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We give an introduction to the theory of weak Hopf algebras proposed as a
coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic
approach keeping as close as possible to the “classical” theory of Hopf algebras.
The emphasis is put on the new structure related to the presence of canonical
subalgebras A" and AR in any weak Hopf algebra A4 that play the role of
non-commutative numbers in many respects. A theory of integrals is developed in
which we show how the algebraic properties of A, such as the Frobenius property,
or semisimplicity, or innerness of the square of the antipode, are related to the
existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak
Hopf algebras we prove the existence of a unique Haar measure 4 € 4 and of a
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canonical grouplike element g € A implementing the square of the antipode and
factorizing into left and right elements g = g; gz', g, € AL, gp € AR Further
discussion of the C*-case will be presented in Part Il.  © 1999 Academic Press
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1. INTRODUCTION

Weak Hopf algebras have been proposed [2, 14, 20] as a new generaliza-
tion of ordinary Hopf algebras that replaces Ocneanu’s paragroup [16], in
the depth 2 case, with a concrete “Hopf algebraic” object. The earlier
proposals of face algebras [8] or quantum groupoids [17] are actually weak
Hopf algebras even if not the most general ones. Also, the (finite-dimen-
sional) generalized Kac algebras of Yamanouchi [25] are weak Hopf alge-
bras in our sense [14], albeit with an involutive antipode.

In contrast to other Hopf algebraic constructions such as the quasi-Hopf
algebras [6] or the weak quasi-Hopf algebras and rational Hopf algebras [7,
11, 22] weak Hopf algebras are coassociative. This allows one to define
actions, coactions, and crossed products as easily as in the Hopf algebra
case. On the other hand weak Hopf algebras have ‘“weaker” axioms
related to the unit and counit: The comultiplication is non-unital, A(1) # 1
® 1 (like in weak quasi-Hopf algebras) and the counit is only “weakly”
multiplicative, e(xy) = e(x1;))e(l,y). This kind of “weakness” is the
“strength” of weak Hopf algebras because it allows (even in the finite-di-
mensional and semisimple case) the weak Hopf algebra to possess non-in-
tegral (quantum) dimensions.
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Thus weak Hopf algebras are not special cases of weak quasi-Hopf
algebras and also not more general than them. Nevertheless, in situations
where only the representation category of the quantum group matters,
these two concepts are equivalent. This is, of course, not surprising in view
of MacLane’s theorem on the equivalence of relaxed and strict monoidal
categories [12]. In fact not all of the potential of this theorem is utilized by
weak Hopf algebras because their representation category is not quite
strict: Only the associator is trivial but not the left and right isomorphisms
of the monoidal unit. Although a general analysis clarifying the role of
representation categories of weak Hopf algebras within the set of monoidal
categories is still missing the examples constructed in [2] using Ocneanu’s
cocycle suggest that they play a rather fundamental role, as long as they
can accommodate to arbitrary 6;j-symbols.

So far weak Hopf algebras have been considered only under the addi-
tional assumption of finite dimensionality. Although a good deal of the
results can be generalized to the infinite-dimensional case, finite dimen-
sion is particularly attractive because it implies self-duality. Just like finite
Abelian groups or finite-dimensional Hopf algebras, the finite-dimensional
weak Hopf algebras (WHA) are self-dual in the following sense. If A is a
WHA then its dual space A is canonically equipped with a weak Hopf
algebra structure. Furthermore this duality is reflexive, (A~ = A. This is
a feature which makes WHAs more natural objects of study than either
finite (non-Abelian) groups or finite-dimensional (weak) quasi-Hopf alge-
bras.

The main motivation for studying WHAs comes from quantum field
theory and operator algebras and consists roughly of the following two
symmetry problems.

I. If N CM isan inclusion of algebras satisfying certain conditions
then find a (unique) “quantum group” G and an action of G on M such
that N = MY, the invariant subalgebra.

I1.  The dual problem is to find a quantum group G acting on N such
that M is isomorphic to the crossed product N X G.

Of course, determining the appropriate notion of quantum group, as well
as its action, is part of the problem. If N C M is a finite index irreducible
depth 2 inclusion of von Neumann factors then the answer is known by [10]
to be a finite-dimensional C*-Hopf algebra. In [15] we showed that if we
allowed the inclusion to be reducible and N and M to have arbitrary
finite-dimensional centers then the appropriate quantum group was a
C*-weak Hopf algebra. Even in case of inclusions of certain associative
(non-*) algebras the notion of a WHA over an arbitrary field K, intro-
duced in this paper, may provide a useful invariant.
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In Section 2 we introduce the axioms of weak bialgebras and weak Hopf
algebras over a field K and discuss their consequences. If K = C, the
complex field, then these axioms are equivalent to those of [20]. The
present axioms have the advantage of being manifestly self-dual and
almost each of them having an ancestor among the Hopf algebra axioms
which it generalizes. In discussing the consequences particular attention is
paid to the canonical subalgebras A~ and A% present in any WHA both
of which reducing to the scalars K1 if 4 is a Hopf algebra. From many
points of view these subalgebras behave like hon-commutative generaliza-
tions of numbers. Just to mention some: 1. A- and AR are separable
K-algebras. 2. The trivial left A-module is a representation on the K-space
A" (or on AF). 3. The dual weak Hopf algebra A have left and right
subalgebras A~ and A% that are isomorphic to A% and A~ respectively.
Of course, to realize the idea of AL and A% being *“non-commutative
numbers” one should completely get rid of the field K from the outset. As
yet we have no concrete proposal for this scenario.

Section 3 is devoted to the study of integrals in weak Hopf algebras.
Using the notion of weak Hopf modules which is a generalization of the
Hopf modules [1, 19] we show that non-zero integrals exist. A weak Hopf
version of Maschke’s theorem characterizes semisimple WHAs as those
possessing normalized integrals. Other important classes of WHAs are
those which are Frobenius algebras. They are characterized by possessing
non-degenerate left integrals. This class is a self-dual class by the duality
theorem of non-degenerate integrals. We conclude with giving necessary
and sufficient criteria for the existence of Haar integrals, i.e., normalized
non-degenerate two-sided integrals in a WHA.

Section 5 contains the basic properties of weak C*-Hopf algebras such
as the existence of a Haar integral # and a canonical grouplike element
g > 0 implementing $? and the modular automorphism of the Haar
measure. As a consequence of the existence of Haar measures the dual of
a C*-weak Hopf algebra is a C*-weak Hopf algebra again. Further analysis
of C*-WHAs will be given in Part Il where we discuss the representation
category and a notion of dimension which turns out to be non-commuta-
tive in case of solitonic representations [3].

2. THE WEAK HOPF CALCULUS

2.1. The Axioms

DeriNITION 2.1. A weak bialgebra (WBA) is a quintuple (A, u, u, A, &)
satisfying Axioms 1-3 below. If (A, w, u, A, &, S) satisfies Axioms 1-4 below
it is called a weak Hopf algebra (WHA).
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Axiom 1. A is a finite-dimensional associative algebra over a field K
with multiplication u: A ® A - A and unit u: K - A. l.e.,, uw and u are
K-linear and satisfy

Associativity: we(u ® id) = po(id ® n), (1.1)
Unit property: we(u ® id) = id = wo (id ® u). (1.2)

(Later on we suppress w and u, just write xy for u(x, y), and use the unit
element 1 = u(1) instead of u.)

Axiom 2. A is a coalgebra over K with comultiplication A: A - A ® A
and counit ¢: A — K. l.e,, A and ¢ are K-linear and satisfy

Coassociativity: (A ® id)e A = (id ® A) oA, (1.3)
Counit property: (e ® id)c A = id = (id ® ) A. (1.4)

Axiom 3. For compatibility of the algebra and coalgebra structures we
assume

Multiplicativity of the coproduct: For all x,y € A4,
A(xwy) = A(x)A(y)- (1.5)
Weak multiplicativity of the counit: For all x, y, z € A4,

e(wz) = () e(Y2)2). (1.6a)
e(xyz) = S(W(Z))S(Y(l)z)- (1.6b)

Weak comultiplicativity of the unit,
A%(1) = (A(1) ® 1)(1 ® A(D)), (1.7a)
A%(1) = (1 ® A(1))(A(1) ® 1). (1.7b)

Axiom 4. There exists a K-linear map S: 4 — A, called the antipode,
satisfying the following

Antipode axioms: Forall x € 4,
X)S(xp) = e(l(l)x)l(z), (1.8a)
S(xq) %@ = Loye(xlg), (1.8b)
S(x(l))x(z)S(x(g)) =8(x). (1.9)
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In Egs. (1.6)-(1.9) we used a standard suffix notation for (iterated)
coproducts, omitting as usual summation indices and a summation symbol.

In the terminology of [14] (A, w, u, A, &) is called a weak bialgebra if it
satisfies the axioms (1.1)—(1.5). There a weak bialgebra is called monoidal
if it satisfies (1.6) and it is called comonoidal if it satisfies (1.7). As has
been explored in detail in [14], these (co)monoidality axioms are precisely
designed to render the category of 4-modules (the category of 4-comod-
ules, respectively) monoidal.

The dual of a weak bialgebra (weak Hopf algebra) A _is the dual space
A= Hom (A4, K) equipped with structure maps g, i, A,z (,S) defined
by transposing the structure maps of 4 by means of the canonical pairing
(, )»AXA->K,

(o, x) = (@ ® Y, A(x)),
(']\.,x) = g(x),

(A(¢), x®y) = (o, 1),
2(e) =<e,1),

(8(@), x) = (o, 8(x)),

where o, € A and x,y €A.

Let f and g be maps from the m-fold tensor product 4®™ to the n-fold
tensor product A®" such that they are composites of tensor products of
the structure maps u,u, A, ¢, S and of the twist maps ,; interchanging
the ith and the jth A factors. Then the equality f =g is called an
A-statement. Similarly one defines the A-statements Now every A- state-
ment Q:: f = g determines an equivalent A-statement Q7:: f7 = g7 ob-
tained by reversing the order of composition and replacing w with A u
with 2, A with @, ¢ with 7, and S with S. The statement Q7 is called the
transpose of Q. If we now substitute u,u, A, &, S, respectively, in place of
,i,A, 2,8 in the statement Q7 we obtain a new A-statement Q~ = f~
= g~ which is not equivalent to Q in general. This O~ will be called the
dual of Q. For example, one can easily verify that the WBA axioms satisfy
(1.1~ =(13),(1.2)~ = (14,15~ = (15),(1.6a)~ = (1.7a), and (1.6b) ~ =
(1.7b). Thus the weak bialgebra axioms form a self-dual set of statements.
This implies that the dual of a WBA is a WBA, too. The same holds for
weak Hopf algebras, since each one of the antipode axioms is a self-dual
statement. As a consequence of self-duality if Q is a true statement in a
WBA or in a WHA then Q~ s also true there. This principle extends also
to statements involving both 4 and A structure maps and canonical
pairing(s).
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As has been proven in [14], the above self-dual set of WHA axioms are
equivalent to the non-self-dual set of axioms given in [20]. In this work we
gradually reproduce all axioms of [20] as a consequence of the present
ones.

For a weak Hopf algebra (4,1, A, £, ) the following conditions are
equivalent

e A is a Hopf algebra;

A =1 1;

e(xy) = e(x)e(y),

S(xq)x o) = Le(x);

X1yS(x) = Le(x).

The proof of these assertions are either trivial or will become trivial after

acquainting the weak Hopf calculus developed in the next subsections, see
also [14].

2.2. Weak Bialgebras
In a WBA define the maps M %, M *: 4 — A by the formulae

MA(x) = e(lyx)l, M5 (x) =1y e(xly), (2.1)

and introduce the notation A" := M %(A), A% = [17(A) for their im-
ages. The analogue objects in the dual bialgebra A4 will be denoted by
M MR A and A%, respectively.

