
Science of
Computer

ELSEVIER Science of Computer Programming 25 (1995) 117-147
Programming

Foundational issues in implementing constraint logic
programming systems

James H. Andrews*

Department of Computing Science, Simon Fraser Universi& Burnaby, BC, Canada WA IS6

Abstract

Implementations of Constraint Logic Programming (CLP) systems are often incomplete with
respect to the theories they are intended to implement. This paper studies two issues that arise
in dealing with these incomplete implementations. First, the notion of “satisfiability function”
(the analogue of unification) is formally defined, and the question of which such functions are
reasonable is studied. Second, techniques are given, based on the notion of satisfiability
function, for formally (proof-theoretically) specifying an intended CLP theory or characterizing
an existing CLP system. Such proof-theoretic characterizations have applications in proving
soundness and completeness results, and proving properties of programs. Notions from sub-
structural logic and the notion of Henkinness of the theory are shown to be important here.

1. Introduction

The semantics of Constraint Logic Programming (CLP) languages is now well
understood. Implementations of CLP languages, however, are often not complete
with respect to their intended theories, that is, there are goals G such that G is
satisfiable in the intended theory, but the CLP system cannot discover G to be
satisfiable. In this paper, I study the foundations of such incomplete implementations,
by giving a recursion-theoretic, rather than model-theoretic, basis for CLP opera-
tional semantics. Based on this work, I then study proof-theoretic techniques for
specifying the intended theory of a CLP language, or giving characterizations of the
actual theory implemented by a CLP language.

A simple example shows that some CLP implementations necessarily incomplete.
Consider a first-order language, structure and theory in which the terms encode
untyped lambda-expressions, and in which disequality # holds between two terms iff
they are not extensionally equivalent. The theory and structure can be made to meet

* E-mail: jamie@cs.sfu.ca.

0167-6423/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
``

118 J.H. Andrew J Science of Computer Programming 25 (1995) II 7-147

Jaffar and Lassez’ original conditions [12] for a reasonable CLP language (that is, the

so-called “satisfaction-completeness” and “solution-compactness” conditions). The

CLP scheme [12] defines a theoretical operational semantics for this theory such that

a ground query s # t succeeds iff s and t are not extensionally equivalent. However, in

practice we have no terminating algorithm for testing whether two lambda-terms are

extensionally equivalent. Thus, given any particular implementation which is sound

with respect to this theory, there is some satisfiable query which cannot be discovered

to be satisfiable, not even by using the standard breadth-first technique of complete

Herbrand-domain logic programming interpreters.

Furthermore, many implementations of CLP languages are incomplete for efficien-

cy reasons. For instance, CLP(R) [13] implements an efficient but incomplete linear

equation solver rather than Tarski’s complex algorithm for deciding real arithmetic;

and many constraint languages operating over finite domains, such as CHIP [24],

implement incomplete algorithms for finite domain constraint satisfaction to avoid

exponential time complexity.

To deal with these considerations, we need to develop a theoretical framework,

incorporating notions of computability, in which we can study issues of how complete

a CLP implementation is. This framework can then be used as a basis for comparing

a CLP implementation with its intended theory, or specifying the smaller theory that

an incomplete implementation actually implements. This paper is intended to make

steps in the direction of such a framework.

In the remainder of this introduction, I present some basic definitions. In Section 2,

I define a class of recursive functions called “satisfiability functions”, which formalize

the basic step in CLP languages (the analogue of unification). I show how operational

semantics can be defined based on satisfiability functions, define what it means for

a structure to “realize” such a function, and give a necessary and sufficient, non-logical

condition for a stisfiability function to be realizable. In Section 3, I use satisfiability

functions as a basis for studying various techniques for characterizing CLP theories

with proof systems, and show how the proof systems could be used to prove the

soundness and completeness of implementations. In Section 4, I present some con-

clusions and discuss related work. An appendix contains proofs of the characteriza-

tion theorems given in Section 3.

1. I. Dejinitions and notation

Definition 1.1. Ajrst-order language 2 is a tuple (F, P, V), where F is a recursive set

of function symbols, each with an associated arity, P is a recursive set of predicate

names, each with an associated arity, and V is a recursive set of variable names. We

define the terms and formulae of _Y in the standard way.

Let %? be a set of predicate names of Y, %? G P(Y). Constrs(9, %?) is the set of all

atomic formulae from 9 formed using a predicate name from %‘. We also call these

atomic formulae “constraints”.

JH. Andrew J Science of Computer Programming 25 (1995) II 7-147 119

We define notions of structure, valuation, satisfiability w.r.t. a structure, and model

in the standard Tarskian way.

Definition 1.2. A theory is a set of closed (ground) formulae.

Notation: We will use A, B, C, G to stand for formulae, c to stand for a constraint,

s, t to stand for terms, r and n to stand for multisets of formulae, and S, T to stand for

sets (usually sets of constraints). These are fairly standard in the literature on

constraint logic programming. We will also use the following notation:

3[B] = 3X1’.. 3x,(B)

where x1, . . ,x, are all the free variables of B. Where S = (B,, . . . , B,J, we will define

3[S] = 3[B1&...&B,]

We will define V [I?], V[S] similarly.

2. Satisfiability functions

The basic step in constraint logic programming interpreters (even incomplete ones)

is the step which decides whether a new constraint is consistent with the previously

processed constraints. Every CLP interpreter has an algorithm for doing this for its

intended theory; if the algorithm returns “true”, the interpreter goes further down the

same branch in the search true, and if it returns “false”, the interpreter backtracks.’

This section studies the theory of such “satisfiability functions”, which will be

defined as partial recursive functions from finite sets of constraints to results including

“true” and “false”. The motivation for doing so is to build a homogeneous theory of

CLP systems, whether they use partial or total satisfiability functions, and whether

those functions map to “true ” “false” or some other outcome. ,

In the first subsection, I define the notion of satisfiability function, and show how an

operational semantics can be built on the basis of that notion (rather than the notion

of constraint theory). In the second subsection, I point out that not all satisfiability

functions correspond to actual constraint theories which “realize” them, and that

these functions’ operational semantics thus do not define sensible logic programming

systems. I give, however, a condition on satisfiability functions which is necessary and

sufficient for realizability. In the final subsection, I point out that for a given

constraint theory. there are either 0 or 1 maximal satisfiability functions which are

realized by it.

r This does not actually describe completely the operation of all languages referred to as constraint logic

programming languages. (For instance, it does not take into account disjunctive constraints.) However, it

describes one common framework for CLP operational semantics, and is also the one considered in much of

the standard literature on CLP, e.g. [16].

120 J.H. Andrews f Science of Computer Programming 25 (1995) 117-l 47

2.1. Satisjiability finctions and operational semantics

Definition 2.1. A satisjability function (in a language Y with constraint predicates U)
is a partial recursive function whose domain is the set of finite sets of constraints in
Constrs(Y, U), and whose range is a countable set F of truth values containing at
least true and false.

In the sequel, we will not mention the language and set of constraint predicates if
they are implicit from the context.

This definition of satisfiability function is general enough to capture the behaviour
of a wide variety of complete and incomplete implementations. We always interpret
a result of false as “unsatisfiable” and true as “satisfiable”; but other results, or no
result, are also possible. To capture the very well-behaved satisfiability functions, we
make the following definition:

Definition 2.2. A strict satisfiability function is one which is never undefined and
always returns true or false.

The satisfiability function associated with basic Herbrand-domain Prolog, for
instance, is strict.’ Here is a non-strict example.

Exampie. The basic behaviour of the CLP(R) system [13] on real-number constraints
can be characterized with the following satisfiability function sat, whose codomain of
truth values is {true, false, unsure).
l If S contains a subset T consisting of unsatisfiable, linear constraints, sat(S) returns

false.
l Otherwise, if S contains no non-linear constraints, sat(S) returns true.
l Otherwise (i.e. S contains non-linear constraints but its linear constraints are

satisfiable), sat(S) returns unsure.
The operational semantics defined from a satisfiability function is a function from

states to states.

Definition 2.3. A state (of a CLP operational semantics) on (9, V, F) is either a truth
value in 5, or a pair <G, S), where G is a multiset of non-constraint atoms of Y and
S is a set of constraints of 9, V.

In basing an operational semantics on a satisfiability function sat, we may want to
give a definition that takes into account the various truth values which can act as

2 Correct Prolog using unification with occurs check, that is. The widely used unification algorithms
without occurs check are incorrect with respect to the Herbrand domain, but correspond to satisfiability
functions nonetheless. The satisfiability functions they correspond to are non-strict, however, because they
can get into infinite loops.

J.H. Andrew / Science of Computer Programming 25 (1995) I1 7-147 121

results of sat. We must make the following minimum requirements, following Maher

C161.

Definition 2.4. Given a satisfiability function sat whose range is the truth values in F,
a binary relation + between states is an operational transition relation for sat with
program P iE

1. The relation includes the transition

(GvHB, S) + (GuBB, SuS’8)

if the program P contains (some renaming of) the clause (H t S’, B), and
sut(S u s’e) N true.

2. The relation includes the transition

(GuH, S) -false

if for every (renamed) clause in P of the form (H’ t S’, B) and substitution 8 such that
H’O is H, we have that sut(SuS’0) = false.

