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a b s t r a c t

Dana Scott’s model of λ-calculus was based on a limit construction which started from an
algebra of a suitable endofunctor F and continued by iterating F . We demonstrate that this
is a special case of the concept we call coalgebra relatively terminal w.r.t. the given algebra
A. This means a coalgebra together with a universal coalgebra-to-algebra morphism into A.

We prove that by iterating F countably many times we obtain the relatively terminal
coalgebras whenever F preserves limits of ωop-chains. If F is finitary, we need in general
ω + ω steps. And for arbitrary accessible (=bounded) set functors we need an ordinal
number of steps in general. Scott’s result is captured by the fact that in a CPO-enriched
category, assuming that F is locally continuous, ω steps are sufficient for algebras given by
projections.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Terminal coalgebras of endofunctors F play an important role in the theory of systems expressed by F-coalgebras. Jan
Rutten demonstrated in [9] that the terminal coalgebra is the coalgebra of behaviors of states in such systems. The classical
construction (dualizing that of initial algebras in [2]) is to form the limit of the ωop-chain

1
α
←− F1

Fα
←− FF1

FFα
←− . . .

where α : F1 −→ 1 is the (trivial) terminal algebra. Another source of interest in terminal coalgebras stems from themodel
of untyped λ-calculus presented by Dana Scott [10]. However, Scott did not use a terminal coalgebra: rather, he used, for a
‘‘suitable’’ algebra α : FA −→ A, the limit of the analogous ωop-chain

A
α
←− FA

Fα
←− FFA

FFα
←− . . .

The properties of the endofunctor F he used made it clear that F preserves this limit. Whenever this happens, we are going
to prove that the limit carries the structure of a coalgebra for which the first projection (into A) is a universal coalgebra-to-
algebramorphism. This is called a coalgebra relatively terminal to the given algebra. But in general, this limit FωA = limi<ω F iA
carries itself an obvious structure of an algebra α : F(FωA) −→ FωA. We prove that this algebra has always the same
relatively terminal coalgebra as the original one.

For finitary set functors relatively terminal coalgebras are always obtained in ω + ω steps: we first form the algebra
FωA in ω steps, and then we perform the same construction on it—in the next ω steps we get a limit preserved by F , thus,
yielding a relatively terminal coalgebra for FωA, consequently, also for A. This generalizes the result of James Worell [14]
that terminal coalgebras of finitary functors take ω + ω steps. Surprisingly, finitary endofunctors of many-sorted sets can
require an arbitrarily large number of steps for the terminal algebra.
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All accessible (=bounded) set functors F have relatively terminal coalgebras: if F preserves λ-filtered colimits, we need
λ + λ steps of iteration. More generally, every monomorphism preserving, accessible endofunctor of a locally presentable
category has relatively terminal coalgebras obtained by the iterative construction. This is a new result even for (absolutely)
terminal coalgebras: the proof that a terminal coalgebra exists, presented by Michael Barr [6], was not constructive.

2. Terminal coalgebras of accessible functors

Before coming to relatively terminal coalgebras, we formulate a result concerning terminal coalgebras: if an accessible
functor preserves monomorphisms, then it has a terminal coalgebra obtained by the terminal chain. Recall that a functor is
called finitary if it preserves filtered colimits, and λ-accessible if it preserves λ-filtered colimits for an infinite cardinal λ.

Notation 2.1. Let F be an endofunctor of a complete category. We denote by

F i1 (i ∈ Ord)

the terminal chainwith connecting morphisms wi,j (i ≥ j) defined by

F 01 = 1

F i+1
= F(F i1) and wi+1,j+1 = Fwi,j (i ≥ j)

and for limit ordinals i

F i
= lim

0<i
F j1 with the limit cone wi,j(i > j).

This determines an ordinal chain, unique up to natural isomorphism.
If this chain converges at i, i.e. the connecting morphism F i+11 −→ F i1 is invertible, then this inverse makes F i1 a

coalgebra. This coalgebra is then terminal. See [2] where this was first proved in the dual form (initial algebra) and [6]
where, independently, the present formulation was used.

Theorem 2.2 (Worrell [14]). Everyλ-accessible endofunctor ofSet has a terminal coalgebra obtained inλ+λ steps. In particular,
ω + ω steps are sufficient for finitary functors.

