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In the present paper the exponential stability of the solutions of singularly
perturbed systems with impulse effect is investigated. In order to obtain the main
results the comparison method and piecewise continuous auxiliary functions which
are analogues of Lyapunov’s functions are used. © 1990 Academic Press, Inc.

1. INTRODUCTION

In a number of papers [1-11] related to applications in various fields of
science and technology, systems with impulses are considered.
In some of these papers [5-9] systems with impulse effect of the form

—=F1x), 1#1
dt (1)

Ax|, _,, = L(x)

are studied, where {7} is an unbounded increasing sequence and x is an
n-dimensional column matrix.

The system with impulse effect (1) is characterized by the fact that at the
moments {t,} the mapping point (¢, x) from the extended phase space
“instantly” goes from the position (7., x(1;)) into the position (., x(t,)+
I{x(,))). Assume that the solutions of system (1) are left continuous; i.e.,
at the moments 7, the following relations hold

Xt —=0)=x(14),  X(1x +0)=x(14) + 4x(10) = x(74) + Le(x(74)).

The questions about the stability of the solutions of various classes of
systems with impulse effect have been studied in [5-11].

A problem of great interest is that of finding sufficient conditions for
stability of the solutions of singularly perturbed systems of the form (1).
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Concerning singularly perturbed systems of differential equations without
impulses, there are some initial results published on this subject [12-15].
It is a characteristic of these papers that the basic mathematical apparatus
used is the second method of Lyapunov.

In the present paper the exponential stability of the solutions of
singularly perturbed systems with impulse effect is studied. In order to
obtain the main results, the comparison method and piecewise continuous
auxiliary functions which are analogues of Lyapunov’s functions are used.
Moreover, inverse theorems are proved (Lemmas 3 and 6) which guaran-
tee the existence of piecewise continuous Lyapunov’s functions with certain
properties provided that the solution x =0 of system (1) is exponentially
stable.

2. PRELIMINARY NOTES

We use the following notations:

R™ is an m-dimensional real space with a norm |x|=|x,|+ --- + |x,,]
of the vector x=col(xy,..,x,); R, =[0,0), BJ={xeR";|x|<p},
O<p<oo; ||All=max,¢;<, 27 la;| is the norm of the matrix 4=
(@)mn> E,, is the unit (m x m)-matrix; C, is the class of continuous func-
tions W: R, x B, - R, such that W(z,0)=0 for teR,; and C, is the
class of differentiable functions contained in C,,.

For (2, xo) € R, x B}, denote by x(¢) = x(f; t,, xo) the solution of system
(1) for which x(t,+0)=x, and by J* =J*(t,, x,) the maximal interval of
the form (¢,, @) in which this solution is defined.

Henceforth {z,}{ is a fixed sequence of numbers:

O=1o<1,<1,< -+, klim Ty = 00.
— 0

Introduce the sets
Gk=(‘t,{71, Tk)XB; (k=1,2, ...)

and the classes 7, and 7] of piecewise continuous auxiliary functions [11]:
We say that the function V: R, x B} - R belongs to the class 7 if

1. V(t,x) is continuous in any of the sets G, (k=1,2,..) and
V(t,0)=0forall te R, .

2. Forany k=1,2,.. and x € B), there exist the finite limits

V(tg—0,x)= lim V(1 y), V(r,+0,x)= lim V(1 y)
(t._v)t:gk.x) (i,y)l;gk.x)

and the equality V(7. —0, x) = V(1,, x) holds.
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Remark 1. 1If t #7,, then V(r+0, x) denotes V(t, x).

We say that the function Ve belongs to the class ¥, if it is
continuously differentiable in the sets G, (k=1,2, ..).
For (t, x)e G, (k=1, 2, ...) we define

. oV v
Ve, x) 2_67 (¢, x) +5; (¢, x) F(¢, x),

the derivative of the function ¥ e ¥, with respect to system (1) and

1
D, V(t, x)=1lim sup; [V(t+1, x(t+7;0 x)— V(1 x)],

-0y

the upper right derivative of the function Ve ¥; with respect to the solu-
tions of system (1).

Remark 2. If the function Ve ¥ is locally Lipschitz continuous with
respect to x in G, then for (¢, x)e G, we have [16]

1
D, V(t, x)=lim sup - [V(t+1, x+tF(t, x))— V(¢, x)].

04

We consider the space R™ partially ordered in the following sense: we
write v<u (v<u) if v, <u; (v,<u;)fori=1,..,m Let G R™

The function F: R, xG— R™ is called quasimonotonely increasing in
R, xG if for any pair (7, u), (t,v) from R, xG for i=1,..,m we have
F.(t,v)< F(t, u) whenever v;=u; and v<u

The function y: G — R™ is called non-decreasing in G if y(v) < (1) for
v<uand v, uedG.

In the proof of the main results we use the following lemmas:

LemMA 1 [11]. Let the following conditions be fulfilled:
1. The function F: R, xG — R™ is continuous and quasimonotonely
increasing in R, xG.
2. The functions Y,: G—> R" (k= 1, 2, ...) are non-decreasing in G.
3. The function u: (ty, w) > R™ is the maximal (minimal) solution of
the system
du
dt

Ut +0)=v(u(zy))  (tx€R,)

such that u(ty+0)=ug, (2o, us)e R, X G, u(t, +0)e G if 1,€(ty, 0).