We say that a goal G succeeds if (G, 8) +* (0, S) and sat(S) N true; we define fair
derivations in the usual way and say that G fails if every fair derivation ends in the
state fake. Note that if sat is strict, then the least such relation is an operational
semantics similar to that defined by Maher [16].

Example. Based on the definition of sat for CLP(R) above, we can characterize an
operational semantics for CLP(R) as follows. 3 The transition relation is the least
transition relation for (sat, P) having the additional property that:
l We have the transition

(GvHe,C)~(GvBB,CuC’e)

if the program P contains (some renaming of) the clause H t C’, B, and
sut(C u c’e) N unsure.

In this operational semantics, even if we are unsure of the satisfiability of the
resulting set of constraints (if the system of equations is not linear), we go on as if it
were satisfiable. We may wish to say that a goal G is indeterminate if it does not fail,
but every fair derivation ends in either false or unsure.

2.2. Realizable sutisfiubility functions

We would like our operational semantics to define sensible logic programming
systems. To achieve that goal, we have to put a condition on the satisfiability functions

3 Actually, CLP(R) is more powerful in some ways and less powerful in other ways than what is described
here. CLP(R) uses unification over regular first-order terms, negation as failure, etc.; but it also uses the
usual incomplete depth-first search algorithm of Prolog, etc. The example ignores these features, which are
irrelevant to the present discussion.

122 J.H. Andrew / Science of Computer Programming 25 (I 995) I1 7-147

we use. The condition is an analogue of Kleene’s notion of “realizability”, and is best

defined model-theoretically.

Definition 2.5. An .Y-structure !R realizes a satisfiability function sat if:

1. whenever sat(S) CY true, S is %-satisfiable; and

2. whenever sat(S) N false, S is not ‘%-satisfiable.

If % realizes sat, we also say that sat implements ‘93.

Not every satisfiability function is realizable, not even the strict ones. For instance,

if sat maps {p(x)} onto false but {p(x), q(x): onto true, then it will not have any

realizing structure, because any valuation satisfying (p(x), q(x)) will surely satisfy

(p(x)}. An operational semantics based on such a satisfiability function would give

unexpected results.

The realizability of sat can be given an equivalent characterization in terms of the

theory associated with sat.

Definition 2.6. OS,,, the theory associated with sat, is defined as

(3 [S] 1 sat(S) N true) u (7 3 [S] 1 sat(S) = false}

where 3[S] is the existential closure of the conjunction of the constraints in S.

We have the following property:

Theorem 2.7. sat is realizable iff O,,, is consistent.

Proof. (--f) If some % realizes sat, then by the definitions of realization of sat and

satisfaction of a formula, every formula in O,,, is true in ‘R O,,, therefore has % as

a model, so it must be consistent.

(t) Let !R be a model of O,,,. By the definition of satisfaction of a formula, every

S such that 3[S] E O,,, is %-satisfiable, so every S such that sat(S) N true is %-

satisfiable; similarly, every S such that sat(S) N false is not %-satisfiable. But then

!?4 realizes sat. 0

2.3. A condition equivalent to realizability

The consistency of O,,, is a necessary and sufficient condition for the realizability of

sat. However, if we have a precise description or an algorithm for a given sat in hand,

it would be useful to have a more direct method of testing whether it is realizable

(more direct than translating it into a theory and testing the theory’s consistency). The

“reliability” condition allows us to do this. One interesting aspect of reliability is that

it is a somewhat weaker condition than we might expect.

But first, some technical definitions.

J.H. Andrew / Science of Computer Programming 25 (1995) 117-147 123

Definition 2.8. Let S be a set of constraints and let c E S. The variable sharing class SI,
is the smallest subset of S such that:

0 c E SI,;

l if b E S 1 c, and a E S shares a free variable with b, then a E S I,.

Definition 2.9. Let sat be a satisfiability function. A set of constraints S is sat-covered if

for all c E S, there is a set T 2 SI, such that sat(T) E true. A set of constraints S is

sat-consistent if there is some substitution 0 such that SO is sat-covered.

Basically, the variable sharing classes of S form a partition of S such that no

variable is referred to by constraints in any two distinct elements of the partition. A set

S is sat-consistent if, for some 8, every element of this partition of SO is satisfiable in

any structure realizing sat.

Definition 2.10. A satisfiability function sal is reliable if whenever sat(S
not sat-consistent.

) = false, S is

For non-reliable satisfiability functions, some sets S are considered unsatisfiable

despite the fact that some instance of S can be partitioned into sets which are

generalizations of sets considered satisfiable. This is a situation which does not meet

with our intuitions, and indeed the next theorem proves that reliability is a necessary

condition for realizability.

Theorem 2.11. If a satisfiability function sat is realizable, then it is reliable.

Proof. Assume (toward a contradiction) that sat is realized by some ‘93 but not

reliable. By non-reliability, there must be an S and 8 such that sat(S) Nfalse but SO is

sat-covered. Let TI, T2, . . . , T, be all the (disjoint) variable sharing classes in SO. By the

definition of sat-covering, each Ti is a subset of a set 7;’ such that sat(TL) = true; so
since sat is realized by ‘33, there must be some valuation vi satisfying Ti in $93. But the

union v of these valuations must be a valuation satisfying SO in 932; therefore the

valuation u 0 0 must satisfy S in ‘31. But we had assumed that sat(S) -false, so the

assumption that % realizes sat is contradicted. 0

Reliability is also sufficient for realizability, as we will see next.

Theorem 2.12. If a satisjiability function sat is reliable, then it is realizable.

Proof. By Theorem 2.7, it is sufficient to prove that if sat is reliable, O,,, is consistent.

Assume that sat is reliable. By compactness, it is sufficient to prove that every finite

subset of O,,, has a model.

124 J.H. Andrews / Science of Computer Programming 25 (1995) 117-147

Let S be a finite subset of O,,,, where

s = (3[S,], .*., ~c~,l}~{~~c~,I,...,~~cT,1)

Let % be the minimal structure which contains a unique element ei,k for each free
variable in each Si, and in which each Si is satisfiable by a valuation mapping variables
to these elements. (It is left to the reader to construct the structure % with these
properties.) Clearly this structure is a model of the positive formulae in S; we have only
to prove that it is a model of the negated formulae too.

Assume, toward a contradiction, that some Tj is satisfied by some valuation v in %.
There is some 8 and v’ such that v = I~v’, v’ maps free variables directly to elements
ei,k of the domain of 8, and TjO is satisfied by v’. But by the construction and
minimality of ‘%, this means that each variable sharing class of TjO is a free-variable
variant of a subset of some Si; thus there is some 8’ such that each variable sharing
class of Tjtl’ is a subset of some Si. Tj is therefore sat-consistent. But by the
construction of Osaf, we know that sut(Tj) -false, thus contradicting our initial
assumption that sat was reliable.

Therefore no Tj can be satisfied by any valuation in %; % is therefore a model of S,
and therefore a model of O,,,; thus O,,, is consistent. 0

Reliability is a necessary and sufficient condition for satisfiability, but various
conditions which appear at first glance to be equivalent are in fact not. Consider the
following two conditions:

Cl. If sat(S) Nfulse, then for every superset T of S, sat(T) Nfulse.
C2. If sat(S) -false, then for every substitution 0, sut(T8) = false.

Cl-C2 together seem to be a strong condition, but in fact are incomparable to
reliability. An example of a satisfiability function which meets Cl-C2 but is not
reliable is the minimal satisfiability function which maps S = {p(x), q(y)} to false,
every superset of S to false, every set SO to false, but maps {p(3)} and (q(4)) to true.
A satisfiability function which is reliable but does not meet Cl-C2 is any one that
maps one set with a free variable to false and all other sets to unsure. Now let us add
a third condition:

C3. If sat(S) z false, then for every variable-sharing class T of S, sat(T) = false.
Cl-C3 together imply reliability now, and in fact are properties we might reasonably
expect of a satisfiability function in an implementation of a CLP language. But they
are stronger than necessary, as shown by the second example function in the last
paragraph.

2.4. Maxima&v results

Finally, some words about maximality. Given a particular constraint theory, what
is the “biggest” satisfiability function which implements it? It turns out that either
a theory has a unique, maximal, strict satisfiability function, or else there is no
maximal satisfiability function which implements it.

J.H. Andrew / Science of Computer Programming 25 (1995) 117-147 125

Definition 2.13. For two satisfiability functions satI and sat2, we say that satI csatz if:

1. whenever satI(S) N true we have that satz(S) = true; and

2. whenever sat,(S) Efulse we have that sat2(S) -false.

A satisfiability function sat is a maximal implementation of % if it implements %, and

there is no sat’ which implements !R such that sat’ # sat and sat &sat’.

Theorem 2.14. A structure 93 has either 0 or 1 maximal implementations.

Proof. Consider the set of all finite, %-satisfiable sets of constraints. If this set is

recursive, then clearly there is a unique, strict, maximal implementation of ‘R Other-

wise, for any sat which implements 3, there is either a finite, %-satisfiable set S of

constraints such that sat(S) r or sat(S)+ { true, false}, or a finite, non-%-satisfiable set

S of constraints such that sut(S)T or sut(S)$ (true, false). In the first case, let sat’ be the

satisfiability function such that sat’(S) 2: true and sat’(T) N sat(T) for all T not

identical to S such that sut(T) 4. Then sat E sat’. The second case is analogous. Thus

from any sat which implements %, we can build a “bigger” sat’ which also implements

%; so there can be no maximal implementation of ‘%. 0

Thus for the example structure given in the Introduction (extensional non-equiva-

lence of lambda-expressions), there is no maximal implementation. Whenever we have

a satisfiability function (and thus a constraint logic programming system) which

implements this structure, we can always do better.