Substituting y = 1 in Axiom (1.6b) one obtains immediately the identi-
ties

e(x M5 (y)) = e(w), (2.2a)
e(M*(x)y) = (). (2.2b)
Mt . Nt =nk, (2.3a)
MR o M* =Mk, (2.3b)

As a first application of the duality principle take! the duals of Egs. (2.2a)
and (2.2b),

1y ® M (1) = 1q) ® 1 = M (1y) ® 1y,

YIn taking the transpose of a statement WithJ—lL/R use the fact that in a WBA
Co, TIE () = Ay ® Tpy Ly ® 100, 1) = <17 (), x) and similarly (¢, 1% (1))
= (M* (), ).
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Then these are identities in any WBA. It follows that
A(1) e AR ® A", (2.4)
LEMMA 2.2, The counit defines a non-degenerate bilinear form
xbedt, yRedA® - g(yfx")ek.
Hence A* = AR as K-spaces.
Proof.
e(yfxt)=0 Wyfeda® = x'=4g(lyx")1, =0,
e(yfxt)=0 Vxteds = yR= 1(1)s(yR1(2)) =0,
where we used (2.4). Q.E.D.

Returning to Egs. (2.2a) and (2.2b) and substituting them into the
definitions (2.1) one obtains

MA(x MF (y)) = M (), (2.52)
A% (MR (x)y) = M¥(xy). (2.5b)
The duals of (2.5a) and (2.5b),
A(AY) cA ® AL, (2.6a)
A(AR) cAR ® A (2.6b)

tell us that 4% and AR are left, respectively, right coideals in the
coalgebra A. Using Axiom (1.7b) we can obtain explicit expressions for
these coproducts

A(xt) = 8(1(1)XL)1(2) ® 1, = 8(1(1,)#)1(1)1(2,) ® 1, = 1gx" ® 1,
(2.7a)
A(x®) =14 ® 1(2)g(xR1(3)) =1y ® 1(1,)1(2)g(xR1(2,)) =14 ®x"1y,

(2.7b)

where x* and x® are meant to denote arbitrary elements of A%, resp.,
AR,
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LEMMA 2.3. For all x € A we have the identities

Xa) ® |_|L(x(2)) =1yx ® 1,), (2.8a)

mi (Xa) ®Xo) =1y ®x1y,. (2.8b)
Proof. Using Axiom (1.7b) one obtains

Xa) ® £(10)Xp)le) = loyXae(lole)Xe) © 1o
= lyxwe(le*e) ® la
= 1(1)x ® 1(2),

Lye(xale) ® Xe = 1a) @ e(x)lale)Xele)
= 14 ® (x0)le) Xe)le

=14 ®xl,,.

Q.E.D.

As a consequence we obtain the dual statements
x b (y) = e(xXq)y) Xy (2.92)
M* (X)y =y e(ve)- (2.9b)

PROPOSITION 2.4. Let A be a WBA. Then AY and AR are subalgebras of
A containing 1 and

xbyR =yRxl forallx® € A* and yR € A%, (2.10)
Proof. Egs. (2.8a) and (2.8b) imply the relations

L

Lolay ® 1o ® 1oy =14, ® T17(1,) © 1), (2.11a)
R

gy ® 10y ® 110 = 14, ® T17(1,) ® 1) (2.11b)

Now either Axiom (1.7a) or Axiom (1.7b) show that on the RHS of (2.11a)
the first tensor factor belongs to A% and on the RHS of (2.11b) the last
factor belongs to A%. This is sufficient for A%, respectively A" to be
closed under multiplication. Hence they are algebras. Obviously 1 € AX N
AR since M *(1) =1 = M*~Q). To see commutativity of left and right
elements just compare Axioms (1.7a) and (1.7b). Q.E.D.
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As the duals of the statements that 4% and AR are subalgebras we
obtain that Ker M * and Ker M ® are coideals of the coalgebra A4, i.e.,

A(Ker IM¢) c A4 ® Ker M° + Ker IM° ® A4,
(2.12)

s(KerM) =0, C=1L,R.

On the other hand, being the annihilator of the left coideal AL, Ker M *
is a left ideal of the algebra A and similarly, Ker I * is a right ideal.

LEMMA 2.5. Consider A" and A as left A*-modules by left multiplication.
Then M5 A — A" is a left A*-module map. Analogously, M % 4 — AR
is a right AR-module map. That is to say

(M5 (x)y) = MH(x) 0" (p), (2.13a)
M* (x M7 () = M%(x) N*(y) (2.13b)

hold true for all x,y € A.

Proof. At first use the definition of M “/%, then Egs. (2.2a) and (2.2b),
and finally Egs. (2.7a) and (2.7b),

£(1q) M (1)y)1g,
&(1a) " (x) M (1)1 = M (x) T (),
M (x M5 () = 1ge(x OF (y)l(z))

= Laye(M*(x) M* (1)) = ME(x) M7 ().

Q.E.D.

I_IL(FIL(x)y)

Our next assertion about WBAs establishes a canonical isomorphism
between the left (right) subalgebra of 4 and the right (left) subalgebra of
A. Since the existence of a common non-trivial subalgebra of 4 and A for
Hopf algebras is by far not typical, this result is the first hint toward the
fundamental role A- and AR play in the theory of WHAS.

To formulate the statement we introduce the Sweedler arrow notation

x = 0= @lee X)), ¢ = x = {Qu), X)) (2.14)

Since A is the dual WBA of /'1\ the Sweedler arrows ¢ — x and x — ¢
are also defined.
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LEMMA 2.6. The map kk: x — (x —~1) is an algebra isomorphism

from A" onto A®. The map k®: x® — (1 — x®) is an algebra isomorphism
from AR onto A*. Furthermore, the restrlctlon of the canonical pairing to
AL x AL, AR x AR, A- X AR, or to AR X A" is non-degenerate.

Proof. Using Egs. (2.11a) and (2.11b) and the defining properties
(o —x,y) =L@, xy),... etc. of the Sweedler arrows one can easily verify
that

(xF=Dy* - 1) =T Lo ey 2T v
1<1><1(2), XL><1(3),yL>
= xlyl =1, (2.15)
(1 “— XR)( = <1(1), X ><1(1) y >:I'(Z):I'(Z)
= <1(1),XR><1(2),)1R>1(3)
=1 < xRyR, (2.16)
(1 —=xF)=1=1,1 xR 1,) =1, e(xR1,) = x*, (2.17)
L (x" = 1) = Ly x5 = D1y = g(1nx")1, =x". (2.18)

Thus k% (kR®) is an algebra map with inverse k:(k7). As for the
non-degeneracy

(pf,xt) =0 Ve
= xb =1, xM )1, = (1 = 1,251, = 0
(et xty =0 Vo'
= xb =1, 1x")1, = A = 14, x")1, =0,
and the transpose of these prove the claim. Q.E.D.

If {b;} is a K-basis of 4 and {8} c A is its dual basis, (B, b,-> =5
then '

Zi‘l (b)®ﬁ—2b®rl(ﬂ)—1 (1)®1(2), (2.19a)

Y Nt(p)ep=Ybe MR(B) = 14 ® 1, — 1. (2.19b)
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This can be easily seen by pairing both sides of any of these equations with
¢ ® x and applying the definitions (2.1).

The four arrow identities of the next remark are frequently used in later
computations.

Remark 2.7. Let A be a WBA. Then for all ¢ € A, xt € AL, and
xR e AR

xb = o= (xF =1, (2.20a)
o — xR = (1 —x"), (2.20b)
o —xt=(1<xl)e, (2.21a)
xR = o= p(xf = 1). (2.21b)

2.3. Weak Hopf Algebras

In this subsection we show how the existence of an antipode relates
ML, A% with M ® 4% and derive the expected properties of S that have
been axioms in earlier formulations. The two most important results will
be invertibility of the antipode and separability of the algebras 4 and
AR, Let us start with the question of uniqueness of the antipode.

LEMMA 2.8. The unit, the counit, and the antipode, if they exist, are
unique. Le., if (A, w,u,A,e,8) and (A, p,u', A, &', §') are both weak
Hopf algebras then u' = u, ¢' = ¢, and §' = S.

Proof. The unigueness of the unit and the counit are obvious. There-
fore T1% and M * are common in these two WHAs. To prove S’ = §
introduce the convolution product

(fC8)(x) =f(xq)8(xe), x €A, (2.22)

on functions f, g € Hom, (A, A). This is an associative operation in terms
of which the antipode axioms take the form

idos=r*, §0idos=5, S§oid=M*~,
Now S’ satisfies the same equations with the same 1%, %, therefore
§'=80idoS =85 0M" =5CidoS
=MROs=50idOS =8.
Q.E.D.
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As a preparation for the theorem below notice that the definitions (2.1)
have counterparts involving the antipode,

M5 (x) = &(S(x)1y) 10, (2.23a)
M (x) = 1e(1p)5(x)). (2.23b)
As a matter of fact
£(1q) M (1) )1y = &( M (2)14) )10,
£(x0S(xe)1n)le)
'9( |_lR()Cu))S()‘<2))1(1>)1<2) = 2(S(x0) ¥ S (%@)10) L)
2(S(¥)1u)) e

where in the subsequent equations (2.1), (2.10), (1.8a), (2.2b), (1.8b), and
finally (1.9) have been used. Equation (2.23b) can be proven analogously.
As the duals of (2.23a) and (2.23b) we have automatically the identities

M (x)

M5(x) = S(1y)e(1px), (2.24a)
M7 (x) = e(x1y)S(1p)- (2.24b)
LEMMA 2.9. In a WHA A the following identities hold
Mros=mrs AR =85- M, (2.25a)
MR oS =TMRo Mt =50 M-, (2.25b)

Proof. It is sufficient to prove the first equalities in (2.25a) and (2.25b)
because the second ones then follow by duality. So

M- o S(x) = ‘9(1<1>S(x))1<2) = ‘9(1(1>S(x(1>)x<2)5(x<3>))1(2>
= ‘9(1<1>S(x<1>) M- (x<2)))1(2) = 8(1(1)S(x(1))x(2))1(2)
=M* o M*(x).
In a similar way one can verify M1 %o§ =M %o 1% Q.E.D.

The above lemma implies that S(A®) c A and S(A") c AR On the
other hand Egs. (2.24a) and (2.24b) say that 4 c S(A®)and AR c S(A").
Therefore the antipode maps AX onto A% bijectively and maps A* onto
AL bijectively.
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THEOREM 2.10. Let A be a WHA. Then the antipode is antimultiplicative
and anticomultiplicative,

S(xy) =S(y)S(x) x,y €A, (2.26)
S(X)(l) ® S(x)(z) = S(X(z)) ® S(x(l)) x €A, (2.27)

and the restrictions S| 4. and S| 4r are bijections such that
S(Ar) = AR, S(AR) = A~ (2.28)
The unit and the counit are S-invariant,
S(1) =1, (2.29a)
goS =¢g. (2.29b)

Furthermore S: A — A is invertible.

Proof. We have already shown (2.28). Equation (2.27) is the dual of
(2.26) and (2.29a) is the dual of (2.29b). Equation (2.26) follows from

S() = S(xaVw) XeVeS(XaYe) = S(xqYe) M- (xa) M (Y(Z)))

= S(xayw) e M (Vo) S(x)
= I_lR(I_lR(xu))y(l))S(y<2))S(x<2>)
= S(¥a) M (x0)) Y28 (¥e) S (%)
= S(w)YaS(Ve) S(xw) ¥ S (Xe)
= S(y)S(x).

Next we prove (2.29b). As a matter of fact
£(S(x)) = e(S(x0) X, S(x@3)) = (S(xq) M (x0))

= &(S(x0) %) = (M (x))
e(x).

To prove invertibility of S notice that the descending chain 4 > S(A) D
S§2(A) o --- of WHAs all contain 1 by (2.29a). This implies the existence
of n € N such that

1e 8" (A) =5"(A) cS""Y(A).
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We want to show that this implies S"(A4) = S" '(A). Replacing A by
S§"~1(A) it is therefore enough to prove invertibility of S under the
additional assumption S%(A) = S(A), implying

Ker§ N S(A4) = 0.
In this case let § = S|s), then S: S(A4) — S(A) is bijective and
Pgi=S81c8:4-S(A)
is a multiplicative idempotent satisfying
Py(xS(y)) = Ps(x)S(y), x,y €A.

By (2.28) AY® c S(A). Now taking into account the identity x =
X1yS(x(2))X ), which follows directly from Axioms (1.8a) and (1.4), then
using also Pg(1) = 1 we have

Ps(x) = Ps(x(l)s(x(z))x(s)) = Ps(x(l))S(x(z))x(3) = PS(x(l)S(x(Z)))x(3)
= Pg(1) x(l)S(x(Z))x(S) =X,
so Ker P; = Ker § = 0. Q.E.D.