= F(t, u) (teR,, t#71,),
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4. The function v: (ty, @) — R™ is continuous for t€ (ty, @), t #1,, at
the points <, it is left continuous and such that:
41. v(t)eG and v(z,+0)eG for te(1y, @) and 1, € (ty, B),
4.2, o(ty+0)<uy (ug<v(ty+0)),
4.3. Du(t) < F(r, v(t)) (F(¢, v(2)) < Do(2)) for te(ty, @), t#14,

44 v(t+0)<yYlo(t)) Wilv(e)) <o(te+0)) for 1€ (8, @),
where Dv(t) is some of the Dini derivatives of v(t).

LEMMA 2 [6]. Let for a<t<f < o0,

v(t)<c+rp(s)v(s)ds+ Y Bev(t,),

A< T <t

where ¢=0, ., =20 are constants and the functions v:[a, B)— R, and
p: [, B) = R, are piecewise continuous in [a, ). Then

wn<e [I (1+ﬁk)exp<j'p(s)ds) for tela, )

<<t

3. MAIN REsULTS

3.1. Exponential Stability of the Zero Solution of Singularly Perturbed
Systems with Impulse Effect

Consider the system

dx
E_f(ts X, y),

dy
llz=g(t,x’J’), LF£ Ty
2)
Ax[!=1k=1k(x, }"),
Ay|l=tk=Jk(x’ }7), k= 1, 2, ey

where xe R”, ye R™; f:R, x B}y x B, > R", g:R, x B", x B", - R™,
I Byx B - R J,: Byx By, - R"; 0< H< o0; and pe (0, yo] is a small
parameter.

Introduce the following conditions (A):

(A1) The functions f, df/ox, of/dy, g, dg/ox, dg/dy, dg/dt are
continuous and bounded on R, x B}, x B7,.
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(A2) The functions [,, 01, /ox, oI /0y, J,, 0J,/0x, 0J,/0y are
continuous and uniformly bounded with respect to k=1, 2, ... in B}, x B7,.

(A3) f(1,0,0)=0, g(£,0,0)=0, 1,(0,0)=0, J(0,0)=0 for teR,
and k=1,2, ...

(A4) There exists a continuously differentiable function A: R, x
B}, — BY,, (t, x) = h(t, x) such that

[W(s; o, B ) —hla, Bl <A |n—h(a, B)l e for 5>0.

THEOREM 1. Let the following conditions hold:

1. Conditions (A) are satisfied.

2. There exist constants pe (0, H), a>0, b>0, ¢>0, K>0 and
Sfunctions Ve ¥y and We C,

ViR, xB,>R,, (1, x) - V(1 x),
W:R,xB,xB—>R,, (t, x, y)-» W(t, x, y)

such that for te R, ; x, x, € B}, and y € B the following inequalities hold:

alx| <V, x)<b x|, (5)
D(-;)V(t’ X)S —C|X|, t?érka (6)
V(rk+0’x+1k(xa h(Tk’ x)))< V(Tkax) (k=1, 25 )» (7)
[V, )= V{1, x,)| SK |x — x4, (8)
aly—ht, x)><W(t, x, y)<bly—h(t x)% )
W(4)(t’ X, y)s "C|y_h(t’ x)'za (10)

ow
= (6% V)| <Kly—h( x)] (Ixl +1y—h(s, X)), (11)

ow
o (X y) <KLy —h(s x)l, (12)

X

ow
—8_))—“’ x, V)| <K ly—h( x)|. (13)

Then, for u small enough, the solution x =0, y =0 of system (2) is exponen-
tially stable.

Proof. From conditions (A1-A4) it follows that there exist constants
L>0, r>0, and py€ (0, p) such that for te R, x, x,€ B}, y, y, € B, and
k=1, 2, .. the following inequalities hold:
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LA %, y) =S8, x0, y)I S L(Ix —x, [+ 1y = yil), (14)
A(t,0)=0 for teR,,
g(t, x, h(t, x))=0 for (t,x)eR, x B},
g(t, x, y)#0 for (¢, x, y)e R, x B}, x B and y # h(1, x).
(AS) tp—1_=20>0fork=1,2,...

The investigation of the stability of the solution x=0, y=0 of
system (2) can be reduced to the investigation of the stability of the
solution x =0 of the system

dx
Et—zf(t’ x, h(t, x)), L#£ Ty,

(3)
Ax|1=rk=Ik(x9 h(tln X)), k:'l, 2,
and the stability of the solution y = h(a, B) of the system
d
2= g B y), )

ds

where («, f) € R, x B}, are parameters.

DerINITION 1. The solution x=0, y=0 of system (2) is called
exponentially stable if there exist constants p>0, 4> 1, and v>0 such
that for any #,eR, and (x,, Yo)€ B, x B the solution x(1)=
x(t; to, Xg, ¥o), ¥(1) = y(t; ty, Xo, ¥o) of system (2) satisfies the estimate

IX(O] + 9D S A(Ixol + 1 yol) e~ for >4,

Analogously the exponential stability of the solution of system (3) is
defined.

Let ¥(s; a, B; o) be the solution of system (4) for which y(0; «, 8; y,)
=JYo-

DerFINITION 2. The solution y = h(a, f8) of system (4) is called exponen-
tially stable uniformly with respect to («, f)e R, x B%, if there exist
constants p>0,4>1, and y>0 such that for any (a, f)€ R, x B} and
ne BY, |n—h(a, B)| < p the solution Y(s; o, B; 1) of system (4) satisfies the
estimate

Ig(t, X, y)_ g(ta X1, J’1)| SL(Ix_xll + 'y— J’1|),
lh(z, x) = h(t, x,)| < L|x — x|, (15)