3. Specification and characterization with proof systems

We have seen that incomplete implementations of CLP languages are sometimes

desirable or even necessary. We have also seen that such incomplete implementations

can be given a coherent theoretical basis. But in order to make practical use of

incomplete implementations, we need to be able to compare them directly with

descriptions of theories.

To do so, we really need formal (syntactic) descriptions of the theories to be

compared to; the kinds of informal descriptions found in the literature are sometimes

too imprecise to be used in formal proofs, and this imprecision is multiplied when we

have several groups of interacting constraints (Herbrand, rational tree, integer, real,

etc.). There are at least two other practical reasons for developing formal descriptions

of CLP languages:

l With increasing prominence of constraint systems, it will become necessary to

develop some standard formalism for describing constraint theories, much as BNF

was developed to describe programming language syntax.

l Syntactic, or more specifically logical, characterizations of constraint theories will

be absolutely necessary to any program-logic system which intends to prove

properties of constraint logic programs.

126 J.H. Andrews J Science of Computer Programming 25 (1995) 117-147

One possible framework for such formal descriptions is proof theory, which has
been used to good advantage in the past to describe standard Herbrand-domain logic
programming [8,9,17]. The use of proof theory as a general framework for character-
izing CLP, which has not to my knowledge been studied before, is the topic of this
section. I will present proof-theoretic characterizations here in the form of sequent
calculi, both because they have a clear and natural logical interpretation, and because
one of the characterizations involves modal relevance logic, which can be described
most easily in a sequent-calculus form. The notion of satisfiability function will be
used to build very general schemata of characterizing proof systems.

There are two ways in which proof-theoretic characterizations could be used:

(a) to specify an intended theory; and
(b) to characterize an existing implementation.

Examples of (a) would include giving an axiomatization of Horn clauses with Presbur-
ger arithmetic, to which we could then compare individual CLP implementations.
Examples of(b) would include giving a proof-theoretic characterization of the CLP(R)
implementation [13], to see how it looks compared to an axiomatization of real
arithmetic. The examples I will discuss here will concern mostly characterizing
existing systems, in order to introduce the subject with familiar material.

In this section, I will first present an enriched syntax of goals and clauses, and an
operational semantics based on that syntax. Then I will discuss a simple proof system
schema for characterizing CLP systems with strict, Henkin satisfiability functions.
A theory is “Henkin” if it has a closed “witness” term for every existential truth, and
the analogous property of satisfiability functions will be shown to be an important
issue. I will then discuss a somewhat more complex proof system schema, still
characterizing CLP systems with strict satisfiability functions, but with the Henkin
restriction lifted. Finally, I will discuss a characterization of one important system
with a non-strict satisfiability function: the simplified version of CLP(R) referred to
earlier. Notions from substructural logic will be shown to be important here.

3.1. Goals, clauses, and operational semantics

We will find it convenient at this point to slightly expand Maher’s framework [161
by enriching the syntax of goals and modifying the operational semantics to have
more and simpler rules. Here I will present the enriched syntax, and the modified
operational semantics.

This enriched syntax is based on Miller et al.% syntax of goals and definitions for
uniform-proof-based logic programming systems [171. Goals:

G ::= c 1 A) G&G 1 3xG

where c is a constraint and A is any predicate application formula (atom).
Clauses (definitions):

D ::= p(q,...,x,J+-G 1 V’xD

J.H. Andrews / Science of Computer Programming 25 (1995) 117-147 127

We say that a program is a set of ground clauses. We assume that there is at least

one satisfiable contraint T, what would be an atom in a Prolog program would

be a clause with body T. (This is a reasonable assumption for all practical

purposes.)

The expanded syntax of goals and definitions allows us to modify Maher’s opera-

tional semantics, to describe the actions associated with different forms of goals. This

will have the effect of simplifying the individual rules and facilitating the proofs of

characterization.

Definition 3.1. The operational semantics OSp,,,t for a given realizable satisfiability

function sat and program P is given by the *p,sat relation between states, defined as

follows. (r is a multiset of goals, and S is a set of constraints. (G, r) stands for the

multiset union of {G} and r.)

0 Con (constraint): ((c, r), S) *P,sat (r, Su(c).)

where sat(S)1 and sat(Su {c}) $ false

l Fail: ((c, r), S) +-p,s,,false

where sat(S u {cl) Nfalse

l 8~ (conjunction): ((GI&Gz, 0, S> J~,~~~((GI, Gz, r), S>

l 3 (existential): ((3xG1, r), S) =+p,sor ((G, [x := y], r), S)

where y is a variable not appearing on the left

l Def (defined predicate): ((A& r), S) *p,sar ((Go, r), S)

where P contains (the universal closure of) the clause A c G

We again say that a state S succeeds if S *F,sot (E, S), where E is the empty multiset

of goals, that S fails if all fair computations from S lead to false, and that a given goal

G succeeds (fails) if (G, 8) succeeds (fails).

3.2. Systems with strict, Henkin satisjiability functions

Strict satisfiability have pleasant properties which we can exploit to provide simple,

general proof-theoretic characterizations of the systems they are based on-Satisfiabil-

ity functions that also have the “Henkin” property, such as those of Herbrand-domain

Prolog and Presburger arithmetic, have even simpler characterizations. In this sec-

tion, I present (with examples and proofs) a proof system schema which characterizes

systems with strict, Henkin satisfiability functions.

A Henkin theory [22] is one in which, for every sentence 3 xA of the language, there

is a constant e in the language such that T + (3xA) 3 (A[x := e]). In analogy with

this notion, I give a definition of a Henkin satisfiability function.

Definition 3.2. A satisfiability function sat is Henkin if, whenever sat(S) N true, there

is a substitution 0 of ground terms for variables such that SB is ground and

sat(S0) N true.

128 J.H. Andrew / Science of Computer Programming 2.5 (1995) 117-147

Many useful satisfiability functions are Henkin; others, such as those for rational
trees and real arithmetic, are not. For those satisfiability functions which are strict and
Henkin, there is a particularly simple characterizing proof stystem.

Characterizing proof system

Definition 3.3. SH,,, is defined by taking the rules B given in Fig. 1 and adding a rule:

Con/r: TEc

for any closed constraint c such that sat((c}) = true.

The result we will be concerned with about SH,,, is that it characterizes OSP,,,t in
the following sense:

For any closed goal formula G, program P and strict, realizable, Henkin satisfiabil-
ity function sat, we have that (G, @) succeeds with respect to OSP,,,t iff the sequent
P k- G is derivable in SH,,,.

The reason we are interested in this result is, of course, that SH,,, is a simple, clear and
logical description of the meanings of goals and programs. The rules B in Fig. 1 are
almost exactly those of Gentzen’s original sequent calculus LJ [6], and the additional
rules r k c capture the notion of truth according to the satisfiability function sat.

I will prove this characterization result in an appendix; here I will just give some
examples.

Example (Herbrand-domain logic programming). In the language of this system, the
single constraint predicate is =, equality. The function and predicate symbols can be
anything, as long as there is at least one nullary function symbol. (Otherwise sat is not
Henkin; for instance, {x = x} is true but there is no closed s such that {s = s} is true.)
The satisfiability function sat is defined as the one which is true of a set S iff there is
some substitution 0 such that SO is identical to t0 for all formulae s = t E S; that is, sat
performs standard unification.

&/r:
l-kG1 rt-G2

3/r:
TFG[x:= t]

rt-GG1&GZ n-3x(G)

Dup/l:
D, D, r t- G

V/l:
D[x:= t],TFG

D,Tt-G VxD,rtG

c/l:
TFG

(p(t 1,...,t,)CG),r~p(tl,.-.,tn)

Fig. 1. Basic rules B for characterizing a constraint logic programming language. r is a multiset of
formulae.

J.H. Andrew / Science of Computer Programming 25 (I 995) 1 I7- 147 129

The characterizing proof system can be given by adding to B the single rule

for any closed s, since these constitute the closed true constraint formulae of sat.

The resulting proof system is more or less that given by Andrews [2], adapted to

Miller et al.‘s sequent calculus style [17]. Examples of its use can be found in 123.

Example (Presburger arithmetic logic programming). The single constraint predicate

is =, equality. The function symbols consist of the nullary 0, the unary s, and the

binary +. sat is the function which can be derived from Presburger’s algorithm for

satisfaction of arithmetic formulae over s and + [18].

The characterizing proof system can be given by adding to B the rule

where c is a closed constraint such that sat({c}) N true. However, we can give an

equivalent proof system which does not depend on a reference to sat by adding to

B the rules in Fig. 2. These rules are derived from Kleene’s Hilbert-style system for

Presburger arithmetic [14], and the proof that the systems are equivalent can be

derived from Kleene’s proof of completeness. Note that this proof system (and all the

proof systems I discuss here) is quite fragile: the addition of any more rules may

require a different satisfiability function, or may prevent us from having a strict

satisfiability function altogether.

