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We give an introduction to the theory of weak Hopf algebras proposed as a
coassociatï e alternative of weak quasi-Hopf algebras. We follow an axiomatic
approach keeping as close as possible to the ‘‘classical’’ theory of Hopf algebras.
The emphasis is put on the new structure related to the presence of canonical
subalgebras AL and AR in any weak Hopf algebra A that play the role of
non-commutative numbers in many respects. A theory of integrals is developed in
which we show how the algebraic properties of A, such as the Frobenius property,
or semisimplicity, or innerness of the square of the antipode, are related to the
existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak
Hopf algebras we prove the existence of a unique Haar measure h g A and of a
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canonical grouplike element g g A implementing the square of the antipode and
factorizing into left and right elements g s g gy1 , g g AL, g g AR. FurtherL R L R
discussion of the C*-case will be presented in Part II. Q 1999 Academic Press
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1. INTRODUCTION

w xWeak Hopf algebras have been proposed 2, 14, 20 as a new generaliza-
w xtion of ordinary Hopf algebras that replaces Ocneanu’s paragroup 16 , in

the depth 2 case, with a concrete ‘‘Hopf algebraic’’ object. The earlier
w x w xproposals of face algebras 8 or quantum groupoids 17 are actually weak

ŽHopf algebras even if not the most general ones. Also, the finite-dimen-
. w xsional generalized Kac algebras of Yamanouchi 25 are weak Hopf alge-

w xbras in our sense 14 , albeit with an involutive antipode.
In contrast to other Hopf algebraic constructions such as the quasi-Hopf

w x walgebras 6 or the weak quasi-Hopf algebras and rational Hopf algebras 7,
x11, 22 weak Hopf algebras are coassociatï e. This allows one to define

actions, coactions, and crossed products as easily as in the Hopf algebra
case. On the other hand weak Hopf algebras have ‘‘weaker’’ axioms

Ž .related to the unit and counit: The comultiplication is non-unital, D 1 / 1
Ž .m 1 like in weak quasi-Hopf algebras and the counit is only ‘‘weakly’’

Ž . Ž . Ž .multiplicative, « xy s « x1 « 1 y . This kind of ‘‘weakness’’ is theŽ1. Ž2.
Ž‘‘strength’’ of weak Hopf algebras because it allows even in the finite-di-

.mensional and semisimple case the weak Hopf algebra to possess non-in-
Ž .tegral quantum dimensions.
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Thus weak Hopf algebras are not special cases of weak quasi-Hopf
algebras and also not more general than them. Nevertheless, in situations
where only the representation category of the quantum group matters,
these two concepts are equivalent. This is, of course, not surprising in view
of MacLane’s theorem on the equivalence of relaxed and strict monoidal

w xcategories 12 . In fact not all of the potential of this theorem is utilized by
weak Hopf algebras because their representation category is not quite
strict: Only the associator is trivial but not the left and right isomorphisms
of the monoidal unit. Although a general analysis clarifying the role of
representation categories of weak Hopf algebras within the set of monoidal

w xcategories is still missing the examples constructed in 2 using Ocneanu’s
cocycle suggest that they play a rather fundamental role, as long as they
can accommodate to arbitrary 6 j-symbols.

So far weak Hopf algebras have been considered only under the addi-
tional assumption of finite dimensionality. Although a good deal of the
results can be generalized to the infinite-dimensional case, finite dimen-
sion is particularly attractive because it implies self-duality. Just like finite
Abelian groups or finite-dimensional Hopf algebras, the finite-dimensional

Ž .weak Hopf algebras WHA are self-dual in the following sense. If A is a
ˆWHA then its dual space A is canonically equipped with a weak Hopf

ˆ ˆŽ .algebra structure. Furthermore this duality is reflexive, A ( A. This is
a feature which makes WHAs more natural objects of study than either

Ž . Ž .finite non-Abelian groups or finite-dimensional weak quasi-Hopf alge-
bras.

The main motivation for studying WHAs comes from quantum field
theory and operator algebras and consists roughly of the following two
symmetry problems.

I. If N ; M is an inclusion of algebras satisfying certain conditions
Ž .then find a unique ‘‘quantum group’’ G and an action of G on M such

that N s M G, the invariant subalgebra.
ˆII. The dual problem is to find a quantum group G acting on N such

ˆthat M is isomorphic to the crossed product N i G.

Of course, determining the appropriate notion of quantum group, as well
as its action, is part of the problem. If N ; M is a finite index irreducible

w xdepth 2 inclusion of von Neumann factors then the answer is known by 10
w xto be a finite-dimensional C*-Hopf algebra. In 15 we showed that if we

allowed the inclusion to be reducible and N and M to have arbitrary
finite-dimensional centers then the appropriate quantum group was a
C*-weak Hopf algebra. Even in case of inclusions of certain associative
Ž .non-* algebras the notion of a WHA over an arbitrary field K, intro-
duced in this paper, may provide a useful invariant.
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In Section 2 we introduce the axioms of weak bialgebras and weak Hopf
algebras over a field K and discuss their consequences. If K s C, the

w xcomplex field, then these axioms are equivalent to those of 20 . The
present axioms have the advantage of being manifestly self-dual and
almost each of them having an ancestor among the Hopf algebra axioms
which it generalizes. In discussing the consequences particular attention is
paid to the canonical subalgebras AL and AR present in any WHA both
of which reducing to the scalars K1 if A is a Hopf algebra. From many
points of view these subalgebras behave like non-commutative generaliza-
tions of numbers. Just to mention some: 1. AL and AR are separable
K-algebras. 2. The trivial left A-module is a representation on the K-space

L R ˆŽ .A or on A . 3. The dual weak Hopf algebra A have left and right
L̂ R̂ R Lsubalgebras A and A that are isomorphic to A and A , respectively.

Of course, to realize the idea of AL and AR being ‘‘non-commutative
numbers’’ one should completely get rid of the field K from the outset. As
yet we have no concrete proposal for this scenario.

Section 3 is devoted to the study of integrals in weak Hopf algebras.
Using the notion of weak Hopf modules which is a generalization of the

w xHopf modules 1, 19 we show that non-zero integrals exist. A weak Hopf
version of Maschke’s theorem characterizes semisimple WHAs as those
possessing normalized integrals. Other important classes of WHAs are
those which are Frobenius algebras. They are characterized by possessing
non-degenerate left integrals. This class is a self-dual class by the duality
theorem of non-degenerate integrals. We conclude with giving necessary
and sufficient criteria for the existence of Haar integrals, i.e., normalized
non-degenerate two-sided integrals in a WHA.

Section 5 contains the basic properties of weak C*-Hopf algebras such
as the existence of a Haar integral h and a canonical grouplike element
g G 0 implementing S2 and the modular automorphism of the Haar
measure. As a consequence of the existence of Haar measures the dual of
a C*-weak Hopf algebra is a C*-weak Hopf algebra again. Further analysis
of C*-WHAs will be given in Part II where we discuss the representation
category and a notion of dimension which turns out to be non-commuta-

w xtive in case of solitonic representations 3 .

2. THE WEAK HOPF CALCULUS

2.1. The Axioms

Ž . Ž .DEFINITION 2.1. A weak bialgebra WBA is a quintuple A, m, u, D, «
Ž .satisfying Axioms 1]3 below. If A, m, u, D, « , S satisfies Axioms 1]4 below
Ž .it is called a weak Hopf algebra WHA .
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Axiom 1. A is a finite-dimensional associative algebra over a field K
with multiplication m: A m A ª A and unit u: K ª A. I.e., m and u are
K-linear and satisfy

Associativity: m( m m id s m( id m m , 1.1Ž . Ž . Ž .
Unit property: m( u m id s id s m( id m u . 1.2Ž . Ž . Ž .

Ž Ž .Later on we suppress m and u, just write xy for m x, y , and use the unit
Ž . .element 1 [ u 1 instead of u.

Axiom 2. A is a coalgebra over K with comultiplication D: A ª A m A
and counit « : A ª K. I.e., D and « are K-linear and satisfy

Coassociativity: D m id (D s id m D (D , 1.3Ž . Ž . Ž .
Counit property: « m id (D s id s id m « (D . 1.4Ž . Ž . Ž .

Axiom 3. For compatibility of the algebra and coalgebra structures we
assume

Multiplicativity of the coproduct: For all x, y g A,

D xy s D x D y . 1.5Ž . Ž . Ž . Ž .

Weak multiplicativity of the counit: For all x, y, z g A,

« xyz s « xy « y z , 1.6aŽ . Ž . Ž . Ž .Ž1. Ž2.

« xyz s « xy « y z . 1.6bŽ . Ž . Ž . Ž .Ž2. Ž1.

Weak comultiplicativity of the unit,

D2 1 s D 1 m 1 1 m D 1 , 1.7aŽ . Ž . Ž . Ž .Ž . Ž .
D2 1 s 1 m D 1 D 1 m 1 . 1.7bŽ . Ž . Ž . Ž .Ž . Ž .

Axiom 4. There exists a K-linear map S: A ª A, called the antipode,
satisfying the following

Antipode axioms: For all x g A,

x S x s « 1 x 1 , 1.8aŽ . Ž .Ž .Ž1. Ž2. Ž1. Ž2.

S x x s 1 « x1 , 1.8bŽ . Ž .Ž .Ž1. Ž2. Ž1. Ž2.