2%, y) = Le(xy, yOI S L(Ix = x| + [y = yil), (16)
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Ii(x, ¥} = Jelxy, y OIS LUx = x| + [y = yil),

|a(s, x)| < L |x|, (17)

|f(2, x, ) < L(Ix| + [y = h(t, x)[), (18)

i(x, YIS L(x[ + [y — h(t, x)), (19)

il YII < LIx] + 1y — h(z, x)1), (20)

x+ L(x, )|+ |y +Julx, p) < for |x]+ |yl <r (21)

From the relations

1
DS, V(t, x)<lim sup —

704

x[V(t+t, x+ (8, x, y))— V(e + 1, x+ (1, x, h(t, x)))]

+ lim sup [V(t+r x+tf(¢, x, h(t, x))) — V(t, x)],

104

1
D3 W1, =W (1, = W -
oW, x, y) ot x, y)= @t = Y + 6xf

in view of (6), (7), (14), (10), (11), (12), (18), (5), and (9), we obtain that
the functions ¥ and W satisfy inequalities of the form
DLV —kV+Q /W,
D5 W 20V /W —20W, 1 #1,,
where k>0 and Q >0 are constants, ¢ =o(u) = ¢/2by — K(L + 1)/2a, and
lim,_,, o(u)= +o0.

Making use of (7), (8), (16), (12), (13), (17), (19), (20), (5), and (9), we
obtain that there exists a constant 7> 0 such that

V(rk+09 x+ Ik(xs )’)) < V(Tka X) + TWI/Z(Tka X, ,V), (23)
W(Tk+0’ X+ Ik(x, y)s }’+Jk(X, y))S T2( V(rka X)+ Wl/z(rk’ X, )’))2

(22)

Let t,eR,, xo€B), yoe B} and x(1)= x(¢ 1o, Xo, Yo y(t) =
W(t; Lo, X9, Vo) be a solution of system (2). From (22) and (23) it follows
that the functions v(t)= V(t, x(¢)), w(t)=W(t, x(2), y(1)) for teJ* =
Jt(to, Xg, Vo) T €J ™ satisfy

Do —kv+Q \/;,
D*wSZQvﬁ—hrw, t#£1,,
v(te +0) < o(te) + T/ wlte),

w(t, +0) < T?(v(t,) + w(te))>
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Then by Lemma 1 v(r) < &(1), w(t)<n(1), whee &=¢&(1), n=n(t) is the
maximal solution of the initial value problem

ﬁ —kE+Q .

_=2Q6\/’;_20’7’ t¢rk9

&t +0)=L&(r) + T/nlze), (24)
(i +0) = T(E(n) +/m(ni)%
E(to+0)=v(1,+0)=0,  n(to+0)=w(to+0)>0.

It turns out that for sufficiently small x4 the maximal solution of initial
value problem (24) is equal to &= ¢&(z), n=y*(1), where &(2), Y(r) is the
solution of the following initial value problem:

d
9§= —Kk& + Qy,
w =Q¢—ay, t#1,
E(te+0) = &(t) + Ty (1), (25)

Yt +0)=T¢(r) + T(ts)s
E(to+0)=v(t,+0), V(to+0)=./w(t,+0).

Denote &,=C(ti), ¥Yiu=¥(t), &5 =E8re+0), ¥/ =y(r,+0), z=
col(&, ¥). Then for fe (1, 74, ,] we have

Z(t):u(t—rk)z;', (26)
where
Azt At
u(t) = (uz (1)1, uy(n=EHA)e —(xthg) e
Y
}.1 elzt K+l A +,{ 2t
o) = ()= 0 5= Ty )= ’)‘}l—ﬁf e’

/11,2=§(—0“Ki\/ (0 —x)*+40%),
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Since Kk + 4, >0 and k + 4, <0, then

At

e .
0 up(t) =uy (1) S < ce™ (t=0),

1T A
0<uy(r)<e™,  O<up(<e  (120),
4+ A — 1) et2— a8 A
uzz(t)<h+ 1 (K+ 2)6 emtgce/.lt ([20),
Al— Ay
lim e"’=e "¢ (0, 1), (27)
u—=>04
where
= =max L KAz (ktd)etmin o
= = LI —
ill_'{'z j‘l‘)vz ?
as u—0,. (28)
Hence,
ALt 1 ¢
wr) e (1>0) (29)
and
. i ¢
u(t) < e (1>0)
c ¢

In particular,
Een S(EF +ap)) enmr=m)
Vi1 S(CE +ap ) et
Then (25) and (30) imply that
(1+cT)eMPEf + (c+cT)eM Oyt ] etrlresr =m0

IEES
S[(1+c) TeMbEf + 2cTeM Oy F ] etilmne1— 5 =0),

lPk++1

In view of (27) and (28), we obtain that

[
L
Zl:'+]Seil(fk-H‘Tk*G)H(u)Zl:" (31)

=0(u)=0, lim 6(p)=0. (32)

u—0,

-~ K0 5
e + 9, 6]’ 5

H(p)= I:Te_"e+5 o
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Let ge (0, 1). From (32) it follows that there exists u, € (0, py] such that
if ue (0, uy], then ¢(u)<1 and the modules of the eigenvalues v,(u) and
v,(u) of the matrix H(y) are smaller than one: |v,| <1, |v,] <1. Hence
there exists an integer N >0 such that

IH" (wli<gq  for pe(0,u,]. (33)

Let 7,_<to<7,< - <1,,;<tI<Tj4;4y, i=Np+r, 0<r<N. Then
from (26) and (31) we obtain the estimate

j+1
2 <ult—1;,;) [ (% %179 H(y))

k=j+i

X [; ;:] u(t;—to) z(t,+ 0)

and in view of (29), (33), and condition (A5) we find that
N+ Y <De™ "N o(te+0)+/w(te+0))  (1>14)  (34)

where D = const, v=min(—(1/N8)In g, —A,(u,))>0.
From (34), (5), (9), and (17) it follows that there exists a constant 4 > 1
such that for teJ* the following estimate holds:

[X(O] + 19O < A(Ixol + [ yol) e 71 (35)

Let AA<r and [xo| + |yol <A. Then from (35) it follows that |x(¢)| +
[y(t) <r for teJ* and in view of (21) and conditions (A1) and (A2) we
conclude that J* = (14, ), ie., inequality (35) holds for all ¢> ¢,.