An example of a derivation is SH,,, for this satisfiability function is given in Fig. 3.

Readers are invited to do the corresponding computation in OS,,,.

3.3. Systems with general, strict satis$ability functions

Not all useful satisfiability functions (or constraint theories) are Henkin, not even

the strict ones. A simple example is the theory of rational trees: we have that

3x(x =f(x)) is true, but there is no closed t such that f =f(t). Another important

example is the theory of real arithmetic, in which we have no closed term t such that

t x t = 2. For these theories, we have to use other methods of characterization.

Characterizing proof system: The characterizing proof system schema for strict

satisfiability functions in general allows for the introduction of elements from the

theory associated with sat on the left-hand side of the sequent, and allows us to reason

about them.

Tta=b Tta=b Ttb=c Tt--a=b

Ttb=a Tta=c r t s(a) = s(b)

rta+O=a r I- a + s(b) = s(a + b)

Fig. 2. Additional rules for a proof-theoretic characterization of a Presburger arithmetic constraint logic

programming language.

130 J.H. Andrew 1 Science of Computer Programming 25 (1995) 117-I 47

Definition 3.4. Proof system S,,, is formed by taking the rules B from Fig. 1 and
adding the rules in Fig. 4.

This new proof system schema is more complex than SH,,,, but does not restrict us
to looking at only Henkin satisfiability functions. We can prove the same kind of thing
about S as we did about SH:

For any closed goal formula G, program P and strict, realizable satisfiability
function sat, we have that (G, 8) succeeds with respect to *p,sat iff P t- G is
derivable in S,,,.

Again, the rules added are almost exactly those of Gentzen’s LJ [6] except for the
Con/l rules; the Con/l rules capture the notion of satisfiable set of constraints given by
sat.

Example (Rational tree logic programming). In this CLP system, the single constraint
predicate is =, equality. There are no restrictions on the function symbols. sat is the
function which returns true iff its set of equations can be reduced to a set of equations
in Colmerauer’s “solvable form” [3]. van Emden and Lloyd [23] and Maher [15]
have given Hilbert-style logical descriptions of the structure which realizes this sat; the
fact that this sat is strict follows from Colmerauer’s proof that his reduction algorithm
terminates [4].

Pt-2=2 (Con/r)
(pred(2, 1) c 2 = 2), P F pred(2, 1) (c/l)

Vy(pred(2, y) + 2 = s(y)), P F pred(2,l) (V/l)
Vx Vy(pred(x, y) c x = s(y)), P k pred(2,l) V/l)

P k pred(2, 1) P k- 2 + 1 = 3 (Dup/l, Con/r)

P F (pred(2,1)&2 + 1 = 3 (k/r)
P t 3y(pred(2, y)&2 + y = 3) U/r)

P F 3xly(pred(x, y)&x + y = 3) (3/r)

Fig. 3. Example derivation in SH,., for the Presburger arithmetic satisfiability function. P is the program

consisting of the single clause b’xVyy(pred(x, y) t x = s(y)). To save space, I write 1, 2, 3 instead of s(O),

SW)), SW(O))).

Con/l:
3[S],rEG

3/l:
B[x := y], r t- G

TEG 3xB,rkG

&/l:
B, C, l- I- G

B&C,TFG
Axiom: ~

c,TEc

Fig. 4. Additional rules for S,,, a proof-theoretic characterization of a CLP language with a strict

satisfiability function. S is any set of constraints such that m(S) Y true, and y is a new variable.

J.H. Andrew / Science of Computer Programming 25 (1995) 117-147 131

2’ =f(g(z’)) kz’ =f(g(z’)) z’ =f(g(z’)) F g(z’) = g(z’) (Axioms)

z’ =f(g(z’)) E Z’ =f(&‘))&g(z’) = &‘) (a/r)

z’ =f(g(z’)) t- 3y(z’ =f(JJ)&J? = g(Y)) (3/r)

z’ =f(g(z’)) k jxj_!J(x =f(.Y)&,Y = Y(X)) (3/r)

3z(z =f(g(z))) k jXjY(X =f(y)&y = g(x)) (3/l)

t 3X3Y(X =f(yWy = g(x)) On/l)

Fig. 5. Example derivation in the augmented S,,, for rational trees. P is in this case the empty program.

As in the case for Presburger arithmetic, the unmodified proof system S,,, may be

somewhat clumsy to work with. We can simplify the proof system by adding rules

such as

where t is any term, and

TE-sl = tl ... I-Es, = t,

r ä fh, . . . ,s,) =“m1, . . . 1 t,)

where f is any function symbol. It is easy to prove that these are admissible rules of

the original system. Fig. 5 gives an example derivation of a simple goal in this

augmented S,,,.

Note that we can in fact restrict the proof system S,,, somewhat and still obtain the

same soundness and comleteness results. If a set of constraints S such that

sat(S) E true contains disjoint variable-sharing classes SI, and SI,, then

sat(Slx) N sat(SI,) 2: true, and we can assert 3[Sl,] and 3[Sl,] as separate assump-

tions. Also, if for a set S such that sat(S) = true we have a substitution 0 mapping

variables to closed terms such that sat(SO) = true, then clearly any derivation that

asserts 3 [S] could instead assert 3 [Se]. Thus we can restrict the side-condition on the

assumption introduction rule to

where S is a set of constraints such that sat(S) ‘v true, for all variables x free in S we

have SI, = S, and there is no variable x and closed term t such that

sut(S[x := t]) N true.

3.4. Non-strict sutisJiubility functions: CLP(R)

We were able to characterize CLP systems with strict satisfiability functions with

the very general proof system schemata SH,,, and S,,, via the least operational

transition relation for sat. However, CLP systems with non-strict satisfiability func-

tions can have many different operational semantics; therefore there can be no one

proof system schema which characterizes them. In this subsection, therefore, I will

discuss a characterization of only one example system, CLP(R), and suggest how the

knowledge of this characterization could be applied to other systems.

132 J.H. Andrew / Science of Computer Programming 25 (1995) II 7-147

The characterizing proof system for CLP(R) is best described as a modal relevance

logic, in that it uses a standard modal operator q (“necessitation”) and standard

relevance logic methods for requiring that assumptions are relevant to conclusions. As

such, it is closely related to Girard’s linear logic [7], although the system which it is

closest to is the “calculus of relevance and necessity” Rn described by Read [19]. In

this section, I will present the proof system and its use, give a mechanical and

a philosophical justification for the use of the modal relevance logic framework, and

discuss how this result may generalize to other non-strict CLP systems.

Characterizing proof system: The characterizing proof system for CLP(R) is pre-

sented in Fig. 6. It is called MR+, where clpr is the satisfiability function for CLP(R)

described earlier in this paper. It is very similar to the S,,, schema, since it also uses the

idea of introducing the existential closure of a satisfiable set on the left, and drawing

inferences from it. However, there are a few subtle differences,

1. In the &/r rule, we are allowed to “split” the left-hand side of the conclusion

between the left and right premiss.

2. In the 3/r rule, we are required to use a variable, not just any term, as a witness to

the existentially quantified variable. This variable does not have to be new, however.

3. In the Axiom, the formulae on the left-hand side, other than the constraint which

matches the right-hand side, must all be formulae preceded by the necessitation

operator 0.

4. There is a new rule, Net/l, which states that if G can be derived from D and r,

then it can be derived using the stronger assumption that D is necessarily true.

The combined effect of these rules is that any formula appearing on the left without

a q preceding it must be used, somewhere in the derivation, in an Axiom; that is, all

the assumptions must be relevant to the conclusion.

The characterization theorem is also subtly different from that of S; note the

presence of the q operator.

For any closed goal formula G and program P, we have that (G, 0) succeeds with

respect to J~,,[~~ iff UP E G is derivable in MRcI,,.

&/r:
r, t G r, t H

3/r:
rt- G[x:= z]

r,, r, t-G&H rt3x(G)
Axiom:

c,0rk

Dup/l:
D,D,rl- G D,TtG

D,l-I-G
Net/l:

q D,rFG

V/l:
D[x:=t],rFG
VxD,rFG

+-/l:
rl-G

(p(t l,...,tn)CG),r~P(tl,...,tn)

Con/l:
3[q&...&CJ,rFG B[x := y], r t- G B,C, rt- G

TFG
3/l:

3xB,rtG
&/l:

B&C,rkG

Fig. 6. The proof system schema MRclpr characterizing the behaviour of CLP(R). r is any sequence of
formulae, or is a sequence of formulae preceded by 0, ~1 is a new variable. z is any variable, and cl. , ck
are constraints such that clpr({cl, , Q}) ir true.

J.H. Andrews 1 Science of Computer Programming 25 (1995) 117-147 133

In the theorem, we use the following notation:

Notation 3.5. UP, where P is a set of formulae {B,, . . . , B,), denotes the set of

formulae {OBr, q &}.

Thus when we use the proof system, we will always place the clauses of the program

on the left-hand side, preceded by the operator which states each clause is necessarily

true. The clauses can then be duplicated, the q removed via the Net/l rule, and then

instantiated as before. However, when we strip off the q , we must eventually use the

assumption. Furthermore, all assumptions arising from the use of the Con/l rule must

be used as well, since the assumption introduced does not come with a preceding IJ.

