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In the present paper the exponential stability of the solutions of singularly 
perturbed systems with impulse effect is investigated. In order to obtain the main 
results the comparison method and piecewise continuous auxiliary functions which 
are analogues of Lyapunov’s functions are used. c 1990 Academic Press, Inc. 

1. INTRODUCTION 

In a number of papers [l-l l] related to applications in various fields of 
science and technology, systems with impulses are considered. 

In some of these papers [S-9] systems with impulse effect of the form 

dx 
-$=F(t, xl, tfrk, 

(1) 

dxit=r,,=zk(X) 

are studied, where { rk} is an unbounded increasing sequence and x is an 
n-dimensional column matrix. 

The system with impulse effect (1) is characterized by the fact that at the 
moments (tk} the mapping point (t, x) from the extended phase space 
“instantly” goes from the position (rk, x(rJ) into the position (rk, x(rk) + 
Z,JX(T~))). Assume that the solutions of system (1) are left continuous; i.e., 
at the moments zk the following relations hold 

x(Tk - 0) = ‘+k), x(.rk + 0) = x(Tk) + d-$7,) = x(7k) + z&(7,)). 

The questions about the stability of the solutions of various classes of 
systems with impulse effect have been studied in [S-11]. 

A problem of great interest is that of finding sufficient conditions for 
stability of the solutions of singularly perturbed systems of the form (1). 
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Concerning singularly perturbed systems of differential equations without 
impulses, there are some initial results published on this subject [12-153. 
It is a characteristic of these papers that the basic mathematical apparatus 
used is the second method of Lyapunov. 

In the present paper the exponential stability of the solutions of 
singularly perturbed systems with impulse effect is studied. In order to 
obtain the main results, the comparison method and piecewise continuous 
auxiliary functions which are analogues of Lyapunov’s functions are used. 
Moreover, inverse theorems are proved (Lemmas 3 and 6) which guaran- 
tee the existence of piecewise continuous Lyapunov’s functions with certain 
properties provided that the solution x = 0 of system (1) is exponentially 
stable. 

2. PRELIMINARY NOTES 

We use the following notations: 
R” is an m-dimensional real space with a norm 1x1 = Ix11 + . . . + Ix,1 

of the vector x=col(x,, . . . . x,); R, = [0, co); By= {x~R”;Ixl <p>, 
O<p<cc; llA\l =maxiGjG,,Cy’i laijl is the norm of the matrix A= 
(aV),,; E,,, is the unit (m x m)-matrix; C, is the class of continuous func- 
tions W:R+xB”,+R, such that IV(t, 0)=0 for te R, ; and C, is the 
class of differentiable functions contained in C,,, 

For (to, x0) E R, x Bi denote by x(t) = x(t; to, x0) the solution of system 
(1) for which x( t,, + 0) = x,, and by J+ = J+ (t,, x0) the maximal interval of 
the form (to, o) in which this solution is defined. 

Henceforth { rk} ;” is a fixed sequence of numbers: 

O=70<71<7,< . . . . lim rk = co. 
k+m 

Introduce the sets 

Gk=bk-,Jk)XB; (k= f,2, . ..) 

and the classes V0 and Vi of piecewise continuous auxiliary functions [ 111: 
We say that the function V: R, x B; -+ R + belongs to the class V0 if 

1. V(t, x) is continuous in any of the sets Gk (k= 1, 2, . ..) and 
V(t,O)=O for all teR+. 

2. For any k = 1, 2, ,.. and x E B; there exist the finite limits 

v( 7k - 0, x) = lim V(t, Y), v( 7k + 0, x) = 
ct. .v) - cu. xl I < Tk I > ‘k 

and the equality V(7k - 0, x) = V(7,, x) holds. 
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Remark 1. If t # zk, then V’(t + 0, x) denotes V(t, x). 

We say that the function VE V0 belongs to the class 9; if it is 
continuously differentiable in the sets Gk (k = 1, 2, . ..). 

For (t, x) E G, (k = 1,2, . ..) we define 

the derivative’ of the function VE “y; with respect to system (1) and 

the upper right derivative of the function VE V0 with respect to the solu- 
tions of system (1). 

Remark 2. If the function VE V. is locally Lipschitz continuous with 
respect to x in Gk, then for (t, x) E G, we have [ 161 

D&,V(t,x)=limsupi[V(t+r,x+rF(t,x))-V(t,x)]. 
r-O+ T 

We consider the space R” partially ordered in the following sense: we 
write u 6 u (u < u) if ui Q ui (ui < ui) for i= 1, . . . . m. Let G c R”. 

The function F: R, x G -+ R” . IS called quasimonotonely increasing in 
R + x G if for any pair (t, u), (t, u) from R + x G for i = 1, . . . . m we have 
Fi(t, u)<F,(t, U) whenever ui=ui and u<u. 

The function II/: G -+ R” is called non-decreasing in G if e(u) < $(u) for 
u<u and u,u~G. 

In the proof of the main results we use the following lemmas: 

LEMMA 1 [ 111. Let the following conditions be fulfilled: 

1. The function F: R, x G -+ R” is continuous and quasimonotonely 
increasing in R + x G. 

2. The functions 1,9~: G + R” (k = 1,2, . ..) are non-decreasing in G. 
3. The function u: (to, co) + R” is the maximal (minimal) solution of 

the system 

du 
z= F(t, u) (tER+, t#z,), 

4Tk + 0) = Icl/c(U(Tk)) (T,ER+) 

such that u(t,+O)=u,, (to,uo)~R+ XC, u(z,+o)~G z~z~E(~~,o). 
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4. The function v: (to, 6) + R m is continuous for t E (to, G), t # zk, at 
the points zk it is left continuous and such that: 

4.1. v(t)EGandv(z,+O)EGfor tE(tO,~)andz,E(tO,~), 
4.2. v(tO+O)<u, (uO<v(tO+O)), 
4.3. Dv(t)<F(t, v(t)) (F(t, v(t))<Dv(t)) for tE(t,, I%,), tfz,, 

4.4. v(zk + 0) 6 tik(v(Tk)) (4h(f45k)) 6 v(zk + 0)) for zk E (to, G), 
where Dv(t) is some of the Dini derivatives of v(t). 