Example 2.3. Worrell’s result does not generalize to many-sorted sets: for every cardinal k we can find a finitary functor
requiring k steps of the terminal chain.

Indeed, use k sorts and define

F : Setk −→ Setk

as follows: for every object X = (Xi)i<k put

(FX)i =


Xi if Xj ≠ ∅ for some j < i
∅ else

and define F on morphisms as expected. The terminal chain

(1, 1, 1, 1, . . .)←− (∅, 1, 1, 1, . . .)←− (∅, ∅, 1, 1, . . .)←− . . .

needs k steps to converge to the initial object, the only (therefore terminal) coalgebra for F . However, F is finitary: let
X = colim

t∈T
X t be a filtered colimit. We need to prove

(FX)i = colim
t∈T

(FX t)i for all i < k.

This is clear if (FX)i = ∅. If not, we have j < k with ∅ ≠ Xj = colim
t∈T

X t
j . Therefore, there exists t0 with X t0

j ≠ ∅. Since T is

filtered, we can assume without loss of generality that t0 is initial in T , thus, xtj ≠ ∅ for all t . Then (FX t)i = X t
i for all i and

the desired equality follows.

Remark 2.4. Recall that a categoryA is called locally presentable, see [7] or [3], if there exists an infinite cardinal λ such that
(a) A is complete and cocomplete

and
(b) A has a set of λ-presentable objects (i.e., such that their hom-functors are λ-accessible) whose closure under λ-filtered

colimits is all of A.

Theorem 2.5. Every accessible endofunctor of a locally presentable category has a terminal coalgebra.

In [8] a stronger result is proved: if F is accessible, then CoalgF is locally finitely presentable. Thus, it has a terminal
object. This was explicitly used by Barr [6].
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In case F preserve monomorphisms, more can be proved:

Theorem 2.6. Let A be locally presentable and let F be an accessible endofunctor preserving monomorphisms. Then F has the
terminal coalgebra F i1 for some ordinal i.

Proof. (1) Choose a cardinalλ such thatA is a locallyλ-presentable category and F preservesλ-filtered colimits. Recall from
[3] 1.19 and 1.58, that there exists a representative setAλ of allλ-presentable objects, and thatA is cowellpowered. Thus,
wehave a setAλ of representatives of all quotients of objects inAλ. Further, recall that every locally presentable category
has a full embedding into SetC (for some small category C) preserving limits and µ-filtered colimits for some infinite
cardinal µ. From now on we consider A to be a full subcategory of SetC closed under limits and µ-filtered colimits.
Moreover, the cardinal µ can be substituted by an arbitrary larger one. We thus assume without loss of generality that
(i) µ ≥ λ
(ii) C has less than µ morphisms
and
(iii) all objects of Aλ are µ-presentable in SetC .
Condition (ii) implies that an object X : C −→ Set of SetC is µ-presentable iff the sum of all cardinalities of the sets in
the image of X is less than µ.

(2) Let li : L −→ Li (i < µ) be a limit of a µop-chain in SetC . Then for every monomorphism

m : M ↩→ L M µ-presentable

there exists i < µ such that li ·m is a monomorphism. In fact, this property clearly holds for limits of µop-chains in Set.
Since M is µ-presentable, for every object C of C we have cardM(C) < µ, thus, for the limit L(M) of Li(M) in Set there
exists an ordinal i such that (li)C ·mC is a monomorphism. Due to (ii) above our choice of i can be made independent of
C ∈ C. Since (li ·m)C is a monomorphism for every C , we conclude that li ·m is a monomorphism.

(3) We prove that the connecting morphism

wµ+1,µ : Fµ+11 −→ Fµ1

is a monomorphism. Let u1, u2 : X −→ Fµ+11 be a pair of morphisms of A that wµ+1,µ merges, then we prove u1 = u2.
Without loss of generality assume X ∈ Aλ (since Aλ is a generator of A).

We express Fµ1 as a λ-filtered colimit of λ-presentable objects with a colimit cocone

yt : Yt −→ Fµ1 (t ∈ T ).