Example. An example derivation in MR,[,, is given in Fig. 7. P, in this example, is the

program consisting of the single clause

Vz(p(z) + z = 2)

UP is therefore

q Vz(p(z) + z = 2)

In the derivation, the first steps (reading up from the bottom) introduce on the

left-hand side the satisfiable set of constraints that we will need to prove the result, and

break it down via the 3/l and &/l rules. The next steps instantiate the existential

variables on the right to refer to the variables in the satisfiable set. There is then an &/r

step, which splits the list of assumptions so that the precise set of assumptions needed

is transferred to each side. On the right-hand branch, there is then a standard

sequence of proving a predicate call goal by duplicating and instantiating a clause of

the program.

y’=2,oPFy’=2 (Axiom)

y’ = 2, UP, (p(y’) + y’ = 2) t- p(y’) (c/l)
y’ = 2, 0 P, Vz(p(z) + z = 2) I- p(y’) Of/l)

y’ = 2, UP, q ‘dz(p(z) cz = 2) F p(y’) (Net/l)

x’.y’=4kx’.y’=4 y’ = 2, UP E p(y’) (Axiom, Dup/l)

x’.y’ = 4, y’ = 2, UP t-x’.y’ = 4&p(y’) (W-)
x’.y’ = 4, y’ = 2, q P k 3y(x’.y = 4&p(y)) (3/r)

x’.y’=4,y’= 2, q Pk3x3y(x~y=4&p(y)) (3/r)
(x’.y’ = 4&y’ = 2), UP t- 3x3y(x.y = 4&p(y)) (&/I)

3y’(x’.y’ = 4&y’ = 2), UP F 3x3Jqx.y = 4&p(y)) (3/l)

3x’3y’(x’.y’ = 4&y’ = 2), UP F 3x3y(x.y = 4&p(y)) (3/l)

UP I- 3x3y(x.y = 4&p(y)) (Con/l)

Fig. 7. An example derivation in MR,,,,, the characterizing proof system for CLP(R).

134 J.H. Andrews / Science of Computer Programming 25 (I 995) 117-147

Note that the derivation would not have gone through if the query had been simply

3x, y(x. y = 4), because we would have had the extra formula y’ = 2 to contend with.

Conversely, if we had allowed axioms to be simply of the form (c, r k c), we would

have been able to prove 3x, y(x . y = 4), even though that is not a linear equation and

thus not solvable in the operational semantics.

Mechanical justi$cation of MRclpr: One way of seeing why a modal relevance logic

required for this system is to look at the mechanics of proving formulae.

The restricted Axiom forces each constraint assumption to be used at least once, as

mentioned above.

The ability to split the axiom list in the &/r rule is then a necessary adjunct, because

if&/r were more like the rule in Ssaf, we would essentially be required to duplicate

every assumption every time we used it; each of the duplicate constraint assump-

tions would then have to be used.

We sometimes do want the ability to duplicate constraint assumptions, however.

For instance, if the query is 3x(x = 2&x = 2), we will need to prove it by introduc-

ing 3x(x = 2) on the right:

x’=2Ex’=2 x’=2t-xx’=2 (Axiom)

x’ = 2, x’ = 2 l-x’ = 2&x’ = 2 (k/r)

x’ = 2, x’ = 2 k 3x(x = 2&x = 2) P/r)
x’ = 2 k 3x(x = 2&x = 2) (Dup/l)

3x(x = 2) E 3x(x = 2&x = 2) (3/l)
E 3x(x = 2&x = 2) (Con/l)

It is because of this need to duplicate constraint assumptions that relevance logic

rather than linear logic is necessary. In linear logic, assumptions without ! (the

analogue of q) not only must be used at least once, they cannot be duplicated (i.e.

they must be used exactly once). Here, we want to use non-n assumptions one or

more times, so the Dup/l rule is not restricted as it would be in linear logic.

Finally, although we want constraint assumptions to be used at least once, we want

to put no such restriction on the program clauses. In a given query derivation, any

given program clause may be used once, more than once, or not at all; we therefore

adopt the solution (used by the Lolli system, among others [lo]) of “protecting” the

program clauses with q . The program clauses can then be used 0 or more times,

and can end up in Axioms without having been used.

I should also mention the mechanical reason for the restriction in the 3/r rule to

only variables as witness terms. Without this restriction, we would be able to

substitute any term for the variable in the 3/r rule; so for instance, 3x3y(x.y = 4)

would be easy to prove from the satisfiable constraint set 2.2 = 4. Because the

constraints arising from the expansion of the existential formula must eventually be

matched with formulae on the right-hand side, the restriction effectively means that

the witness term must be a variable already appearing on the left-hand side. This

forces the Axioms to always have the same form as they would in the computation,

J.H. Andrews / Science of Computer Programming 25 (1995) I1 7-147 135

correctly forbidding us from substituting satisfying terms that would not be found by

CLP(R).

Philosophical just$cation: There is also a more philosophical exegesis of the rules

of MR,l,, which does not depend merely on showing mechanically how a derivation

can or cannot be built. It hinges on the logico-philosophical notions of necessary and

contingent fact, relevant implication, and universe of discourse, and explains more

fully why MR,[,, has a modal relevance logic form.

A necessary fact is one which we take as logically unavoidable, and true in all

situations we want to consider. By placing program clauses on the left-hand side of the

sequent with the necessitation operator q in front of them, we are stating that those

clauses are necessarily true, regardless of the particular goal formula we want to prove.

A contingent fact is one which happens to be the case in a particular circumstance,

but is not always true. By allowing the introduction of satisfiable constraint sets on the

left without the necessitation operator, we are stating that at any particular time, we

are free to assume these sets as contingent facts, but that they are not the case in all

circumstances.

By relevant implication from a set of necessary and contingent facts to a conclusion,

we mean (following the standard references [1,19]) a deduction of the conclusion from

the facts in which all aspects of all the contingent facts are in some way used to prove

the conclusion. The study of relevance logic was initially undertaken in order to

disallow dubious implications such as “if the moon is made of green cheese, then

2 + 2 = 4” (which are true with the standard “material” implication of classical and

intuitionistic logic); the proof systems that have arisen to formalize the notion of

relevant implication are all essentially sequent-calculus systems with forms very

similar to that of MR,+

Finally, when we restrict the 3/r rule to only variables, we are essentially saying that

our universe of discourse consists not only of the real numbers, but of a number of

other elements which may stand in the equality relation to real numbers or which may

be of unknown value. The existential quantifier is taken to range over this set of

additional elements, not the real numbers themselves; the constraint sets S such that

clpr(S) N true are taken to state the relationship between the additional elements and

the real numbers.

Application to other systems: Are the techniques used to characterize CLP(R)

applicable to other systems? Only some properties of the CLP(R) satisfiability

function, which I have been calling clpr, are needed for the proofs of soundness

and completeness, and any system having a satisfiability function sat with these

properties will suffice. As the name MRcI,, implies, we could have MR,,, for

any such sat.

The properties that clpr has that allow the proofs of soundness and completeness to

go through are as follows:

1. clpr always terminates and always returns one of true, false or unsure.
2. clpr(@) 2: true.

136 JH. Andrews 1 Science of Computer Programming 25 (1995) 117-147

3. If &r(S) ‘v clpr(T) 2: true, then if (3 is a substitution which renames variables of

T apart from those appearing in S, then clpr(Su TO) P true. This is because the

requirement that a set of formulae be linear and solvable is maintained under union of

sets with disjoint sets of variables.

4. If clpr(SB) ‘v true, where 0 is a substitution mapping variables to other variables,

then c&(S) 1: true. (For instance, clpr({x ‘x = 4)) must return unsure because

clpr({x ‘y = 4)) does.) This is the case again because the requirements that a set of

formulae be linear and solvable are not affected by a substitution of one variable by

another.

While these properties seem reasonable, it is not clear how many useful systems

have them. In particular, the fourth property seems problematic; one can easily

imagine a satisfiability function in which some S is of unsure satisfiability, but

S[x := y] is considered definitely satisfiable.

However, it may be sufficient to assume that a function which has properties l-3 is

used to determine satisfiability during the normal course of computation, but a func-

tion with property 4 is used at the end of the computation to determine the satisfiabil-

ity of the final set of constraints. I have not explored this idea in any detail, since it

seems to complicate the theory unnecessarily. The characterization of CLP(R), one of

the most important constraint logic programming languages, seems to sufficiently

motivate the study of MR+.

4. Conclusions, related and future work

I have shown that the class of satisfiability functions adequately characterizes the

behaviour of a wide variety of implementations of CLP languages, and that there is

a simple, non-model-theoretic condition (“reliability”) for testing whether a satisfiabil-

ity function is reasonable.

I have also discussed techniques for specifying and characterizing CLP systems

with sequent calculi. I have pointed out that the question of whether the theory is

Henkin is important, and that the notation and proof theory of substructural logics

can help in these characterizations.

The definition of a reliable satisfiability function is closely related to Scott’s

definition of an information system [21]. Saraswat [20] uses information systems to

describe the domains of constraint systems. However, neither the space of satisfiability

functions, nor the space of information systems (under a reasonable mapping from

one notion to the other), are proper subsets of the other.