This completes the proof of Theorem 1.

LeMMA 3. Let the following conditions hold:
I O<ty<t,< -+, limg |, o T, = 0.
2. The function F(t,x) is continuous in R, X B%, locally Lipschitz
continuous with respect to x in R, x B}, and F(1,0)=0 for te R, .
3. The functions I(x) (k=1,2,..) are Lipschitz continuous with
respect to xe€ B}, and 1,(0)=0 (k=1,2,..).

4. The solution x =0 of system (1) is exponentially stable.
Then, if p is a positive integer, there exist constants pe (0, H), a>0,

b>0, ¢>0, a function V:R, xBy—>R,, and a positive function
L: R, - R, such that:
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1. Vev,.
2. alx|P<V(t, x)<b|x|” for (1, x)e R, x B).
3. WV, x)=V(t, y)| <L(t)|x—y| for te R, ;x, ye B".

o
4. DVt x)< —c |x|” for (1, x)e R, X B}, t #71,.

50 V(e 40, x+ I(x)) < V(ty, x) for xe B}, k=1,2, ...

Proof. Since the solution x =0 is exponentially stable, then there exist
constants 4> 1, v>0 and pe(0, H), pA<H such that for x,e B} and
t > t, =0 the following inequality holds:

|X(1; 1o, x0)| < A |x0] €771 (36)
Let 0<g< 1. Then for (7, x) e R, x B}, define

V(t, x)=sup |x(t+1; 1, x)|? &P (r#14),
>0 (37)
V(te, x)=V(1,—0, x).

From (36) and (37) it immediately follows that

x|P < V(t, x) <sup AP |x|? e~ DT < 47 |x]|P.
p

>0

Thus property 2 is proved for t #1,.
Choose T>0 so that APe?'~9T<1. Then, if t>7T, we have
AP |x|pe—w(lfq)r< |x|? and

V(t,x)= sup I|x(t+71;t x)|? P, (38)

O0<t<T
From conditions 2 and 3 of Lemma 3 it follows that
[F(t, x)—F(t, )| < M(t) |x—yl for x,yeB,,teR,,
[ (x) T < M, |x—y) for x,yeB), k=12, .,

where M(t)=0, M, >0, and M(¢) is continuous on R, .
Let x, ye B} and 0 <7< T. We apply Lemma 2 and obtain the estimate

lx(t+ 758, x)— x(t+7; 1, p)|

<ix—y ] (1+Mk)exp<jl'“M(s)ds>. (39)

I<tmy<t+1

In view of (38), (39), and the inequality

[u? — vP| < p |u—v| (max(u, v))? ' (foru=0,v=0),
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we obtain

Ve, x)=V(t, p)l=| sup |x(t+71;¢ x)|” "

O<tgT

— sup |x(z+7;1, y)|F e

O<t<T

< sup [lx(r+ 754 x)7 = |x(1+ 158, p)I7| €T

O0<t<T

<L(t) |x_)’|,

where L(1) = p(4p)" ™' Tli<qoers v (1+ M) exp(f+ 7 M(s) ds + vpqT).
Thus we have proved property 3 for ¢ # 1.
Let xe B}, x,€B}, 1, <t<7t, and let >0 be such that r+d<1,.
Then
[V(t+9, x)— V(& x)| < V(1 +6, x;)— V(1 + 9, x)|
+{V(t+6, x)=V(t+, x(t+ d; 1, x))|

+ V(¢ + 6, x(2+ 35 ¢, x))— V{1, x)|. (40)
From property 3 there follow the estimates

[V(t+ 6, x,)—V(t+38, x)| < L(¢+6) |x, — x|,
[V(t+6, x)—V(t+3d, x(t+9; t, x))| < L(t+8)| x — x(t + 5, ¢, x)|.

Since for t#1,, lim;_, o L(t+ )= L(t), and lim;_ o |x —x(2+ J; ¢, x)| =0,
then the first two terms in the right-hand side of estimate (40) are small
when |x, — x| and é are small.

Denote a(d) =sup,. s |x(t+1; 1, x)|? 7.

The function a($) is non-increasing for 6 >0 and lim,_,,, a(d)=a(0)
since |x(z+1;¢, x)|” €% is a bounded and piecewise continuous function
for 120 and continuous in some neighbourhood of 7=0.

Then for the third term in (40) we obtain

0| V(e +9, x(t+d; 1, x))— V(¢, x)|
=[sup [x(t+ 0+ 5149, x(t+3; 1, x))|? P —sup |x(t +7; t, x)|? 7T

s>0 >0

={sup |x(t+1; t, x)|” € - e 7P —sup |x(t + 1; t, x)|? 77|
>4 >0

=la(d)e " —a(0)] >0 as 6-0,.

Hence ¥(t, x) is continuous for x € B} and ¢ # 1.

409/151/2-12
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Let xe B}, teR,, t#1,, h>0, and x, =x(¢t+ h; t, x). Then

V(t+h, x)=sup |x(24+h+s;t+h, x)|7 7%

s>0

=sup |x(t+71; 1, x)|P e e Pk V(t, x)e Pt
T>h

or
1 | R
Z[V(t+h,x,)——V(t,x)]<V(t,x)z[e P17,

whence it follows that
vpq
D, V(t, x)< —vpgV (1, x) < Y [x|?,

which proves property 3.