Since F preserves λ-filtered colimits, also

Fyt : FYt −→ Fµ+11 (t ∈ T )

is a colimit cocone. This colimit is preserved by A(X,−) because X is λ-presentable. Consequently, u1, u2 factorize
through Fyt for some t ∈ T :

FYb
Fe // //

Fyt

��

Y t||

Fm

||zz
zz

zz
zz

zz
zz

z !!

!!DD
DD

DD
DD

DD
DD

D

X

u′1

==|||||||||||||
u′2

==||||||||||||| u1 //

u2
// Fµ+11

wµ+1,µ
//@A BC
Fwµ,i

��
Fµ1

wµ,i+1
// F i+11

Factorize yt as an epimorphism e : Yt −→ Yt followed by a strong monomorphism m : Y t −→ Fµ1, see [3], 1.61. By
(iii), the object Y t is µ-presentable in SetC . By (2) there exists i < µ such that

wµ,i ·m : Y t −→ F i1 is monic

and consequently, since F preserves monomorphisms,

Fwµ,i · Fm is monic.

This last monomorphism merges Fe · u′1 and Fe · u′2: see the diagram above and recall that wµ+1,µ merges u1 = Fyt · u′1
and u2 = Fyt · u′2. This proves

Fe · u′1 = Fe · u′2.

By composing with Fmwe conclude

u1 = Fyt · u′1 = Fyt · u′2 = u2.
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(4) All connecting morphisms wi,µ with i ≥ µ are monics. This follows from (3) by easy transfinite induction: recall that F
preserves monics and wi+1,µ = wµ+1,µ · Fwi,µ, for limit steps use the fact that limits of chains of monics are formed by
monics.

Every locally presentable category is wellpowered, see [3], 1.56. Thus, in the chain of subobjects wi,µ of Fµ1 there
exists i > j such that wi,µ and wj,µ represent the same subobject. From wi,µ = wj,µ · wi,j we conclude that wi,j is
invertible. Thus, so is wj+1,j (due to wi,j = wj+1,j · wi,j+1). �

Open Problem 2.7. Can the assumption that F preserve monomorphisms be left out in the above theorem?
Remark 2.8 (See [5]). IfA is one of the categories sets, many-sorted sets, or vector spaces on a field then all (not necessarily
accessible) functors having a terminal coalgebra have a convergent terminal chain. But this result is false e.g. for the category
A = Set⇒ of graphs.

3. Relatively terminal coalgebras

Throughout this section an endofunctor F of a category A is assumed to be given. Recall the category AlgF of algebras
α : FA −→ A for F : its morphisms, called algebra homorphisms, from (A, α) to (B, β) are morphisms f : A −→ B in A with
f · α = β · Ff . Dually, Coalg F has objects α : A −→ FA and coalgebra homomorphisms from (A, α) to (B, β) are morphisms
f with α · f = Ff · β .

Given an algebra α : FA −→ A and a coalgebra β : B −→ FB, by a coalgebra-to-algebra morphism amorphism f : B −→ A
is meant such that the square

B
β

//

f

��

FB

Ff

��

A FAα
oo

commutes. A precomposite of f with a coalgebra homomorphism yields another coalgebra-to-algebra homorphism. The
same is true about post-composite f with an algebra homomorphism.

A fixed point is a (co)algebra α : FA −→ Awith α invertible. Fixed points form full subcategories both in Alg F and Coalg
F .
Definition 3.1. Let α : FA −→ A be an algebra. By a relatively terminal coalgebra is meant a coalgebraα :A −→ FA
together with a coalgebra-to-algebra homomorphism

A α //

ε

��

FA
Fε

��

A FAα
oo

is universal in the expected sense: for every coalgebra-to-algebra homomorphism h : (B, β) −→ (A, α) there exists a
unique coalgebra homomorphismh : (B, β) −→ (A,α) with h = ε ·h.

B
β

//

h
��

GF

@A
h

oo

FB

Fh
��

ED

BC
Fh

//

A α //

ε

��

FA
Fε

��

A FAα
oo

Lemma 3.2. For every algebra α : FA −→ A the concept of relatively terminal colagebra for F is the same as the concept of
terminal coalgebra for the endofunctor Fα of the slice category A/A defined by

Fα(X
h
−→ A) = (FX

Fh
−→ FA

α
−→ A).