S x x S x s S x . 1.9Ž . Ž . Ž . Ž .Ž1. Ž2. Ž3.
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Ž . Ž . Ž .In Eqs. 1.6 ] 1.9 we used a standard suffix notation for iterated
coproducts, omitting as usual summation indices and a summation symbol.

w x Ž .In the terminology of 14 A, m, u, D, « is called a weak bialgebra if it
Ž . Ž .satisfies the axioms 1.1 ] 1.5 . There a weak bialgebra is called monoidal

Ž . Ž .if it satisfies 1.6 and it is called comonoidal if it satisfies 1.7 . As has
w x Ž .been explored in detail in 14 , these co monoidality axioms are precisely

Ždesigned to render the category of A-modules the category of A-comod-
.ules, respectively monoidal.

Ž .The dual of a weak bialgebra weak Hopf algebra A is the dual space
ˆ ˆ ˆŽ . Ž .A [ Hom A, K equipped with structure maps m, u, D, « , S definedˆ ˆ ˆK

by transposing the structure maps of A by means of the canonical pairing
ˆ² :, : A = A ª K,

² : ² :wc , x [ w m c , D x ,Ž .
²̂ :1, x [ « x ,Ž .

ˆ² : ² :D w , x m y [ w , xy ,Ž .
² :« w [ w , 1 ,Ž .ˆ

ˆ² : ² :S w , x [ w , S x ,Ž . Ž .

ˆwhere w, c g A and x, y g A.
Let f and g be maps from the m-fold tensor product Amm to the n-fold

tensor product Amn such that they are composites of tensor products of
the structure maps m, u, D, « , S and of the twist maps t interchangingi j
the ith and the jth A factors. Then the equality f s g is called an

ˆA-statement. Similarly one defines the A-statements. Now every A-state-
ˆ T T Tment Q :: f s g determines an equivalent A-statement Q :: f s g ob-

ˆtained by reversing the order of composition and replacing m with D, u
ˆ Twith « , D with m, « with u, and S with S. The statement Q is called theˆ ˆ ˆ

transpose of Q. If we now substitute m, u, D, « , S, respectively, in place of
ˆ ˆ T ; ;m, u, D, « , S in the statement Q we obtain a new A-statement Q :: fˆ ˆ ˆ

s g ; which is not equivalent to Q in general. This Q; will be called the
dual of Q. For example, one can easily verify that the WBA axioms satisfy
Ž .; Ž . Ž .; Ž . Ž .; Ž . Ž .; Ž . Ž .;1.1 s 1.3 , 1.2 s 1.4 , 1.5 s 1.5 , 1.6a s 1.7a , and 1.6b s
Ž .1.7b . Thus the weak bialgebra axioms form a self-dual set of statements.
This implies that the dual of a WBA is a WBA, too. The same holds for
weak Hopf algebras, since each one of the antipode axioms is a self-dual
statement. As a consequence of self-duality if Q is a true statement in a
WBA or in a WHA then Q; is also true there. This principle extends also

ˆto statements involving both A and A structure maps and canonical
Ž .pairing s .
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w xAs has been proven in 14 , the above self-dual set of WHA axioms are
w xequivalent to the non-self-dual set of axioms given in 20 . In this work we

w xgradually reproduce all axioms of 20 as a consequence of the present
ones.

Ž .For a weak Hopf algebra A, 1, D, « , S the following conditions are
equivalent

v A is a Hopf algebra;
v Ž .D 1 s 1 m 1;
v Ž . Ž . Ž .« xy s « x « y ;
v Ž . Ž .S x x s 1« x ;Ž1. Ž2.

v Ž . Ž .x S x s 1« x .Ž1. Ž2.

The proof of these assertions are either trivial or will become trivial after
acquainting the weak Hopf calculus developed in the next subsections, see

w xalso 14 .

2.2. Weak Bialgebras

In a WBA define the maps # L, # R: A ª A by the formulae

#L x [ « 1 x 1 , #R x [ 1 « x1 , 2.1Ž . Ž . Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

L LŽ . R RŽ .and introduce the notation A [ # A , A [ # A for their im-
ˆages. The analogue objects in the dual bialgebra A will be denoted by

ˆ L ˆ R L Rˆ ˆ# , # , A , and A , respectively.
Ž .Substituting y s 1 in Axiom 1.6b one obtains immediately the identi-

ties

« x #L y s « xy , 2.2aŽ . Ž . Ž .Ž .
« #R x y s « xy , 2.2bŽ . Ž . Ž .Ž .
#L ( #L s #L , 2.3aŽ .

#R ( #R s #R . 2.3bŽ .
1 Ž .As a first application of the duality principle take the duals of Eqs. 2.2a

Ž .and 2.2b ,

1 m #L 1 s 1 m 1 s #R 1 m 1 .Ž . Ž .Ž1. Ž2. Ž1. Ž2. Ž1. Ž2.

1 In taking the transpose of a statement with #L r R use the fact that in a WBA
L ˆ L Rˆ ˆ² Ž .: ² :² : ² Ž . : ² Ž .:w, # x s 1 m 1 , 1 m x w, 1 s # w , x and similarly w, # xŽ1. Ž2. Ž1. Ž2.

ˆ R² Ž . :s # w , x .
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Then these are identities in any WBA. It follows that

D 1 g AR m AL . 2.4Ž . Ž .

LEMMA 2.2. The counit defines a non-degenerate bilinear form

x L g AL , y R g AR ¬ « y R x L g K .Ž .

Hence AL ( AR as K-spaces.

Proof.

« y R x L s 0 ; y R g AR « x L s « 1 x L 1 s 0,Ž . Ž .Ž1. Ž2.

« y R x L s 0 ; x L g AL « y R s 1 « y R1 s 0,Ž . Ž .Ž1. Ž2.

Ž .where we used 2.4 . Q.E.D.

Ž . Ž .Returning to Eqs. 2.2a and 2.2b and substituting them into the
Ž .definitions 2.1 one obtains

#L x #L y s #L xy , 2.5aŽ . Ž . Ž .Ž .
#R #R x y s #R xy . 2.5bŽ . Ž . Ž .Ž .

Ž . Ž .The duals of 2.5a and 2.5b ,

D AL ; A m AL , 2.6aŽ . Ž .
D AR ; AR m A 2.6bŽ . Ž .

tell us that AL and AR are left, respectively, right coideals in the
Ž .coalgebra A. Using Axiom 1.7b we can obtain explicit expressions for

these coproducts

D x L s « 1 x L 1 m 1 s « 1 x L 1 1 m 1 s 1 x L m 1 ,Ž . Ž . Ž .Ž1. Ž2. Ž3. Ž19. Ž1. Ž2 9. Ž2. Ž1. Ž2.

2.7aŽ .

D x R s 1 m 1 « x R1 s 1 m 1 1 « x R1 s 1 m x R1 ,Ž . Ž . Ž .Ž1. Ž2. Ž3. Ž1. Ž19. Ž2. Ž2 9. Ž1. Ž2.

2.7bŽ .

where x L and x R are meant to denote arbitrary elements of AL, resp.,
AR.
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LEMMA 2.3. For all x g A we ha¨e the identities

x m #L x s 1 x m 1 , 2.8aŽ . Ž .Ž1. Ž2. Ž1. Ž2.

#R x m x s 1 m x1 . 2.8bŽ . Ž .Ž1. Ž2. Ž1. Ž2.

Ž .Proof. Using Axiom 1.7b one obtains

x m « 1 x 1 s 1 x « 1 1 x m 1Ž . Ž .Ž1. Ž1. Ž2. Ž2. Ž19. Ž1. Ž1. Ž2 9. Ž2. Ž2.

s 1 x « 1 x m 1Ž .Ž1. Ž1. Ž2. Ž2. Ž3.

s 1 x m 1 ,Ž1. Ž2.

1 « x 1 m x s 1 m « x 1 1 x 1Ž . Ž .Ž1. Ž1. Ž2. Ž2. Ž1. Ž1. Ž19. Ž2. Ž2. Ž2 9.

s 1 m « x 1 x 1Ž .Ž1. Ž1. Ž2. Ž2. Ž3.

s 1 m x1 .Ž1. Ž2.

Q.E.D.

As a consequence we obtain the dual statements

x #L y s « x y x , 2.9aŽ . Ž . Ž .Ž1. Ž2.

#R x y s y « xy . 2.9bŽ . Ž . Ž .Ž1. Ž2.

PROPOSITION 2.4. Let A be a WBA. Then AL and AR are subalgebras of
A containing 1 and

x L y R s y R x L for all x L g AL and y R g AR . 2.10Ž .

Ž . Ž .Proof. Eqs. 2.8a and 2.8b imply the relations

1 1 m 1 m 1 s 1 m #L 1 m 1 , 2.11aŽ .Ž .Ž1. Ž19. Ž2. Ž2 9. Ž1. Ž2. Ž3.

1 m 1 m 1 1 s 1 m #R 1 m 1 . 2.11bŽ .Ž .Ž1. Ž19. Ž2. Ž2 9. Ž1. Ž2. Ž3.

Ž . Ž . Ž .Now either Axiom 1.7a or Axiom 1.7b show that on the RHS of 2.11a
R Ž .the first tensor factor belongs to A and on the RHS of 2.11b the last

factor belongs to AL. This is sufficient for AR, respectively AL to be
closed under multiplication. Hence they are algebras. Obviously 1 g AL l

R LŽ . RŽ .A since # 1 s 1 s # 1 . To see commutativity of left and right
Ž . Ž .elements just compare Axioms 1.7a and 1.7b . Q.E.D.
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As the duals of the statements that AL and AR are subalgebras we
obtain that Ker # L and Ker # R are coideals of the coalgebra A, i.e.,

D Ker #C ; A m Ker #C q Ker #C m A ,Ž .
2.12Ž .