We are now able to derive (versions of) the original antipode axioms of
[2, 20],

Xa) ® X S( X)) = 1gyx ® 1), (2.30a)
S(x@w)) X2 ® X5 = 1g) ® xlp), (2.30b)
X1y ® S(xp)) Xg =x1yqy ® S(1p), (2.30c)
X0y S(x@) ® xg = S(1y) ® Lpx. (2.30d)

The first two are just rewritings of the bialgebra identities (2.8a) and
(2.8b). The second two are more delicate. Namely

Xa) ® S(x) X
=xu) ® £(xpl0)S(Le) = *ola) ® £(Xplesle)S(le)
=xplne(Yole) ® S(le) = *lq © S(1y),

X0S(¥@) ® Xg)
= S(1w)e(le)xw) ® *e) = S(1a) e (lolar¥a) ® lonXe
=S5(1y) ® e(loka)lere = S(1a) ® Lox:

The following proposition also holds, if A is just a WBA, see [14].
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PROPOSITION 2.11. Let A be a WHA over K. Then A* and AR are
separable K-algebras, in particular, they are semisimple.

Proof. Recall that an algebra A is separable if and only if there exists a
q € A ® A such that (x ® 1)g = ¢g(1 ® x) holds for all x € A and further-
more u(g) = 1, where u denotes the multiplication map of 4 [18]. Such a
g will be called a separating idempotent.? So, our proof consists of showing
that ¢" = S(1,) ® 1, € 4" ® A" and g% =1, ® S(1,) € A% ® A"
are separating idempotents of A~ and A%, respectively. In fact we prove
the somewhat more general identities

x(l)yR ® X = Xq) ® x(z)S(yR): (2.31a)

Xq) ® yixg, = S(y")xg, ® x4, (2.31b)

valid for all x € 4 and y~ € A", yR € AR, Pairing the LHS of (2.31a) with
¢ ® i, we obtain

(e ® ,LHS)
= Co(y* = T) x@) (W x) = (o X )(S(VF) = 1), x))
— (¢ ® i, RHS).

The proof of (2.31b) is simply the mirror image of the above argument.
Q.E.D.

2.4. The “Trivial” Representation

Since the counit of a WHA is in general not an algebra map, weak Hopf
algebras may be lacking of any one-dimensional representation. Neverthe-
less the axioms ensure that any WHA A has a distinguished representa-
tion providing a unit object for the (relaxed) monoidal category of left
A-modules. We shall discuss this category in detail in [3]. Now we concen-
trate only on the properties of this representation. We note that the trivial
representation exists already in WBAs [14] and therefore the use of the
antipode in this subsection is not obligatory.

Since the algebras 4%/% occur on the right-hand side of Axioms (1.8a)
and (1.8b) where in ordinary Hopf algebras the trivial representation
stands, one expects that the “trivial representation” of WHAs must be a
non-trivial representation acting on either A/% or AL/R,

2 In fact q is an idempotent only if considered as an element of 4 ® A°.
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LEMMA 2.12. The following left A-modules are isomorphic:

(AR 2 the vector space AR with action x - & == x — @&,

L AL 22 the vector space A with action x - o == @* — S(x),
AL the vector space A" with action x - y* == T1"(xy™),
MR (y%S(x)).

Proof. S AAL — AR is an isomorphism of vector spaces and S(cp
S(x)) = x — S(o) is a general WHA identity. This proves the isomorphism
of the first two A-modules. Similarly, S: A* — AR is an isomorphism of
vector spaces and S(I1“(xy)) = M R(S(y)S(x)) is a WHA identity. This
proves the isomorphism of the last two A4-modules.

To show the |somorph|sm of , AR with , A" consider the bijection B:
AR — A*, B(¢®) =1~ of Then

AR the vector space AR with action x - y®

B(x = ¢f) =1« (x = ¢f) = (Lyx, ™)1
= Qy(xr— ¢ "), 1>1(2) n* (x = ¢%)

Me(x(1 = "))

= I_IL(xB(qu)),
hence B is a left A-module map. Here, in the last-but-one equality we
have used one of the four arrow identities of Remark 2.7. Q.E.D.

DerINITION 2.13. By the trivial representation of the WHA A we mean
the cyclic left A-module V, ==, A% with A-action D,: A — End, A%,
D (x)o=x— ¢

The third and fourth A4-modules of the above lemma demonstrate that
the restriction of the trivial representation to 4% (AR) is equivalent to its
left regular representation, hence faithful. This is one of the instances
where A%/R appears in the role of a ground *field.”

Later we will need the following strengthening of Lemma 2.6.

LEMMA 2.14. Let A be a WHA and introduce the notation Z" = A" N
CenterA, Z® := AR N CenterA and Z = A" N AR Then the isomorphism
(of algebras) «*t A AL — AR restricts to an isomorphism Z* — Z and the
isomorphism kX: AR — A" restricts to the isomorphism ZR — Z. Therefore

Zl =1=27=1+ 2%,
Z—-1=2%  Z'=1-2Z.



402 BOHM, NILL, AND SZLACHANYI

The two isomorphisms have a common restriction to the hypercenter Hyper-
center A == Z" N Z® and yields an isomorphism Hypercenter A —
Hypercenter A.

Proof Notice that for ¢ € Center 4 _one has 1< ¢ =c— 1 There-
fore xt € ZL = xt —‘1—1’—x € Z. This proves k“(Z1) c Z.

If z € Z then (z—‘l)cp—z—* 1) by(220a)and z—‘qo—go(z—* 1) by
(2.21b). Hence z — 1 is central. This proves «“(Z) c Z*.

Since (k£)~! = k%, the analogue inclusions « f(Z®) c Z and «(Z) c
ZL complete the proof. Q.E.D.

The unusual feature of the trivial representation of WHASs is that it can
be decomposable. But this can occur only if the left and right subalgebras
of the dual have non-trivial intersection as the next proposition claims.

PrROPOSITION 2.15.  Let A be a WHA, let (V,,, D,) be its trivial representa-
tion as in Definition 2.13. Then

EndV, = D,(Z") = D,(Z"%), (2.32)

where End V, denotes the algebra of A-module endomorphisms of V.
Proof. Let T € EndV, then T(x ~D=x— T('i), for x € A4, in par-
ticular

T(x! =1) =x! - T(1) = (x* = 1)T(D),

T(xt =1) =T(s7}(xt) = 1) =57Y(xt) = T(1) = T(A)(x* = 1),
where we have made use of Egs. (2.20a) and (2.21b). Since by Lemma 2.6
Ar — 1 = AR, = T() € Center AR, and T(o®) = o&. Thus x — ¢ =
T(x — 1) = (x — 1)¢ holds for all x € A. It follows that

(M*(2),x
= (1= (x =1 =L(x = DD =(x = £, = (0,

ie., €A N AR = Z. Now by Lemma 2.14 there exists a z- € Z* such

~

that ¢ =z — 1. We can conclude that
T(¢R) _ é«QDR _ (ZL _\'i)gDR =L . gDR =D€(ZL)¢R,
i.e.,, T = D,(z"). This proves End V, c D,(Z"). The opposite inclusion is

trivial since D,(Z") c Center(D,(A)). This finishes the proof of End
V. =D/(Z").
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Showing the other statement End V, = D,(Z®) one proceeds as above
but chooses a z® € Z® such that { =1 — zR. Then

T(¢R) _ (pR('i ,_ZR) _ (PR(ZR _\’i) =R (PR

= D,(z%) o"

completes the proof. Q.E.D.

Notice that the above proposition does not imply that the trivial A-mod-
ule is semisimple. It does imply, however, that V, has a decomposition
V.= @V, into indecomposable 4-modules in which the indecomposables
are disjoint, i.e., Hom (V,, V) = 0 for all u # ».

DerINITION 2.16.  If ZE = K1, or equivalently, if the trivial representa-
tion is indecomposable then the WHA is called pure.

The name “pure” comes from the C*-setting when the trivial represen-
tation arises from the positive linear functional &£ by the GNS construc-
tion. Thus A is pure iff ¢ is pure.

Nota bene pureness is not a self-dual notion, duals of pure WHAs may
not be pure. Clearly, A4 is pure iff ZL = Z® is trivial but A is pure iff Z is
trivial.

3. WEAK HOPF MODULES AND INTEGRAL THEORY

As in Hopf algebras so in weak Hopf algebras the integrals play a
decisive role in the structure analysis of these algebras. Using integrals we
can formulate conditions for the algebra to be Frobenius, symmetric, or
semisimple, and study questions related to innerness of S? or S*. Further-
more we will be able to characterize those WHAs that have Haar mea-
sures. In deriving the basic properties of integrals the weak generalization
of the fundamental theorem of Hopf modules is very useful. Unfortu-
nately, it seems to be less powerful than in Hopf algebra theory (cf. [13])
where it implies the existence of non-degenerate integrals. It is an open
problem yet whether all WHASs are Frobenius algebras. We can prove,
however, that all of them are quasi-Frobenius algebras.

3.1. Integrals in Weak Hopf Algebras

The following definition provides the weak Hopf generalization of the
well-known notion of integrals in a Hopf algebra [19].
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DerINITION 3.1. A left (right) integral in a weak Hopf algebra A is an
element [ € A (r € A) satisfying

xl=M5x) (x=r 0% (x)) (3.1)

for all x € A. The space of left (right) integrals in A4 is denoted by
FE(ANIR(A)). Elements of .7 :=._72(A4) N#R(A) are called two-sided
integrals. A left or right integral in A is called non-degenerate if it defines
a non-degenerate functional on A. [ €.7%(A) is called normalized if
M) =1, r €7R(A) is called normalized if M %(r) = 1.

Some equivalent formulations of left (right) integrals are gathered in

LEMMA 3.2.  Let A be a weak Hopf algebra. Then the following statements
for an element | € A are equivalent:

@@ es A

() gy ®xly =Sy, ® 1, forallx € A

© I—AcA-

d) (p—x)—1=8xNg—1) forall p€ Aandx € A
(e (KermMHI=0

® S es A

Proof. (a) = (b): Using (2.30b) and (2.7a) we have [;, ® xl,, =
[S(X(l)) ® 1]A(x(2)l) = [S(x(l))x(z)S(x(3)) ® 1]A(l) = S(.X)l(l) ® 1(2)- (b) =
@: Xl = xuglgye(xpls) = x0)S(x)lyelp) = MHXL (@) < (©:
For an [ € A the equation (I — ¢, x) = ([15( = ¢), x) is clearly equiv-
alent to the equation (¢, xI) = {¢, M “(x)I). (b) = (d): By pairing the
second tensor factor of (b) with an arbitrary ¢ € 4. (a) = (e): is obvious.
@®=@: d=[x—-MN"WI+ NI =N"xL & < @: This
follows by applying S to (3.1). Q.E.D.

Definition 3.1 as well as Lemma 3.2 provide rather technical characteri-
zations of integrals. The next argument sheds some light on their real
nature. Consider the left 4-module map & from the left regular 4-mod-
ule to the trivial 4-module given by acting with the trivial representation
on the cyclic vector 1,

ep. 4 A — /’l\R,
R A A (3.2)

x = (x—1).

The existence of this (non-zero) map shows that Hom(, 4,A/'1\R) is non-zero.
However, there is in general no guarantee that Hom(, A%, , 4) is non-zero.
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Left integrals are precisely the objects that label the possible homomor-
phisms of the latter type.

LEMMA 3.3.  Left integrals | in A are in one-to-one correspondence with
left A-module homomorphisms f: 4 AR - 1 A. The correspondence is given by
fe f(l) EJL What is more the above map provides an isomorphism
7L = Hom(, AR, , A) of right A-modules. In other words 7" is isomorphic
to the A-dual of the trivial left A-module.

Proof If fe Hom(, A%, ,A) then xf() =f(x = 1) =f(M*x) =1
M 5(x)f@), hence f(1) .. This is obwously a right 4-module map.

It is invertible since for / € 7" the map f;: A% — A4, f(¢") = (1 < ¢")I
is a left A-module map and satisfies f,(l) =1 Q.E.D.