Proof. Let Coalg F/(A, α) denote the category of coalgebras over (A, α), i.e., pairs ((B, β), h) consisting of a coalgebra (B, β)
and a coalgebra-to-algebra homomorphism h : B −→ A. Morphisms from ((B, β), h) to ((B′, β ′), h′) are precisely the
coalgebra homomorphisms u : B −→ B′ with h = h′ · u. By definition the concept of a relatively terminal coalgebra is
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nothing else than a terminal object of Coalg F/(A, α). And this category is isomorphic to the category of coalgebras for Fα .
Indeed, to give a coalgebra for Fα means to give an object h : B −→ A of A/A and a morphism, say β , of A/A:

B

h
��

β
// FB

Fh
��

A FAα
oo

Also morphisms of the two categories above obviously correspond. �

Corollary 3.3 (Lambek’s Lemma). All relatively terminal coalgebras are fixed points of F .

Indeed, by Lambek’s Lemma the terminal coalgebra of Fα is a fixed point of Fα , thus, a fixed point of F .

Examples 3.4. (1) Every fixed point α : FA
∼
−→ A has the trivial relatively terminal coalgebra α−1 : A −→ FA. This follows

from the coincidence of coalgebra homomorphisms into this coalgebra and coalgebra-to-algebra homomorphisms into
the given algebra.

(2) The relatively terminal colagebras for the trivial algebra F1 −→ 1 are precisely the terminal coalgebras for F . Thus in
contrast to (1), these do not exist in general.

(3) For F = IdSet an algebra is a dynamic system given by a set A of states and a next-state function α : A −→ A. The
relatively terminal coalgebra can be described as the setA of all runs (xn)n∈N in the dynamic system: here xn are states
such that the next state of xn+1 is xn for every n. The coalgebra structure is given by (xn) −→ (xn+1) and the universal
map by (xn) −→ x0. This follows from Corollary 3.9 below.

(4) For the power-set functor P , coalgebras are the graphs G. Given an algebra α : PA −→ A, a coalgebra-to-algebra
morphism is a labeling of the vertices of G in A,

f : G −→ A

with the property that the label of every vertex x ∈ G is α applied to the set of labels of the neighbors of x:

f (x) = α{f (y); y a neighbor of x}.

Such a labeling is called an A-decoration of the graph. (Recall that a decoration, as introduced by Aczel [1], is a labeling
of vertices by sets such that the label of every vertex is the set of all labels of all neighbors.)

It follows from Corollary 3.3 that no algebra has a relatively terminal coalgebra.
(5) For the finite power-set functorPf coalgebras are the finitely branching graphs. For every algebra α : Pf A −→ Awe can

describe the relatively terminal coalgebraA analogously to the description of the (absolutely) terminal coalgebra due to
Barr [6]. Let us call an A-labeled tree extensional if no node has two isomorphic maximal subtrees (w.r.t. isomorphisms
respecting the labels). Every A-labeled tree has a unique extensional quotient, obtained by recursively identifying
siblings defining isomorphic subtrees. We call two A-labeled trees t and s Barr-equivalent if for every n ∈ N the cuttings
of t and s at level n have the same extensional quotient.

LetA be the coalgebra of all finitely branching A-decorated trees modulo Barr equivalence. This is a coalgebra of Pf :
to every tree assign the set of all children of the root. AndA has an A-decoration given by the label of the root. The
proof thatA is relatively terminal is analogous to the proof for A = 1 (that all finitely branching trees modulo the Barr
equivalence are terminal for Pf ) in [6].

Proposition 3.5. Let A be a category in which subobjects of any object form a complete lattice. Given a monomorphisms-
preserving endofunctor, then every ‘‘pre-fixed point’’, i.e., monomorphism α : FA −→ A, has a relatively terminal coalgebra.

Remark

We will prove that the algebra α : FA −→ A has the greatest subalgebra which is a fixed point, and the inverse yields
the relatively terminal coalgebra. The universal arrow ε : A −→A is proved to be a monomorphism.