« Ker #C s 0, C s L, R .Ž .

L̂ LOn the other hand, being the annihilator of the left coideal A , Ker #
is a left ideal of the algebra A and similarly, Ker # R is a right ideal.

LEMMA 2.5. Consider AL and A as left AL-modules by left multiplication.
Then # L: A ª AL is a left AL-module map. Analogously, # R: A ª AR

is a right AR-module map. That is to say

#L #L x y s #L x #L y , 2.13aŽ . Ž . Ž . Ž .Ž .
#R x #R y s #R x #R y 2.13bŽ . Ž . Ž . Ž .Ž .

hold true for all x, y g A.
L r R Ž . Ž .Proof. At first use the definition of # , then Eqs. 2.2a and 2.2b ,

Ž . Ž .and finally Eqs. 2.7a and 2.7b ,

#L #L x y s « 1 #L x y 1Ž . Ž .Ž . ž /Ž1. Ž2.

s « 1 #L x #L y 1 s #L x #L y ,Ž . Ž . Ž . Ž .ž /Ž1. Ž2.

#R x #R y s 1 « x #R y 1Ž . Ž .Ž . ž /Ž1. Ž2.

s 1 « #R x #R y 1 s #R x #R y .Ž . Ž . Ž . Ž .ž /Ž1. Ž2.

Q.E.D.

Our next assertion about WBAs establishes a canonical isomorphism
Ž . Ž .between the left right subalgebra of A and the right left subalgebra of

ˆ ˆA. Since the existence of a common non-trivial subalgebra of A and A for
Hopf algebras is by far not typical, this result is the first hint toward the
fundamental role AL and AR play in the theory of WHAs.

To formulate the statement we introduce the Sweedler arrow notation

² : ² :x © w [ w w , x , w £ x [ w , x w . 2.14Ž .Ž1. Ž2. Ž1. Ž2.

ˆSince A is the dual WBA of A, the Sweedler arrows w © x and x £ w
are also defined.
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L L L ˆŽ .LEMMA 2.6. The map k : x ¬ x © 1 is an algebra isomorphismA
L R̂ R R ˆ RŽ .from A onto A . The map k : x ¬ 1 £ x is an algebra isomorphismA
R L̂from A onto A . Furthermore, the restriction of the canonical pairing to

L̂ L R̂ R L̂ R R̂ LA = A , A = A , A = A , or to A = A is non-degenerate.

Ž . Ž .Proof. Using Eqs. 2.11a and 2.11b and the defining properties
² : ² :w £ x, y s w, xy , . . . etc. of the Sweedler arrows one can easily verify
that

L ˆ L ˆ ˆ ˆ ˆ L ˆ L² :² :x © 1 y © 1 s 1 1 1 , x 1 , yŽ . Ž . Ž1. Ž19. Ž2. Ž2 9.

ˆ ˆ L ˆ L² :² :s 1 1 , x 1 , yŽ1. Ž2. Ž3.

L L ˆs x y © 1, 2.15Ž .

ˆ R ˆ R ˆ R ˆ R ˆ ˆ² :² :1 £ x 1 £ y s 1 , x 1 , y 1 1Ž . Ž . Ž1. Ž19. Ž2. Ž2 9.

ˆ R ˆ R ˆ² :² :s 1 , x 1 , y 1Ž1. Ž2. Ž3.

ˆ R Rs 1 £ x y , 2.16Ž .
ˆ R ˆ R R R² :1 £ x ©1 s 1 1 £ x , 1 s 1 « x 1 s x , 2.17Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

L ˆ L ˆ L L² :1 £ x © 1 s 1 , x © 1 1 s « 1 x 1 s x . 2.18Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

L Ž R. RŽ L.Thus k k is an algebra map with inverse k k . As for theˆ ˆA A A A
non-degeneracy

² R L: Rw , x s 0 ;w

L ˆ L ˆ L² : ² :« x s 1, x 1 1 s 1 © 1, x 1 s 0,Ž1. Ž2. Ž1. Ž2.

² L L: Lw , x s 0 ;w

L ˆ L ˆ L² : ² :« x s 1, 1 x 1 s 1 £ 1 , x 1 s 0,Ž1. Ž2. Ž1. Ž2.

and the transpose of these prove the claim. Q.E.D.
i ˆ i� 4 � 4 ² :If b is a K-basis of A and b ; A is its dual basis, b , b s d ,i j i j

then

L i ˆ L i ˆ ˆ# b m b s b m # b s 1 £ 1 m 1 , 2.19aŽ . Ž .Ž .Ý Ýi i Ž1. Ž2.
i i

R i ˆ R i ˆ# b m b s b m # b s 1 m 1 © 1. 2.19bŽ . Ž .Ž .Ý Ýi i Ž1. Ž2.
i i
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This can be easily seen by pairing both sides of any of these equations with
Ž .w m x and applying the definitions 2.1 .

The four arrow identities of the next remark are frequently used in later
computations.

ˆ L LRemark 2.7. Let A be a WBA. Then for all w g A, x g A , and
x R g AR,

L L ˆx © w s x © 1 w , 2.20aŽ .Ž .
R ˆ Rw £ x s w 1 £ x , 2.20bŽ .Ž .
L ˆ Lw £ x s 1 £ x w , 2.21aŽ .Ž .

R R ˆx © w s w x © 1 . 2.21bŽ .Ž .

2.3. Weak Hopf Algebras

In this subsection we show how the existence of an antipode relates
# L, AL with # R, AR and derive the expected properties of S that have
been axioms in earlier formulations. The two most important results will
be invertibility of the antipode and separability of the algebras AL and
AR. Let us start with the question of uniqueness of the antipode.

LEMMA 2.8. The unit, the counit, and the antipode, if they exist, are
Ž . Ž .unique. I.e., if A, m, u, D, « , S and A, m, u9, D, « 9, S9 are both weak

Hopf algebras then u9 s u, « 9 s « , and S9 s S.

Proof. The uniqueness of the unit and the counit are obvious. There-
fore # L and # R are common in these two WHAs. To prove S9 s S
introduce the convolution product

f e g x [ f x g x , x g A , 2.22Ž . Ž . Ž . Ž . Ž .Ž1. Ž2.

Ž .on functions f , g g Hom A, A . This is an associative operation in termsK
of which the antipode axioms take the form

id e S s #L , S e id e S s S, S e id s #R .

Now S9 satisfies the same equations with the same # L, # R, therefore

S9 s S9 e id e S9 s S9 e #L s S9 e id e S

s #R
e S s S e id e S s S.

Q.E.D.
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Ž .As a preparation for the theorem below notice that the definitions 2.1
have counterparts involving the antipode,

#L x s « S x 1 1 , 2.23aŽ . Ž . Ž .Ž .Ž1. Ž2.

#R x s 1 « 1 S x . 2.23bŽ . Ž . Ž .Ž .Ž1. Ž2.

As a matter of fact

#L x s « 1 #L x 1 s « #L x 1 1Ž . Ž . Ž .ž / ž /Ž1. Ž2. Ž1. Ž2.

s « x S x 1 1Ž .Ž .Ž1. Ž2. Ž1. Ž2.

s « #R x S x 1 1 s « S x x S x 1 1Ž . Ž . Ž . Ž .Ž .ž /Ž1. Ž2. Ž1. Ž2. Ž1. Ž2. Ž3. Ž1. Ž2.

s « S x 1 1 ,Ž .Ž .Ž1. Ž2.

Ž . Ž . Ž . Ž . Ž .where in the subsequent equations 2.1 , 2.10 , 1.8a , 2.2b , 1.8b , and
Ž . Ž .finally 1.9 have been used. Equation 2.23b can be proven analogously.

Ž . Ž .As the duals of 2.23a and 2.23b we have automatically the identities

#L x s S 1 « 1 x , 2.24aŽ . Ž .Ž . Ž .Ž1. Ž2.

#R x s « x1 S 1 . 2.24bŽ . Ž .Ž . Ž .Ž1. Ž2.

LEMMA 2.9. In a WHA A the following identities hold

#L (S s #L ( #R s S( #R , 2.25aŽ .

#R (S s #R ( #L s S( #L . 2.25bŽ .

Ž . Ž .Proof. It is sufficient to prove the first equalities in 2.25a and 2.25b
because the second ones then follow by duality. So

#L (S x s « 1 S x 1 s « 1 S x x S x 1Ž . Ž . Ž . Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž1. Ž2. Ž3. Ž2.

s « 1 S x #L x 1 s « 1 S x x 1Ž . Ž . Ž .Ž .ž /Ž1. Ž1. Ž2. Ž2. Ž1. Ž1. Ž2. Ž2.

s #L ( #R x .Ž .
In a similar way one can verify # R (S s # R ( # L. Q.E.D.

Ž R. L Ž L. RThe above lemma implies that S A ; A and S A ; A . On the
Ž . Ž . L Ž R. R Ž L.other hand Eqs. 2.24a and 2.24b say that A ; S A and A ; S A .

Therefore the antipode maps AL onto AR bijectively and maps AR onto
AL bijectively.
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THEOREM 2.10. Let A be a WHA. Then the antipode is antimultiplicatï e
and anticomultiplicatï e,

S xy s S y S x x , y g A , 2.26Ž . Ž . Ž . Ž .
S x m S x s S x m S x x g A , 2.27Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 2 Ž2. Ž1.