Let 7,eR, and xeB, be fixed and 1.€(ty,1444), x;€B],

u;=x(t;; 14, x) for i=1, 2. Then

[V(t1, x1) = Vg, x) < VAt x0) = VA, uy))

+ | V(ty, X3) = Vty, u)l + [ V(2 uy) = Vit,, uy)l.
(41)

Taking into account that ¥V(s, x) and F(z, x) are locally Lipschitz
continuous, we obtain successively the estimates

[Vt x;)— V(s w))l < L(t;) |x;— u; (i=1,2),
o — ;| < | — x|+ u;— x| (i=1,2),
|, — x| sf" M(s) exp (j M(z) dr) ds |x| (42)
= N(¢) |x]| (i=1,2),
WAty )= Vit )l SL(L) 1x, — X1 + (1) N(1,) 1x] (i=1,2)
where

lim L(¢;)=L(t,+0), lim N(¢)=0.

i+t +0 =T+ 0

Since the function a(d) =sup.. ; |x(t, + T; T4, X)|? €"7* is non-increasing
for 620 and lim; _,, a(é)=a(0), then
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[Vt uy)— Vs, uy)]

= |sup |x(t; + 551, uy)|? € —sup |x(1;+ 55 15, u,)| 7 "%
s>0 s>0

=la(t,—1;) e—vw(thrk)_a(tz_fk) e*VPq(tz—Tk)l 50

as t;—> 7, +0, i=1,2 and in view of (41) and (42) we conclude that the
limit V(. +0, x) exists. Analogously the existence of the limit ¥(z,—0, x)
is proved and since the equality V(t, — 0, x) = ¥(4, x) holds by definition,
then Ve ¥,.

Let n(z; t4, x5) be the solution of the initial value problem

d
—'Z=F(t,n), n(te) = xo.

Since for 7, <A<t <pu<rt,,, and s> u the relation
x(53 1 (15 T, X + Li(x))) = x(55 4, 1(4; 14, X))
holds, then
V(i 1 i, x + (X)) S V(4 1(4; 74, X))
and, passing to the limit for 4 —» 1, +0 and A - 7, —0, we obtain
V(T +0, x + L(x)) < V(1,— 0, x) = V(1,, x).
This completes the proof of Lemma 3.
Remark 3. IfforteR, and k=1,2,..

M(t)=Mk=L, TK_Tk_1>9>O

then L(t)<p(Ap)? 'exp(vpgT+LT+07'T+1)=K; ie, the function
V(t, x) is Lipschitz continuous with respect to x in the domain R, x B}
with a constant K. Hence, the following corollary is valid.

CorOLLARY 1. [f conditions (A) hold and the solution x=0 of system
(3) is exponentially stable, then there exist constants p € (0, H), a>0, >0,
¢>0, K>0, and a function Ve ¥,, V: R, x Bh - R, which satisfies condi-
tions (5)-(8) of Theorem 1.

Introduce the following condition (B):
(B) There exists a constant L>0 such that for (1, x, y)e R, x
B}, x B},

(¢, x)

b

Ql_z
ot

og
B (15 )| LU+ 1y e )
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LEMMA 4. Let conditions (A1), (A3), (Ad), B hold and let the solution
y="h(a, B) of system (4) be exponentially stable, uniformly with respect to
(o, B)e R, x BY,.

Then there exist constants pe (0, H), a>0, b>0, c>0, and K> 0, and a
function We C,, W: R, x B} x BY — R, which satisfies conditions (9)-(13)
of Theorem 1.

Proof. Let T>(2In A+1n2)/2v and for (¢, x, y)e R, x B} x B define
the function

Wit 5 9)=[ 8 (s 03 0) = bt 20 ds

where the constants 4> 1, v>0, and pe (0, H) are chosen according to
Definition 2.

Properties (9)-(12) were proved in [14], Lemma 2. We prove only
property (13).

The matrix Z(s) with entries z;(s)= (0y,/0y;)(s; t, x; y) is a solution of
the system

i—f—ag(t x, Y(s; t, x; y) Z, Z(0)=E,

with bounded coefficients. Hence there exists a constant M >0 such that
|0W;/0y;| < Me™*. Then

'ay HZ—(stxy)[x/Mstxy e, x)] ds

<24 |y —hft, x)|f MeMse'”‘ds— |y—h(t,x)|.

This completes the proof of Lemma 4.
Introduce the following conditions (C):

(C1) The matrix-valued functions D(¢) and (dD/dt)(t) of order m are
continuous and bounded in R .

(C2) The real parts of all eigenvalues of D(t) are bounded from
above by a negative constant, uniformly with respect to re R, .

(C3) The function G: R, xByx B} - R™ (t,x,y)—>G(1,x,y) is
continuously differentiable and

G
=O0(x| +|»),

G(2,0,0)=0, n

G oG
—_—— - = 1
5= Ol +1y),  Fr=ol)

as |x| +|y| = 0, uniformly with respect to te R .
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LEMMA 5 [14]. Let the function g have the form

glt,x, y)=D(t) y + G(1, x, y),

where the functions D(t) and G(1, x, y) satisfy conditions (C).
Then there exists a function WeC,, W:R, xB)xB7— R, which
satisfies conditions (9)}-(13) of Theorem 1.

An immediate consequence of Corollary 1 and Lemmas 3, 4, and 5 is the
following theorem.

