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terms is given. In the special case where the Lévy field is absent, one recovers a model
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see front matter r 2004 Elsevier B.V. All rights reserved.

.spa.2004.06.006

nding author. Tel./fax: +44-1792-602156.

dresses: albeverio@uni-bonn.de (S. Albeverio), e.lytvynov@swansea.ac.uk (E. Lytvynov),

ig@gmx.de (A. Mahnig).

https://core.ac.uk/display/82411211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/spa


ARTICLE IN PRESS

S. Albeverio et al. / Stochastic Processes and their Applications 114 (2004) 251–263252
1. Introduction

Let us consider an interest rate market with Ps;t being the price at time s of a bond
paying one unit at time tXs. Then

Ps;t ¼ exp �

Z t

s

F s;u du

� �
; ð1:1Þ

where Fs;t;, 0pspt, is called the instantaneous forward rate, or just the forward rate.
Let Rt denote the short rate at time tX0. The discounted bond-price process is then
given by

Zs;t :¼ Ps;t exp �

Z s

0

Ru du

� �
; 0pspt: ð1:2Þ

Heath et al. [8] (see also [7]) proposed a model of interest rates and their associated
bond prices in which the short rate and the forward rate are connected by

Rt ¼ F t;t; tX0 ð1:3Þ

and the forward rates are supposed to satisfy the stochastic differential equations

dFs;t ¼ aðs; tÞds þ
Xm

i¼1

biðs; tÞdW i
s: ð1:4Þ

Here, W 1; . . . ; W m are independent standard Brownian motions and aðs; tÞ and
biðs; tÞ are processes adapted to the natural filtration of the Brownian motions. This
model was, in fact, an extension of the earlier work by Ho [10].

Kennedy [12] (see also [13]), while following the approach of modeling the forward
rates, considered the case where fFs;t; 0pspto1g is a continuous Gaussian
random field which has independent increments in the s-direction, that is, in the
direction of evolution of ‘real’ time. This framework includes the Heath–Jarrow–
Morton (HJM) model in the case where the coefficients aðs; tÞ and biðs; tÞ in (1.4) are
deterministic. An important example of application of the Kennedy model is the case
where the forward rates are given by Fs;t ¼ ms;t þ X s;t with ms;t being deterministic
and X s;t a Brownian sheet (see, e.g., [1] for this concept). In the latter case, F s;t has
independent increments also in the t direction. Furthermore, this may be intuitively
thought of as the situation of (1.4) driven by an uncountably infinite number of
Brownian motion. Kennedy [12] gave a simple characterization of the discounted
bond-price process to be a martingale. In particular, he showed that the latter is true
if and only if the expectation ms;t of Fs;t, 0pspto1, satisfies a simple relation.

In Björk et al. [4,5] (see also [3]), it was pointed out that, in many cases observed
empirically, the interest rate trajectories do not look like diffusion processes, but
rather as diffusions and jumps, or even like pure jump processes. Therefore, one
needs to introduce a jump part in the description of interest rates. The authors of
these papers considered the case where the forward rate process fFs;t; 0psptg is
driven by a general marked point process as well as by a Wiener process [5], or by a
rather general Lévy process [4], and the maturity time tX0 is a continuous parameter
of the model. In particular, an equivalence condition was given for a given
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probability measure to be a local martingale measure, i.e., for the discounted bond-
price process fZs;t; 0psptg to be a local martingale for each tX0 [4, Propositions
5.3, 5.5], see also [8, Theorem 3.13]. This condition, formulated in terms of the
coefficients for the forward rate dynamics, generalizes the result of Heath et al. [7]
which was obtained for the diffusion case.

Other generalizations of the HJM model in which the forward rate process satisfies
stochastic differential equations with an infinite number of independent standard
Brownian motions (i.e., m ¼ 1 in (1.4)) were proposed in [14,15,18,19].