Hohfeld and Smolka [11] and Friihwirth [S] have both explored the idea of

formally describing constraint theories. Hohfeld and Smolka describe an alternative

framework to Jaffar and Lassez’s for constraint systems; like Jaffar and Lassez, they

do not consider explicitly any computability restrictions on constraint satisfaction

algorithms. Friihwirth gives a Horn-clause-based language for defining constraint

simplification rules, or SiRs, for any given domain. While SiRs have a logical form,

J.H. Andrew / Science of Computer Programming 25 (1995) 117-147 137

they do not necessarily take the form of a simple and intuitive axiomatization or proof

system.

There are several directions for future work in this area:

l Case studies. I would very much like to see these ideas applied for the purpose of

fully and precisely characterizing existing, practical systems.

l Negation. I have avoided talking about negation in this paper because it poses

general problems for logic programming theory which have not been adequately

answered yet. A framework which characterizes the failure of constraint queries as

well as their success would be desirable.

l “Ask” constraints. I have considered here only constraints that would be described by

Saraswat [20] as “tell” constraints. I would also like to characterize “ask” constraints;

this may involve allowing some description of implication in characterizing proof

systems. (Thanks to Andreas Podelski for interesting discussions on this point.)

l Moving toward a standard description language. It would be premature at this

point to propose some standard for describing constraint systems, but this would

bring many benefits if done, much as BNF brought a standard manner of describ-

ing programming language syntax.

Acknowledgements

I appreciate the helpful comments and suggestions I have received from Veronica

Dahl, Alistair Lachlan, Sanjeev Mahajan, Fred Popowich, Stephan Wehner (all of

SFU), Thorn Friihwirth, Nevin Heintze, Tim Hickey and Gert Smolka, as well as

Torkel Franzen and the anonymous referees. This research has been supported by the

Natural Sciences and Engineering Research Council of Canada, the SFU Centre for

Systems Science, and the SFU President’s Research Grant Committee, via Infrastructure

Grants NSERC 06-4231, CSS 02-7960 and PRG 02-4028, Equipment Grants NSERC

06-4232, CSS 02-7961 and PRG 02-4029, Operating Grants 0GP0002436 (Dahl) and

OGP0041910 (Popowich), and the author’s NSERC Postdoctoral Fellowship.

Appendix A. Proofs of characterization theorems

A. I. SH characterizes strict, Henkin systems

We will prove the SH characterization result by proving two very general theorems,

one about the soundness of the operational semantics OS,,, with respect to the SH,,,

proof system, and the other about its completeness.

Theorem A.1 (Soundness of OS with respect to SH). Let sat be a realizable, strict,

Henkin satisjability function. Let G1, . . . , G, be goals, and S = {cl, . . . ,c,} be a set of

constraints. Zf ((G,, . . . , G,), S) *f.,,, (E, T) and sat(T) N true, then there is some

substitution ~4 such that P F GifI and P t- cj% in SH,,,, for all 1 d i < n and 1 6 j < m.

138 J.H. Andrew / Science of Computer Programming 25 (1995) 1I7-147

Proof. By induction on the number of steps in the computation.

l 0 steps: In this situation, n = 0 and S = T. By the Henkinness of sat, there must be

some 0 which closes all of the T formulae such that each {cje} is considered

satisfiable by sat. By the Con/r rule of SH, we must have that P t- cje for each cj.

l >O steps: cases on the first rule used in the computation. Let r be the goals

G G,. 2, ... 9

- (Cc, 03 s> *P,wt (r, S u (c}): directly from the induction hypothesis.

- ((G&H, 0, S> *p,sat ((G, H, r), S): From the induction hypothesis, we have

that for some 0, P F GO and P t- HO; thus by using the & rule of SH, we have that

P F (G&H)B. In this and all subsequent cases, the fact that the r and S formulae

are derivable carries over directly from the induction hypothesis.

- (PxG, r), S> *~,,a ((G[x := y], r), S): From the induction hypothesis, we

know that for some 8, P t G[x:= y] 0. Choose the term t to be ~0; then

P t- G[x := t] 8. By the 3 rule of SH, we have that P k (3xG)B.

- ((A@> n S> JP,sat ((Go’, r), S): From the induction hypothesis, we have that

for some 6, P F GB’B. We therefore have the following derivation:

P F Ge’e

(A + G)O’O, P I- AB’B

(V’x,(A + G))8’8, P k A&8

(+- /I)

of/l)

V’xl ... Vx,(A + G), P k A@0 (V/l)
P t- Ae’e @NW)

G1 is just Ae’, so P F G1e. q

For the converse direction (completeness), it is useful to define the notion of

meta-derivability. This will allow us to give an inductive proof of completeness.

Definition A.2 (Derivative, meta-derivability). A multiset of formulae r’ is an SH-

derivative of a multiset r if r E G can be derived from r’ I- G by a sequence of SH

Dup/l and V/l rules:

A formula G is meta-derivable from a multiset r of formulae in SH if there is some

SH-derivative r’ of r such that r’ E G is derivable in SH.

Of course, G is meta-derivable from P iff P t- G is derivable. However, phrasing

results in terms of meta-derivability rather than derivability will sometimes allow us

to prove them using very simple reasoning about the Con/l and V/l cases. This is the

case for the completeness theorem.

J.H. Andrew 1 Science of Computer Programming 25 (1995) II 7-147 139

Theorem A.3 (Completeness of OS with respect to SH). Let sat be a realizable, strict,

Henkin satisfiabilityfunction. Let G1, . . . , G, be a sequence of goals, S = {cl ,. . . . , c,} be

a set of constraints, and P be a program. If there is some substitution 9 such that

G1tI . . . G,&’ and c,e . . c,8 are all meta-derivable from P in SHsaf, then there is a T such

that ((G,, . . . , G,), S) *;,saf (E, T) and sat(T) N true.

(Intuition: if Gi, . . . , G, are satisfiable according to the proof system, and so are

ci, . . . , c,, then the operational semantics can compute the fact that they are. We are

really only interested in the case where n = 1 and S = 8, but we need the more general

statement to do the induction.)

Proof. If n = 0, then each cjQ must be a closed constraint such that sat({cje>) 2: true

(there is no other way they could be meta-derivable). By the reliability and strictness of

sat, we must have that sat(S) N true; we simply choose T to be S.

Otherwise, each Gie is meta-derivable from P; that is, there is some derivative ni of

P such that ni I- Gie. We proceed by induction of the total size of all the derivations

ni t- Gie. Cases are on the last rule used in the derivation of n, k Gie. Let

=G G,. 2. . . . ,

Gi = (G&H), and the last rule application is of the form

nil--e n,l-He

II, k (G&H)e

From the & rule of the operational semantics, we know that

<((G&H)> r), S> *~,sat ((G, H, r), S)); but by the induction hypothesis, we know

that for some T, ((G, H, r), S) a;,,,, (E, T).

G1 E 3xG, and the last rule application is of the form

n, k G[x:= tie

n, I- (3xG)B

We choose some y not free in any Gi or cj. From the 3 rule of the operational

semantics, we know that ((3xG, r), S) =>P,saf ((G[x:= y], r), S). But then

G [x := y], the r formulae, and the S formulae are all meta-derivable from P under

the substitution [y := t] 8, so by the induction hypothesis, there is a T such that

<(GCx:= yl,O, S> =$,,,a (6, T).
Gi is a constraint, and the last rule used is Con/r: Gie must be closed constraint on

which sat returns true. Since cl0 . . . c,8 are also such constraints, and sat is

realizable and strict, we know that sat((cl, . . . , c,, G,}) % true. By the Con rule of

the operational semantics, we know that ((G, , r), S) J~,,,~ (r, S u {G, }); but

then by the induction hypothesis, we know that there is a T such that

<~Su{Gi))=‘~,,,t<s> T).
The last rule used is either V/l or Dup/l: the left-hand side of the upper sequent is

also a derivative of P, so the result follows directly from the induction hypothesis.

140 J.H. Andrews / Science of Computer Programming 2.5 (1995) 117-147

l Gr is some atomp(tr,..., t,), and the last rule is of the form

II, I-G8

(PO l,...,t,)0cGe),H,tp(tl,...,t,)e

By the Def rule of the operational semantics, we know that ((~(ti, . . . , t,), P), S)

*p,saf ((G, P), S); but from the induction hypothesis, we know that there is

a T such that ((G, r), S) J$,,,~ (a, T). 0

Thus summary of these generalized theorems is as follows.

Corollary A.4 (SH characterizes strict, Henkin systems). For any closed goal formula

G, program P and realizable, strict, Henkin satisfiability function sat, we have that

(G, 0) succeeds with respect to *p,sar ifs P E- G is derivable in SH,,,.

Proof. (+) An instance of Theorem A.l, with S = 0 and n = 1. Since G is closed, if

the substitution mentioned the theorem exists, then G succeeds by itself.

(c) An instance of Theorem A.3, with IZ = 1, S = 8, and 8 as the empty substitu-

tion. IJ

SH,,, can therefore be said to be a sound and complete proof-theoretic characteriza-

tion of the operational semantics for the CLP system corresponding to sat.

A.2. S characterizes strict systems

The proof plan here will be the same: prove soundness of OS,,, with respect to S,,,,

then completeness. The details, however, are slightly different.