The identification of .#" with Hom(, A%, , A) yields an A-valued bilin-
ear form , A® X .7 - A given by evaluation, (%, 1) — f,(¢*). Replacing
4 AR with , A* using the isomorphism of Lemma 2.12 we obtain that this
bilinear form is nothing but multiplication in A,

JAE XIS ,A4,, (x5 D) - Xt (3.3)

and it is an A-A bimodule map. We claim that (3.3) is a non-degenerate
bilinear form. From one side, xI = 0, Vx* € A" = [ = 0, this is trivial.
From the other side we will be able to prove this after having established
that WHAs are quasi-Frobenius algebras in Theorem 3.11. As a matter of
fact by Theorem 61.2 of [4] the left annihilator of the right annihilator of
the left ideal Ker I * is Ker M * itself. Now by Lemma 3.2(e) the right
annihilator of Ker M * is just .#*. Thus x“/ =0, VIes* = x: =0
follows.

Now we turn to another characterization of left integrals that is related
to conditional expectations. Notice at first that if A € 7L(A) then the map
E,: x » A = x is an A"~A"-bimodule map from A into A* commuting
With the right A-action on A. In fact, all such maps arise from a left
integral, as the following lemma shows.

LEMMA 3.4. The left integrals A e s1(A) are, in one-to-one correspon-
dence with right A-module maps E € Hom(A ;, A%) via

A— By
E— e FE.

Proof. If Ais a left integral then E, is a right A-module map and maps
into A% by Lemma 3.2(c).
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Now let E € Hom(A ;, A%). Then

E(x) = ‘9(1(1)E(X))1(2) =é&-° E(Sil(l(l))x)l(Z)*

where we used the fact that a right A-module map is an AL-A%-bimodule
map by (2.20b) and (2.21a). Hence

E(x) =¢ oE(x(?,))x(l)S(x(z)) = I_IL()t —Xx),
where A :== g o E. It remains to show that A is a left integral. Then

(oA, x) = (E(x — ¢)) = e(E(x) — ¢) = (M" (¢)A, x),
which proves the claim. Q.E.D.

The characterization of left integrals A as “conditional expectations” E,
provides a link to the theory of inclusions and “Jones extensions” [15].

The properties of the normalized and the non-degenerate left integrals
are discussed in later subsections. Here we only note that A is non-degen-
erate iff E, is non-degenerate and A is normalized iff E, is unital.

There are two twisting operations 4 — A% and 4 — A, that produce
WHAs from WHAs. In the first one the multiplication w is replaced with
opposite multiplication u°"(x,y) = u(y, x) while in the second the co-
product is replaced by A®(x) = x,, ® x;,. In both cases the antipode is
replaced by S~1. The left and right subalgebras—integrals and the dual
WHAs of the resulting four twisted versions of a WHA A are related to
those of A4 as in Table I. As an application of Table | we give here the
twisted versions of the identity of Lemma 3.2(d),

(p=x)=1=8S(x)(¢—1), (3.4a)
(x=@)=r=(¢—=r)S(x), (3.4b)
l—(¢—x)=8S1x)( - ¢), (3.4c)
re=(x—¢)=(r=¢)S(x) (3.4d)

forall xe A, g€ A, 1 €7 and r e 7%,

TABLE |
mn* e AL AR AL R T
A=A(pA,S) mn* M~ AL AR st R4

AP = A(p®, A, 87 sTTe TR g7t 18 4 AR R S A,
Agp = A(p, AP, 570 571 15 g0 15 4R 4L b R v
AP, = A(p®, AP, S) m* Mt AR Al R A4,
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3.2. Weak Hopf Modules

Let 4 be a WHA. Recall that a left A-module is a K-linear space M
carrying a left action of the algebra A4, denotedby x € A, m € M — x - m.
A right A-module is a left module M of the opposite algebra A4° with
action denoted by x € A, m € M — m - x. Since A is unital, all modules
are assumed to be non-degenerate; i.e., 1 acts as the identity. The left
A-module M is called faithful if x-m =0, Vim € M implies x = 0.

The A-modules know nothing about the coalgebra structure of A. The
left A-comodules M in turn are the comodules of the coalgebra A4 and
carry no information about the algebra structure of A. The left coaction is
denoted by m —» m_;, ® m, € A ® M. One defines the right A-comodules
analogously and denotes the coaction as m — m, ® m; € M ® A.

Because of the finite dimensionality of 4 there is a one-to-one corre-
spondence between left (right) A-coactions on M and right (left) A-ac-
tions on M given by

m-p={o,m_jymy,, m_,®my=y.b;®@m-B', (3.5)

e-m=myo,my, my®m =y B -meb,. (3.6)

Here {b,} denotes an arbitrary basis of 4 and {8’} is its dual basis:
(B’ b;) = §;. There are eight basic examples of 4 modules with the
target space M being either A or its dual A. These are

A xy =x, Ay iy x = yx,
U xy =yS(x), Aty x = S(x)y,
A/Il\::x-go=xé(p, /’I\A:Z(p'x=go‘—x,

Urx-o=p—Sx), A':¢-x=5x) — o,
where the Sweedler arrow notation (2.14) has been used. They all are
faithful and non-degenerate due to the existence of a unit and a counit.
To each of the A-modules in the above list there is a corresponding A-
comodule denoted by the same symbol. This identification is justified
also by the fact that N € M is an A-submodule if and only if it is an A-
subcomodule.

By analogy with our definition of left integrals, the space of invariants of
a left A-module M is defined to be the subspace

InvM = {meM|x-m= M*(x)-m, Vx € A}. (3.7)
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By the same methods as in Lemma 3.3, Inv M is linearly isomorphic to
Hom(, A%, ,M) via

Inv M = {f(1) |f € Hom(, A%, ,M)}. (3.8)

By duality, we define the coinvariants of a right A-comodule M as
Coinv M = {m eEM|my®m, =m,® I_IL(ml)}. (3.9)
Thus, m € CoinvM < m, ® m, € M ® A" and for a left A-module M,
the invariants Inv M c M coincide with CoinvM C M considered as an

A-comodule. Similarly, for a right A-module (left 4-comodule) M the
invariants (coinvariants) are

IvM ={meM|m-x=m-M"(x),Vx € A4}, (3.10)
CoinvM = {m e M|m_, ® my= M%(m_;) ® my}. (3.11)

Notice that the (co)invariants do not form a sub(co)module, not even an
AL/ R_submodule.

Remark 3.5. The invariants of the left (right) regular 4-module are
precisely the left (right) integrals of A:
Inv, A =7s%(A4), InvA4d, =7%(A).

The invariants ofA/'f and /TA, on the other hand, yield the left and right
subalgebras, respectively:

Inv, A=A, InvA, = AR,

Investigating the structure of the mixed modules AA/'I\A and “4 4 that
incorporates the whole bialgebra structure of A, one arrives at a weak
generalization of the notion of Hopf modules [1, 19].

DerINITION 3.6. A right weak Hopf module (right WHM) over A is a
right A4 module M which is also a right A-comodule such that the
compatibility relation

(m-x)y® (m-x), =my Xy ® MyX (3.12)

holds for x € 4, m € M.
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LEMMA 3.7. Let M be a right WHM over A. Then for all m € M
() my- M Rmy) =m.
(i) CoinvM ={m € M|m, ® m; =m -1, ® 1,} and CoinvM is
a right A* submodule.
(iii)  E(m) == mg - S(m,) provides a projection E: M — Coinv M.

Proof. (i) Let M be a right WHM over A. Since
moe(myx) =mg-1y,e(mlyx) =my-1ge(mily)e(1s)x)
=m-14e(1yx) (3.13)

forall x € 4, we have my; ® 1 = m; =m-1,, ® 1< 1, so that

my 18 (my) =mo- [T my) = 1] =m-14)[(T = 1) 1]
=m-1y M%(1y) =m. (3.14)
(ii) Theinclusion > follows from (2.4). Conversely, if m € Coinv M
then m, ® m; € M ® A", implying by (2.3a), (2.10), and (3.13):
my ® m,
=my ® £(myly))le =m- 1 ® e(lpla))ley =m 1a @ 1)

Also A(AY) c A ® A" and therefore Coinv M is a right 4%-submodule.
(iii) To check that n == m, - S(m,) is a coinvariant for all m € M we

compute
ny ® ny = (my ® my)(-S(my)q) ® S(m;))
=mg-S(mz) ® myS(m,) =myg- S(l(z>m1) ® 5(1(1))

=n-14 ®1,,.

Since for n € CoinvM we have ng-S(n) =n-1,51,)=n, E is a
projection onto Coinv M. Q.E.D.

ExampLE 3.8. The right weak Hopf module ;4.

As a linear space the module is the dual WHA A. The right action and
coaction are

e x=8(x) = ¢, @ ® ¢ = ZB’ip@bi- (3.15)
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Clearly, the right A-coaction is dual to the left /f—multiplication and

therefore counital and right-coassociative. The compatibility condition
(3.12) can be seen as

(¢x)o® (@-x)1 = ;B"(S(X) —¢) ®b
= ;Bi[S(XW =X S(xg) = ¢] ® b,
= lzgf[S(x(l,) = (xq = 1)¢] ® b,
= ZZBi[S(x(Z))x(S) ~1|[S(xq) — ¢] ® b,
= ;[S(x(z))x(s) = B'|[S(xa) = ¢] ® b,
= ESCxw) = |(xe) = B)e] @
- lZS(x(l)) — (BY) ® bx,

= Qg "X ® P1X(2)-

The A-coinvariants of this WHM coincide with the A-invariants of the
dual left regular 4-module ;4 and therefore with the space of left
integrals in 4 by Remark 3.5,

Coinv(;44) =7 (A). (3.16)

The fundamental theorem of Hopf modules generalizes to the weak case
as

THEOREM 3.9. Let A be a WHA, M be a right WHM over A, and let
N = Coinv M denote the set of coinvariants of M. Since N is a right A"
submodule, one can form the A“-module tensor product N ®,. A and make
it into a right WHM by the definitions

(n®a) x=n® ax, (3.17a)

(n®a),®(n®a); = (n®ay) ®a,, (3.17b)
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where a, x € A, n € N. Then the map
a: N®. A—->M, ne®Xx—>n-x (3.18)

is an isomorphism of right WHMs.

Recall that an isomorphism of WHMs is just a module isomorphism
which is a comodule isomorphism at the same time.

Proof. That « is a module map and comodule map is easy to verify. To
construct the inverse define
B:M—>N®; A,
(3.19)
B(m) =my-S(my) ® m,=E(my) ® m,.

Then B is obviously a comodule map. We show that it is also a module
map. Then

B(m - x) =mq-xq)S(myxp) ® myxg,
=my: I_lL(X(l))S(””‘l) ® m;y X
=mgy-S(mly)) ® myl,x
= B(m) -x.
We are left with showing that on the one hand

Beoa(n ®x)

B(n-x)=pB(n) x=n-1,5(1,) ® 15x
=n® 15,5(1p)) e
=nox,
and on the other hand
aeB(m) =my-S(my)my; =m,
where in the last equality Lemma 3.7(i) has been used. Q.E.D.
Applying this theorem to the WHM of Example 3.8 we obtain the right
WHM isomorphism
1A = (A) ®,. 1A, (3.20)

COROLLARY 3.10. In any WHA A the space of left integrals .7*(A) =
S(FR(A)) is non-zero and 7(A) is the dual of 7X(A) with respect to the
restriction of the canonical pairing. Moreover, choosing a basis {\"} in .7* (A)
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and taking its dual basis {r,} in #%(A), we have
1=Y5(r,) = A, (3.21)
1=Yr, < 8(A,). (3.22)

Proof. #“(A) # 0 follows from (3.20). By inspecting the form of the
projection E: M — N in Example 3.8 we get a projection L: A —.72(A)
onto the left integrals,

L(x) = L8*(B') = (bix). (3.23)

Therefore the projection to the right integrals is

R(x) =SeLoS™(x) = ¥ (xb) — §2(BY). (3.24)

Similar expressions define the projections L and R to the dual integrals.
Now it is easy to check that

(L(¢),x) = (¢, R(x)) (3.25)

proving the non-degeneracy of the restriction of the canonical pairing to
IEA) x ARCA).
The dual bases satisfy (A% r,) = §,, therefore

(A%, xS(r,)) = CL(B"), xS(b,)) = (S2(b;) = BB, xS(b;))
=(B% xS M*(b,)> (3.26)
= (1 = 1,x8(1y))), (3.27)

where in the last step we used (2.19b). This proves (3.21). Equation (3.22)
is the twisted version in A% Q.E.D.

cop*

3.3. Restrictions on the Algebraic Structure

The existence of a weak Hopf structure on the K-algebra A involves
certain restrictions on the algebra A, just like in case of Hopf algebras. In
this subsection we show that any WHA A is quasi-Frobenius, i.e., self-in-
jective. The notions of semisimple and separable algebras coincide within
the class of WHAs. Moreover, we prove an analogue of Maschke’s theo-
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rem which claims that A is semisimple if and only if it has normalized left
integrals.