< L < Rand the restrictions S and S are bijections such thatA A

S AL s AR , S AR s AL . 2.28Ž . Ž . Ž .

The unit and the counit are S-in¨ariant,

S 1 s 1, 2.29aŽ . Ž .
« (S s « . 2.29bŽ .

Furthermore S: A ª A is in¨ertible.

Ž . Ž .Proof. We have already shown 2.28 . Equation 2.27 is the dual of
Ž . Ž . Ž . Ž .2.26 and 2.29a is the dual of 2.29b . Equation 2.26 follows from

S xy s S x y x y S x y s S x y #L x #L yŽ . Ž . Ž . Ž . Ž .ž /Ž1. Ž1. Ž2. Ž2. Ž3. Ž3. Ž1. Ž1. Ž2. Ž2.

s S x y x #L y S xŽ . Ž . Ž .Ž1. Ž1. Ž2. Ž2. Ž3.

s #R #R x y S y S xŽ . Ž . Ž .ž /Ž1. Ž1. Ž2. Ž2.

s S y #R x y S y S xŽ . Ž . Ž . Ž .Ž1. Ž1. Ž2. Ž3. Ž3.

s S y y S y S x x S xŽ . Ž . Ž . Ž .Ž1. Ž2. Ž3. Ž1. Ž2. Ž3.

s S y S x .Ž . Ž .

Ž .Next we prove 2.29b . As a matter of fact

« S x s « S x x S x s « S x #L xŽ . Ž . Ž . Ž . Ž .Ž . Ž . ž /Ž1. Ž2. Ž3. Ž1. Ž2.

s « S x x s « #R xŽ . Ž .Ž .Ž .Ž1. Ž2.

s « x .Ž .

Ž .To prove invertibility of S notice that the descending chain A > S A >
2Ž . Ž .S A > ??? of WHAs all contain 1 by 2.29a . This implies the existence

of n g N such that

1 g Snq1 A s Sn A ; Sny1 A .Ž . Ž . Ž .



WEAK HOPF ALGEBRAS, I 399

nŽ . ny1Ž .We want to show that this implies S A s S A . Replacing A by
ny1Ž .S A it is therefore enough to prove invertibility of S under the

2Ž . Ž .additional assumption S A s S A , implying

Ker S l S A s 0.Ž .
< Ž . Ž .In this case let S [ S , then S: S A ª S A is bijective andSŽ A.

y1P [ S (S : A ª S AŽ .S

is a multiplicative idempotent satisfying

P xS y s P x S y , x , y g A.Ž . Ž . Ž .Ž .S S

Ž . L, R Ž .By 2.28 A ; S A . Now taking into account the identity x s
Ž . Ž . Ž .x S x x , which follows directly from Axioms 1.8a and 1.4 , thenŽ1. Ž2. Ž3.

Ž .using also P 1 s 1 we haveS

P x s P x S x x s P x S x x s P x S x xŽ . Ž . Ž . Ž . Ž .Ž . Ž .S S Ž1. Ž2. Ž3. S Ž1. Ž2. Ž3. S Ž1. Ž2. Ž3.

s P 1 x S x x s x ,Ž . Ž .S Ž1. Ž2. Ž3.

so Ker P s Ker S s 0. Q.E.D.S

Ž .We are now able to derive versions of the original antipode axioms of
w x2, 20 ,

x m x S x s 1 x m 1 , 2.30aŽ . Ž .Ž1. Ž2. Ž3. Ž1. Ž2.

S x x m x s 1 m x1 , 2.30bŽ . Ž .Ž1. Ž2. Ž3. Ž1. Ž2.

x m S x x s x1 m S 1 , 2.30cŽ . Ž .Ž .Ž1. Ž2. Ž3. Ž1. Ž2.

x S x m x s S 1 m 1 x . 2.30dŽ . Ž .Ž .Ž1. Ž2. Ž3. Ž1. Ž2.

Ž .The first two are just rewritings of the bialgebra identities 2.8a and
Ž .2.8b . The second two are more delicate. Namely

x m S x xŽ .Ž1. Ž2. Ž3.

s x m « x 1 S 1 s x 1 m « x 1 1 S 1Ž . Ž . Ž . Ž .Ž1. Ž2. Ž1. Ž2. Ž1. Ž19. Ž2. Ž2 9. Ž1. Ž2.

s x 1 « x 1 m S 1 s x1 m S 1 ,Ž . Ž . Ž .Ž1. Ž1. Ž2. Ž2. Ž3. Ž1. Ž2.

x S x m xŽ .Ž1. Ž2. Ž3.

s S 1 « 1 x m x s S 1 « 1 1 x m 1 xŽ . Ž . Ž . Ž .Ž1. Ž2. Ž1. Ž2. Ž1. Ž2. Ž19. Ž1. Ž2 9. Ž2.

s S 1 m « 1 x 1 x s S 1 m 1 x .Ž . Ž . Ž .Ž1. Ž2. Ž1. Ž3. Ž2. Ž1. Ž2.

w xThe following proposition also holds, if A is just a WBA, see 14 .
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PROPOSITION 2.11. Let A be a WHA o¨er K. Then AL and AR are
separable K-algebras, in particular, they are semisimple.

Proof. Recall that an algebra A is separable if and only if there exists a
Ž . Ž .q g A m A such that x m 1 q s q 1 m x holds for all x g A and further-

Ž . w xmore m q s 1, where m denotes the multiplication map of A 18 . Such a
q will be called a separating idempotent.2 So, our proof consists of showing

L Ž . L L R Ž . R Rthat q s S 1 m 1 g A m A and q s 1 m S 1 g A m AŽ1. Ž2. Ž1. Ž2.
are separating idempotents of AL and AR, respectively. In fact we prove
the somewhat more general identities

x y R m x s x m x S y R , 2.31aŽ .Ž .Ž1. Ž2. Ž1. Ž2.

x m y L x s S y L x m x 2.31bŽ .Ž .Ž1. Ž2. Ž1. Ž2.

L L R R Ž .valid for all x g A and y g A , y g A . Pairing the LHS of 2.31a with
w m c , we obtain

² :w m c , LHS

R ˆ R ˆ² :² : ² :² :s w y © 1 , x c , x s w , x S y © 1 c , xŽ .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

² :s w m c , RHS .

Ž .The proof of 2.31b is simply the mirror image of the above argument.
Q.E.D.

2.4. The ‘‘Trï ial’’ Representation

Since the counit of a WHA is in general not an algebra map, weak Hopf
algebras may be lacking of any one-dimensional representation. Neverthe-
less the axioms ensure that any WHA A has a distinguished representa-

Ž .tion providing a unit object for the relaxed monoidal category of left
w xA-modules. We shall discuss this category in detail in 3 . Now we concen-

trate only on the properties of this representation. We note that the trivial
w xrepresentation exists already in WBAs 14 and therefore the use of the

antipode in this subsection is not obligatory.
L r R Ž .Since the algebras A occur on the right-hand side of Axioms 1.8a

Ž .and 1.8b where in ordinary Hopf algebras the trivial representation
stands, one expects that the ‘‘trivial representation’’ of WHAs must be a

L r R L̂ r Rnon-trivial representation acting on either A or A .

2 In fact q is an idempotent only if considered as an element of A m Aop.
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LEMMA 2.12. The following left A-modules are isomorphic:

R̂ R̂ R RA :: the ¨ector space A with action x ? w [ x © w ,A

L̂ L̂ L LA :: the ¨ector space A with action x ? w [ w £ S x ,Ž .A

AL :: the ¨ector space AL with action x ? y L [ #L xy L ,Ž .A

AR :: the ¨ector space AR with action x ? y R [ #R y RS x .Ž .Ž .A

ˆ L̂ R̂ Ž̂Proof. S: A ª A is an isomorphism of vector spaces and S w £
ˆŽ .. Ž .S x s x © S w is a general WHA identity. This proves the isomorphism

of the first two A-modules. Similarly, S: AL ª AR is an isomorphism of
Ž LŽ .. RŽ Ž . Ž ..vector spaces and S # xy s # S y S x is a WHA identity. This

proves the isomorphism of the last two A-modules.
R̂ LTo show the isomorphism of A with A consider the bijection B:A A

R̂ L R RŽ .A ª A , B w [ 1 £ w . Then

R R ² R:B x © w s 1 £ x © w s 1 x , w 1Ž . Ž . Ž1. Ž2.

R ˆ L R² :s 1 x £ w , 1 1 s # x £ wŽ . Ž .Ž1. Ž2.

s #L x 1 £ w RŽ .Ž .
s #L xB w R ,Ž .Ž .

hence B is a left A-module map. Here, in the last-but-one equality we
have used one of the four arrow identities of Remark 2.7. Q.E.D.

DEFINITION 2.13. By the trivial representation of the WHA A we mean
R̂ R̂the cyclic left A-module V [ A with A-action D : A ª End A ,« A « K

Ž .D x w [ x © w.«

The third and fourth A-modules of the above lemma demonstrate that
L Ž R.the restriction of the trivial representation to A A is equivalent to its

left regular representation, hence faithful. This is one of the instances
where AL r R appears in the role of a ground ‘‘field.’’

Later we will need the following strengthening of Lemma 2.6.