THEOREM 2. Let the following conditions be fulfilled:

1. Conditions (A) hold.
2. The solution X =0 of system (3) is exponentially stable.
3. One of the following conditions holds:

3.1. Condition (B) holds and the solution y = h(a, B) of system (4) is
exponentially stable, uniformly in (x, f)€ R, x BY,.

3.2. Conditions (C) hold and the function g has the form g(¢, x, y) =
D(t) y+G(1, x, p).

Then, for u small enough, the solution x=0, y=0 of system (2) is
exponentially stable.

As a consequence of Theorem 2 we obtain an analogue of the theorem
of Klimushev and Krasovskii [12] concerning the linear system with
impulse effect,

D A()x+ By,

dr
d
pZ=COx+D(1)y, 145,
‘ (43)
Ax|,_ = x+ By,
AY| ey = VX + 0 Y, k=1,2, ..,

where the matrices 4, B, C, D, a,, B, Y« and J, are of the respective
dimensions.

THEOREM 3. Let the following conditions be fulfilled:

1. The matrix-valued functions A(t), B(t), C(t), and D(t) are
continuous and bounded for t€ R together with their first derivatives.
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2. The real parts of all eigenvalues of D(t) are bounded from above by
a negative constant, uniformly with respect to te R, .

3. There exist constants 0 >0 and ¢ >0 such that for k=1,2, ...
Te— T 1 26 el < | Bell e vl <o, 0.l <.

4. The solution x =0 of the system

%= A(t)— B(t) D™'(1) C(1)] x, [# 1Ty,
Ax|,_ = [op— B D7 H1y) Clr,)]x, k=1,2,..

is exponentially stable.

Then, for u small enough, the solution x=0, y=0 of system (43) is
exponentially stable.

ExampLE 1. Consider the singularly perturbed system

d
7x=x—y, u§=2x—3y, t#k,
AX}, = Xx—2y, k=1,2, ..
and the related equaltions
dx x X
E—‘j,l#k, Ax|,=k——§,k=1,2,... (45)
and
Q=2x—3y. (46)
ds

The solution y=4%x of Eq. (46) is exponentially stable uniformly with
respect to x€ R.
Moreover, for the solution ¢(r; 4, x4) of (45) we have

@1 1o, xo) = eV~ Wgn—k 2 o/ k— 1)y
<e2/3qn—kx0’
where k— 1 <to<k, n<t<n+1,qg=%e""”
Since 0 <g<1, then the solution x=0 of Eq. (45) is exponentially
stable. Then, in virtue of Theorem 3 for u small enough, the solution x =0,
y=0 of system (44) is exponentially stable.
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3.2. Partial Exponential Stability of the Zero Solution of Singularly
Perturbed Systems with Impulse Effect

Before we formulate and prove the main resulits in this section, we make
some preliminary considerations.
Consider the systems

dx

_d—t_f('x’y),

dy

5. s 5 t s

=gl ). (A
Ax't:rk:Ik(xay)ﬁ
Ay'l:rk=‘]k(x7y)a k=1,2,...,

where f: B} x B}y —>R", g:ByxBy—>R", I.:ByxBy—-R", J.:B}x

B} —» R™, H>0.
Let x=0, y=0 be a solution of system (47).

DerFINITION 3. The solution x=0, y=0 of system (47) is called
y-exponentially stable if there exist constants p>0, 4> 1, and v> 0 such
Lhzizl for any x,€ B}, yo€ B, toe R, , and 1> 1, the following inequalities

old:

[x(2; tg, X0, Yo)l € A4,

| (8 10, X0, Vo)l S A |pol e,

LEMMA 6. Let the following conditions hold:

1. The functions f, g, I, J, (k=1,2,..) are Lipschitz continuous with
respect to (x, y)e B3, x B}, with a constant L>0 and f(0,0)=1,(0,0)=0,
2(0,0)=J,(0,0)=0.

2. T,—1_120>0(k=1,2,.).

3. The solution x=0, y =0 of system (47) is y-exponentially stable.

Then there exist constants a>0, >0, ¢>0, K>0, pe(0, H), and a
Sunction Ve ¥y, ViR, X B} x B > R, such that for any te R, x, x, € B},
Y, y1€BY, and k=1, 2, ... the following inequalities hold.

alyl< Ve, x, y)<b|yl, (48)

Dip Vi, x, y)< —clyl,  t#74, (49)

V(5 x, )= V(& x1, y) < K(Ix— x| +1y—pil),  (50)
V(te+0, x + L(x, ¥), y+ Ju(x, y) < V (T, X, ). (51)
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Proof. Let the constants 4 > 1, v>0, and p € (0, H) be chosen accord-
ing to Definition 3. Let 0 <g <1 and for (7, x, y)e R, x B x B} define

Vi, x, y)=sup [y(t+1;t,x, y)| " for t#r1,,

>0

Vit,, x, y)=V(z,—0, x, y).

Further on, the proof of Lemma 6 repeats the arguments from the proof
of Lemma 3 and we omit it.
Consider the system

dy_
e glx, y), (52)

where x € B}, is a parameter. Assume that the equation g(x, y)=0 has a
unique solution y = y(x) for any x e B7,.

LEMMA 7. Let the function g(x, y) be Lipschitz continuous with respect
to (x, y)e€ B}, x By and let the solution y = y(x) of system (52) be exponen-
tially stable, uniformly with respect to x € BY,.