LEMMA2 [6]. LetfOr N<t<j<CQ 

v(t) < c + ’ P(S) 4s) ds + s 1 B,dtiJ, 
a E<rk<l 

where c > 0, Pk B 0 are constants and the functions v: [a, /?) + R, and 
p: [a, /I?) + R + are piecewise continuous in [a, j?). Then 

u(r)dc~~<~(l+~~)elp(f~p(s)ds) for tE[a,S). 

3. MAIN RESULTS 

3.1. Exponential Stability of the Zero Solution of Singularly Perturbed 
Systems with Impulse Effect 

Consider the system 

$=f(t, x, Y), 

p $= g(t, 4 Y), t#r, 

(2) 
4t=.k=zk(xY Y), 

dyl,=,, = J&, Y), k = 1, 2, . . . . 

where XER”, YER”‘; f:R, xB”,xB”,+R”; g:R+ xB”,xB”,+R”; 
I,:B”,xB”,~Rn;J,:B”,xB”,~Rm;OcH~co;and~~(O,~~]isasmall 
parameter. 

Introduce the following conditions (A): 

(Al) The functions x aflla X, aflay, g, adax, aday, adat are 
continuous and bounded on R + x B> x Bz. 
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(A2) The functions I,, ark/ax, aI,/ay, J,, aJ&Yx, aJ,lay are 
continuous and uniformly bounded with respect to k = 1,2, . . in B$ x BE. 

(A3) f(t,O,O)=O, g(t,O,O)=O, Zk(O,O)=O, Jk(O,O)=O for PER, 
and k= 1, 2, . . . . 

(A4) There exists a continuously differentiable function h: R, x 
B”H -+ B;, (t, x) -+ h( t, x) such that 

Ill/(s;cr,B;?)-h(cr,B)I~A Is-h(%B)Ie-I’J’ for ~30. 

THEOREM 1. Let the following conditions hold: 

1. Conditions (A) are satisfied. 
2. There exist constants p E (0, H), a > 0, b > 0, c > 0, K> 0 and 

functions VE Y0 and WE C, 

V:R+ xB;+R,, (4 x) + vt, x)3 

W:R,xB”,xB;-+R+, (t, 4 Y) + W(t, x, Y) 

such that for t E R, ; x, x1 E Bi and y E By the following inequalities hold: 

a 1x1 < V(t, x) d b 1x1, (5) 

q, V(t, x) 6 --c 1.4, t # zk, (6) 

v(z, +o, x + Ik(x, h(z,, X))) < v(z,, x) (k = 1, 2, . ..). (7) 

Iv(t,x)--V(t,x~)I~Klx-x,l, (8) 

aly-h(t,x)12<Wf,x, y)<bIy-hh(t,x)12, (9) 

~&x, Y)< --c Iy-46 x)12, (10) 

IF ,x, j (t y) dKIy-h(t,x)l (bl+I~-h(t,x)lh (11) 

~(i,x,y)/6Kly-h(t,X). 

aw 

(12) 

Then, for p small enough, the solution x = 0, y = 0 of system (2) is exponen- 
tially stable. 

Prooj: From conditions (Al-A4) it follows that there exist constants 
L>O,r>O,andp,~(O,p)suchthatfort~R+,x,x,~B”,,y,y~~B~,and 
k = 1, 2, the following inequalities hold: 
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If(t,x,Y)-f(t,x,,Y,)l6~(lx-x,l+lY-Y,l), (14) 

h(t, 0) = 0 for tER,, 

dt, 4 h(t, xl) = 0 for (t,x)ER+ xB”,, 

dt, x, Y)fO for (t, x, y) E R + x B> x BG and y # h( t, x). 

645) z,--z,-,>8>0 fork= 1, 2, . . . . 

The investigation of the stability of the solution x = 0, y = 0 of 
system (2) can be reduced to the investigation of the stability of the 
solution x = 0 of the system 

t, x, 46 xl), tZ~/c, 
(3) 

4 I = Tk = L(x, h(~,, x)1, k = 1, 2, . . . 

and the stability of the solution y = h(cl, 8) of the system 

(4) 

where (c(, p) E R, x Bk are parameters. 

DEFINITION 1. The solution x =O, y = 0 of system (2) is called 
exponentially stable if there exist constants p >O, A z 1, and v > 0 such 
that for any t,E R, and (x0, y,,)~ Bi x BF the solution x(t) = 
x(t; t,, x0, yO), y(t) = y(t; to, x0, y,) of system (2) satisfies the estimate 

Ix(t)l + Iv(t)l ~~(lxol + lYol)~-vcr-to) for t> to. 

Analogously the exponential stability of the solution of system (3) is 
defined. 

Let Il/(s; 01, /I; y,) be the solution of system (4) for which Il/(O; CI, fi; yO) 
= Yo. 

DEFINITION 2. The solution y = h(cr, /?) of system (4) is called exponen- 
tially stable uniformly with respect to (a, p) E R, x B; if there exist 
constants p>O,A>l, and y>O such that for any (a,/?)ezR+xB; and 
q E Bz, Iv - h(cr, B)I < p the solution $(s; c1,fi; q) of system (4) satisfies the 
estimate 

ldt, XT Y)- dt, Xl? Y,)l QUIX-x,1 + IY - YII), 

INt, XI-wt, x,)1 GLIX-x,1, (15) 

IZk(X, Y)--l&,7 Y,)l GUIX-XII + IY-YII), (16) 
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IJk(X, Y)-Jk(Xl, Yl)l dLW--~lI+ IFI’II)? 