In the present paper, we follow the approach of Kennedy [12,13], but suppose that
the forward rates fF s;t; 0pspto1g are driven by a Lévy field without a diffusion
part. In particular, fFs;tg has independent increments in both the s and t directions.
Analogously to Kennedy [12], we give, in this case, a characterization of the
martingale measure. Furthermore, we do not assume that (1.3) a priori holds, but we
derive it from a certain condition of independence and the martingale property of the
discounted bond-price process.

We also show that, under a slight additional condition on the Lévy measure of the
field, it is possible to choose the initial term structure fm0;t; tX0g in such a way that
the forward interest rates are a.s. non-negative. This, of course, was impossible to
reach in the framework of the Gaussian model, which caused problems in some
situations (see [13, Section 1]). We then present two examples of application of our
results: the cases where Fs;t is a ‘‘Poisson sheet’’ (this case was discussed in [17],
respectively a ‘‘gamma sheet.’’ Finally, we mention the possibility of unification of
the approaches of Kennedy and of the present paper, by considering Fs;t as a sum of
a Gaussian field and an independent Lévy field, and thus having a process with a
diffusion part as well as a jump part.

2. The model based on Lévy fields

Let D :¼ C1
0 ðR2Þ denote the space of all real-valued infinitely differentiable

functions on R2 with compact support. We equip D with the standard nuclear space
topology, see, e.g., [2]. Then D is densely and continuously embedded into the real
space L2ðR2;dxdyÞ. Let D0 denote the dual space of D with respect to the
‘‘reference’’ space L2ðR2;dxdyÞ, i.e., the dual pairing between elements of D0 and D
is generated by the scalar product in L2ðR2;dxdyÞ. Thus, we get the standard
(Gel’fand) triple

D0 
 L2ðR2; dxdyÞ 
 D:

We denote by h�; �i the dual pairing between elements of D0 and D. Let CðD0Þ denote
the cylinder s-algebra on D0.

We define a centered Lévy noise measure as a probability measure n on ðD0;CðD0ÞÞ

whose Fourier transform is given byZ
D0

eiho;ji nðdoÞ ¼ exp

Z
Rþ

Z
R2

ðeitjðx;yÞ � 1� itjðx; yÞÞdxdy sðdtÞ
� �

; j 2 D

ð2:1Þ
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(see, e.g., [6, Chapter III, Section 4]). Here, Rþ ¼ ð0;þ1Þ and s is a positive measure
on ðRþ;BðRþÞÞ, which is usually called the Lévy measure of the process. We suppose
that s satisfies the following condition:Z

Rþ

t2 sðdtÞo1: ð2:2Þ

The existence of the measure n follows from the Minlos theorem.
For any j 2 D, we easily haveZ

D0

ho;ji2 nðdoÞ ¼
Z
Rþ

t2 sðdtÞ
Z
R2

jðx; yÞ2 dxdy: ð2:3Þ

Thus, the mapping J : L2ðR2;dxdyÞ ! L2ðD0; nÞ, DomðJÞ ¼ D, defined by

ðJjÞðoÞ :¼ ho;ji; j 2 D; o 2 D0;

may be extended by continuity to the whole L2ðR2;dxdyÞ. For each
f 2 L2ðR2;dxdyÞ, we set h�; f i :¼ Jf . Thus, the random variable (r.v.) ho; f i is well
defined for n-a.e. o 2 D0 and equality (2.3) holds for f replacing j.

Let K : ½0;1Þ
2
! Rþ be a continuous function. For each s; tX0, we define the r.v.

X s;t as follows:

X s;tðoÞ :¼ hoðx; yÞ; 1½0;s�ðxÞ1½0;t�ðyÞKðx; yÞi; n-a:e: o 2 D0; ð2:4Þ

where x; y denote the variables in which the dualization is carried out. It follows
from (2.1) that X s;t is centered and has independent increments in both the s and t

directions.
We note that, in the case where Kðx; yÞ � 1, fX s;t; 0psptg is a Lévy process for

each fixed t40. Indeed, it follows from (2.1) that the Fourier transform of X s;t is
given byZ

D0

eilX s;tðoÞ nðdoÞ ¼ exp st

Z
Rþ

ðeitl � 1� itlÞsðdtÞ
� �

; l 2 R:

In particular, the Lévy measure of the process fX s;t; 0psptg is equal to ts.
Let F s;t be the forward rate for date t at time s, 0pspto1. We suppose that

Fs;t ¼ ms;t þ X s;t; 0pspto1; ð2:5Þ

where ms;t is deterministic and continuous in ðs; tÞ on f0pspto1g. The price at time
s of a bond paying one unit at time tXs is then given by (1.1). We note that the
random variable

R t

s
X s;u du is n-a.s. well defined andZ t

s

X s;uðoÞdu ¼ hoðx; yÞ; 1½0;s�ðxÞ1½0;t�ðyÞKðx; yÞðt � ðs _ yÞÞi; n-a:e: o 2 D0:

ð2:6Þ
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Indeed, for each f 2 L2ðR2;dxdyÞ, we have by (2.3)Z
D0

Z t

s

X s;uðoÞdu

� �
ho; f i nðdoÞ

¼

Z t

s

Z
D0

X s;uðoÞho; f i nðdoÞdu

¼

Z
Rþ

t2 sðdtÞ
Z t

s

Z
R2

1½0;s�ðxÞ1½0;u�ðyÞKðx; yÞf ðx; yÞdxdydu

¼

Z
Rþ

t2 sðdtÞ
Z
R2

1½0;s�ðxÞ

Z t

s

1½0;u�ðyÞdu

� �
Kðx; yÞf ðx; yÞdxdy

¼

Z
Rþ

t2 sðdtÞ
Z
R2

1½0;s�ðxÞ1½0;t�ðyÞðt � ðs _ yÞÞKðx; yÞf ðx; yÞdxdy; (2.7)

which implies (2.6).
We denote by Ft, tX0, the s-algebra generated by the r.v.’s Fu;v, 0pupt, upv,

which describes the information available at time t.
For tX0, let Rt be the short rate at time t. We suppose that fRt; tX0g is a

stochastic process defined on the probability space ðD0;CðD0Þ; nÞ and adapted to the
filtration fFt; tX0g.

It is our aim now to find conditions under which the discounted bond-price
process given by (1.2) is a martingale. Following Kennedy [12], we make the
following assumption:

Assumption (A). For any 0psoto1, the r.v. ðRt � F s;tÞ is independent of Fs.

Lemma 2.1. Suppose that Rt 2 L2ðD0; nÞ, t40. Then Assumption (A) holds if and

only if

Rt ¼ X t;t þ rt; n-a:e:; ð2:8Þ

where

rt ¼

Z
D0

Rt dn; t40: ð2:9Þ

Remark 2.1. In fact, in the above lemma, the assumption that Rt 2 L2ðD0; nÞ may be
weakened.

Proof. The space L2ðD0; nÞ is unitarily isomorphic to the symmetric Fock space over
L2ðRþ � R2;s� dxdyÞ, i.e., there exists a unitary operator

FðL2ðRþ � R2;s� dxdyÞÞ 3 f

¼ ðf ðnÞ
Þ
1
n¼0 7!If ¼ f ð0Þ

þ
X1
n¼1

I ðnÞðf ðnÞ
Þ 2 L2ðD0; nÞ;

where I ðnÞðf ðnÞ
Þ is a (certain image of a) multiple stochastic integral, cf. [16] (see also

[11] for the case of a usual Lévy process).
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Let Gt denote the subspace of L2ðD0; nÞ consisting of Ft-measurable functions,
t40. Denote

At :¼ Rþ � fðx; yÞ 2 R2 : 0pxpt; xpyo1g:

Analogously to the proof of Lemma 3.3 in [16], one can show that a function
F 2 L2ðD0; nÞ belongs to Gt if and only if

F ¼ f ð0Þ
þ

X1
n¼1

I ðnÞðf ðnÞ
Þ; ð2:10Þ

where for each nX1 the function f n 2 L2ðRþ � R2;s� dxdyÞ�̂n has support in An
t ,

i.e., f ðnÞ
¼ f ðnÞ1An

t
. Here, �̂ denotes symmetric tensor product.