Then there exist constants a>0,b>0, c>0, K>0, pe (0, H), and a func-
tion We Co, W: B, x B — R, such that for any x,x, € B} and y, y, € B
the following inequalities hold.

aly—yx)N<Wx y)<bly— yx)l, (53)
D(§2) W(x, y)< —c|y— y(x)l, (54)
[W(x, y)— W(xy, y)I<K(x—x,| +1y— ). (55)

The proof of Lemma 7 is carried out as the proof of Lemma 3, making
use of the function

Wi(x, y)=sup [¥(s; x; y)— J(x)[ e (0<g<])

t=0

Consider the system

dy,
& l;t =fv(y0’ ey ym)’ t?érk’
(56)

Ayv|t=rk=1vk(y0’ ey y,,,), k= 1, 2, ey V=0, 1, ey M,

where y, e B, O<H< oo, f,: BRx - x By > R™ I,:BYx .- xBjpr—
R™ and ¢,=¢,(u)>0 for pe (0, uy].
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Introduce the following conditions (D):

(Dl) ‘Ck—‘tk_1>9>0(k=l,2,...).
(D2) eg=¢, =1, the functions ¢, =¢,(u) are continuous in the inter-
val (0, po] and

fim 2o o,

vy m—1).
u—04 Sv(l"')

(D3) Letf7=f, forv=0,..,m.
Assume that for any (yg, ., Vm—1) € B x --- x Bf»~1 the equation
f'r:(y09 ) ymfb ym)zo

has a unique solution y, =7y, =7,(yo,.»Vm_1) and define for v=
0,1,.,.m—land k=1,2, ..

f:nil__—:f::nzf’vn(yoa s Ym—15 )7m(}"o, ---’ym—l))a
I:'/L_IEI‘:';lerv';c(J’o, s YVen— 15 }7m(J’07---, )’m~1))-

Assume inductively that for v=m—2, .., 1 and (y,, ..., ,)EBEX --- X
B7: the equation

f:ii(y05 erey yv’ yv+1)=0

has a unique solution y,,,=7y,,;=7,.1(yo,-» y,) and define for
i=0,.,vand k=12, ..

f;Ef;+l = :‘I+1(y0’ eeey yv’ yv+l(y01 eeey yv))’
I:kEI—:k+1 EI:‘/k+l(y0a s Yvs Pvar t{Fos v Y2

(D4) There exists a constant L >0 such that for any v=0, 1, ..., m;
k=1,2,..;y,, y¥eBy,and j=2, .., m;

Vi ¥ €BY

[fo(Pos s Vi) = Lo P& s VINSLY, |yi— v,
i =Q

i

|fv(y05 ey ym)l <L Z Iyi|’

i=1

k(05 s Vo) = L3 s YINSL Y, |y, — yE,
i=0
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m

|1vk(y0’ v ym)' <L Z iyf‘a
i=1

]
l.}jj(y()’ ey yj*l)'—.)—)j(y;)ﬂ ey y]* l)l SL Z lyl‘_.yi*l’

i=0

j
[}7]‘(}’0’ ey Vo <L Z [y;l.

=1

(D5) The solution y,=0, y, =0 of the system
dy
Bod_to=f(l)()’0, Y1)

dy
&y dtlzf}(yOs yl)a t5étk,
(57)

Ay0|l=tk:I(1)k(y0’ yl)9
A,Vl'lztk:Iik(yOa yl), k=1a2a

is y,-exponentially stable.

(D6) For any v=2, .., m the solution y,= 7, =y ,(Vg, . V1) Of
the system

by _
d =fv(y0’ s Vv 15 yv) (58)
S

is exponentially stable, uniformly with respect to (yq,.., V, ;)€
BYx ... x By

THEOREM 4. If conditions (D) hold, then the solution y=0, ..., y,,=0 of
system (56) is (1, .., Ym)-€xponentially stable.

Proof. From conditions (D1), (D3), (D4), and (D5) it follows that the
conditions of Lemma 6 hold. Hence there exist constants a>0, 5> 0, ¢> 0,
K>0, pe(0, H), and a function Ve ¥, V: R, x B’ x B}' - R, such that
for teR,; y;, y¥eB), i=0,1, and k=1, 2, .. the following inequalities
hold:

aly <V, yo, yO)<b|yil, (59)
D(+57)V(t’ Yo, Y1) < —c |yl t# Ty, (60)

IVt yo, v =Vt y&, yION<K(yo— y& +1yi— ¥y,
(61)

V(te+0, yo+ I5(yo, ¥1)s yi+11(¥or ¥1)) < V{14, Yoo Y1) (62)
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Consider the system

d
2= Y0 y1. 32) (63)
A

where (y,, y,) € BE x B} are parameters.

From conditions (D3), (D4), and (D6) it follows that system (63)
satisfies the conditions of Lemma 7. Hence there exist constants a>0,
b>0, ¢>0, K>0, pe(0, H), and a function WeC,, W:B}xB'x
B> — R, such that for any teR,;y,y*eB), i=0,1,2 the following
inequalities hold:

aly,— ya(yo, yI < W(ye» V1, ¥2) Sb 1y~ V2o, vl

(64)
D(ZsyW(J’o,}’h.Vz)é —c |yr— 72(¥os Y1), (65)
2
[(W(yo> Y1 ¥2)— WOE yE yDISL Y 1yi— yH. (66)
i=0
Consider the system
dy,
Evz=f3(J’o, Yi» yz)’ EF T,
(67)