IN& XI <L IA, 

If(c 4 Y)l G L(lxl + II’- 44 x)1 ), 

Vkb, Y)l 6 L(lxl + lY - NC XII 1, 

/J/Ax, y)l 6 L(lxl + ly - NC XII 1, 

Ix+zk(x, y)l+ IY+J/h VII GPO for 1x1 + lyl d r. 

From the relations 

0;) V(t, x) < lim sup I 
s+o+ T 

(17) 

(18) 

(19) 

(20) 

(21) 

xC~(t+~,x+~f(t,x,Y))-V(t+z,x+zf(t,x,h(t,x)))l 

+limsupf[V(r+r,x+r/(r,x,h(t,x)))-V(t,x)], 
7-O+ 

in view of (6), (7), (14), (lo), (ll), (12), (18), (5), and (9), we obtain that 
the functions V and W satisfy inequalities of the form 

D&V6 --Icv+Qfl, 

D;2, W<2QVrW-ZcrW, 
(22) 

t + Tk, 

where K > 0 and Q > 0 are constants, CJ = o(p) = c/2bp - K(L + 1)/2a, and 
lim p-o+ 4P) = +a. 

Making use of (7), (8), (16), (12), (13), (17), (19), (201, (5), and (9), we 
obtain that there exists a constant T > 0 such that 

v(T, + 0, x + zk(x, y)) d V(Tk, x) + TW”*(Tk, x, y), 

w(T, + 0, x + zk(x, y), y + Jk(x, y)) < T’(vtTk, -x) + wl’*(Tk, x, .d)*. 

(23) 

Let ~,ER+, x,~B”p, y,eBT and x(t) = x(t; to, x0, yo), y(f) = 
y(t; to, x0, yo) be a solution of system (2). From (22) and (23) it follows 
that the functions u(t) = V( t, x(t)), w(t) = W(t, x(t), y(t)) for t E J+ = 
J+ ( to, x0, yo), Tk E J+ satisfy 

D+v< -m+Q,,fi, 

D+wd2Qv&-2aw, t # Tk, 

dT,+0)6u(T,)+TJw(z,), 

W(Tk + 0) d T*(u(T,) + .\/wo)*. 
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Then by Lemma 1 u(t)<[(t), w(t)<q(t), whee c=<(t), q=q(t) is the 
maximal solution of the initial value problem 

ttzk + O) = ttzk) + T &bkh 

dzk + O) = T2(t(zk) + m,‘? 

4(to+O)=o(t,+O)>O, ij( t, + 0) = w( to + 0) 2 0. 

(24) 

It turns out that for sufficiently small p the maximal solution of initial 
value problem (24) is equal to 5 = t(t), q = ti2(t), where l(t), $(t) is the 
solution of the following initial value problem: 

t(zk + O) = tbk) + T$bk), 

ti(zk + O) = T,8Tk) + T@k), 

5(h + 0) = d&l + 01, 

(25) 

Denote tk=t(Tk), $k=$tZk)? t: =t(rk+oh ti: =$(Tk+o), z= 

col( 5, $). Then for t E (tk, T/, + 11 we have 

z(t) = u(t - Tk) z;, (26) 

where 

u (1)=(~+j.l)eil-(~+a2)e”r 
11 

1,-a, ’ 

&I _ eA21 

~12(1)=~21(t)=Q a -a , 
u (l)=(IC+al)e”“-(~+a2)e”2’ 

22 
1 2 4-12 ’ 

I,,,=;(-~-K+&-K)~+~Q~), 
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Since K + 2, > 0 and K + 1, < 0, then 

e*(f) 6 
K + %, - (Ic + &) e(“2p21)0 

#I-%, 
ej.l r d ceil r 

(t>Q, 

Pliit+ ei.lH = eCKO E (0, l), 

where 

-+O 

as p-0,. 

Hence, 

U(t) <&It 
1 c [ 1 c 1 (t>O) 

and 

u(t) f e”’ 
1 c 

1 1 
(t26). 

c c 

In particular, 

r k+l<((k+ +~+k+)e~~(‘~+l-~~) 

Ic/ k+l <((ct: +ct)kf)eL’(sk+i-rk). 

Then (25) and (30) imply that 

5’ k+l <[(l +cT)e”“<: +(~+cT)e~‘~~~]e~“‘~+~-‘“~~‘, 

*+ k+l 6 [(l +c) Teal’{: +2cTeAL011/:] eil(rk+I--rk-O). 

In view of (27) and (28), we obtain that 

where 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 



SOLUTIONS OF SINGULARLY PERTURBED SYSTEMS 471 

Let q E (0, 1). From (32) it follows that there exists p1 E (0, pO] such that 
if p E (0, ~~1, then c( ,u) < 1 and the modules of the eigenvalues vl( ,B) and 
vz(p) of the matrix H(p) are smaller than one: Iv11 < 1, lvzj < 1. Hence 
there exists an integer N> 0 such that 

IIHN(PH G4 for P E (0, AI. (33) 

Let rj-r<t,<rj< ... <Tj+i<t<rj+i+l, i=Np+r, OQr<N. Then 
from (26) and (31) we obtain the estimate 

j+l 

Z(t)<u(t-7j+i) n (e”l(‘k-Tk-l--B)H(p)) 
k=jfi 

and in view of (29), (33) and condition (AS) we find that 

t(t)+Il/(t)<De- “(I- ‘“‘(u( t, + 0) + Jwcto+o,) (t ’ kA (34) 

where D=const, v=min(-(l/NB)lnq, -,I,(p,))>O. 
From (34), (5), (9), and (17) it follows that there exists a constant A > 1 

such that for t E J+ the following estimate holds: 

Ix(t)l + Iv(t)1 d4-% + IhI) epY(fpfO). (35) 

Let AA< r and lx01 + lyOl ~1. Then from (35) it follows that Ix(t)1 + 
/y(t)1 <r for t E J+ and in view of (21) and conditions (Al) and (A2) we 
conclude that J+ = (t,, co), i.e., inequality (35) holds for all t > t,. 