Let us fix any s such that 0osot and take any F 2 Gt which is independent ofFs.
Then, for any G 2 Gs, the covariance of F and G with respect to the measure n is
equal to zero. This implies that

F ¼ f ð0Þ
þ

X1
n¼1

I ðnÞðf ðnÞ1An
t nAn

s
Þ:

We also note that f ð0Þ
¼

R
D0 F dn.

Next, by (2.4), for any s; tX0, we have

X s;t ¼ I ð1Þðt1½0;s�ðxÞ1½0;t�ðyÞKðx; yÞÞ; n-a:e: ð2:11Þ

Now, suppose that (A) holds. Since Rt is Ft-measurable, we have a representation

Rt ¼ rt þ
X1
n¼1

I ðnÞðgðnÞ1An
t
Þ; ð2:12Þ

where rt is given by (2.9) and gðnÞ 2 L2ðRþ � R2;s� dxdyÞ�̂n.
Furthermore, by Assumption (A), for any 0osot, the function Rt � rt � X s;t is

independent of Fs. By (2.11) and (2.12)

Rt � rt � X s;t ¼ I ð1Þðgð1Þðt;x; yÞ1At
ðt;x; yÞ � t1½0;s�ðxÞ1½0;t�ðyÞÞ þ

X1
n¼2

I ðnÞðgðnÞ1An
t
Þ

and therefore

gð1Þðt;x; yÞ ¼ t1½0;s�ðxÞ1½0;t�ðyÞ on As;

gðnÞ ¼ 0 on An
s ; nX2: (2.13)

Letting s ! t, we get from (2.13)

gð1Þðt;x; yÞ ¼ t1½0;t�ðxÞ1½0;t�ðyÞ on At;

gðnÞ ¼ 0 on An
t ; nX2: (2.14)

By (2.11), (2.12) and (2.14), we deduce that (2.8) and (2.9) hold.
On the other hand, (2.8) and (2.9) evidently imply Assumption (A). &
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Taking Lemma 2.1 into account, in what follows we will assume that the short rate
Rt is given by formulas (2.8) and (2.9). We will additionally assume that rt is
continuous in t on ½0;1Þ.

Theorem 2.1. The following statements are equivalent:
(a)
 For each tX0, the discounted bond-price process fZs;t; Fs; 0psptg is a

martingale.

(b)
 We have, for all s; tX0, spt,

ms;t ¼ m0;t þ
Z
Rþ

Z t

0

Z s

0

tKðx; yÞð1� e�tKðx;yÞðt�ðx_yÞÞÞdxdysðdtÞ ð2:15Þ

and for all tX0

Rt ¼ F t;t; n-a:e: ð2:16Þ
Ps;t ¼ Eðe
�
R t

s
Ru du

j FsÞ for all s; tX0; spt:
(c)

Proof. We first show the equivalence of (a) and (b). By our assumption, (A) holds.
Hence, analogously to the proof of Theorem 1.1 in [12], we conclude that (a) is
equivalent to the following condition to hold:Z

D0

exp �

Z t

s1

ðFs1;u � F s2;uÞdu �

Z s1

s2

ðRu � F s2;uÞdu

� �
dn ¼ 1 ð2:17Þ

for all 0ps2ps1pto1. By (2.4), (2.5), (2.8), and (2.9), equality (2.17) is equivalent
to Z

D0

exp �

Z t

s1

hoðx; yÞ; 1½s2;s1�ðxÞ1½0;u�ðyÞKðx; yÞidu

�

�

Z s1

s2

hoðx; yÞ; 1½s2;u�ðxÞ1½0;u�ðyÞKðx; yÞidu

�
nðdoÞ

¼ exp

Z t

s1

ðms1;u � ms2;uÞdu þ

Z s1

s2

ðru � ms2;uÞdu

� �
(2.18)

for all 0ps2ps1pto1. Analogously to (2.6) and (2.7), we haveZ t

s1

hoðx; yÞ; 1½s2;s1�ðxÞ1½0;u�ðyÞKðx; yÞidu þ

Z s1

s2

hoðx; yÞ; 1½s2;u�ðxÞ1½0;u�ðyÞKðx; yÞidu

¼ hoðx; yÞ; 1½s2;s1�ðxÞ1½0;t�ðyÞKðx; yÞðt � ðx _ yÞÞi; n-a:e: o 2 D0:

Hence, it follows from (2.1) that condition (2.18) is equivalent toZ
Rþ

Z t

0

Z s1

s2

ðe�tKðx;yÞðt�ðx_yÞÞ � 1þ tKðx; yÞðt � ðx _ yÞÞÞ dxdy sðdtÞ

¼

Z t

s1

ðms1;u � ms2;uÞdu þ

Z s1

s2

ðru � ms2;uÞdu (2.19)
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for all 0ps2ps1pto1. We remark that the function under the sign of integral on
the left-hand side of (2.19) is integrable. Indeed, let us set Ct :¼ supx;y2½0;t�Kðx; yÞ.
Then, for all t 2 ð0; 1� and x; y 2 ½0; t�, we have

je�tKðx;yÞðt�ðx_yÞÞ � 1þ tKðx; yÞðt � ðx _ yÞÞj

p
X1
n¼2

ðtCttÞ
n

n!
pt2C2

t t2 expðtCttÞpt2C2
t t2 expðCttÞ: (2.20)

This, together with the fact that
R
ð0;1� t

2 sðdtÞo1, yields the integrability on
ð0; 1� � ½0; t� � ½s1; s2�. Furthermore, for t 2 ð1;þ1Þ and x; y 2 ½0; t�, we have

je�tKðx;yÞðt�ðx_yÞÞ � 1þ tKðx; yÞðt � ðx _ yÞÞjp1þ ttCt:

This, together with the fact that
R
ð1;þ1Þ

t sðdtÞo1, completes the proof of the
integrability.

We now fix t40 and suppose, for a moment, that ms;t has the following form:

ms;t ¼ m0;t þ
Z t

0

Z s

0

Ctðx; yÞdxdy; ð2:21Þ

where Ctðx; yÞ is an integrable function on ½0; t�2, and

rt ¼ mt;t; tX0: ð2:22Þ

Then,Z t

s1

ðms1;u � ms2;uÞdu þ

Z s1

s2

ðru � ms2;uÞdu

¼

Z t

0

Z s1

s2

Ctðx; yÞðt � ðx _ yÞÞdxdy: (2.23)

Comparing (2.23) with (2.19), we see that condition (2.19) is, at least formally,
satisfied if Ctðx; yÞ has the form

Ctðx; yÞ ¼ ðt � ðx _ yÞÞ�1

Z
Rþ

ðe�tKðx;yÞðt�ðx_yÞÞ � 1

þ tKðx; yÞðt � ðx _ yÞÞÞ sðdtÞ: (2.24)

To show that this inserted into (2.21) indeed gives a solution of (2.19), we have to verify
that the Ctðx; yÞ given by (2.24) is integrable on ½0; t�2. Analogously to (2.20), we getZ

ð0;1�

Z t

0

Z t

0

jðt � ðx _ yÞÞ�1
ðe�tKðx;yÞðt�ðx_yÞÞ � 1

þ tKðx; yÞðt � ðx _ yÞÞÞjdxdysðdtÞ

p
Z
ð0;1�

Z t

0

Z t

0

X1
n¼2

tnKðx; yÞnðt � ðx _ yÞÞn�1

n!
dxdysðdtÞ

pt3C2
t e

tCt

Z
ð0;1�

t2 sðdtÞo1: (2.25)
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Next, Z
ð1;þ1Þ