Ayv'r=1k513k()’0,}’1,/"2), k=1727-~-5v=0’ 152

In view of the relations

) 1 T T
&V <lim sup;[V(zH, }’0+g‘f(2), yﬁg—f%)
0 1

704
T 2 T o
-V t+1’y0+—f0’yl+_fl
o &

. 1 T T
+11msup; [V<I+T, y0+;f(1)’ yl'*';f{)_V(t’ Yo, yl):la
] 1

£ =0,

. 1 T T T
D(ZnWSllmsup-[W(yoJr—f%, yi+—fi+=13
T £o g €,

T—04

7
- W()’o, y1+'—f§)]
&2

. 1 T
+ lim SUP'T‘ [W<J’0s Yis ,V2+;_f§>“ W(yos ¥1» }’2)],
2

=0y
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V(te+0, yo+ 13, yi+13,)
=Wt 40, o+ Toe, yi+ 1)+ V(e +0, yo+ 13, vy +12)
= V(1 +0, yo+ I3, yi+13,),
W(yo+I5e ¥+ L y2+13)
=W(yo, Y1, ¥2) + W(po+ 15, v+ 13, y2+13,)
= W(yo, ¥1: y2),

taking into account (59)-(62), (63)-(66), and condition (D4), we conclude
that there exist constants x >0, >0, and T> 0 such that

D, V{1, o, ¥1)
< kWL, o, ¥1) + Q1) W(yo, yis y2)s
D(+67) W(yo, ¥i> ¥2)
SQU VL, yo, yi}—oa(p) W(yo, yi, ¥2),  t#74,
V(te+0, yo+ I3, yi +1%)
<V(te, o, i) + TW(yo, ¥15 ¥a)s
W(po+ 15 yi+ 1 y2+1%)
< TV(tk, Yo» Y1)+ TW(yo, ¥1, ¥2),

(68)

where

1 1 B 1 i )
= - T .
so(u)+sl<u))’ = (eo(uﬁel(u)

Let yo(f), y,(2), y,(t) be a solution of system (67) defined for reJ* =

(1o, w) and V(1) =V(t, yo(1), y,(1)), w(t)=W(po(t), yi(t), y»(t)). From
(68) it follows that for re J* the following estimates hold:

Q(m=T(

D*o(t) < —xkou(t) + Q) w(t),
Drw(t)<Q(u)v(t)—a(p) w(t),  t#14,
(1, +0) < v(t) + Tw(ty),
w(t, +0) < To(t,) + Tw(t,), 1, €J7.

(69)

Taking into account

lim M=O, lim a(p)= +o0,
n—0y U(M) u—0,
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and condition (D1), as in the proof of Theorem 1, we conclude that there
exist constants A, =1, v>0 such that for re J* we have

v(2) S Ao(v(ty+0) + w(ty+0)) e 0)
w(t) < Ag(v(to+0) + w(to+0)) e "7 "),

From (70), making use of (59), (63), and condition (D4), we get that
there exists a constant 4, > 1 such that for reJ*

O+ 1y <A (| y(to +0) + | ya(to +0)]) e 071, (71)

In view of conditions (D1), (D4), estimate (71), and the equality
t
Yol1) = Yolto+0)+ | £3(ro(s), 31(s), yals)) ds
0

+ Z Iék()’o(fk)’ Y1(Ti)s ya(ti))

<t <!

we obtain that there exists a constant 4, > 1 such that for teJ*
|yo(D)] < A5(1 yolto +0) + 1 y1(to + 0)] + | ya(2o + 0)]). (72)

From estimates (71) and (72) it immediately follows that the solution
Yo=0, y;=0, y,=0 of system (67) is (y,, y,)-exponentially stable. Repeat-
ing the above arguments, we obtain successively that for v=23, .., m the
solution y,=0, y, =0, ..., y,,=0 of the system

dy; v
sizzfi(y(b Rt] yv)5 t?étln

il =LYor s 1)y k=1,2,,i=0, ., v

is (yq, .., y,)-exponentially stable. For v =m the assertion of Theorem 4 is
proved.

An important particular case of system (56) is the system

dy
dt0=f°(y°’ Yis s ym)s
&y, <
ev—r= L Au(yo) i, 1% T4,
= (73)
A,Vo|1=zk=10k(J’0, yl,""ym)’
Ay )= Y. Bui(yo) yir k=1,2,.,v=1,..m,
i=1

where 4,; and B,,, are matrices of respective dimensions.
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Introduce the following conditions (E):
(El) Let AZ'=A,;, B, =B, forv=1,..m i=1.,m k=12, ..
Assume that the matrix A, (y,) is invertible for any y, e B and define

the matrices

AL = A= AT (A7) A

B =B~ Bl (A,) A,
forv,i=1,..m—1;k=1,2, ...

Assume inductively that the matrix A%(y,) is invertible for y,€ B" and
define the matrices

A{u‘Al =A('i—A1vl(A§I)7l A

find

B{vl:il = Blvki‘“ Bikl(Aﬁl)71 Aﬁ,-,
v,i=1,2,.,1-1;k=1,2, ...

(E2) For any v,i=1,..,m the matrices A4,,(y,) and B, (y,) are
differentiable and bounded in the domain B7?, uniformly with respect to
k=12, ...

(E3) For any v=2,..,m the real parts of all eigenvalues of the
matrix A (y,) are bounded from above by a negative constant, uniformly
with respect to y, € B.

(E4) The functions fy(yg, -, ¥,) and I (e, ..., ¥,,) satisfy condition
(D4).
(E5) The solution y,=0, y, =0 of the system

dy
—a;q=fé(y03 )’1),

dy,

i =A1,(yo) 1, t# Ty,

Ay0l1:1k=1(l)k(y09 yl)a
Ay1|t=‘tk=Bik1(y0)yl’ k=1,2’

is y,-exponentially stable.

As a consequence of Theorem 4 we obtain the following theorem.

THEOREM 5. Let conditions (D1), (D2), and (E) hold. Then the solution
yo=0, .., ¥..=0 of system (73) is (¥, ..., Vm)-€Xxponentially stable.
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