LEMMA 2.14. Let A be a WHA and introduce the notation Z L [ AL l
Center A, Z R [ AR l Center A, and Z [ AL l AR. Then the isomorphism

L L R̂ L ˆŽ .of algebras k : A ª A restricts to an isomorphism Z ª Z and theA
R R L̂ R ˆisomorphism k : A ª A restricts to the isomorphism Z ª Z. ThereforeA

L ˆ ˆ ˆ RZ © 1 s Z s 1 £ Z ,

ˆ ˆR ˆL ˆZ © 1 s Z , Z s 1 £ Z.
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The two isomorphisms ha¨e a common restriction to the hypercenter Hyper-
center A [ Z L l Z R and yields an isomorphism Hypercenter A ª

ˆHypercenter A.

ˆ ˆProof. Notice that for c g Center A one has 1 £ c s c © 1. There-
L L L ˆ ˆ L ˆ L L ˆŽ .fore x g Z « x © 1 s 1 £ x g Z. This proves k Z ; Z.A

ˆ ˆŽ . Ž . Ž .If z g Z then z © 1 w s z © w by 2.20a and z © w s w z © 1 by
ˆ L ˆRŽ . Ž .2.21b . Hence z © 1 is central. This proves k Z ; Z .A

L y1 R R R ˆ RŽ . Ž . Ž .Since k s k , the analogue inclusions k Z ; Z and k Z ;ˆA A A A
ˆLZ complete the proof. Q.E.D.

The unusual feature of the trivial representation of WHAs is that it can
be decomposable. But this can occur only if the left and right subalgebras
of the dual have non-trivial intersection as the next proposition claims.

Ž .PROPOSITION 2.15. Let A be a WHA, let V , D be its trï ial representa-« «

tion as in Definition 2.13. Then

End V s D Z L s D Z R , 2.32Ž . Ž . Ž .« « «

where End V denotes the algebra of A-module endomorphisms of V .« «

ˆ ˆŽ . Ž .Proof. Let T g End V then T x © 1 s x © T 1 , for x g A, in par-«

ticular

L ˆ L ˆ L ˆ ˆT x © 1 s x © T 1 s x © 1 T 1 ,Ž . Ž . Ž . Ž .
L ˆ y1 L ˆ y1 L ˆ ˆ L ˆT x © 1 s T S x © 1 s S x © T 1 s T 1 x © 1 ,Ž . Ž .Ž . Ž . Ž . Ž .Ž .

Ž . Ž .where we have made use of Eqs. 2.20a and 2.21b . Since by Lemma 2.6
L ˆ R̂ ˆ R̂ R RŽ . Ž .A © 1 s A , z [ T 1 g Center A , and T w s w z . Thus x © z s

ˆ ˆŽ . Ž .T x © 1 s x © 1 z holds for all x g A. It follows that

ˆ L² :# z , xŽ .
ˆ ˆ² : ² : ² : ² :s z , 1 £ x © 1 s x © 1 z , 1 s x © z , 1 s z , x ,Ž . Ž .

L̂ R̂ ˆ L Li.e., z g A l A ' Z. Now by Lemma 2.14 there exists a z g Z such
L ˆthat z s z © 1. We can conclude that

R R L ˆ R L R L RT w s zw s z © 1 w s z © w s D z w ,Ž .Ž .Ž . «

Ž L. Ž L.i.e., T s D z . This proves End V ; D Z . The opposite inclusion is« « «

Ž L. Ž Ž ..trivial since D Z ; Center D A . This finishes the proof of End« «

Ž L.V s D Z .« «
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Ž R.Showing the other statement End V s D Z one proceeds as above« «
R R ˆ Rbut chooses a z g Z such that z s 1 £ z . Then

R R ˆ R R R ˆ R RT w s w 1 £ z s w z © 1 s z © wŽ . Ž .Ž .
s D z R w RŽ .«

completes the proof. Q.E.D.

Notice that the above proposition does not imply that the trivial A-mod-
ule is semisimple. It does imply, however, that V has a decomposition«

V ( [ V into indecomposable A-modules in which the indecomposables« n n

Ž .are disjoint, i.e., Hom V , V s 0 for all m / n .m n

DEFINITION 2.16. If Z L s K1, or equivalently, if the trivial representa-
tion is indecomposable then the WHA is called pure.

The name ‘‘pure’’ comes from the C*-setting when the trivial represen-
tation arises from the positive linear functional « by the GNS construc-
tion. Thus A is pure iff « is pure.

Nota bene pureness is not a self-dual notion, duals of pure WHAs may
L R ˆnot be pure. Clearly, A is pure iff Z ( Z is trivial but A is pure iff Z is

trivial.

3. WEAK HOPF MODULES AND INTEGRAL THEORY

As in Hopf algebras so in weak Hopf algebras the integrals play a
decisive role in the structure analysis of these algebras. Using integrals we
can formulate conditions for the algebra to be Frobenius, symmetric, or
semisimple, and study questions related to innerness of S2 or S4. Further-
more we will be able to characterize those WHAs that have Haar mea-
sures. In deriving the basic properties of integrals the weak generalization
of the fundamental theorem of Hopf modules is very useful. Unfortu-

Ž w x.nately, it seems to be less powerful than in Hopf algebra theory cf. 13
where it implies the existence of non-degenerate integrals. It is an open
problem yet whether all WHAs are Frobenius algebras. We can prove,
however, that all of them are quasi-Frobenius algebras.

3.1. Integrals in Weak Hopf Algebras

The following definition provides the weak Hopf generalization of the
w xwell-known notion of integrals in a Hopf algebra 19 .
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Ž .DEFINITION 3.1. A left right integral in a weak Hopf algebra A is an
Ž .element l g A r g A satisfying

xl s #L x l rx s r #R x 3.1Ž . Ž . Ž .Ž .

Ž .for all x g A. The space of left right integrals in A is denoted by
LŽ .Ž RŽ .. LŽ . RŽ .II A II A . Elements of II [ II A l II A are called two-sided

integrals. A left or right integral in A is called non-degenerate if it defines
ˆ LŽ .a non-degenerate functional on A. l g II A is called normalized if

L Ž . RŽ . RŽ .# l s 1, r g II A is called normalized if # r s 1.

Ž .Some equivalent formulations of left right integrals are gathered in

LEMMA 3.2. Let A be a weak Hopf algebra. Then the following statements
for an element l g A are equï alent:

Ž . LŽ .a l g II A
Ž . Ž .b l m xl s S x l m l for all x g AŽ1. Ž2. Ž1. Ž2.

ˆ L̂Ž .c l © A ; A
ˆŽ . Ž . Ž .Ž .d w £ x © l s S x w © l for all w g A and x g A

Ž . Ž L.e Ker # l s 0
Ž . Ž . RŽ .f S l g II A

Ž . Ž . Ž . Ž .Proof. a « b : Using 2.30b and 2.7a we have l m xl sŽ1. Ž2.
w Ž . x Ž . w Ž . Ž . x Ž . Ž . Ž .S x m 1 D x l s S x x S x m 1 D l s S x l m l . b «Ž1. Ž2. Ž1. Ž2. Ž3. Ž1. Ž2.
Ž . Ž . Ž . Ž . LŽ . Ž . Ž .a : xl s x l « x l s x S x l « l s # x l. a m c :Ž1. Ž1. Ž2. Ž2. Ž1. Ž2. Ž1. Ž2.

ˆ L² : ² Ž . :For an l g A the equation l © w, x s # l © w , x is clearly equiv-
² : ² LŽ . : Ž . Ž .alent to the equation w, xl s w, # x l . b m d : By pairing the

ˆŽ . Ž . Ž .second tensor factor of b with an arbitrary w g A. a « e : is obvious.
Ž . Ž . w LŽ .x LŽ . LŽ . Ž . Ž .e « a : xl s x y # x l q # x l s # x l. f m a : This

Ž .follows by applying S to 3.1 . Q.E.D.

Definition 3.1 as well as Lemma 3.2 provide rather technical characteri-
zations of integrals. The next argument sheds some light on their real
nature. Consider the left A-module map « from the left regular A-mod-R
ule to the trivial A-module given by acting with the trivial representation

ˆon the cyclic vector 1,

R̂« : A ª A ,R A A
3.2Ž .

ˆx ¬ x © 1 .Ž .

R̂Ž . Ž .The existence of this non-zero map shows that Hom A, A is non-zero.A A
R̂Ž .However, there is in general no guarantee that Hom A , A is non-zero.A A
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Left integrals are precisely the objects that label the possible homomor-
phisms of the latter type.

LEMMA 3.3. Left integrals l in A are in one-to-one correspondence with
R̂left A-module homomorphisms f : A ª A. The correspondence is gï en byA A

ˆ LŽ .f ¬ f 1 g II . What is more the abo¨e map pro¨ides an isomorphism
L R̂ LŽ .II ( Hom A , A of right A-modules. In other words II is isomorphicA A A A

to the A-dual of the trï ial left A-module.
R̂ ˆ ˆ L ˆŽ . Ž . Ž . Ž Ž . .Proof. If f g Hom A , A then xf 1 s f x © 1 s f # x © 1A A

L ˆ ˆ LŽ . Ž . Ž .s # x f 1 , hence f 1 g II . This is obviously a right A-module map.
L R̂ R RŽ . Ž .It is invertible since for l g II the map f : A ª A, f w [ 1 £ w ll l

Ž̂ .is a left A-module map and satisfies f 1 s l. Q.E.D.l

L R̂Ž .The identification of II with Hom A , A yields an A-valued bilin-A A
R̂ L R RŽ . Ž .ear form A = II ª A given by evaluation, w , l ¬ f w . ReplacingA A l

R̂ LA with A using the isomorphism of Lemma 2.12 we obtain that thisA A
bilinear form is nothing but multiplication in A,

AL = II L ª A , x L , l ¬ x Ll , 3.3Ž . Ž .A A A A

Ž .and it is an A]A bimodule map. We claim that 3.3 is a non-degenerate
bilinear form. From one side, x Ll s 0, ; x L g AL « l s 0, this is trivial.
From the other side we will be able to prove this after having established
that WHAs are quasi-Frobenius algebras in Theorem 3.11. As a matter of

w xfact by Theorem 61.2 of 4 the left annihilator of the right annihilator of
L L Ž .the left ideal Ker # is Ker # itself. Now by Lemma 3.2 e the right

annihilator of Ker # L is just II L. Thus x Ll s 0, ; l g II L « x L s 0
follows.