Z t

0

Z t

0

jðt � ðx _ yÞÞ�1
ðe�tKðx;yÞðt�ðx_yÞÞ � 1

þ tKðx; yÞðt � ðx _ yÞÞÞjdxdysðdtÞ

p
Z
ð1;þ1Þ

Z t

0

Z t

0

jðt � ðx _ yÞÞ�1
ðe�tKðx;yÞðt�ðx_yÞÞ � 1ÞjdxdysðdtÞ

þ t2Ct

Z
ð1;þ1Þ

t sðdtÞ

p2t2Ct

Z
ð1;þ1Þ

t sðdtÞ; (2.26)

where we used the estimate: 1� e�apa for all aX0. Thus, by (2.21), (2.22), and
(2.24)–(2.26), statement (a) holds for

ms;t ¼ m0;t þ
Z
Rþ

Z t

0

Z s

0

ðt � ðx _ yÞÞ�1
ðe�tKðx;yÞðt�ðx_yÞÞ � 1

þ tKðx; yÞðt � ðx _ yÞÞÞdxdysðdtÞ (2.27)

and Rt ¼ F t;t n-a.e., tX0. As will be seen from below, the right-hand side of (2.15) and
(2.27) do indeed coincide, so that (b) implies (a).

Let us now suppose that (a), or equivalently (2.19), holds. Setting in (2.19) s2 ¼ s

and s1 ¼ t, we getZ
Rþ

Z t

0

Z t

s

ðe�tKðx;yÞðt�ðx_yÞÞ � 1þ tKðx; yÞðt � ðx _ yÞÞÞ dxdysðdtÞ

¼

Z t

s

ðru � ms;uÞdu; 0pspto1: (2.28)

Differentiating (2.28) in t yieldsZ
Rþ

Z t

0

Z t

s

tKðx; yÞð1� e�tKðx;yÞðt�ðx_yÞÞÞdxdysðdtÞ ¼ rt � ms;t;

0pspto1: (2.29)

Setting s ¼ t in (2.29) gives (2.21), or equivalently (2.16). Next, setting s ¼ 0 in (2.29)
gives Z

Rþ

Z t

0

Z t

0

tKðx; yÞð1� e�tKðx;yÞðt�ðx_yÞÞÞdxdysðdtÞ ¼ rt � m0;t; tX0: ð2:30Þ

Subtracting (2.29) from (2.30) implies (2.15). Thus, (b) implies (a). Furthermore, this
also yields that the right-hand side of (2.15) and (2.27) coincide, which finishes the
proof of the equivalence of (a) and (b).
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Let us now show the equivalence of (b) and (c). Using Assumption (A),
analogously to Kennedy [12], we conclude that (c) is equivalent toZ

D0

exp �

Z t

s

ðRu � F s;uÞdu

� �
dn ¼ 1; 0pspto1: ð2:31Þ

But (2.31) is a special case of (2.17) with s2 ¼ s and s1 ¼ t. Therefore, (b) implies (c).
On the other hand, it follows from the proof of (a))(b) that (2.31) implies (b). Thus,
the proof is complete. &

Corollary 2.1. Suppose that the Lévy measure s additionally satisfies

htis :¼

Z
Rþ

t sðdtÞo1: ð2:32Þ

Suppose that statement (a) of Theorem 2.1 holds and suppose that the initial term

structure fm0;t; tX0g satisfies

m0;tX
Z t

0

Z t

0

Kðx; yÞdxdy � htis; tX0: ð2:33Þ

Then the forward rate process fFs;t; 0pspto1g and the spot rate process fRt; tX0g
take on non-negative values n-a.s.

Proof. By (2.5) and Theorem 2.1, we get

Fs;t ¼ m0;t �
Z
Rþ

Z t

0

Z s

0

tKðx; yÞe�tKðx;yÞðt�ðx_yÞÞ dxdysðdtÞ þ eX s;t;

0pspto1;

where

eX s;t :¼ X s;t þ

Z t

0

Z s

0

Kðx; yÞdxdy � htis:

Under condition (2.32), the measure n is concentrated on the set of all signed
measures of the form