THEOREM 3.11. Every weak Hopf algebra over a field K is a quasi-
Frobenius algebra.

Proof. By Theorem 61.2 of [4] it is sufficient to prove that the left
regular A-module , A is injective. By the Nagao—Nakayama theorem
injectivity of a left 4-module is equivalent to that it is a direct sum of
K-duals of principal indecomposable right A4-modules. Since A4 is the
K-dual of , A4, we need to show that A* is a direct sum of principal
mdecomposable right A-modules, i.e., that A'is projective. This in turn is
a consequence of the fundamental theorem of WHMs.

As a matter of fact we have the right 4-module isomorphisms

At =51 (A) @ A,y = P(IH(A) & Ay), (3.28)

the first of which is the consequence of the fundamental theorem of the
right WHM 3 AA the second of which is a rather simple property of the
amalgamated tensor product with respect to the separable algebra A-. To
explain the projection P here we make a digression.

LEMMA 3.12.  Define the map P: 7-(A) ® A - 7L(A) ® A by
P(A ®x) = 52(1,) = A ® 1, x. (3.29)

Then P o P = P and Ker P coincides with Ker 1 of the canonical projection
7 from the free right A module 7“(A) &, A, onto 7(A) ®,. A,. There-
fore

|mP

P(sH(A) & Ay) = F(A) 8 A (3.30)
is an isomorphism of right A-modules.
Proof. The kernel of the canonical projection is
Ker 7 = SpanK{(/\ ®xty) = (S(x") = Ar®x)|A0®y
est(A) ® A, xt €4t} (3.31)

If £,(A; ® x,) € Ker 7 then obviously ¥, $*(1,)) — A, ® 1, x; = 0, there-
fore Ker 7w C Ker P. Now assume X \; ® x; € Ker P. Then

Z/\i ®x; = Z)‘i ® S(1a))1e)x;
1 13

= X[ @ S(10)(1p)x:) = S2(1a) = A ® 15)x;] € Ker .

i
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This proves Ker = = Ker P. That P is a projection and a right A-module
map is trivial to verify. Therefore w|;, p is an A-module isomorphism.
Q.E.D.

Back to the Proof of Theorem 3.11. In virtue of the above lemma the
amalgamated tensor product .#“(A) ®,. A, is the direct summand of a
free A-module, hence projective. By Eq. (3.28) this is isomorphic to AA,
This proves projectivity of A”, hence injectivity of , A. Q.E.D.

The equivalence of (¢) and (d) of the next theorem provides a weak
Hopf version of Maschke’s theorem known for Hopf algebras as well [9].
Below we denote gx(x) =x — 1.

THeEOREM 3.13. The following conditions on a WHA A over K are
equivalent:

(@) A is semisimple.

(b) In the category of left A-modules the following exact sequence is split
0 > Kersg >, A 5 A% > 0.

(¢) There exists a normalized left integral | € A.
(d) A is a separable K-algebra.

Proof. (a=c): If A is semisimple, then Ker M" = Ker g, being a
left ideal there exists p = p? € A such that Ker % = Ap, whence [ = 1
— p is a normalized left integral by Lemma 3.2(e).

(beo): Let Fe Hom(A\A ,4A) be such that &z F =id. Then
xF(D) = F(x =D = M*x)FEQ), for x € 4, therefore F(1) €.7"(A).
Moreover, 1 € sR(F(l)) — F(1) — 1 implying M “(F(1)) = 1. Conversely,
if / €7~ is a normalized left integral then F € Hom(, A%, , A) given by
F(eg(x)) = xl satisfies e o F = id.

(c = d): Let !/ be anormalized left integral. Then g = [ ;) ® S(/,)) is
a separating idempotent for 4. As a matter of fact u(g) = 1 follows from
the normalization 1 “(/) = 1 while (x ® 1)g = g(1 ® x) is precisely the
left integral property of Lemma 3.2(b).

(d = a): This is a standard result [18]. Q.E.D.

3.4. Non-degenerate Integrals

Until now we have not been able to decide whether the WHM theorem
of Subsection 3.2 implies the existence of non-degenerate integrals, as it
does in the case of Hopf algebras. In the present subsection we show that
the existence of non-degenerate integrals in the WHA A is equivalent to
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the existence of non-degenerate functionals on A, i.e. that A4 is a
Frobenius algebra. As a byproduct we obtain that the class of Frobenius
WHA:s is self-dual.

The space .#® of right integrals can be viewed as a K-module, as a left
A*-module ,..7® by left multiplication, and as a left 4-module ,.#® since
it is a left ideal of A. From the latter point of view ,.#* is the dual of the
trivial right A-module, ,.#® = Hom(A%, A,), by a twisted version of
Lemma 3.3. As a K-module .#® has JL as its K-dual, - =
Hom(,.#%,  K) the isomorphism being given by the restriction of the
canonical pairing (see Corollary 3.10). The next lemma shows that s
also the A’-dual of #® with right 4"-module structure precisely the one
needed in Example 3.8, i.e., A -x% = S(x*) — A

LEMMA 3.14. The A"-valued bilinear form
(, Yar:FRxF AL (F ) = A—7 (3.32)
provides an isomorphism of right A“-modules
(A" 5 Hom(,ur®, e AL), Ao (e (1 A)41), (3.33)
i.e., (FA" is the AL-dual of j.7x.

Proof. At first verify the following properties of the 4%-valued bilinear
form. So

(xBr, A) qe = x5(r, A) 42, (3.34a)
(ryAox®) 0= (r, A) goxt, (3.34b)
(r,\)0=0 Vres® = A=0. (3.34c)

The first two are simple WHA identities. The third one follows from the
relation &((r, A),.) = (A, r) and from non-degeneracy of the canonical
pairing ( , ) on .7t x_#R (Corollary 3.10). Now properties (a) and (b) tell
us that A — (, A),. is indeed the required A“-module map and (c)
ensures that it is injective. To show that it is surjectlve it is sufficient to
find finite sets of elements {r,} in 7% and {A?} in 7L such that

Y(r A r,=r Vresk (3.35)
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For if such elements exist then any f € Hom(,..#®, ,. A*) can be written
as f= X, A f(r,). As a matter of fact

$) =[S rwan) = O afr) = (1 a0 50r)
AL
for all  €.#R. Now we claim that a pair of dual bases {r, } of #® and {1}
of L, in the sense of K-duality, i.e., (A*,r,) = §,,, also satisfies (3.35).
As a matter of fact for A €7~ we have

<A,§(A“4r)ra>
_ g(§()ta ) (A —‘ra)) - T (A=)

YA r(8(r,) = §H(N)) = Z<A(1),r><§‘l()~))\z‘2),S(ra)>

Z</\/\(1)’r></\(2)’s(ra)> = <)\[2S(ra) - )\“},r> ={A 1),

where in the last equality (3.21) has been used. Q.E.D.

Notice that Eq. (3.35) means that ,..#® is finitely generated projective.?
Therefore by a general result (see, e.g., [5]):

A @, R = End ;iR (3.36)
On the other hand the isomorphism « of the WHM theorem, if restricted
to .7~ ®,. R, yields an isomorphism onto A~. Thus we have the compo-
sition
-~ a_l N
& AF - At - s L JR—>EndALfR, (337)
of isomorphisms. Evaluating it explicitly we obtain

rg(xk) =r (;s%b» — (BB/(1=x")) e bj)
=7 (%‘,]’:(Bf(’i —x)) e bj)

=r: (;A“ ® S(xL)ra) =Y (r, X)) uS(x")r,

=S(xH)r  VresR xbeal. (3.38)
This proves

% Although this is clear from the fact that A% is semisimple, constructing the concrete
bases A%, r, is not in vain since it helps to compute the commutant in (3.38).
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PROPOSITION 3.15.  The left modules ;.7 and x. 7" are faithful and the
endomorphism algebra of .7® consists of left multiplications with elements
of AR. Therefore

End . = A, as algebras. (3.39)

The set .#ec AL of equivalence classes of simple left A%-modules will
be called the sectors of AL. For a € ec A" let V, be a simple module
from the class a and let 2, = End}V, be the corresponding division
algebra. Then by the Wedderburn structure theorem A" = & M, (9)
Let m, denote the multiplicity of }/, in the semisimple module ALJR
Then EndALJR = o M, (9 ) which is, by the proposition, isomorphic to
AE. This is possible only |f there is a permutation

T %ec ALY - Fec A", suchthat ny =m, and 2;=9,. (3.40)

This means that 7%, as an A*-End ,..#® bimodule, can be identified with
a direct sum of matrices,

R = @ Mat(n, X m,, 2,). (341)

This allows us to compute its K-dimension and apply the Cauchy—Schwarz
inequality to obtain the bound

dimg A& = Y (dimg 2,)n,m, < Y (dimg 2,)n% = dim, A~. (3.42)

a a

Equality holds here if m, = n
we are ready to prove

THEOREM 3.16. Let A be a WHA over the field K. Then the following
conditions are equivalent.

a € 7ec A", e, iff " =, A% Now

a’

(i) A is a Frobenius algebra;

(i) dimg 7R = dim A";

(iii)  Non-degenerate integrals exist in A;
(iv) A is a Frobenius algebra.

Proof. () = (i) If ,A =, A then their invariants A, 4) =7 and
A A) = A", respectively, (see Remark 3.5), are isomorphic as K-spaces.
(i) = (iii) As we have seen above the K-space isomorphism of .#% and A4*
implies that ,..#® is isomorphic to the left regular module ,.A*. Since
the latter is cycllc there exists a cyclic vector r € ;.#R. Thus [ == S(r) is
cyclic in (#2)4". As a matter of fact .7~ = S(#®) = S(ALr) = IAR =
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S(AY) — I. Now interchanging the roles of 4 and A in the WHM
theorem

A=a(st ep A) =S§(A) =5t =5(A4) = (S§(AY) =~ 1) =A~1,

hence [ is a non-degenerate left integral in A. (iii) = (iv) is obvious since /
is a non-degenerate functional on A. (iv) = (i) Repeat the arguments
above from (i) to (iv) with A4 replaced by A4. Q.E.D.

Weak Hopf algebras satisfying any one of the conditions of the above
theorem will be called Frobenius WHAs. Note that since semisimple
algebras are Frobenius, in a semisimple WHA there exist both normalized
and non-degenerate integrals, although there may be no integral sharing
both properties.*

As an immediate consequence of the above considerations we have

Remark 3.17. The following properties for [ € 7% (r €.#%) are equiva-
lent:

(i) I(r) is non-degenerate;
(i) [ is separating for .#{i.» (r is separating for ,.x.7%);
(i) 1 is cyclic for #fi.x (r is cyclic for ,i.x7™).

In a Frobenius WHA A the group of invertible elements A% of AR acts
on the set .7%(A) of non-degenerate left integrals transitively and freely.
A similar statement holds for the non-degenerate right integrals 7%,

FL =148, R =ALr (3.43)

for any [ €.7L and r €.7R. A similar relation for the dual integrals shows
that there are one-to-one correspondences between non-degenerate inte-
grals of 4 and of A. The theorem below selects a distinguished “natural”
one-to-one correspondence.

THEOREM 3.18. Let A be a WHA and let | € #7"(A) be a left integral. If
there exists a X € A such that X — | = 1 then it is unique, it is a left integral
in A, and both | and A are non-degenerate. Moreover [ — A = 1. Such a pair
(1, M) will be called a dual pair of left integrals.

Similarly, elements r € .73 and A € .7y are in one-to-one correspondence
by either one of the equivalent relations A = r=1o0r A —r = 1.