This completes the proof of Theorem 1. 

LEMMA 3. Let the following conditions hold: 

1. o<zl<r2< “-) limk,,rk=a. 
2. The function F(t, x) is continuous in R, x Bk, locally Lipschitz 

continuous with respect to x in R + x BL, and F(t, 0) = 0 for t E R, . 
3. The functions Zk(x) (k = 1, 2, . ..) are Lipschitz continuous with 

respect to x E B> and Zk(0) = 0 (k = 1,2, . ..). 
4. The solution x = 0 of system (1) is exponentially stable. 

Then, if p is a positive integer, there exist constants p E (0, H), a > 0, 
b > 0, c > 0, a function V: R, x Bz -+ R, , and a positive function 
L: R, ---, R, such that: 
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2. a~~~~~T/(t,x)~b~x~~for (t,x)~R+xB;. 

3. Iv(t,x)--(t,y)l6L(t)I~-ylfort~R+;x,y~B::. 

4. D,:,I’(t,x)< -clxlpfor (t,x)~R+ xB;, t#z,. 

5. V’(T,+O,X+Z~(X))~ I’(zk,x)for XEB;, k=l,2 ,.... 

Proof: Since the solution x = 0 is exponentially stable, then there exist 
constants A 2 1, v > 0 and p E (0, H), pA < H such that for x0 E B; and 
t > t, 3 0 the following inequality holds: 

Ix(t; t,, XJ <A lxol e-Y(f-‘o) (36) 

Let 0 < q < 1. Then for (t, x) E R + x B; define 

V( t, x) = sup 1x( t + t; t, x)1 p evpyr (f#Tk)? 
r>o (37) 

V(T,, x) = V(Tk - 0, x). 

From (36) and (37) it immediately follows that 

Ixlp< V(t,x)<supAP IxlPevP(Y~l)T<AP lxIp. 
r>O 

Thus property 2 is proved for t # rk. 
Choose T> 0 so that Apevp(l--q)T< 1. Then, if r > T, we have 

AP (xlPe-“P(1~4)7< IxJp and 

V(t,x)= sup Ix(t+z; f,~)(~e”~~‘, 
O<?<T 

From conditions 2 and 3 of Lemma 3 it follows that 

m4 xl - F(t, Y)l d M(t) lx - Yl for x, YE BiA, tE R,, 

Izktx) - zkb)l G Mk Ix - Y)i for x, YE B”p,, k= 1, 2, . . . . 

where M(t) 2 0, M, > 0, and M(t) is continuous on R, . 
Let X, y E B; and 0 < z < T. We apply Lemma 2 and obtain the estimate 

Ix(t+z;t,x)-x(t+z;t, y)l 

<IX-Y1 ~<~~,+~(l+M,)exP(j’+‘Mts)ds). (39) 
I 

In view of (38), (39), and the inequality 

Iup - upI < p I24 - 01 (max(u, u))~- ’ (for u > 0, v 2 0), 
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we obtain 

IV(t,x)- V(t, y)l= 1 sup Ix(t+r; t,x)lPPT 
O<r<T 

- sup Ix(t + r; t, y)( P evpqrl 
O<?<T 

< sup I Ix(t+r; t,x)lP- Ix(t+r; t, y)IpI evPqT 
O<T<T 

<L(t) lx-Yl, 

where L(t)=p(Ap)P-1n,,,,,,+.(l+Mk)exp(S:+TM(s)ds+vpqT). 
Thus we have proved property 3 for t # rk. 
Let x~B”p, x,EB;, Tk_,<t<Tk and let 6>0 be such that t+6<zk. 

Then 

Iv(t+s,X,)--(t,X)I~IV(t+6,X1)-V(t+6,x)l 

+Iv(t+s,X)-v(t+4X(t+6;t,x))l 

+Iv(t+s,x(t+s;t,X))-V(t,x)I. (40) 

From property 3 there follow the estimates 

Iv(t+s,x,)-V(r+6,x)l~L(t+6)Ix,-xl, 

~v(t+s,X)-~(t+6,x(f+6;t,x))~dL(t+6)~x-x(t+6;1,x)l. 

Since for t#Tz,, lim,,,L(t+6)=L(t), and limd,, Jx-x(t+6; t,x)l =O, 
then the first two terms in the right-hand side of estimate (40) are small 
when Ix1 -xl and 6 are small. 

Denote a(6) = SUP~,~ Ix(t + z; t, x)1” evpqs. 
The function a(6) is non-increasing for 6 >O and lim,,,+ a(6) = a(O) 

since Ix(t+r;t,~)I~e”~~~ is a bounded and piecewise continuous function 
for z > 0 and continuous in some neighbourhood of r = 0. 

Then for the third term in (40) we obtain 

o<Iv(t+s,x(t+6;t,x))-V(t,x)l 

= 1;:: Ix(t + 6 +s; t + 6, x(t + 6; f, x))l” evpqs-- sup Ix(t + r; t, x)1” eYpqr( 
rso 

= lsup Ix(t+z; t, x)jPeYP9’ .ePvp@-sup Ix(t+z; t, x)lPevpqrl 
7>6 r>o 

= [u(6) eCvpqS - u(O)1 + 0 as d-0,. 