Now we turn to another characterization of left integrals that is related
L ˆŽ .to conditional expectations. Notice at first that if l g II A then the map

E : x ¬ l © x is an AL]AL-bimodule map from A into AL commutingl
ˆwith the right A-action on A. In fact, all such maps arise from a left

integral, as the following lemma shows.
L ˆŽ .LEMMA 3.4. The left integrals l g II A are in one-to-one correspon-

ˆ LŽ .dence with right A-module maps E g Hom A , A ¨iaˆ ˆA A

l ¬ E ,l

E ¬ « ( E.

ˆProof. If l is a left integral then E is a right A-module map and mapsl
L Ž .into A by Lemma 3.2 c .
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Ž L.Now let E g Hom A , A . Thenˆ ˆA A

E x s « 1 E x 1 s « ( E Sy1 1 x 1 ,Ž . Ž . Ž .Ž . Ž .Ž1. Ž2. Ž1. Ž2.

ˆ L Lwhere we used the fact that a right A-module map is an A ]A -bimodule
Ž . Ž .map by 2.20b and 2.21a . Hence

E x s « ( E x x S x s #L l © x ,Ž . Ž . Ž . Ž .Ž3. Ž1. Ž2.

where l [ « ( E. It remains to show that l is a left integral. Then

ˆ L² : ² :wl, x s « E x £ w s « E x £ w s # w l, x ,Ž . Ž . Ž .Ž . Ž .
which proves the claim. Q.E.D.

The characterization of left integrals l as ‘‘conditional expectations’’ El

w xprovides a link to the theory of inclusions and ‘‘Jones extensions’’ 15 .
The properties of the normalized and the non-degenerate left integrals

are discussed in later subsections. Here we only note that l is non-degen-
erate iff E is non-degenerate and l is normalized iff E is unital.l l

There are two twisting operations A ¬ Aop and A ¬ A that producecop
WHAs from WHAs. In the first one the multiplication m is replaced with

opŽ . Ž .opposite multiplication m x, y s m y, x while in the second the co-
opŽ .product is replaced by D x s x m x . In both cases the antipode isŽ2. Ž1.

replaced by Sy1. The left and right subalgebras]integrals and the dual
WHAs of the resulting four twisted versions of a WHA A are related to
those of A as in Table I. As an application of Table I we give here the

Ž .twisted versions of the identity of Lemma 3.2 d ,

w £ x ©l s S x w © l , 3.4aŽ . Ž . Ž . Ž .
x © w ©r s w © r Sy1 x , 3.4bŽ . Ž . Ž . Ž .

l£ w £ x s Sy1 x l £ w , 3.4cŽ . Ž . Ž . Ž .
r£ x © w s r £ w S x 3.4dŽ . Ž . Ž . Ž .

ˆ L Rfor all x g A, w g A, l g II , and r g II .

TABLE I

L R L R L R ˆ# # A A II II A

L R L R L R ˆŽ .A s A m, D, S # # A A II II A
R Lop op y1 y1 y1 L R R L ˆŽ .A s A m , D, S S ( # S ( # A A II II Acop
L Rop y1 y1 y1 R L L R opˆŽ .A s A m, D , S S ( # S ( # A A II II Acop

R Lop op op R L R L opˆŽ .A s A m , D , S # # A A II II Acop cop
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3.2. Weak Hopf Modules

Let A be a WHA. Recall that a left A-module is a K-linear space M
carrying a left action of the algebra A, denoted by x g A, m g M ¬ x ? m.
A right A-module is a left module M of the opposite algebra Aop with
action denoted by x g A, m g M ¬ m ? x. Since A is unital, all modules
are assumed to be non-degenerate; i.e., 1 acts as the identity. The left
A-module M is called faithful if x ? m s 0, ;m g M implies x s 0.

The A-modules know nothing about the coalgebra structure of A. The
left A-comodules M in turn are the comodules of the coalgebra A and
carry no information about the algebra structure of A. The left coaction is
denoted by m ¬ m m m g A m M. One defines the right A-comodulesy1 0
analogously and denotes the coaction as m ¬ m m m g M m A.0 1

Because of the finite dimensionality of A there is a one-to-one corre-
ˆŽ . Ž .spondence between left right A-coactions on M and right left A-ac-

tions on M given by

² : im ? w s w , m m , m m m s b m m ? b , 3.5Ž .Ýy1 0 y1 0 i
i

² : iw ? m s m w , m , m m m s b ? m m b . 3.6Ž .Ý0 1 0 1 i
i

� 4 � i4Here b denotes an arbitrary basis of A and b is its dual basis:i
² i :b , b s d . There are eight basic examples of A modules with thej i j

ˆtarget space M being either A or its dual A. These are

A :: x ? y s xy, A :: y ? x s yx,A A
A AŽ . Ž .A :: x ? y s yS x , A :: y ? x s S x y,

ˆ ˆA :: x ? w s x © w, A :: w ? x s w £ x,A A

A Aˆ ˆŽ . Ž .A :: x ? w s w £ S x , A :: w ? x s S x © w,

Ž .where the Sweedler arrow notation 2.14 has been used. They all are
faithful and non-degenerate due to the existence of a unit and a counit.

ˆTo each of the A-modules in the above list there is a corresponding A-
comodule denoted by the same symbol. This identification is justified

ˆalso by the fact that N ; M is an A-submodule if and only if it is an A-
subcomodule.

By analogy with our definition of left integrals, the space of in¨ariants of
a left A-module M is defined to be the subspace

Inv M [ m g M ¬ x ? m s #L x ? m , ; x g A . 3.7Ž . Ž .� 4
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By the same methods as in Lemma 3.3, Inv M is linearly isomorphic to
R̂Ž .Hom A , M viaA A

ˆ R̂Inv M s f 1 ¬ f g Hom A , M . 3.8Ž .Ž . Ž .½ 5A A

By duality, we define the coin¨ariants of a right A-comodule M as

Coinv M [ m g M ¬ m m m s m m #L m . 3.9Ž . Ž .� 40 1 0 1

Thus, m g Coinv M m m m m g M m AL and for a left A-module M,0 1
the invariants Inv M ; M coincide with Coinv M ; M considered as an
ˆ Ž .A-comodule. Similarly, for a right A-module left A-comodule M the

Ž .invariants coinvariants are

Inv M s m g M ¬ m ? x s m ? #R x , ; x g A , 3.10Ž . Ž .� 4
Coinv M s m g M ¬ m m m s #R m m m . 3.11Ž . Ž .� 4y1 0 y1 0

Ž . Ž .Notice that the co invariants do not form a sub co module, not even an
AL r R-submodule.

Ž .Remark 3.5. The invariants of the left right regular A-module are
Ž .precisely the left right integrals of A:

Inv A s II L A , Inv A s II R A .Ž . Ž .A A

ˆ ˆThe invariants of A and A , on the other hand, yield the left and rightA A
subalgebras, respectively:

ˆ L̂ ˆ R̂Inv A s A , Inv A s A .A A

ˆA A ˆInvestigating the structure of the mixed modules A and A , thatˆ ˆA A
incorporates the whole bialgebra structure of A, one arrives at a weak

w xgeneralization of the notion of Hopf modules 1, 19 .

Ž .DEFINITION 3.6. A right weak Hopf module right WHM over A is a
right A module M which is also a right A-comodule such that the
compatibility relation

m ? x m m ? x s m ? x m m x 3.12Ž . Ž . Ž .0 1 0 Ž1. 1 Ž2.

holds for x g A, m g M.
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LEMMA 3.7. Let M be a right WHM o¨er A. Then for all m g M

Ž . RŽ .i m ? # m s m.0 1

Ž . � 4ii Coinv M s m g M ¬ m m m s m ? 1 m 1 and Coinv M is0 1 Ž1. Ž2.
a right AL submodule.

Ž . Ž . Ž .iii E m [ m ? S m pro¨ides a projection E: M ª Coinv M.0 1

Ž .Proof. i Let M be a right WHM over A. Since

m « m x s m ? 1 « m 1 x s m ? 1 « m 1 « 1 xŽ . Ž . Ž . Ž .0 1 0 Ž1. 1 Ž2. 0 Ž1. 1 Ž2. Ž3.

s m ? 1 « 1 x 3.13Ž .Ž .Ž1. Ž2.

ˆ ˆfor all x g A, we have m m 1 £ m s m ? 1 m 1 £ 1 , so that0 1 Ž1. Ž2.

R ˆ ˆm ? # m s m ? 1 £ m © 1 s m ? 1 1 £ 1 © 1Ž . Ž . ž /0 1 0 1 Ž1. Ž2.

s m ? 1 #R 1 s m. 3.14Ž .Ž .Ž1. Ž2.