* As an example consider M,(Z,), the semisimple algebra of two by two matrices over the
field of mod2 residue classes. Fix a set of matrix units {e;;} and introduce the coproduct
Ale;;) = e;; ® ¢;;. Then we have two normalized left integrals /; = ¥, ¢;; for j = 1,2 neither
of which is non-degenerate. The only non-degenerate left integral is / = /; + [, for which
however 1 “(1) = 0.
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Proof. By Lemma 3.2(d) if [ is a left integral such that A — [ = 1 then®
Iro A, = S.Since S is invertible, both /, and A, are invertible; i.e., / and
A are non-degenerate and A is unique. To show that A e LA,

go)\—‘l=go—*l=|:|L(go)/\—‘l, cpE/II\

suffices since [, is a bijection. It remains to show that / — A = 1 which
eventually justifies the term “dual” left integral. For [ € #“(A)and A € A
we have

A—=l=1 e xl(l)</\,l(2)>=x xEA,
e (Mxp)STHly)=x x€A,
= (= )Nx)=-¢(x) X E A,
o [—Ar=1.

The duallty between .#- and #® follows from the above duality
between .7~ and - by passing from A4 to A°°. The other two twisted
versions of the theorem are not spelled out explicitly. They can also be
obtained by applying the antipode to the above relations. Q.E.D.

Recall that the quasi-basis of a non-degenerate functional f on A is an
element X; a;, ® b, € A ® A such that (cf. [23]):

Zf(xai)bi =X = Zaif(bix)' x €A (3.44)

(If K is a field then this just means that {b,} is a K-basis of 4 and {a,} is its
dual basis w.r.t. f.) In other words ¥, a; ® b; is simply the expression
Y, fr1(B) ® b; of the inverse of fz: A — A as an element of A ® A. The
index of f is then defined by Index f:= ¥, a;b, which belongs to Center
A. Now let (I, A) be a dual pair of left integrals. Then the quasi-basis of A
is [, ® S7'(/,,) and

Index A = S~to M* (1) € ZR, (3.45)

In particular a non-degenerate left integral / is normalized if and only if its
dual has index 1.

>Here we use the standard notations f;, fz: A — A defined by fi(x) =f<x and
fr(x) =x — f for any fe A
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3.5. Two-sided Non-degenerate Integrals

The space of two-sided integrals A A4) :=.71(A4) N7R(A4) in a weak
Hopf algebra A is a possibly zero subalgebra of A. The assumption
A(A) # 0 is independent of the assumption .#%(A4) # & since Hopf alge-
bras already provide examples [21] for .#5(A) # & and A(A) = 0. In this
subsection we make the stronger assumption .7, (A) =.7L(A4) NAA) #
& and study some of the consequences. The main result will be finding a
criterion for a WHA to be a symmetric algebra.

At first we observe that if a non-degenerate two-sided integral j exists
then the subspace of two-sided integrals is obtained from j by the action
of the central subalgebra Z® = AR N Center A4,

F=jZR, 7, =jZ% foranyje.7,. (3.46)

As a matter of fact if i €.7 then i is a left integral therefore there exists
an x® € % such that i = jx®. Thus for all y € 4 we have jx® % (y) =
xRy =j MR (xRy). Since j is separating for the right A4%-action, x®
M 2(y) = M ®(xRy). Therefore

XRS(Y) = xRS(Y(l))J’(z)S(Y(3)) = S(Y(l))xRY(z)S(Y(a))
= S(l(l)Y)le(z) = S(y)x*,

hence x% is central.

Next we recall some facts about “modular automorphisms.” Let A4 be a
finite-dimensional Frobenius algebra over a field K and let f: A — K be
a non-degenerate functional. Then the modular automorphism of f is
defined to be the unique 6, € Aut 4 such that

() =f(y6,(x)), x,y, €A (3.47)
It is worth it to give two other equivalent definitions of 0,
f=x=0(x)—~F, xXEA, (3.48)
or simply
0 =fi'ef,. (3.49)

Since any two non-degenerate functionals f and g are related by g = x — f,
with x € A, the equivalence class 6, := [6,] of 6, modulo inner automor-
phisms is independent of the choice of f. If A4 is a WHA which is
Frobenius then one may ask the question whether 6, = [S?].



WEAK HOPF ALGEBRAS, | 421

DerFiniTION 3.19. A non-degenerate functional f: 4 — K over a WHA
A is called a g-trace if 6, = S°.

In the term “g-trace” the letter ““g’" has no individual meaning. One may
as well read it as ‘“skew trace” although we do not deny that our
motivation came from the theory of g-deformed Hopf algebras.

LEMMA 3.20. In a WHA A let | be a non-degenerate left integral. Then
S(I) = 1 if and only if its dual left integral A is a g-trace.

Proof. 6, = S? is equivalent to that the quasi-basis of A satisfies
) ® Sfl(l(l)) =S(ly) ® Ly (3.50)

Applying S to the second tensor factor we obtain A(/) = A(S(/)) which
yields I = S(I) by the existence of a counit. Q.E.D.

LEmMMA 3.21.  If non-degenerate two-sided integrals exist then all two-sided
integrals i € AA) are S-invariant, S(i) = i.

Proof. If we can show only that the non-degenerate two-sided integrals
are S-invariant then we are ready since j = S(j) €.7, implies S(jz%) =
S(zR)j = zRj = jz® for all zR € ZX,

So let j €.7,. Then S(j) €.7, thus there exists an invertible z € ZR
such that S(j) =jz. Let A be the dual of j as a left integral. Then for
arbitrary x € A4 and for z& = S~ %(z71),

2ES(x) = 2H(A = x) ~j = (A = x) =25 = (A —x) = S7()),
SZ(X)Z_l =Jj = §_1()‘ —x) =jL°§_1° A(x) = Agte Ar(x)
= 6,(x).

Therefore z7! = 6,(1) = 1 and j is S-invariant. Q.E.D.

THEOREM 3.22. The WHA A over K is a symmetric algebra if and only if it
has non-degenerate two-sided integrals and the square of the antipode is an
inner automorphism.

Proof. Let A be a symmetric WHA, and 7 €Abea non-degenerate
trace. Then there exists a unique i € A such that i = 7=1= 7~ i. We
claim that i is a two-sided integral. As a matter of fact

~

Xi—T=x—1= M*(x) ~1= M5 (x)i -,
1

reix=1<x=1« Mfx)=r~iM%(x),
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so by non-degeneracy of r, i €7 This integral i is also non-degenerate.
For any x eAR one has xR - 7=i—~ 7~ xR =1<x% hence i is
separating for .7}« so non-degenerate by Remark 3.17.

The innerness of $? in a symmetric algebra follows if we can construct a
non-degenerate functional on A the modular automorphism of which is
§2. By Lemma 3.21 i is S-invariant so by Lemma 3.20 y, the dual left
integral to i, is such a non-degenerate g-trace.

Conversely, let §2 = Ad, with some g € A, and i €.7,. Denoting the
dual left integral of i by X again, g7 — x |s a non-degenerate trace.

Q.E.D.

We close this subsection with a result arising from assuming the exis-
tence of non-degenerate two-sided integrals in both 4 and A. Although
the arising structure is reminiscent to that of the “distinguished grouplike
element” in Hopf algebra theory it is not a generalization of that.

PROPOSITION 3.23. Let A be a WHA and assume that both .7, (A) and
S (A) are non- empty. Then S* is inner and the square of 6, is the identity in
Out A. Moreover and more explzatly, for h €7, (A) there exist invertible

elements a, € A* and a, € A" such that, with the notations a, = S(a,)
and ay = S(a;), we have

Ad, . =S*, (3.51)
Ad, , = 67, (3.52)
a apt = g —a a5 = a,agpaza;t,  yeA.  (3.53)

Proof. Choose h €.7,(A) and h €.7,(A) and let A be the dual of
and [ be that of £, as left integrals. Define

~

a,=h—h, o, =h—h. (3.54)

Then

1—a, = Agh, 1y = Chay Wi S(he) = OF(h = h)
=8(h = h) = «, (3.55)

and introducing a, and «j as above

~

lay =1 agp =1+ (h—h) =h(l = h) = h(§?(h) = 1) =h, (3.56)



WEAK HOPF ALGEBRAS, | 423

where g-trace property of / and S-invariance of & have been used.
Similarly,

ag =1 =h = lag, (3.57)
ap — A =h = Aay, (3.58)
N—ap=h=D)a,. (3.59)

Non-degeneracy of i and h now imply invertibility of a,, ag, «;, and ay.
Hence Eqg. (3.53) readily follows. ~

We can now compute the modular automorphism of /4 using the
information 6, = S%. Thus

he=x=az—=X—x=agb(x) =\ = 6 = Ad, °S° (3.60)
Computing S(A — x) in two different ways
S(h—x)=8x)~h=h<6;(S"(x))
= 8(05(x) = ) =h = 57 (65(x))

yields
Stogp=0710851, (3.61)
and finally
Ad, ©S72 = 9; = Ad, °S?, (3.62)
from which (3.51) and (3.52) follow immediately. Q.E.D.

3.6. Haar Integrals

Since finite-dimensional weak Hopf algebras do not go beyond the
“compact” and “discrete” case, the following very conservative definition
of Haar measure will suffice.

DerINITION 3.24.  An element /& of a WHA A is called a Haar integral
in A or Haar measure on A if & is a normalized two-sided integral, i.e.,
heAA)and MHh) =M"MHm =1

Obviously, if a Haar integral exists then it is a unique S-invariant
idempotent. As a matter of fact let 4 and /' be Haar integrals. Then
h' = M k' =hh' =h TR (W) = h. In particular h? = h. S-invari-
ance follows from uniqueness since S(k) is always a Haar integral if 4 is.

In finding criteria for the existence of a Haar measure in A4 an
important role will be played by a special element y € A the definition of
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which was inspired by similar computations in Hopf algebra theory [21],
= LB = 852b) =L'(D), (3.63)

where {b;} and { B’} are dual bases of A and A, respectively, and g
A — A is given by L'(y) = L B — S2(b,). Note that L' is the “cop”
version of the dual analogue L of the projection (3.23) onto the space of
left integrals. Hence y is a left integral in (A)Cop and therefore in A.

As we see below if y is non-degenerate and a g-trace then its dual left
integral is automatically the Haar measure. To see that it is a g-trace let
Tr, be the standard trace on End, 4 and introduce the notation Q_(x)y
= yx. Then for x € A we have

x(x) = Z(Bi,S_Z(bl-)x> =Try, Q_(x)OS‘Z,

X() =Tr, 0 (y)°Q (x)oS2=Tr,Q (y)oS 20 (5*(x))
= x(¥S%(x)).
The next lemma is crucial in deciding whether y is non-degenerate.

LemMMmA 3.25.  Let I be a left integral in a WHA A and let x € A be the
g-trace left integral defined in Eq. (3.63). Then

[ = x=8%(1<1). (3.64)

Proof. Using the g-trace property of x and then (2.19a),
= x= LB —5bl) = (1= 1) = 57%(1p))

= Ay, S ML) la)le < S72(1) =1 = $72(1) = §2(1 = I).
Q.E.D.

PrROPOSITION 3.26. Let A be a weak Hopf algebra over a field K and let x
be given by (3.63).

(i) The Haar integral h € A exists if and only if x is non-degenerate, in
which case (h, x) is a dual pair of left integrals. In particular Haar integrals
are non-degenerate.

(i) A left integral | € 7"(A) is a Haar integral if and only if T17(1)
=1

The characterization of Haar measures under (ii) is so simple that it could
be well used as a definition of Haar measure. Notice that in that case the
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formal difference between the notions of normalized left integral and
Haar measure were so tiny (change M * for %) that it would smear out
the big conceptual difference: The existence of normalized left integrals is
equivalent to semisimplicity while the existence of Haar measures is much
stronger.

Proof. (i) _Assume [ €.7(A) satisfies R(1) = 1. Then by Lemma
3.25 | = y = 1. Therefore the duality Theorem (Theorem 3.18) implies
that (I, y) is a dual pair of non-degenerate left integrals. Since y is a
g-trace, Lemma 3.20 shows that / is an S invariant non-degenerate left
integral. Furthermore M %(0) = MXS() =So M~X(I)=1. Thus [ is a
Haar integral. Now assume £ is a Haar integral. Then obviously 4 is a left
integral satisfying M %(h) = 1.

(i) The “only if” part follows from the proof of (ii). Assume y is
non-degenerate and let 4 be its dual left integral. Then by Lemma 3.20 &
is two-sided and by Lemma 3.25 it is normalized. Q.E.D.

However simple, the criteria of the above proposition are very difficult
to verify in concrete situations. So it is worth looking for other criteria
even if they are not applicable in full generality.