Hence V( t, x) is continuous for x E BF and t # rk. 

4w/151/2-12 
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Let XEB;, tER,, t#z,, h>O, andx,=x(t+h;t,x). Then 

V(t+h,x,)=sup lx(t+h+s; t+h,x)lPP~’ 
T>O 

= sup Ix(t +z; t, x)1” eepyr .e- “Pfh 6 lqt, x) e “pyh 
r>h 

or 

whence it follows that 

~;;,W, x)< -vpqV(t, x)< -y IXIP, 

which proves property 3. 
Let TIER+ and XEBF be fixed and t;~(7~,7~+,), xieBz, 

ui=x(tj; zk, x) for i= 1,2. Then 

Taking into account that V(t, x) and F(t, x) are locally Lipschitz 
continuous, we obtain successively the estimates 

IV(ti, Xi)- V(ti, Uj)l <L(ti) IXi-UjI (i= 1, 2), 

IX;-Uu,I d IXj-XI + IUi-XI (i= 1, 2), 

luj-xlC~~~M(s)exp(~~~M(r)dr)dslxl (42) 

= iv(&) 1x1 (i= 1, 2), 

I v(tj~ xi) - V(ri, ui)l G L(ti) Ix, - xI + L(ti) N(ti) lx1 (i= 1, 2), 

where 

lim L(ti) = L(7, + 0), lim N(ti) = 0. 
I, -+ rk + 0 I, + ‘k + 0 

Since the function a(6) = SUP,,~ Ix(zk + 7; zk, x)1 p evpyr is non-increasing 
for 6 > 0 and lim, _ o+ a(6) = a(O), then 
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=~sup~x(t,+s;t,,u,)~PevP4S-s~p~~(t2+~;tZ,~2)~PevPqS~ 
s>o s>o 

=la(tl-7k)e-“P”“‘--rk)-a(t2-7k)e~~P4(~2--~)l -,() 

as ti + rk + 0, i = 1,2 and in view of (41) and (42) we conclude that the 
limit P’(t, + 0, x) exists. Analogously the existence of the limit V(z, - 0, x) 
is proved and since the equality V(rk - 0, x) = I’(r,, x) holds by definition, 
then VEV~. 

Let ~(1; to, x0) be the solution of the initial value problem 

4 -g=m II), rl(to) = x0. 

Since for rk- i <l<7,<pL7k+I and s > p the relation 

x(s; CL, ?(p; ?k, x+ I,(x))) =xb; 1~ dn; Tk> x)) 

holds, then 
v(b dp; 7k, x + zk(x))) G v(n, q@; 7k, x)) 

and, passing to the limit for p + zk + 0 and ;1 -P rk - 0, we obtain 

V(7k + 0, x + I,(x)) < v(T, - 0, x) = v(T,‘, x). 

This completes the proof of Lemma 3. 

Remark 3. If for t E R, and k = 1,2, . . . 

hf( t) = it!& = L, 7,-t,-,>8>0 

then L(t) < p(Ap)P-’ exp(vpqT+ LT+ F’T+ 1) = K; i.e., the function 
V(t, x) is Lipschitz continuous with respect to x in the domain R, x B; 
with a constant K. Hence, the following corollary is valid. 

COROLLARY 1. If conditions (A) hold and the solution x= 0 of system 
(3) is exponentially stable, then there exist constants p E (0, H), a > 0, b > 0, 
c > 0, K > 0, and a function VE Yo, V: R, x Bz + R, which satisfies condi- 
tions (5)-( 8) of Theorem 1. 

Introduce the following condition (B): 

(B) There exists a constant L > 0 such that for (t, x, y)~ R, x 
B”,x B”H 
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LEMMA 4. Let conditions (Al), (A3), (A4), B hold and let the solution 
y = h(a, /3) of system (4) be exponentially stable, uniformly with respect to 
(a, PIER+ xB”,. 

Then there exist constants p E (0, H), a > 0, b > 0, c > 0, and K > 0, and a 
function WCC,, WR+xB”,xB~-+R, which satisfies conditions (9t( 13) 
of Theorem 1. 

Proof: Let T3 (2 In A + In 2)/2v and for (t, x, y) E R, x Bz x B’J define 
the function 

W(4-T Yl=[oTif, (I(/i( s; t, x; y) - hi(t, x))’ ds, 

where the constants A > 1, v > 0, and p E (0, H) are chosen according to 
Definition 2. 

Properties (9)-(12) were proved in [14], Lemma 2. We prove only 
property ( 13). 

The matrix Z(s) with entries z~(s) = (&Qj/8yj)(s; t, x; y) is a solution of 
the system 

z=; (4 4 4%; t, x; Y)P, Z(0) = E, 

with bounded coefficients. Hence there exists a constant M> 0 such that 
1 a$ j/8yj 1 < MeMS. Then 

’ f all/, (s; t, x; y)[t,bi(s; t, x; y) - hi(t, x)] ds 
i=l JYj 

<2A ly-h(t,x)l ~o~MeMSe-“‘ds=$y-h(t,x)~. 

This completes the proof of Lemma 4. 
Introduce the following conditions (C): 

(Cl) The matrix-valued functions D(t) and (dD/dt)(t) of order m are 
continuous and bounded in R, . 

(C2) The real parts of all eigenvalues of D(t) are bounded from 
above by a negative constant, uniformly with respect to t E R + . 