Proof. We have a function ϕ on the complete lattice of all subobjects of A assigning to a subobject m : M // // A the
subobject α · Fm : FM // // A . Since ϕ is monotone, by Knaster-Tarski fixed-point theorem [12] ϕ has the greatest fixed
point. Now to be a fixed point of ϕ means precisely to be a subalgebra with an invertible structure morphism:

FM
∼ //___

��

Fm
��

ϕ(m)

  BB
BB

BB
BB

M
��

m

��

FA α
// A
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Let ε :A � A be the greatest fixed point of ϕ, and letα :A −→ FA be the corresponding isomorphism. Then ε is universal
because every coalgebra-to-algebra homomorphism

B
β

//

h
��

FB

Fh
��

A FAα
oo

factorizes through ε. (To verify this, it is only needed to prove that whenever h factorizes through a subobject m : M � A,
then it factorizes through ϕ(m). Indeed, from h = m·k derive h = α ·F(m·k)·β = ϕ(m)·Fk·β .) Thuswe have a factorizationh : B −→Awith ε ·h = h, and thenh is a coalgebra homomorphism: to verifyα ·h = Fh · β : B −→ FAwe use that α · Fε
is a monomorphism with

α · Fε · (α ·h) = ε ·h = h = α · Fh · β = α · Fε · (Fh · β). �

Corollary 3.6. Every relatively terminal coalgebra yields a coreflection of the given algebra in the full subcategory of AlgF formed
by all fixed points. That is:

(a) ε is an algebra homomorphism

FA α−1 //

Fε

��

A
ε

��

FA α
// A

(b) every fixed point β : FB −→ B has the property that all algebra homomorphisms into A uniquely factorize through ε.

Example 3.7. Unfortunately, we cannot define the relatively terminal coalgebras as coreflections in the subcategory of fixed
points. Consider themodified power-set functorP ′ sending∅ to∅ and all nonempty setsX toPX: it has almost no relatively
terminal coalgebras, see Example 3.13. However, since ∅ is its only fixed point, this is the coreflection of every algebra in
the subcategory of fixed points.

A limit construction 3.8. Recall from Notation 2.1 that a terminal coalgebra of F is obtained as a limit of the ωop-chain

1 F1oo FF1oo . . .oo

whenever F preserves this limit. Applied to Fα of Lemma 3.2 this is the ωop-chain obtained by iterating F on A
α
←− FA:

Corollary 3.9. If F preserves limits of ωop-chains, then every algebra α : FA −→ A has a relatively terminal coalgebra which is
the limit FωA of the ωop-chain

A FAαoo FFAFαoo . . .
FFαoo (1)

Example 3.10. (a) Let Σ be a (possibly infinitary) signature. Then Σ-algebras are algebras for the polynomial functor
HΣX =


σ∈Σ Xn where n is the arity of σ . This functor preserves limits of ωop-chains.

Given a Σ-algebra A, thenA = lim F iA can be described as the set of all trees (up to isomorphism) labeled in Σ × A
with the following property: given a nodewith label (σ , a)where σ is n-ary, this node has precisely n children, and their
labels (σi, ai) for i < n satisfy

a = σ A(ai)i<n

(b) CPO-enriched categories. As mentioned in the introduction, Dana Scott constructed in [S] a model of λ-calculus as a
relatively terminal coalgebra for an endofunctor of the category of continuous lattices. Later Gordon Plotkin and Mike
Smyth proved that the same procedure works in every category enriched over ωCPO, see [11], which means that the
hom-sets A(X, Y ) carry an ωCPO structure (i.e., a poset with a least element and joins of ω-chains) and composition
is strict and continuous (i.e., preserves least element and ω-joins). We also assume that A has limits of ωop-sequences
which are ωCPO-enriched. An endofunctor F is called locally continuous provided that the induced maps from A(X, Y )
to A(FX, FY ) are continuous, i.e., F(⊔fn) = ⊔Ffn for every ω-chain (fn) in A(X, Y ).

For every algebra α : FA −→ A for which α is a projection, i.e., there exists e : A −→ FAwith α · e = id and e ·α ⊑ id,
the limit FωA is the relatively terminal coalgebra. This follows from the coincidence of the limit of the chain (1) and the
colimit of the ω-chain A

e
−→ FA

Fe
−→ FFA

FFe
−→ . . . as established on [11].
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Remark 3.11. Weknow fromProposition 3.5 that ifα : FA −→ A is amonomorphism, then the relatively terminal coalgebra
exists and ε :A −→ A is a monomorphism. Now if α : FA −→ A is a split epimorphism, then so is ε :A −→ A:

Lemma 3.12. Let α : FA −→ A be a split epimorphism. If a relatively terminal coalgebra exists, then ε :A −→ A is also a split
epimorphism.