THEOREM 3.27. Let A be a WHA over an algebraically closed field K.
Then a necessary and sufficient condition for the existence of Haar measure
h € A is that A is semisimple and there exists a g € A,, such that gxg™*
= S%(x) forx € A and tr D(g™*) # 0 for all irreducible representation D,
of A.

The assumption on K is used only to ensure that A is split semisimple,
A= M, (K) once knowing that it is semisimple. In particular there will
be a K- baS|s {e*P} for A obeying matrix unit relations.

Proof. Sufficiency: Let 71 A — K be the trace with trace vector
7. =trD(g !). Then 7 is non-degenerate and has as quasi-basis the
element

Lx; ®y,; = Z Z e ®efe.
i Traﬁ 1

Notice that ¥, x;g "'y, = 1. Now we define ' := g — 7 and claim that '
coincides with the y of Eq. (3.63). As a matter of fact

X'(x) =71(g) = ZT(xig_lyigx) = ZT(xiS_Z(yi)x)

4 l

LB STE(b)®) = x(x),
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where we used the fact that the dual of the basis b, =y, is B, = 7 — x;.
Since y' was non-degenerate by construction, we conclude that the y of
Eqg. (3.63) is non-degenerate and therefore its dual left integral ! has
M ®(1) = 1 by Eq. (3.64). Therefore [ is a Haar measure.

Necessity: If h € A is a Haar measure then A is semisimple by
Theorem 3.13. Therefore A is a symmetric algebra and 6, = id. This
means that 6, is inner for all non-degenerate functional . In particular
6, = S? is inner where y is the dual left integral of 4. Choose a g € 4,
implementing S? and construct the non-degenerate trace 7:=g * — y.

Then

T(x) =x(xg™)=Tr,Q (xg7)e8S?2=Tr,0,(g7")°0 (%),

where Q. (x)y :==xy is the left multiplication on A. Choosing a matrix
unit basis to evaluate the trace we obtain

7(x) = Y trD,(g ")tr D,(x),

and by non-degeneracy of 7 all components tr D,(g~*) of the trace vector
are non-vanishing. Q.E.D.

4. C*-WEAK HOPF ALGEBRAS

In this section we introduce the C*-structure in WHAs which is in-
evitable if WHAs are to be used as symmetries of inclusions of von
Neumann algebras, in particular in quantum field theory. Utilizing the
results of Sections 2 and 3 we establish the existence of two canonical
elements in any C*-WHA, the Haar measure 4 and the canonical group-
like element g. While the Haar measure is well known for C*-Hopf
algebras, the canonical grouplike element cannot be recognized in finite-
dimensional Hopf algebras because it is always equal to 1. This is related
to involutivity of the antipode in finite-dimensional C*-Hopf algebras [24].
The very fact that C*-WHAs can have non-involutive antipodes provides
the sufficient flexibility for the emergence of non-integer dimensions.

4.1. First Consequences of the C*-structure

DerINITION 4.1. We define a *~-WHA as a WHA (4,1, A, &, S) over
the complex numbers C together with an antilinear involution * such that
(i) (A,*) is a *-algebra,

(i) A is a *-algebra map, i.e., (x*)) ® (x*) = (x))* ® (xp))* for
all x € 4.
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By uniqueness of the unit, counit, and the antipode (see Lemma 2.8) we
have the additional relations

1* =1, e(x*) = e(x), S(x*)* =857 1(x). (4.1)
Now it is easy to check that the projections 1% and M * satisfy
ME)* = N5(S(x)%),  MFx)* = N5(S(x)*),  (42)

therefore A™ and AR are *-subalgebras of 4. As an elementary exercise
we obtain self-duality of the *-WHA:

Remark 4.2. Let A be a*-WHA and define a star operation on its dual
as

(o*, x) = (@, 8(x)%). (4.3)
Then A with this star operation becomes a *-WHA.
For a *~WHA A the canonical isomorphisms «%: A" — AR and «}:

AR — AL of Lemma 2.6 become *-algebra isomorphisms.
We omit the discussion of further properties of *~-WHAs and turn to the
most important case of C*-WHA:s.

DerINITION 4.3. A *WHA A possessing a faithful *-representation is
called a C*-weak Hopf algebra, or C*-WHA for short.

Being a finite-dimensional C*-algebra any C*-WHA can be uniquely
characterized, as an algebra, by the dimensions n, € N of its blocks where
r is running over the finite set .ec A of equivalence classes of irreducible
representations (i.e., the sectors) of A. So

A= & M, M, =Mat(n,C). (4.4)
reec A

A" and A% are unital *-subalgebras therefore they are C*-algebras as well
and we have natural numbers n,, a €.%ec A* and n,, b €.%ec AR
characterizing the type of AL and A%, respectively. Thus

A= @ M,, c¢=L,R. (4.5)
asSec A¢ ¢

The antiisomorphism S: A% — AR establishes a bijection a — a of the
blocks of A" to the blocks of A® such that n, =n, (We consider
Fec AL, 7ec AR, and .Fec A as disjoint sets which allows us to use one
function n.)
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The following elementary but important proposition will be the basic
ingredient in proving both the existence of Haar measures and rigidity of
the representation category of C*-WHA:s.

PROPOSITION 4.4. Let A be a finite-dimensional C*-algebra and S: A —
A% an algebra isomorphism such that (*oS)* =id,. Then there exists
g € A, such that

i g=0

(i) gxgl=S5%x), x4

(i) tr(g) =tr(g™), resFec A
(v) S(g)=g"

where tr, denotes trace in the irreducible representation D,. An element g € A
satisfying only the first three properties is already unique.

Proof. The restriction S|center 4 i an algebra automorphism therefore
acts on the minimal central idempotents e, as S(e,) = e; where r — 7 is a
permutation of .#ec A. Since e} = ¢, and *o S is an involution, r — 7 is
an involution.

Choose matrix units {¢*#} for the C*-algebra A and define the antiau-
tomorphism S,: 4 > A by Sy(e*?) :=eP* Then S2 =id, and *- §, =
Sy o*. Since S o S, is an automorphism of A that acts as the identity on the
center, there exists C € 4 invertible such that S = Ad, - S,. It follows
that

*o§(x) = C71*8,(x*)C*,

(*o 8)2(x) = C~H8y(C1)x8,(C)C* = x, (49)

therefore S,(C)C* is central and so is its adjoint K := CS,(C*) = S(C*)C.
So

§2(x) = CSy(CSy(x)C7H)C™F = CSy(C xS (C)C™E,  x €4,
(4.7)

hence T = CS,(C™1) = CCHS,(C)C*]"* = CC*K~** implements S? and
its polar decomposition takes the form
T=ug', u=K?™KK)? g =CKK)"C* (48)

Using the centrality of the unitary part and the computations S(7') =
SOSHCH =SOTCT =T and S(K) = S,(K) = C*S,(C) =
§,(C)C* = K* we obtain that g’ is positive invertible, implements $?, and
satisfies S(g’) = g’ ~*. These latter three properties, however, do not fix g
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completely. If ¢ is positive, central, and satisfies S(c) = ¢~ * then g =g'c
will also satisfy the above three properties. Now defining

(tr,(g'_l) )1/2

g=g'c wherec= )Y e -
tr.(g’)

r

(4.9)

it is easy to verify that g obeys (i)-(iv) of the proposition. If f € A4 satisfies
only (i)-(iii) then f=gc where c is positive invertible, central, and
satisfies D,(c) = D,(c)~* for all irrep D,. Hence ¢ = 1, proving unique-
ness of g. Q.E.D.

4.2. The Haar Measure and Self-duality

Recall that the Haar measure in a WHA A has been defined in
Definition 3.24 as the unique element 4 € A making the integral [¢ :=
(¢, hy of a function ¢: A — C to be a non-degenerate functional invari-
ant under left and_right translations and normalized according to [t =
(") for oF € AX. The sufficient conditions for its existence given by
Theorem 3.27 will be used here to prove the next theorem.

THEOREM 4.5. In a C*-WHA A Haar measure h € A exists. It is self-ad-
joint, h* = h, and such that

(o) =™y, hy), @A (4.10)

is a scalar product on A making/'f a Hilbert space and making the left regular
module ;A a faithful *-representation of the *-WHA A. Thus A is a C*-WHA,
too.

Proof. A being a finite-dimensional C*-algebra is semisimple. By
Proposition 4.4 there exists a g implementing S2. This g was shown to be
positive and invertible, hence tr D.(g~*) > 0 for all » € .%%ec A. Therefore
all the conditions of Theorem 3.27 are satisfied and Haar measure / exists.

Since & is non-degenerate, ( , ) is a non-degenerate sesquilinear form
on A. So it remains to show positivity. By the equality

(o) =g, hy =g, S(hay )P by, (4.11)

positivity of ( , ) follows if we can show that (S ® id)~ A(4) belongs to the
positive cone

¢97’={Zat®ak|akeA} CA®A. (4.12)
3

Therefore the next lemma completes the proof. Q.E.D.
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LEMMA 4.6. Choose matrix units {e ;‘B} for A and let g denote the element
determined in Proposition 4.4. If furthermore ¥; x; ® y, is the quasi-basis of
the trace 71 A — C with trace vector 7, = tr,(g™*) then

1

S(h’(l)) (2) Ex ® g yl Z _Zeaﬁg—l/z ®g—1/2 Ba
qgeFec A 7y af
(4.13)
! ap,1/2 1/2¢pa.
hay ® S(he) = Lxig®@y,= L —Lefg/ieg (4.14)
l

qeyecA q ap

Proof. The quasi-basis of y =g — 7 is Xx;g"* ® y, and since y is the
dual left integral of &, this quasi-basis is equal to /&, ® S™'(h,). This
implies the first row. By property (iii) of Proposition 4.4 7 is an S-invariant
trace, therefore its quasi-basis can also be written as X, y, ® x; =
¥, $71(x;) ® S~*(y,). Thus the second row follows from the first. Q.E.D.
__ From now on h € A will always denote the Haar measure of A4 and
h € A that of A4.

LEMMA 4.7. In a C*-WHA A the counit is a positive linear functional,
e(x*x) > 0, x € 4.

Proof.

e(x*1y))e(lple)e(La)x) = S(HL(X)* M (x))
= (h, 1" (x)* T (x)) = 0,

e(x*x)

where we have used /| 42 = €| 42, which follows from

(R,xty = ¢ OOF (R, xt) = 4, xb)
for all x* € A" Q.E.D.

A being semisimple the trivial representation }/, decomposes into irre-
ducibles 1, each of them with multiplicity 1 by Proposition 2.15. The
sectors g € .%%ec A occurring in V, with non-zero multiplicity will be called
vacuum sectors. SO

Ve

I

DS v. (4.15)

qe7ac A

By Proposition 2.15 there is a bijection g — z from the set Z'ac A of
vacuum sectors to the set of minimal prOJectlons in ZX such that, with
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zf = S(qu), we have

D,(zk) = D.(e,) = D,(z}), (4.16)

zk=Me,)  MR(e,) =2k, (4.17)

where e, denotes the minimal central projection in A4 supporting the
irreducible vacuum representation D, .

LemmA 4.8. D,(h) is a one-dimensional projection for r € 7"ac A and
D,(h) = 0 if r is not a vacuum sector. The algebra of two-sided integrals is
generated by minimal projections h

F(A) = hAh = Span{h,|q € 7’ac A},  h,=he,  (4.18)

The non-degenerate two-sided integrals are precisely the invertible elements:
T (A) = AA),.

Proof. 1f D.(h) =0 then pick up a non-zero vector v, from the
subspace D,(h)V, of the irreducible A-module V, and define

T: A* -V, Tx*:=D,(x")v,. (4.19)

This map is a non-zero left A-module map if we equip A" with the
structure of the trivial 4-module , A% introduced in Lemma 2.12. Indeed,

D,(x)Tx" = D,(xx"h)v, = D,(M"(xx")h)v, = T " (xx"). (4.20)

Therefore r € 77ac A. This proves that D,(h) = 0 for r ¢ 7"ac A.
Now let the Haar integral act on the trivial left 4-module , A%.