P1

n¼1 tndðxn;ynÞ
ðdxdyÞ � htis dxdy, where da denotes the Dirac

measure with mass at a, tn 2 supps, n 2 N, and fðtn;xn; ynÞg
1
n¼1 is a locally finite set

in Rþ � R2, see, e.g., Lytvynov [16]. Therefore, by (2.4), eX s;t takes on non-negative
values n-a.s. Furthermore, it follows from (2.33) that

m0;t �
Z
Rþ

Z t

0

Z s

0

tKðx; yÞe�tKðx;yÞðt�ðx_yÞÞ dxdysðdtÞX0; tX0; 0pspt;

from where the statement about F s;t follows. Finally, by Theorem 2.1, (2.16) holds,
which implies the statement about Rt. &

Let us consider two examples of a measure n satisfying the assumptions of
Theorem 2.1 and Corollary 2.1.
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Example 1 (Poisson sheet). We take as n the centered Poisson measure pz with
intensity parameter z40, see, e.g., [9]. The Lévy measure s has now the form zd1.
Thus, the Fourier transform of pz is given by

Z
D0

eiho;ji pzðdoÞ ¼ exp

Z
R2

ðeijðx;yÞ � 1� ijðx; yÞÞ zdxdy

� 	
; j 2 D:

We set Kðx; yÞ � 1. Then, X s;t given by (2.4) with the underlying probability measure
n ¼ pz is, by definition, a Poisson sheet, and for each fixed t40, fX s;t; 0psptg is a
centered Poisson process with intensity parameter tz. Formula (2.15) now reads as
follows:

ms;t ¼ m0;t þ z ð2� sÞes�t � 2e�t � s þ st

 �

:

Condition (2.33) now means m0;tXzt2, tX0.

Example 2 (Gamma sheet). We take as n the centered gamma measure gz with
intensity parameter z40, see, e.g., [16]. The Lévy measure s on Rþ has the form

sðdtÞ ¼
e�t

t
zdt:

The Fourier transform of gz may be written as follows:

Z
D0

eiho;ji gzðdoÞ ¼ exp �

Z
R2

ðlogð1� ijðx; yÞÞ þ jðx; yÞÞ zdxdy

� �
;

j 2 D; jjjo1:

We set Kðx; yÞ � 1. Then, X s;t given by (2.4) with the underlying probability
measure n ¼ gz is, by definition, a gamma sheet, and for each t40, fX s;t; 0psptg is a
centered gamma process with intensity parameter tz. Formula (2.15) now reads as
follows:

ms;t ¼ m0;t þ z st þ 2s þ 2ð1þ tÞ log
1þ t � s

1þ t

� �
� s logð1þ t � sÞ

� �
:

Condition (2.33) means m0;tXzt2, tX0.

It is possible to construct a model of forward interest rates which unifies the
approach of Kennedy [12] to modeling the forward interest rate with our approach.
Indeed, consider F s;t in the form

Fs;t ¼ ms;t þ X s;t þ Y s;t; 0pspto1; ð2:34Þ

where ms;t and X s;t are as in formula (2.5) (thus, as in our approach) and Y s;t is a
centered continuous Gaussian random field that is independent of X u;v, 0pupvo1,



ARTICLE IN PRESS

S. Albeverio et al. / Stochastic Processes and their Applications 114 (2004) 251–263262
and has covariance

CovðY s1;t1 ;Y s2;t2 Þ ¼ cðs1 ^ s2; t1; t2Þ; 0psipti; i ¼ 1; 2;

with a function c satisfying cð0; t1; t2Þ � 0 (as in Kennedy’s approach). Furthermore,
set

Rt ¼ rt þ X t;t þ Y t;t; tX0; ð2:35Þ

where rt is deterministic and continuous in t.
The following theorem may be proved by combining the proof of Theorem 1.1 in

Kennedy [12] and the proof of Theorem 2.1.

Theorem 2.2. Theorem 2.1 remains valid for the forward rates fFs;t; 0pspto1g

given by (2.34) and the short rates given by (2.35) if we set the deterministic term ms;t in

statement (b) to be

ms;t ¼ m0;t þ
Z t

0

Z s

0

Z
Rþ

tKðx; yÞð1� e�tKðx;yÞðt�ðx_yÞÞÞsðdtÞdxdy

þ

Z t

0

cðs ^ u; u; tÞdu

for all 0pspto1.
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