Ž . Ž .ii The inclusion > follows from 2.4 . Conversely, if m g Coinv M
L Ž . Ž . Ž .then m m m g M m A , implying by 2.3a , 2.10 , and 3.13 :0 1

m m m0 1

s m m « m 1 1 s m ? 1 m « 1 1 1 s m ? 1 m 1 .Ž . Ž .0 1 Ž1. Ž2. Ž1. Ž2. Ž19. Ž2 9. Ž1. Ž2.

Ž L. L LAlso D A ; A m A and therefore Coinv M is a right A -submodule.
Ž . Ž .iii To check that n [ m ? S m is a coinvariant for all m g M we0 1

compute

n m n s m m m ?S m m S mŽ . Ž . Ž .Ž .Ž . Ž .1 20 1 0 1 2 2

s m ? S m m m S m s m ? S 1 m m S 1Ž . Ž . Ž . Ž .0 3 1 2 0 Ž2. 1 Ž1.

s n ? 1 m 1 .Ž1. Ž2.

Ž . Ž .Since for n g Coinv M we have n ? S n s n ? 1 S 1 s n, E is a0 1 Ž1. Ž2.
projection onto Coinv M. Q.E.D.

ˆAEXAMPLE 3.8. The right weak Hopf module A .Â

ˆAs a linear space the module is the dual WHA A. The right action and
coaction are

w ? x [ S x © w , w m w [ b iw m b . 3.15Ž . Ž .Ý0 1 i
i
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ˆClearly, the right A-coaction is dual to the left A-multiplication and
therefore counital and right-coassociative. The compatibility condition
Ž .3.12 can be seen as

w ? x m w ? x s b i S x © w m bŽ . Ž . Ž .Ž .Ý0 1 i
i

is b S x © x S x © w m bŽ . Ž .Ý Ž1. Ž2. Ž3. i
i

i ˆs b S x © x © 1 w m bŽ .Ý ž /Ž1. Ž2. i
i

i ˆs b S x x © 1 S x © w m bŽ . Ž .Ý Ž2. Ž3. Ž1. i
i

is S x x © b S x © w m bŽ . Ž .Ý Ž2. Ž3. Ž1. i
i

is S x © x © b w m bŽ . Ž .Ý Ž1. Ž2. i
i

s S x © b iw m b xŽ . Ž .Ý Ž1. i Ž2.
i

s w ? x m w x .0 Ž1. 1 Ž2.

ˆThe A-coinvariants of this WHM coincide with the A-invariants of the
ˆ ˆdual left regular A-module A and therefore with the space of leftÂ

ˆintegrals in A by Remark 3.5,

ˆA L ˆCoinv A s II A . 3.16Ž .Ž .Ž .Â

The fundamental theorem of Hopf modules generalizes to the weak case
as

THEOREM 3.9. Let A be a WHA, M be a right WHM o¨er A, and let
N s Coinv M denote the set of coin¨ariants of M. Since N is a right AL

submodule, one can form the AL-module tensor product N m L A and makeA
it into a right WHM by the definitions

n m a ? x [ n m ax , 3.17aŽ . Ž .
n m a m n m a [ n m a m a , 3.17bŽ . Ž . Ž .Ž .0 1 Ž1. Ž2.
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where a, x g A, n g N. Then the map

a : N m L A ª M , n m x ¬ n ? x 3.18Ž .A

is an isomorphism of right WHMs.

Recall that an isomorphism of WHMs is just a module isomorphism
which is a comodule isomorphism at the same time.

Proof. That a is a module map and comodule map is easy to verify. To
construct the inverse define

b : M ª N m L A ,A
3.19Ž .

b m s m ? S m m m ' E m m m .Ž . Ž . Ž .0 1 2 0 1

Then b is obviously a comodule map. We show that it is also a module
map. Then

b m ? x s m ? x S m x m m xŽ . Ž .0 Ž1. 1 Ž2. 2 Ž3.

s m ? #L x S m m m xŽ . Ž .0 Ž1. 1 2 Ž2.

s m ? S m 1 m m 1 xŽ .0 1 Ž1. 2 Ž2.

s b m ? x .Ž .

We are left with showing that on the one hand

b ( a n m x s b n ? x s b n ? x s n ? 1 S 1 m 1 xŽ . Ž . Ž . Ž .Ž1. Ž2. Ž3.

s n m 1 S 1 1 xŽ .Ž1. Ž2. Ž3.

s n m x ,

and on the other hand

a ( b m s m ? S m m s m ,Ž . Ž .0 1 2

Ž .where in the last equality Lemma 3.7 i has been used. Q.E.D.

Applying this theorem to the WHM of Example 3.8 we obtain the right
WHM isomorphism

ˆA L ˆ LA ( II A m A . 3.20Ž .Ž .ˆ ˆA A A A

LŽ .COROLLARY 3.10. In any WHA A the space of left integrals II A s
R L ˆ RŽ Ž .. Ž . Ž .S II A is non-zero and II A is the dual of II A with respect to the

a L ˆ� 4 Ž .restriction of the canonical pairing. Moreo¨er, choosing a basis l in II A
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� 4 RŽ .and taking its dual basis r in II A , we ha¨ea

1̂ s S r © l , 3.21Ž . Ž .Ý a a
a

ˆ1 s r £ S l . 3.22Ž . Ž .Ý a a
a

L ˆŽ . Ž .Proof. II A / 0 follows from 3.20 . By inspecting the form of the
LŽ .projection E: M ª N in Example 3.8 we get a projection L: A ª II A

onto the left integrals,

2̂ iL x s S b © b x . 3.23Ž . Ž . Ž .Ž .Ý i
i

Therefore the projection to the right integrals is

y1 2̂ iR x s S( L(S x s xb £ S b . 3.24Ž . Ž . Ž . Ž .Ž .Ý i
i

ˆ ˆSimilar expressions define the projections L and R to the dual integrals.
Now it is easy to check that

ˆ² : ² :L w , x s w , R x 3.25Ž . Ž . Ž .

proving the non-degeneracy of the restriction of the canonical pairing to
L ˆ RŽ . Ž .II A = II A .

² a :The dual bases satisfy l , r s d thereforeb ab

a ˆ i 2 j i² : ² : ² :l , xS r s L b , xS b s S b © b b , xS bŽ . Ž . Ž .Ž . Ž .a i j i

² k R :s b , x S( # b 3.26Ž . Ž .k

ˆ² :s 1 © 1, xS 1 , 3.27Ž .Ž .Ž2. Ž1.

Ž . Ž . Ž .where in the last step we used 2.19b . This proves 3.21 . Equation 3.22
is the twisted version in Aop . Q.E.D.cop

3.3. Restrictions on the Algebraic Structure

The existence of a weak Hopf structure on the K-algebra A involves
certain restrictions on the algebra A, just like in case of Hopf algebras. In
this subsection we show that any WHA A is quasi-Frobenius, i.e., self-in-
jective. The notions of semisimple and separable algebras coincide within
the class of WHAs. Moreover, we prove an analogue of Maschke’s theo-
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rem which claims that A is semisimple if and only if it has normalized left
integrals.

THEOREM 3.11. E¨ery weak Hopf algebra o¨er a field K is a quasi-
Frobenius algebra.

w xProof. By Theorem 61.2 of 4 it is sufficient to prove that the left
regular A-module A is injective. By the Nagao]Nakayama theoremA
injectivity of a left A-module is equivalent to that it is a direct sum of

ˆAK-duals of principal indecomposable right A-modules. Since A is the
ˆAK-dual of A, we need to show that A is a direct sum of principalA

ˆAindecomposable right A-modules, i.e., that A is projective. This in turn is
a consequence of the fundamental theorem of WHMs.

As a matter of fact we have the right A-module isomorphisms

ˆA L ˆ L ˆLA ( II A m A ( P II A m A , 3.28Ž .Ž . Ž .Ž .A A K A

the first of which is the consequence of the fundamental theorem of the
ˆAright WHM A , the second of which is a rather simple property of theÂ

amalgamated tensor product with respect to the separable algebra AL. To
explain the projection P here we make a digression.

L ˆ L ˆŽ . Ž .LEMMA 3.12. Define the map P: II A m A ª II A m A byK K

P l m x [ S2 1 © l m 1 x . 3.29Ž . Ž .Ž .Ž1. Ž2.

Then P ( P s P and Ker P coincides with Ker p of the canonical projection
L ˆ L ˆŽ . Ž . Lp from the free right A module II A m A onto II A m A . There-K A A A

fore
<p Im PL Lˆ ˆ LP II A m A ª II A m A 3.30Ž .Ž . Ž .Ž .K A A A

is an isomorphism of right A-modules.

Proof. The kernel of the canonical projection is

Ker p s Span l m x L y y S x L © l m x ¬ l m yŽ .Ž .� Ž .K

L ˆ L Lg II A m A , x g A . 3.31Ž .Ž . 4
Ž . 2Ž .If Ý l m x g Ker p then obviously Ý S 1 © l m 1 x s 0, there-i i i i Ž1. i Ž2. i

fore Ker p ; Ker P. Now assume Ýl m x g Ker P. Theni i

l m x s l m S 1 1 xŽ .Ý Ýi i i Ž1. Ž2. i
i i

2s l m S 1 1 x y S 1 © l m 1 x g Ker p .Ž . Ž . Ž .Ý i Ž1. Ž2. i Ž1. i Ž2. i
i
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This proves Ker p s Ker P. That P is a projection and a right A-module
<map is trivial to verify. Therefore p is an A-module isomorphism.Im P

Q.E.D.