Proof. Given

α ·m = id for somem : A −→ FA

we obtain a trivial coalgebra-to-algebra morphism

A
m //

id
��

FA

F id
��

A FAα
oo

Then ε · id = id gives the desired splitting. �

Example 3.13. For the functor P ′ of Example 3.7 no surjective algebra α : P ′A −→ Awith A ≠ ∅ has a relatively terminal
coalgebra. Indeed, no fixed pointA of P ′ has a surjective map ε :A −→ A.

Notation 3.14. (a) The limit of the chain (1) is denoted by FωAwith limit projectionsai : FωA −→ F iA (i < ω).

Then FωA is an algebra: we have the unique algebra structure

α : F(FωA) −→ FωA

with a0 · α = α · Fa0 andai+1 · α = Fai. (2)

(b) For every coalgebra-to-algebra homomorphism

B
β

//

h
��

FB

Fh
��

A FAα
oo

we obtain a cone hi : B −→ F iA of the chain (1) by
h0 = h and hi+1 = Fi · β. (3)

The unique factorization is denoted by

h : B −→ FωA.

Proposition 3.15. The relatively terminal coalgebras for the three algebras

FA
α
−→ A, FFA

Fα
−→ FA and F(FωA)

α
−→ FωA

are the same.

Proof. (a) The category Coalg F/(A, α) of coalgebras over (A, α), see Lemma 3.2, is isomorphic to the category of coalgebras
over (FA, Fα). Indeed, we have a functor

V : Coalg F/(A, α) −→ Coalg F/(FA, Fα)

which is defined on objects by

B
β

//

h
��

FB

Fh
��

A FAα
oo

−→

B
β

//

β

��

FB

Fβ

��

FB
Fβ

//___

Fh
��

FFB

FFh
��

FA FFA
Fα

oo
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and on morphisms by Vu = u. This is inverse to the functor defined on objects by

B
β

//

h
��

FB

Fh
��

FA FFA
Fα

oo

−→

B
β

//

h
��

FB

Fh
��

FA oo Fα ___

α

��

FFA

Fα

��

A FAα
oo

(b) The category of coalgebras over (A, α) is also isomorphic to the category of coalgebras over (FωA, α). In the Notation 3.14
we have a functor

V : Coalg F/(A, α) −→ CoalgF/(FωA, α)

defined on objects by

B
β

//

h
��

FB

Fh
��

A FA
Fα

oo

−→

B
β

//

h
��

FB

Fh
��

FωA F(FωA)
α

oo

The right-hand square commutes since for every i < ω we have, due to (2) and (3),ai+1 · (α · Fh · β) = F(ai · h) · β = Fhi · β =ai+1 · h
The inverse functor is given on objects by

B
β

//

h

��

FB

Fh
��

FωA F(FωA)
α

oo

−→

B
β

//

h

��

FB

Fh
��

FωA

a0
��

F(FωA)
α

oo_ _ _

Fa0
��

A FAα
oo

�

4. Finitary functors

Recall that an endofunctor F is called finitary if it preserves filtered colimits.

Remark 4.1. (a) For set functors this means that given an arbitrary element x ∈ FX , there exists a finite subset u : U ↩→ X
such that x lies in the image of Fu.

(b) For example Id and Pf are finitary, and P is not. The functor HΣ (Example 3.10) is finitary iff Σ is a finitary signature.
(c) JamesWorrell proved in [14] that finitary set functors F have terminal coalgebras obtained inω+ω steps of the iterative

construction. We now prove that, analogously, every algebra α : FA −→ A has a relatively terminal coalgebra obtained
in ω + ω steps: the first ω steps yield the algebra α : F(FωA) −→ FωA of Notation 3.14, the next ω steps:

FωA
α
←− F(FωA)

Fα
←− FF(FωA)

FFα
←− . . . (4)

are just the same construction applied to that new algebra. It turns out that α is always a monomorphism so that the
next limit is the intersection of the chain (4) of subobjects. And F preserves this intersection, consequently, Fω(FωA) is
a relatively terminal coalgebra for FωA or, equivalently, for A: see Proposition 3.15.

