the best radial basis function in modeling 2D structures under transient
loading. Finally, although the choosing of the MQ shape parameter, C, to be equal to 0.01 seems to give
enough accuracy in the studied applications, a future procedure such as the cross validation (see Golberg
et al., 1996) has to be carried out to determine the best selection of its value.
Appendix A

The expressions of the Wij derivatives are:
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