(C3) The function G: R + x B> x Bg + R”, (t, x, y) + G( t, x, y) is 
continuously differentiable and 

G( t, 0, 0) = 0, ~=o(lxl+ lYl)> 

aG 
~=O(lxl+ IYI), &=0(l) 

as (xl + I yl + 0, uniformly with respect to t E R, . 
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LEMMA 5 [ 141. Let the function g have the form 

g(t, x, Y)=D(~)Y + (36 x> Y), 

where the functions D(t) and G(t, x, y) satisfy conditions (C). 
Then there exists a function WE C1, W: R + x Bi x By + R, which 

satisfies conditions (9~( 13) of Theorem 1. 

An immediate consequence of Corollary 1 and Lemmas 3, 4, and 5 is the 
following theorem. 

THEOREM 2. Let the following conditions be fulfilled: 

1. Conditions (A) hold. 
2. The solution X = 0 of system (3) is exponentially stable. 
3. One of the following conditions holds: 

3.1. Condition (B) holds and the solution y = h(a, fi) of system (4) is 
exponentially stable, untformly in (a, j3) E R + x Bk. 

3.2. Conditions (C) hold and the function g has the form g(t, x, y) = 
D(t) Y + G(t, x, Y). 

Then, for p small enough, the solution x =O, y = 0 of system (2) is 
exponentially stable. 

As a consequence of Theorem 2 we obtain an analogue of the theorem 
of Klimushev and Krasovskii [12] concerning the linear system with 
impulse effect, 

dx 
z = &tb + B(t) y, 

r$=C(t)x+D(t)y, t+t,, 
(43) 

4t=,k=w+Pk~, 

~Ylt=.,=Ykx+bcY~ k = 1, 2, . . . . 

where the matrices A, B, C, D, ak, bk, yk, and 6, are of the respective 
dimensions. 

THEOREM 3. Let the following conditions be fulfilled: 

1. The matrix-valued functions A(t), B(t), C(t), and D(t) are 
continuous and bounded for t E R + together with their first derivatives. 
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2. The real parts of all eigenvalues of D( t) are bounded from above by 
a negative constant, untformly with respect to t E R t 

3. There exist constants 0 > 0 and c > 0 such that for k = 1,2, . . 

Zk - t k-I>& Ibkll 6 G II PA d c, IIYklI 6 c, IVkll 6 c. 

4. The solution x = 0 of the system 

$= [,4(t) - B(t) D-‘(t) C(t)]x, t#zk, 

dxlz=,k= bk-SkD-‘bk) c(zk)lx, k = 1, 2, .., 

is exponentially stable. 

Then, for p small enough, the solution x =O, y = 0 of system (43) is 
exponentially stable. 

EXAMPLE 1. Consider the singularly perturbed system 

dx 
z=x-y, p$=2x-3y, t #k, 

dxl,=k=x-2y, k = 1,2, . . . 

and the related equaltions 

dx x 
z=3, t#k, dxl,,k= -5, k= 1, 2, . . . 

and 

$=2x-3y. 

(44) 

(45) 

The solution y = f x of Eq. (46) is exponentially stable uniformly with 
respect to x E R. 

Moreover, for the solution q(t; to, x0) of (45) we have 

dt; to, x0) = e (1/3Kpn) 
4 

n-k 2 
3e 

W3W’dXo 

-c e213q”- k~o, 

where k-l<t,<k, n<t<n+l,q=$e’/3. 
Since 0 <q < 1, then the solution x = 0 of Eq. (45) is exponentially 

stable. Then, in virtue of Theorem 3 for p small enough, the solution x = 0, 
y = 0 of system (44) is exponentially stable. 



SOLUTIONSOFSINGULARLY PERTURBED SYSTEMS 479 

3.2. Partial Exponential Stability of the Zero Solution of Singularly 
Perturbed Systems with Impulse Effect 

Before we formulate and prove the main results in this section, we make 
some preliminary considerations. 

Consider the systems 

$=/(x9 Y), 

4 
t = gk Y )? t+z,, 

(47) 
4t=,k=ux, Y), 

~YII=,=Jk(x, Y), k = 1, 2, . . . . 

where f:BkxBG+R”, g:B”,xB”,+R”, Ik:B”,xB”,-+R”, Jk:B”,x 
BE+ R”, H>O. 

Let x = 0, y = 0 be a solution of system (47). 

DEFINITION 3. The solution x = 0, y = 0 of system (47) is called 
y-exponentially stable if there exist constants p > 0, A > 1, and v > 0 such 
that for any x,EB;, yoeBz, t,ER+, and t > to the following inequalities 
hold: 

Ix(t; to, x0, YON G 4 

IAt; to, x0, yo)l 6A lyol e-“(‘-fO). 

LEMMA 6. Let the following conditions hold 

1. The functions f, g, I,, Jk (k = 1, 2, . ..) are Lipschitz continuous with 
respect to (x, y)~ B”,x Bz with a constant L>O and f(O,O)= Z,(O, O)=O, 
g(0, 0) = Jk(O, 0) = 0. 

2. 5k-t ,p,>O>O (k=1,2,...). 
3. The solution x = 0, y = 0 of system (47) is y-exponentially stable. 

Then there exist constants a > 0, b > 0, c > 0, K> 0, p E (0, H), and a 
function VeYo,, V:R,xB”,xBy+R, suchthatforanytER+,x,~~EB;, 
Y, YIEB;, and k = 1, 2, . . . the following inequalities hold 

a IYI G v(t, x, y)<b lul, (48) 

q&)W, x3 Y)G --c IYI, tz~,, (49) 

IV(t,x,y)--V(t,x,,y,)ldK(lx-x,l+ly--y,l), (50) 

VT/~ + 0, x + L(x, Y), Y + J&, Y)) G V(t,u x, Y). (51) 
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ProojI Let the constants A 2 1, v > 0, and p E (0, H) be chosen accord- 
ing to Definition 3. Let 0 < q < 1 and for (t, x, y) E R + x B; x B; define 

V(t,x, y)=sup Iy(t+r; t,x, y)l evyr for t#z,, 
r>o 

T/(Tk, x, Y) = VT, - 0, x, Y). 