(d) Our proof uses Worrell’s idea, but is slightly simpler. Observe that we cannot apply Lemma 3.2 here, because Fα

works on the category Set/A of A-sorted sets, and we know that Worrell’s result does not extend to many-sorted sets
(see Example 2.3).

Lemma 4.2. For every finitary set functor F there exists a finitary set functor F ′ preserving intersections and agreeing with F on
all nonempty sets (and functions).

Proof. The existence of a functor F ′ such that F preserves finite intersections and agrees with F on all nonemtpy sets is
established in [13], see also [4]. If F is finitary, so is F ′. To prove that F ′ preserves all intersections, let m =


i∈I mi be an
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intersection of subsetsmi : Mi −→ X(i ∈ I). For every element x ∈ FM lying in the image of Fmi for all i ∈ I we are to prove
that x lies in the image of Fm. Choose u in Remark 4.1 with U of the minimal cardinality. Since F preserves the intersection
u ∩mi for every i ∈ I , the minimality of U implies u ⊆ mi. Thus, u ⊆ m, consequently, x lies in the image of Fm. �

Theorem 4.3. For every algebra α : FA −→ A of a finitary set functor F the relatively terminal coalgebra is the limit of the
ωop-chain

FωA
α
←− F(FωA)

Fα
←− FF(FωA)

FFα
←− . . .

Remark

We will see that α is monic, thus, the limit is an intersection.
Proof. (1) Let F preserve intersections. It is sufficient to prove that ᾱ is monic: then F preserves the limit (=intersection)

of the above chain. Given x, y ∈ F(FωA) there exists a finite subset m : M −→ Aω with x, y in the image of Fm, see
Remark 4.1. The limit cone (ai)i<ω of Notation 3.14 fulfills, sinceM is finite: there exists jwithaj ·m : M −→ F jAmonic.
Thus Faj · Fm is monic, hence, x ≠ y implies Faj(x) ≠ Faj(y). Sinceaj+1 · ᾱ = Fαj, see (2), we conclude ᾱ(x) ≠ ᾱ(y), as
required.

(2) Let F be arbitrarily and let F ′ be the functor of Lemma 4.2. Every algebra α : FA −→ A with A ≠ ∅ is also an algebra
for F ′. And the relatively terminal coalgebra for F ′ is clearly relatively terminal for F too. If A = ∅, then FA = ∅, thus,
α = id∅ and the theorem holds triviality. �

5. Relatively terminal chain

Let α : FA −→ A be an algebra for an endofunctor of a complete category. The relatively terminal chain is the
terminal chain of the endofunctor Fα of Lemma 3.2. Explicitly: it has objects F iA (i ∈ Ord) and connecting morphisms
αi,j : F iA −→ F jA (i ≥ j) defined by transfinite induction as follows:

F 0A = A, F 1A = FA and α10 = α

F i+1A = F(F iA) and αi+1,j+1 = Fαi,j

and for limit ordinals i

F iA = lim
j<i

F jAwith the limit cone αi,j(i > j).

Recall that the slice category A/A has all colimits and all connected limits computed as in A. Therefore, every accessible
endofunctor F yields an accessible endofunctors Fα . And if F preserves monomorphisms, so does Fα . Thus Theorems 2.5 and
2.6 yield
Corollary 5.1. Every accessible endofunctor F of a locally presentable category has relatively terminal coalgebras for all algebras.

If F preserves monomorphisms, then every algebra A has a relatively terminal coalgebraA = F iA for some ordinal i.
Remark 5.2. In case of endofunctors of Setwe can saymore: whenever F (not necessarily accessible) has, for a given algebra
α : FA −→ A, a relatively terminal coalgebra, then A = F iA for some ordinal i. Indeed, use Lemma 3.2: since Fα is an
endofunctor of the category Set/A of A-sorted sets, we can apply the result of Remark 2.8: all terminal coalgebras in many-
sorted sets are obtained by the terminal chain.
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