Theorem A.5 (Soundness of OS with respect to S). Let sat be a realizable, strict

satisfiability function. Let S = {cl, . . . , c,) be a set of constraints. If

((G,,G.), S> *p*,,,t (E, T) and sat(T) N true, then T, PI-B in S,,, for all B in

G ~,...,Gn,c~,...,c,.

Proof. By induction on the number of steps in the computation.

l 0 steps: II must be 0, and S = T. Therefore all the elements of S must be derivable

directly by using the Axiom rule.

l > 0 steps: by cases on the first rule used in the computation. Let I’ be the formulae

G z,...,G,.

- <(c, r), S> *P.mr (r, S u {c}): directly from the induction hypothesis.

- ((G&K r), S> *p,saf ((G, H, T), S): From the induction hypothesis, we have

that T, P t- G and T, P t H, thus by using the & rule of B, we have that

T, P E (G&H). In this and all subsequent cases, the fact that the r and S for-

mulae are derivable carries over directly from the induction hypothesis.

J.H. Andrews / Science of Computer Programming 25 (1995) 117-147 141

- <(3xG, 0, S> =-~.a ((G[x := y], r), S): From the induction hypothesis, we
know that T, P k G[x := y]. By the 3 rule of B, we have that T, P k (3xG).

- <(A@, 0, S> *p,sat ((G’B’, r), S): From the induction hypothesis, we have that
T, P F G’Q’. We therefore have the following derivation:

T, P F G’O’

(A + G’)8’, T, P I- Ag

(Vx,(A + G’))g’, T, PI- A8’

(-/I)

(V/l)

V’xl . ..Vx.(A + G’), T, P t- AfI’ (Q/l)
T, P t- AtI’

ButA@isjustG,,so T,PkG1. 0

(dwl/l)

To prove the completeness of OS,,, with respect to S, we need to expand our
definition of derivative and meta-derivability.

Definition A.6. A multiset of formulae r’ is an S-derivative of a multiset r if r t- G can

be derived from r’ l- G by a sequence of applications of the S rules Dup/l, V/l, Con/l,
3/l and &/l:

l-’ t- G

A formula G is meta-derivable from a multiset r of formulae in S if there is some
S-derivative I-’ of r such that r’ k G is derivable in S.

Theorem A.7 (Completeness of OS with respect to S). Let sat be a realizable, strict

satisjiability function. Assume that G1, . . , G, are a sequence of goals and

S= {C1,...,C,) are a set of constraints. Assume further that there is substitution 0 and

set T 2 Se of constraints such that sat(T) E true, and GIO ., . G,O are all meta-derivable

from (T, P) in S,,,. Then there is some set T’ of constraints such that sat(T’) ‘v true and

<(G 1, . . . ,G,), S> =$.,,, (~3 T’).

Proof. Because sat(T) N true, St3 c T, and sat is strict, we know that sat(S) N true. If
IZ = 0, we choose T’ to be S and we have the result (the computation takes 0 steps).

Otherwise, for each Gi0 there is a derivative ni of (T, P) such that ni E- Gifl is
derivable in S. We prove the result by induction on the total size of all these
derivations. Cases are on the last rule used in the derivation of n, b GiB. Let r be
Gz,...,G,.
l G1 E (G&H), and the last step in the derivation of G,B is the form

l7, tGe nit--He

n, E (G&H)0

142 J. H. Andrews 1 Science of Computer Programming 25 (1995j I1 7-147

Thus G&J and HO are both meta-derivable from (T, P). By the & rule of the
operational semantics, (((G&H), r), S) *p,sat ((G, H, r), S); but by the induction
hypothesis, there is a T’ such that ((G, H, r), S) J:.~~, (E, T’).

G1 E 3xG, and the last step of the derivation of Gi is of the form

n, l- (G[x:= t])O

ZI, t- (3xG)O

Thus G [x := t] 8 is meta-derivable from (T, P). We choose x’ to be a new variable;
then, by the 3 rule of the operational semantics, ((3xG, r), S) *p,saf
((G[x:= x’], r), S). But the substitution O[x’:= t] is such that BB[x’:= t] is
meta-derivable from (T, P) in S,,, for all B in G [x := x’], r. We can therefore apply
the induction hypothesis. We conclude that for some T’, ((G[x := x’], r), S) a;,,,,

(8, T’).
The last rule applied is a Dup/l, V/l, Con/l, 3/l, or &/l rule: The left-hand side of the
premiss sequent is still a derivative of (T, P), so the result follows directly from the
induction hypothesis.
G, is a constraint, and the last rule is an Axiom rule:

There are two situations in which this can happen. The first is when GiO E T; the
other situation is when GiO is a closed constraint such that sat((Gie}) N true, and
L’, is obtained by introducing Gif3 on the left with a Con/l rule. In either situation,
sat(Tu(GIQ)) 2 true, so by the realizability and strictness of sat, sat(Su{GI})

3: true. By the Con rule of the operational semantics, ((G,, r), S) *p,sat
(~,Su{G,)).ButifG,...G,andc,... c, are meta-derivable from T, P, they must
be meta-derivable from T, GIO, P; so we can apply the induction hypothesis. There
is therefore a T’ such that (r, Su {G,}) *:,saf (a, T’).

G1 is a predicate call, and the last rule applied is of the form

nil-Ge

(p(ti, t,)+G)e,n,kp(ti ,... ,t,)e

By the Def rule of the operational semantics, ((PO 17...,4J,no

a:,saf ((G, r), S); but by the induction hypothesis, there is a T’ such that

<(G, 0, S> *;,sat (E, T’). 0

We can again summarize these results in a “characterization” theorem.

Corollary A.8 (S characterizes strict satisfiability functions). For any closed goal

formula G, program P and strict, realizable satis$ubilityfunction sat, we have that (G, E)

succeeds with respect to *p,sof ifs P F G in S,,,.

J.H. Andrew / Science of Computer Programming 25 (1995) I1 7-147 143

Proof. (+) By Theorem AS, we know that for some T such that sat(T) N true, we
have that T, P F G. But then we can construct a derivation leading from this sequent

as follows:

T,Pt-G

3[T], P k G (some &/l and 3/l)

PI-G (Con/l)

(c) An instance of Theorem A.7, with S = 8, n = 1, tI as the empty substitution,

and T = 8. (We know that sat(@) N true by the strictness and realizability of sat). 0

A.3. MRclpr characterizes CLP(R)

As with the other proof systems, we will prove first soundness, then completeness.

Theorem A.9 (Soundness of OS with respect to MR). If ((G,, . . . , G,), S) +g,clp,

(E, T) and clpr(T) 1: true, then there are sets TI, . . . , T, such that TI v ... v T, u S = T,
and (Ti, UP) F Gi for all i, 1 < i Q n.

Proof. By induction on the number of steps in the computation.

a 0 steps: n must be 0, and S = T.
l >O steps: by cases on the first rule used in the computation. Let P be the formulae

“‘;;;; ;;:s,
*P. c~pr (r, S u {c> >: F rom the induction hypothesis, we know that

thereareT2,...,T,suchthatT2u ~~~uT,u(SuG1)=T,andT,~P!--Giforall

i, 2 < i < n. But then we can choose TI to be just G1 itself, and derive T,,
q P E G 1 by one Axiom.

- ((G&H, 0, S> =P,+ ((G, H, P), S): From the induction hypothesis, we have

that there are T: and Tt such that T,‘, P k G and Tf, P I- H; thus by using the

& rule of B, we have that T,‘, T:, P t (G&H). We choose TI to be Tl u Tf; this

is not necessarily the same as the multiset union (T,‘, Tf), but we can produce

TI by a sequence of Dup/l rules:

T,‘,PkG T:,PFH

T:, Tf,PkG&H (W)

T,, PI- G&H (some Dup/ls)

And in this and all subsequent cases, the fact that the P and S formulae are

derivable carries over directly from the induction hypothesis.

- ((dxG> P), S> =-p,c~pr ((G[x:= y], P), S): From the induction hypothesis, we

know that there is a TI such that (TI, P) I- G[x := y]. By the 3/r rule, we have that

(TI, P) E(3xG).

144 J.H. Andrew / Science of Computer Programming 25 (1995j 117-147

- (A@, n s> JP,clp* (G’e’, r), S): From the induction hypothesis, we know that

for some Ti, (Ti , P) E G’B’. We therefore have the following derivation:

T,,PtG’e’

(A + G)e’, T,, P k x48’ (+/I)

(Vx,(A t G))fY, T,, PI- Ae’ W/l)

V’xl ... Vx,(A + G), T,, P F A@

q VxI . ..V’x.(A t G), T,, P t- AW
(V/l)

Wee/l)
T,,PFAe’ (dud/l)

But AB’is just Gr, SO (T,, P)kGl. 0

To prove the completeness of O$,, with respect to MRclpr, we again need to slightly

adjust our definition of derivative and meta-derivability. We add the new rule Net/l,

and because of the structure of our completeness proof, remove the rule Con/l from

the rules that can be used to produce a derivative.