D(h)eR =h = R e A N AR =Z. (4.21)

Thus D_(h): A'?A—> Zisa projection, onto. If zLAis a minimal projection in
ZL then zt — 1 is a minimal projection in Z by Lemma 2.14. Hence
D,(z“h) maps A% onto (z —1)Z = C. This proves that D,(z“h), the
restriction of which is precisely Dq(h) for some g € Z'ac A, is a one-di-
mensional projection. If i €. then by the two-sided normalization of &
one can write i = hih. Conversely, hxh is a two-sided integral for all
x € A. This proves the remaining assertions. Q.E.D.
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The Haar measure provides conditional expectations

E': A - A",  EY(x)=h—x, (4.22)
ER: A - AR ER(x) =x < h. (4.23)
As a matter of fact by Lemma 3.2(c) the image of E" isiin 4" since hisa
left integral. Ef is unit preserving since & is normalized. Finally, E* is
positive since & is positive and A is a *-algebra map.
4.3. The Canonical Grouplike Element

In this subsection we investigate further properties of the element g of
Proposition 4.4. We show that it is always a product of left and right
elements, implying its grouplikeness immediately, and obtain expressions
for the modular automorphisms of the Haar measures of 4 and A.

PROPOSITION 4.9. In a C*-WHA A there exists a unique g € A such that

(i) g = 0 and invertible,
(i) grg™r = S2%(x) forallx € A,
i) By ® gy = g, © g,

Proof. Existence: Let g be the (unique) element defined by the condi-
tions of Proposition 4.4. As in the proof of Lemma 4.6 let r be the
S-invariant trace with trace vector 7, = tr (g) and Xx; ® y; be its quasi-
basis. Then

h(Z) ® h(l) = in ® S(871Yi) = 2571()’1‘) ®Xx;8 (4.24)
= LS (ngt) @gng=1eSTH(y) ®gng (425

= ZS(g_lyi) ® gx;g = h(l) ® gh(Z)g' (4.26)

Uniqueness: Let g and g’ satisfy (i)—(iii). Then g’ =gc with ¢
central, positive, and invertible. Furthermore, since (iii) is equivalent to

(o, hy = (Pp(g— o= g). h), (4.27)

non-degeneracy of & implies

g ~e—g =g—¢~—g, ecA (4.28)
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Therefore ¢? — ¢ =c¢ — ¢ < ¢ = ¢ for all ¢ € A. Thus ¢2 = 1 and, by
positivity, ¢ = 1. Q.E.D.

Notice that property (iii) of Proposition 4.9 is equivalent to the state-
ment that the modular automorphism of the Haar functional ¢ — ¢(h) is
expressible in the form

0,(0) =g~ —g  YEA (4.29)

DerINITION 4.10. Let A be a C*-weak Hopf algebra. Then the unique
element g € A determined either by the conditions of Proposition 4.4 or
by the conditions of Proposition 4.9 is called the canonical grouplike
element of A.

As one may suspect the canonical grouplike element is grouplike in the
sense of

DerINITION 4.11.  An element x of a WHA A is called grouplike if
A(x) =x1y ®xl, =14x® 1,x, (4.30)
S(x)x = 1. (4.31)

We note that if (4.30) holds then condition (4.31) is equivalent to the
assumption that x is invertible. One should emphasize that grouplike
elements are not always like group elements if a *-operation is present.
Namely, we allow for x not to be unitary. Thus there can be positive
grouplike elements, for example, in a C*-WHA.

If x is an invertible element factorizable as x, xz* with x, € 4* and
xg = 8(x;) =85 x,) then x is automatically grouplike. As a matter of
fact A(x) =x;14) ® xz'1,, = xgly, ® x,;ll(_z) = x14, ® x1,,. Now it fol-
lows from the next lemma that the canonical grouplike element g is
grouplike.

__LEmMmA 412, In a weak C*-Hopf algebra A the elements h — h and
h — h are positive and invertible. The canonical grouplike element of A can be
factorized as

§=2818r" (4.32)
where
~ 1/2 ~ 1/2
go=(h—=nh) , gg=(h=h) . (4.33)
Proof h — h = E“(h) = EX(h*h) > 0 and similarly 4 — h > 0 by pos-

itivity of the conditional expectations (4.22). Invertibility follows from the
existence of the dual left integral y since (h — h) — x = S(h)(h — x) =h
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can hold for the non-degenerate y and h only if h — 7 is invertible. Thus
h — h = S(h — h) is invertible, too. ~ R

The next point is to observe that the three elements & — h, h — h, and
g commute with each other. For g and any one of the others this follows
from the fact that 4 — h and h — h are invariant under S2. For the
commutativity of the remaining two notice that one of them belongs to A~
the other to A®. Now compare the following expressions,

h=(h~h)—=x=(h—h)g—r, (4.34)
h=8%Yh)y=r—g*h—h)=g*h—h)—~r. (435)
By non-degeneracy of 7 we obtain
(h=h)g™t = (h=h)g,
(h—=h)(h —h) =
and taking the (positive) square root the lemma is proven. Q.E.D.

LEMMA 4.13. The left-right components of the canonical grouplike ele-
ment g of A and g of A obey

§L=’1\’_8L=,i’_gR g =1<g =1<g (436)
gRZgR_\’iZgL_\’i gr=8r—~1=g —1 (437)
S(gL) =8 = Sil(gL) S(?L) =8r = Sil(gL)- (4.38)

Proof. Since g, € A" and g € A%, they commute and both of them
are invariant under S? = Ad,. So are the C* -algebras generated by each
of them, pointwise. Hence S(gi/?)* =S '(g}/?) = S(g; /2) therefore
S(g;) = S(g;/%)? = 0. On the other hand S(g,)* = S(g?) = g3, therefore
S(g,) is the positive square root of g3, i.e., S(g,) = gx-

Next we want to show that 1< (h—h)=h — h. Since both sides
belong to A%, the identity

(A= (h=h),x®) = e((h = h)S(x®)) = e(h = hS(xF))
=(h —h,S(x%)) = (h = h, x®)

valid for x® € AR, suffices. Therefore 1 — g2 = g2, or 1 — g2 = 2. Now
use the fact that A% 5 x® — (1 — x®) € A" is a *-algebra isomorphism.
Hence passing to the square roots we obtain 1 < gz = g, . All the remain-
ing identities are simple consequences of this. Q.E.D.
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__ ProposiTiON 4.14.  Let A be a C*-WHA with dual A and let h € A,
h € A be the corresponding Haar measures. Then

(i)  the modular automorphism of the Haar functional his implemented
by g, &g; i-e., for all x € A we have 0;(x) = g, grxgr 8. ";
(ii)  the dual left integral of h can be expressed as x = ﬁg; z;

(ii) the S-invariant trace functional =g * — x and the Haar func-
tional h are related by

=g, 'hgx", (4.39)
h=g, ga— 1. (4.40)
Proof. (i) Using identities like g, — x = gzx,..., etc., which follow

from Remark 2.7, one can easily verify § —x — g =g, gpxgr g, ", for
x € A

(i) Theidentity 7 — h = gl =1< g% implies 1 = h—h— gz’
h — hg;?, hence hg;? = hgz? is the dual left integral of h. By duallty,
hgr? is the dual left integral y of A.

(i) _7=g" — hgg? = §r*(hgr )8 = &1 *her* and 7=g"
(gr? — h) = g; 'gz* — h completes the proof. Q.E.D.

1

—_

Cyclicity and separability of the vector A |n the right 4% ®-module .7
(cf. Remark 3.17) allows us to introduce AR-valued “Radon- Nikodym
derivatives” of left integrals / with respect to the Haar measure. At first
note that / = M “(h)l = hl =h M1 (1) = hS~2(M ® (1)) therefore using
Remark 2.7 we have

(o, 1) =@pr, h) = po h), (4.41)
where p, = MX() —=Tand p, = STHMIRA) =1 = §2(pp).

PROPOSITION 4.15.  The bijections 7“(A) — AR provided by the left and
right Radon—Nikodym derivatives | — p, and | — pg, respectively, obey the
following properties.

(i) 1 is non-degenerate iff py , is invertible.

(ii) If | is non-degenerate then | is normalized iff > = I.

(i) 1is of positive type; i.e., (¢*,1) = 0 forall ¢ eA, iff M) >
0 iff pg € EY2ARGY/? where AR is the _cone of positive elements in AR, In

this case p;, = py and there exists a § € A such that {¢,1) = { E*e&, h) for
(RS A.

(iv) Let A be the dual left integral of I. Then the Radon—Nikodym
derivatives of A and | are related by T1R(D(MR(A) — 1) = gx2.
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Proof. (i) follows from cyclicity of 4 in _#%. (ii) 1> = I implies (I'1 “(1)
— 1! = 0 and acting with A — , where A is the dual left integral of /, one
obtains I “(/) = 1. The converse implication is trivial. (iii) As in the proof
of Theorem 4.5 [ is of positive type iff S(/,,) ® /,, belongs to the positive
cone (4.12). If it does then M *(1) = S(I;))],, > 0. Now assume 1 (1) >
0. Then introducing &= M*()Y2 — 1 we have MR(DHV2=¢—1,
S=H(T R(l)l/z) =S(E—= D=1 < S HEN* =1« &* therefore | =
RSN RMYH MBADY2 = ¢ = h — ¢* proving that / is of positive
type. It remains to reformulate posmwty of I (l) in terms of p,. Use the
fact that the antimultiplicative map x% — (x® — 1)Afrom AR to AR sends
the *-operation into a new involution, x** — 1 = (5§~ '(x*) — 1) =
(S72(x®) = 1)* = (gpxRgr® = 1* = §o(x® — 1)*gz1. Therefore the
equality M R(0) = x®*x® for some x® € AR is equivalent to the equality

= (xR = 1)(xR* N 1) 1/2"771 Tn 5-1/2 \nith n=2x 1/2(x N 1)g1/2
AR (iv) follows by an elementary calculus starting from the identity
1=A—1=h %W —hs M) QED.

APPENDIX: THE WEAK HOPF ALGEBRA B ® B%®

Let B be a separable algebra over the field K and let £: B — K be a
non-degenerate functional with index 1. These are the data needed for
constructing a WHA structure on the algebra B ® B°. For a similar
construction of a WBA see [14].

At first choose a basis {e;} of B over K and let {f.} be its dual basis w.r.t.
E,ie. E(e;f;) = §;. Then

(@ X, f ®e B ® B is independent of the choice of {e };
(b) X, E(xf)e; =x =L, f;E(e;x), x € B;

© X fie;=1,

d X, xf ®e =X%,f ®ex, x €B;

(e) if 6 denotes the modular automorphism of E, i.e., E(xy) =
E(y0(x)), x,y € B, then

Zf,-@xei=2fi0(x)®ei, x € B;

i

f L, fee=X¢e®0f)=X 0@)®f.
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The algebra B ® B is the K-space B ® B with multiplication (a ® b)(x
® y) == (ax ® yb). Its WHA structure is defined by

A(x®y) =2 (x®f) (e ®y), (A1)
e(x®y) = E(x), (A2)
S(x®y) =y ®6(x). (A3)

The verification of the WHA axioms is left to the reader. The left and
right subalgebras of B ® B®® are B ® 1 and 1 ® B, respectively, because
we have

M(xey)=x®1, M (x®y) =1®y6(x). (A4)

Let 4 be an arbitrary WHA over K. Then AXA4AR is a sub-WHA with
hypercenter A" N AR, Thus A*AR decomposes into a direct sum of
WHAs each summand being isomorphic to a WHA of the type B ® B°.

Since B ® B is separable, by Theorem 3.13, it must contain a normal-
ized left integral. Indeed,

li= Y f®e =5 (1)1 (A5)

1

is such a left integral. What is more, it is non-degenerate.

Before looking for Haar integrals some remarks about innerness of 6
are in order. The quantity ¢ = ¥, e;f, always implements 67%; i.e., xqg =
q6(x) for x € B, but it is not necessarily invertible. (For example, for
B = M,(Z,) and for any non-degenerate functional E the g is identically
zero.) In fact g is invertible iff the left regular trace on B is non-degener-
ate (especially if K is of characteristic zero). Fortunately one can circum-
vent this nuisance by using the existence of a non-degenerate trace tr on
any separable algebra B (see [5]). Then the Radon—Nykodim derivative y

of E w.r.t. tr provides an invertible element implementing 60,
E(x) =tr(xy), 6(x)=vyxy', xe€B. (AB)

This proves that 6 is inner and therefore so is the square of the antipode,
§?=00 0.

Omitting the details we can now_formulate the condition for the exis-
tence of the Haar measures ~ and # as follows. Haar measure in B ® B
exists iff ¥, f,y2e, is invertible and Haar measure in B ® B* exists iff
E(1g) # 0.
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