Further on, the proof of Lemma 6 repeats the arguments from the proof 
of Lemma 3 and we omit it. 

Consider the system 

4 
-& = dx, Y 1. (52) 

where XE II; is a parameter. Assume that the equation g(x, y) = 0 has a 
unique solution y = j(x) for any x E B>. 

LEMMA 7. Let the function g(x, y) be Lipschitz continuous with respect 
to (x, y) E Bk x BE and let the solution y = j(x) of system (52) be exponen- 
tially stable, uniformly with respect to XE Bk. 

Then there exist constants a > 0, b > 0, c > 0, K > 0, p E (0, H), and a func- 
tion WE Co, W: B; x By -+ R, such that for any x, x, E Bz and y, y, E By 
the following inequalities hold: 

a IY - Y(x)1 d Wx, y) <b IY - Y(x)L (53) 

q,, wx, Y) d --c IY - Y(x)17 (54) 

IWx, Y)- Wx,, Y,)I GK(I-x-x,1 + IY-YII). (55) 

The proof of Lemma 7 is carried out as the proof of Lemma 3, making 
use of the function 

W(x, y) = sup I$(s; x; y) - j(x)1 evqr (O<q< 1). 
?>O 

Consider the system 

&, + =fy(yo, .-., YA t#Tk, 

(56) 
dyvI~=q=z,k(yO, *..Y Y,)v k = 1, 2, . . . . v = 0, 1, . . . . m, 

where y, E B’jj, O<H<co, f,:Bzx .‘. xB~-+RnY, I,,.BsX ... xBz-* 
R”“, and E, = E,(P) > 0 for P E (0, po]. 
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Introduce the following conditions (D): 

(Dl) z,-z,-,~8>0 (k=1,2 ,... ). 
(D2) ,sO z s1 = 1, the functions E, = sY( p) are continuous in the inter- 

val (0, pO] and 

lim ~ E”+l(P)=O 
v+o+ E”(P) 

(v = 1, . . . . m - 1). 

(D3) Letfr-f, for v=O, . . . . m. 

Assume that for any (yo, . . . . y,,- ,) E B$ x . . . x B$-’ the equation 

f ZXYOY . ..Y Ympl, Ym)=O 

has a unique solution ym = y, = y,( y,, . . . . y, _ 1) and define for v = 
0, 1, . ..) m - 1 and k = 1, 2, . . . 

f;p’=f;=f;(yo, . ..) Ym-1, Ym(Yo, .?Yrn-l)h 

z;- l- I$ = I$( y 0, . . . . Ympl, Yrn(YO? . ..v Ym-1)). 

Assume inductively that for v = m - 2, . . . . 1 and ( y,, . . . . y,) E B’jj x . . . x 
Bz the equation 

f3YO~ ..a9 Y”? Y,+,)=O 

has a unique solution yy+ i = yV+ i = yV+ i( y,, . . . . y,) and define for 
i = 0, . . . . v and k= 1, 2, . . . 

f;=f;+‘-fy+l(Yo, . . . . Y,, Yy+l(YO, . ..> Y,)h 

z;k - ck+ l = z;k+ ‘(Yo, . . . . Y,, Yv+ l(Y0, . . . . Y,)). 

(D4) There exists a constant L >O such that for any v = 0, 1, . . . . m; 
k = 1, 2, . . . . yy, yJ’ E Bz; and j = 2, . . . . m; 

Yj, y,f” E BZ 

IfJYo, *..9 YJ -f,(Yo*, ...9 Y3l GL f IY;-Yy*L 
i=O 

If”(YO, ***9 Ym)l 6 L t lYil9 
i=l 

V”k(YO, -..9 YJ - Z”k(Y,*Y . ..v YZ)l GL f IYi-Y*lv 
i=O 
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(D5) The solution y0 = 0, y, = 0 of the system 

(57) 
~YOlh=Tk=GJYO~ Y,), 

~YIIf=Tk=~;k(Yo~ Yl), k = 1, 2, . 

is y, -exponentially stable. 
(D6) For any v = 2, . . . . m the solution y,, = j, = j,( y,, . . . . y,- ,) of 

the system 

%=f.t(vo, “‘> YY-13 Y”) 

is exponentially stable, uniformly with respect to (y,, . . . . y, r) E 
B”Ox . . . xB”-1 

H H ’ 

THEOREM 4. If conditions (D) hold, then the solution y = 0, . . . . y, = 0 of 
system (56) is (yl, . . . . y,)-exponentially stable. 

Proof From conditions (Dl), (D3), (D4), and (D5) it follows that the 
conditions of Lemma 6 hold. Hence there exist constants a > 0, b > 0, c > 0, 
K>O,p~(O,H),andafunction VgYO,, V:R+xB~xB”,‘-+R, suchthat 
for teR+; yi, y?EB;, i = 0, 1, and k = 1, 2, . . . the following inequalities 
hold: 

a Iv11 G Vh YO, y,)Gb 1~~1, (59) 

q7, V(4 Yo, Yl) d --c IYIL t+z,, (60) 

lV(t,~o, YI)-V(~,Y~*,Y~*)I~K(IYO-Y~*I+IY,-Y~*I), 
(61) 

V(t,+O, Yo+~;,(Yo~ YlL Yl +UYov Yl))G V(s,, Yo, Yl). (62) 
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Consider the system 