Definition A.lO. A multiset of formulae r’ is an MR-derivative of a multiset r if r k G

can be derived from r’ k G by a sequence of MR Dup/l, ‘d/l, 3/l &/l and Net/l rules:

r’ t- G

l-F-G

A formula G is meta-deriuable from a multiset r of formulae in MR if there is some

MR-derivative r’ of r such that I-’ k G is derivable in MR.

Theorem A.11 (Completeness of OS with respect to MR). Let G1, . . . , G, be goal
formulae, T, , . . . , T,, S be sets of constraints, and 0 be a substitution which maps
variables to variables. Then if Gig is meta-derivable from (T, P) in MRclpr, for 1 < i 6 n,
and cZpr(TI u . . . u T, US@ N true, then there is a set T of constraints such that

<(G I, . . ., GA S > =&lpr (E, T) and clpr(T) N true.

Proof. If n = 0, then the union of T,, . . . , T, is empty, so clpr(SB) N true; but then,

because of property 4 of clpr (Section 3.4), clpr(S) 2: true. We choose T to be S; the

computation takes 0 steps.

Otherwise, for each Gi6’ there is a derivative ni of T, P such that ni k GiB is

derivable in S. We proceed by induction on the total size of all these derivations. Cases

are on the last rule used in the derivation of II, + G1O. Let r be G2, . . . , G,.

l G1 is a constraint, and the last rule is an Axiom. The only situation in which this can

occur is when ZI, is (G1e, UP), which in turn can only happen if TI = {Gig}.
We therefore know that clpr(T2u . ..uT.u(Su{G,})g) E clpr(T2u ... u
T,uS8u(G1g)) ?: clpr(T,u T2u ... uT,,uSg) 2: true. By the reliability of the

J.H. Andrew J Science of Computer Programming 25 (1995) 117-147 145

satisfiability function clpr, we know that clpr(Su {G,}) + false (although it could

be that clpr(Su {G,}) - unsure). By the Con rule of the operational semantics, we

therefore have that ((G,, r), S) ap,clpr (r, S u (G, 1); and by the induction hy-

pothesis, there is a T such that (r, Su{G,}) *:.clPF (E, T) .
l G1 E (G&H), and the last step in the derivation of Gi6J is of the form

(II:, IIt) is a derivative of (TI, P), so it must consist of TI, P, their duplicates, and

other formulae arising from applications of Net/l and V/l. (3/l and &/l cannot be

used because no existential or conjunctive formulae appear.) Therefore there are

T: and T: such that Ti u Ti = T,, IZ: is a derivative of Ti, and IIf is a derivative

of Tf. By the & rule of the operational semantics, (((G&H), r), S) +p.ClpF
((G, H, r), S); but by the induction hypothesis, there is a T such that

((G, H, r), S> *;.c,pr (8, T>.
l Gi E 3xG, and the last step of the derivation of Gi is of the form

L’, F (G[x:= z])6’

n, I- (3xG)O

Thus G [x := z] 8 is meta-derivable from TI , P. We choose x’ to be a new variable;

then, by the 3 rule of the operational semantics, ((3xG, r), S) ~~,~rr,. ((G[x := x’],

r), S). But the substitution e[x’:= z] is such that BB[x’ := z] is meta-derivable

from (T, P) in MR,I,, for all B in G[x:= x’], r, cl,. . , , c,. We can therefore apply

the induction hypothesis. We conclude that for some T, ((G[x := x’], r), S) *:,clpr

(8, T).
l The last rule applied is a Dup/l, V/l, 3/l, &/l, or Net/l rule: The left-hand side of the

premiss sequent is still a derivative of (T, P), so the result follows directly from the

induction hypothesis.

l The last rule applied is a Con/l rule:

3[S’], n, k- Gie

n,t-GG,8

If the upper sequent is derivable, then so is S’O’, n, I- G, 0, where 8 is a substitution

which renames the free variables of S’ apart from all those in LI, and G,B. (In fact 8’

could rename those variables apart from all those in all the ni’s Gi’s and S.) By

property 3 of clpr (Section 3.4), we must therefore have that

Clpr(S’@ u Ti U ... u T, u SO) N true. We can therefore apply the induction hypoth-

esis, and conclude that for some T, regardless of what Gi is,

<(G,, r)+ S> *;,crpr (8, T).
l G1 is a predicate call, and the last rule applied is of the form

n, EG8

(p(t 1, t,) +- G)e, n, bp(h, t,)e

146 J.H. Andrews / Science of Computer Programming 25 (1995) II 7-147

By the Def rule of the operational semantics, ((p(tr , . . , t,), r), S) *;,Clpr ((G, r), S);

but by the induction hypothesis, there is a T such that ((G, r), S) *$,clpr (E, T). 0

We can again summarize these results in a “characterization” theorem.

Corollary A.12 (MR+ characterizes CLP(R)). For any closed goal formula G and
program P, we have that (G, 8) succeeds with respect to *P,clpr ifso P k- G is derivable
in MR,[,,..

Proof. (-) By an instance of Theorem A.9, with n = 1 and S = 8, there is a set
TI such that clpr(T,) N true, and TI, 0 P I- G. But if this is the case, then we can derive
q P k G by some uses of &/l and 3/l and one use of Con/l:

T,, q pt-G

WT,), opt--G (some &/l)

~[TI], opt-G (some 3/l)

q P~G (Con/l)

(c) By property 2 of clpr (Section 3.4), we know that clpr(@) = true. By an instance
of A.1 1, with n = 1, TI = 0, S = 8, and 0 as the empty substitution, we know that there
is a T such that (G, 8) *;, clpr (E, T) and clpr(T) N true; that is, that G succeeds. 0

References

Cl1

iI21

c31

M

PI

[‘51

c71
PI

c91

Cl01

A.R. Anderson and N.D. Belnap, Entailment: The Logic of Relevance and Necessity (Princeton

University Press, Princeton, NJ, 1975).

J.H. Andrews, Proof-theoretic characterisations of logic programming, in: Mathematical Foundations
of Computer Science, Lecture Notes in Computer Science Vol. 379, Porabka-Kozubnik, Poland

(Springer, Berlin, 1989) 145-154.

A. Colmerauer, Prolog and infinite trees, in: K.L. Clark and S.-A. Tarnlund, eds., Logic Programming
(Academic Press, New York, 1983) 231-251.

A. Colmerauer, Equations and inequations on finite and infinite trees, in: Proc. Internat. Conf: on Fifth
Generation Computer Systems, ICOT (1984) 85-99.

T. Friihwirth, Constraint simplification rules, Technical Report 92-18, ECRC, Munich, Germany,

July 1992.
G. Gentzen, in: M.E. Szabo, ed., The Collected Papers of Gerhard Gentzen (North-Holland, Amster-

dam, 1969).

J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102.
M. Hagiya and T. Sakurai, Foundation of logic programming based on inductive definition, New

Generation Computing 2 (1984) 59-77.
L. Hall& and P. Schroeder-Heister, A proof-theoretic approach to logic programming I: clauses as

rules, J. Logic Comput. 1 (1990).

J.S. Hodas and D. Miller, Logic programming in a fragment of intuitionistic linear logic, Inform. and
Comput. 110 (1994) 327.

J.H. Andrews J Science of Computer Programming 25 (1995) I1 7-147 141

[ll] M. HGhfeld and G. Smolka, Definite relations over constraint languages, Technical Report 53,

LILOG, IBM Deutschland, Stuttgart, Germany, October 1988; to appear in J. Logic Programming.
[12] J. Jaffar and J.-L. Lassez, Constraint logic programming, in: Proc. Conf: on Principle of Programming

Languages, Munich, 1987, 1 1 l- 119.

[13] J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap, The CLP(W) language and system, ACM Trans.
Programming Languages Systems 14 (1992) 339-395.

[14] SC. Kleene, Introduction to Metamathematics. Bibliotheca Mathematics, Vol. 1 (North-Holland,

Amsterdam, 1952).

[15] M.J. Maher, Complete axiomatizations of the algebras of finite, rational and infinite trees, in: Proc.

3rd Ann. Symp. on Logic in Computer Science, Edinburgh (Computer Society Press, Washington, DC,

1988) 348-357.

[16] M.J. Maher, A logic programming view of CLP, in: Proc. 10th Internat. Conf: on Logic Programming,
Budapest (MIT Press, Cambridge, MA, 1993) 737-753.

[17] D. Miller, G. Nadathur, F. Pfenning and A. Scedrov, Uniform proofs as a foundation for logic

programming, Ann. Pure Appl. Logic 51 (1991) 125-157.

[18] J.D. Monk, Mathematical Logic, Graduate Texts in Mathematics, Vol. 37 (Springer, New York, 1976).

[19] S. Read, Releoant Logic (Blackwell. Oxford, 1988).

[20] V.A. Saraswat, Concurrent constraint programming languages, Ph.D. Thesis, Department of Com-

puter Science, Carnegie-Mellon University, Pittsburgh, January 1989.

[21] D. Scott, Domains for denotational semantics, in: Internat. Colloq. on Automata, Languages, and
Programming, 1982.

[22] D. van Dalen, Logic and Structure (Springer, Berlin, 1980).

[23] M.H. van Emden and J.W. Lloyd, A logical reconstruction of Prolog II, J. Logic Programming

2 (1984) 143-149.

[24] P. Van Hentenryck, Constraint Satisfaction in Logic Programming (MIT Press, Cambridge, MA,

1989).