~=,:,,09 Yl, Y2L (63) 

where ( y,,, JJ, ) E B$’ x &! are parameters. 
From conditions (D3), (D4), and (D6) it follows that system (63) 

satisfies the conditions of Lemma 7. Hence there exist constants a > 0, 
b > 0, c > 0, K > 0, p E (0, H), and a function WE C,, WI BF x Ba’ x 
B”,Z-,R, such that for any t E R + ; )I,, ,v* E B;, i = 0, 1,2 the following 
inequalities hold: 

a IY,- Y*(Yo, Y,)l G WY09 Yl, Y2) d b IY, - Y*h YIN, 

(64) 

~&,,WY,~ Yl, Yz)~ --c lY2-Y2bb Y,)l, (65) 

1 W(y,, .Y,, yz)- W(Y,*, yl*, .Y2*)I GL IYi- YTI, (66) 
i=o 

Consider the system 

f#Zk, 

(67) 
4dr=,k=ck(Yo~ Yl, Yd? k = 1, 2, . . . . v = 0, 1, 2. 

In view of the relations 

+ lim sup i 
[ ( 

W y0, YI, Y2 + tf-: 
> 

- WY,, Yl? Yd 3 
1+0+ 1 
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taking into account (59H62), (63 t(66), and condition (D4), we conclude 
that there exist constants K > 0, p > 0, and T > 0 such that 

where 

Let ye(t), yl(t), y2(t) be a solution of system (67) defined for t E J+ = 
(to, 0) and v(t) = Vt, yo(th yl(t)), w(t) = Wy,(t), yl(t), .dt)). From 
(68) it follows that for t E J+ the following estimates hold: 

D+u(t)< -w(t)+Q(p, w(t), 

D+w(t)GQ(pL) U(~)--(P) w(f), tftk, 

u(zk + 0) < u(rk) + TW(Tk), 
(69) 

W(Tk + 0) < TU(Tk) + TW(Tk), ZkEJ+. 

Taking into account 

lim WC0 
P-o+ a(p) ’ 

lim 0(p)= +co, 
p-0, 
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and condition (Dl ), as in the proof of Theorem 1, we conclude that there 
exist constants A0 > 1, v > 0 such that for t E J+ we have 

u(t)~A,(u(t,+0)+w(t,+0))e-“(‘-‘~) 

w(t) < Ao(u(t, + 0) + w(t, + 0)) e-+y. 
(70) 

From (70), making use of (59) (63), and condition (D4), we get that 
there exists a constant A, > 1 such that for t E J+ 

lYl(t)l + Iv*(t)1 d~,(l.Y,(t,+O)I + I.h(fo+O)l) e-“(‘-@). (71) 

In view of conditions (Dl ), (D4), estimate (71) and the equality 

ye(t) = Yo(to + 0) + j-’ fit(~o(s)t Ye> oh)) ds 
10 

+ c Gk(YO(~k)Y Yl(Tk)T Y2bk)) 10 < rk < I 
we obtain that there exists a constant A, > 1 such that for t E J+ 

Ivo(t)l ~AAlx,(to+O)I + lyl(to+O)l + Ivz(to+o)l). (72) 

From estimates (71) and (72) it immediately follows that the solution 
y, = 0, y, = 0, y2 = 0 of system (67) is (y,, y,)-exponentially stable. Repeat- 
ing the above arguments, we obtain successively that for v = 3, . . . . m the 
solution y, = 0, y, = 0, . . . . y, = 0 of the system 

&i 
&i -$ =fl(YO, ...3 Yv), t+zk, 

dYi/t=.,=z;(YO, -Y Yv), k = 1, 2, . . . . i = 0, . . . . v 

is (yo, . . . . y,)-exponentially stable. For v = m the assertion of Theorem 4 is 
proved. 

An important particular case of system (56) is the system 

$=fo(vo, Yl7 ..-> Y,), 

4, m 
8” x= ,I Avid Yi, 

1=1 
t+rk, 

(73) 

‘~vIt=z,= f Bvki(YO)yi, 
i=l 

k = 1, 2, . . . . v = 1, . . . . m, 

where Avi and B,,ki are matrices of respective dimensions. 



486 SIMEONOV AND BAINOV 

Introduce the following conditions (E): 

(El) Let AE=A,,, Bzi= B,+, for v= 1, . . . . m, i= 1, . . . . m, k= 1, 2, .,.. 

Assume that the matrix AE,(yo) is invertible for any y, E Bz and define 
the matrices 

for v, i= 1, . . . . m-l; k=l,2,.... 
Assume inductively that the matrix Ai, is invertible for y, E Bz and 

define the matrices 

A’,i’=Ati-AI,,(A:,)~’ Aii, 

Bf,,’ = Btki- B$,(A;,)P1 A;,, 

v, i = 1, 2, . . . . I- 1; k= 1, 2, . . . . 

(E2) For any v, i= 1, . . . . m the matrices AVi( yO) and B,,,( y,) are 
differentiable and bounded in the domain Bz, uniformly with respect to 
k = 1, 2, . . . . 

(E3) For any v = 2, . . . . m the real parts of all eigenvalues of the 
matrix A:,(y,) are bounded from above by a negative constant, uniformly 
with respect to y, E B$. 

(E4) The functions fO(y,, . . . . y,) and Z,,(y,, . . . . y,) satisfy condition 
(D4). 

(E5) The solution y, = 0, y, = 0 of the system 

~Yol~=rk=Gk(Yo~ VI), 

~YII,=.,=B:,,(YO)Y,, k = 1, 2, . . 

is y,-exponentially stable. 

As a consequence of Theorem 4 we obtain the following theorem. 

THEOREM 5. Let conditions (Dl ), (D2), and (E) hold. Then the solution 
y, = 0, . ..) y,,, =0 of system (73) is (y,, . . . . y,)-exponentially stable. 
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