Back to the Proof of Theorem 3.11. In virtue of the above lemma the
L ˆŽ . Lamalgamated tensor product II A m A is the direct summand of aA A

ˆAŽ .free A-module, hence projective. By Eq. 3.28 this is isomorphic to A .
ˆAThis proves projectivity of A , hence injectivity of A. Q.E.D.A

Ž . Ž .The equivalence of c and d of the next theorem provides a weak
w xHopf version of Maschke’s theorem known for Hopf algebras as well 9 .

ˆŽ .Below we denote « x [ x © 1.R

THEOREM 3.13. The following conditions on a WHA A o¨er K are
equï alent:

Ž .a A is semisimple.
Ž .b In the category of left A-modules the following exact sequence is split

«R R̂0 ª Ker « ª A ª A ª 0.R A A

Ž .c There exists a normalized left integral l g A.
Ž .d A is a separable K-algebra.

Ž . LProof. a « c : If A is semisimple, then Ker # ' Ker « being aR
left ideal there exists p s p2 g A such that Ker # L s Ap, whence l s 1

Ž .y p is a normalized left integral by Lemma 3.2 e .
R̂Ž . Ž .b m c : Let F g Hom A , A be such that « ( F s id. ThenA A R

ˆ ˆ L ˆ ˆ LŽ . Ž . Ž . Ž . Ž . Ž .xF 1 s F x © 1 s # x F 1 , for x g A, therefore F 1 g II A .
ˆ ˆ ˆ ˆ L ˆŽ Ž .. Ž . Ž Ž ..Moreover, 1 g « F 1 s F 1 © 1 implying # F 1 s 1. Conversely,R

L R̂Ž .if l g II is a normalized left integral then F g Hom A , A given byA A
Ž Ž ..F « x [ xl satisfies « ( F s id.R R

Ž . Ž .c « d : Let l be a normalized left integral. Then q s l m S l isŽ1. Ž2.
Ž .a separating idempotent for A. As a matter of fact m q s 1 follows from

LŽ . Ž . Ž .the normalization # l s 1 while x m 1 q s q 1 m x is precisely the
Ž .left integral property of Lemma 3.2 b .

Ž . w xd « a : This is a standard result 18 . Q.E.D.

3.4. Non-degenerate Integrals

Until now we have not been able to decide whether the WHM theorem
of Subsection 3.2 implies the existence of non-degenerate integrals, as it
does in the case of Hopf algebras. In the present subsection we show that

ˆthe existence of non-degenerate integrals in the WHA A is equivalent to
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the existence of non-degenerate functionals on A, i.e., that A is a
Frobenius algebra. As a byproduct we obtain that the class of Frobenius
WHAs is self-dual.

The space II R of right integrals can be viewed as a K-module, as a left
AL-module L II R by left multiplication, and as a left A-module II R sinceA A
it is a left ideal of A. From the latter point of view II R is the dual of theA

R L̂Ž .trivial right A-module, II ( Hom A , A , by a twisted version ofA A A
R L̂ L̂Lemma 3.3. As a K-module II has II as its K-dual, II (

Ž R .Hom II , K the isomorphism being given by the restriction of theK K
L̂Ž .canonical pairing see Corollary 3.10 . The next lemma shows that II is

also the AL-dual of II R with right AL-module structure precisely the one
L Ž L.needed in Example 3.8, i.e., l ? x s S x © l.

LEMMA 3.14. The AL-¨alued bilinear form

R L̂ L
L L, : II = II ª A , r , l s l © r 3.32Ž . Ž . Ž .A A

pro¨ides an isomorphism of right AL-modules

A L
L R Lˆ LL LII ª Hom II , A , l ¬ r ¬ r , l , 3.33Ž . Ž .Ž . Ž .Ž . AA A

L̂ A L L RŽ . Li.e., II is the A -dual of II .A

Proof. At first verify the following properties of the AL-valued bilinear
form. So

x L ? r , l L s x L r , l L , 3.34aŽ . Ž . Ž .A A

r , l ? x L
L s r , l L x L , 3.34bŽ . Ž . Ž .A A

r , l L s 0 ; r g II R « l s 0. 3.34cŽ . Ž .A

The first two are simple WHA identities. The third one follows from the
ŽŽ . . ² :Lrelation « r, l s l, r and from non-degeneracy of the canonicalA

L̂ R² : Ž . Ž . Ž .pairing , on II = II Corollary 3.10 . Now properties a and b tell
Ž . L Ž .Lus that l ¬ ., l is indeed the required A -module map and cA

ensures that it is injective. To show that it is surjective it is sufficient to
R a L̂� 4 � 4find finite sets of elements r in II and l in II such thata

r , la
L r s r ; r g II R . 3.35Ž . Ž .Ý A a

a
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Ž R L.L LFor if such elements exist then any f g Hom II , A can be writtenA A
a Ž .as f s Ý l ? f r . As a matter of facta a

f r s f r , la
L ? r s r , la

L f r s r , la ? f rŽ . Ž . Ž . Ž . Ž .Ý Ý ÝA Aa a až / ž /
La a a A

R � 4 R � a4for all r g II . Now we claim that a pair of dual bases r of II and la
L̂ a² : Ž .of II , in the sense of K-duality, i.e., l , r s d , also satisfies 3.35 .b ab

L̂As a matter of fact for l g II we have

l, la © r rŽ .Ý¦ ;a
a

a ² a :s « l © r l © r s l , r l © rŽ . Ž . Ž .Ý Ýa až /
a a

a ŷ1 a ŷ1 a² : ² :² :s l , r S r £ S l s l , r S l l , S rŽ . Ž . Ž . Ž .Ž .Ý Ýa Ž1. Ž2. a
a a

a a a² :² : ² :s ll , r l , S r s l S r © l , r s l, r ,Ž . Ž .Ý ÝŽ1. Ž2. a a¦ ;
a a

Ž .where in the last equality 3.21 has been used. Q.E.D.

Ž . R 3
LNotice that Eq. 3.35 means that II is finitely generated projective.A

Ž w x.Therefore by a general result see, e.g., 5 :
L̂ R R

L LII m II ( End II . 3.36Ž .A A

On the other hand the isomorphism a of the WHM theorem, if restricted
L̂ R L̂

Lto II m II , yields an isomorphism onto A . Thus we have the compo-A
sition

ay1
L L L R Rˆ ˆ L LEE : A ª A ª II m II ª End II , 3.37Ž .A A

of isomorphisms. Evaluating it explicitly we obtain

L 2 i j ˆ Lr ? EE x s r ? S b © b b 1 £ x m bŽ . Ž . Ž .Ž .Ý i jž /
ij

ˆ j ˆ Ls r ? L b 1 £ x m bŽ .Ž .Ý jž /
j

s r ? la m S x L r s r , la
L S x L rŽ . Ž . Ž .Ý Ý Aa až /

a a

s S x L r ; r g II R , x L g AL . 3.38Ž . Ž .
This proves

3 Although this is clear from the fact that AL is semisimple, constructing the concrete
a Ž .bases l , r is not in vain since it helps to compute the commutant in 3.38 .a
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PROPOSITION 3.15. The left modules L II R and R II R are faithful and theA A
endomorphism algebra of L II R consists of left multiplications with elementsA
of AR. Therefore

End L II R ( AL , as algebras. 3.39Ž .A

The set SS ec AL of equivalence classes of simple left AL-modules will
be called the sectors of AL. For a g SS ec AL let V be a simple modulea
from the class a and let DD s End V be the corresponding divisiona a

L Ž .algebra. Then by the Wedderburn structure theorem A ( [ M DD .n aa a

Let m denote the multiplicity of V in the semisimple module L II R.a a A
R Ž .LThen End II ( [ M DD which is, by the proposition, isomorphic toA m aa a

AL. This is possible only if there is a permutation

; : SS ec AL ª SS ec AL , such that n s m and DD s DD . 3.40Ž .a a a a˜ ˜

This means that II R, as an AL-End L II R bimodule, can be identified withA
a direct sum of matrices,

L II R ( [ Mat n = m , DD . 3.41Ž . Ž .A a a aa

This allows us to compute its K-dimension and apply the Cauchy]Schwarz
inequality to obtain the bound

dim II R s dim DD n m F dim DD n2 s dim AL . 3.42Ž . Ž . Ž .Ý ÝK K a a a K a a K
a a

Equality holds here if m s n , a g SS ec AL, i.e., iff L II R ( L AL. Nowa a A A
we are ready to prove

THEOREM 3.16. Let A be a WHA o¨er the field K. Then the following
conditions are equï alent.

Ž .i A is a Frobenius algebra;
Ž . R Lii dim II s dim A ;K K

Ž .iii Non-degenerate integrals exist in A;
ˆŽ .iv A is a Frobenius algebra.

ˆ LŽ . Ž . Ž .Proof. i « ii If A ( A then their invariants II A s II andA A A
ˆ L̂Ž . Ž .II A s A , respectively, see Remark 3.5 , are isomorphic as K-spaces.A

Ž . Ž . R Lii « iii As we have seen above the K-space isomorphism of II and A
implies that L II R is isomorphic to the left regular module L AL. SinceA A

R Ž .Lthe latter is cyclic, there exists a cyclic vector r g II . Thus l [ S r isAˆLL A L R L RŽ . Ž . Ž .cyclic in II . As a matter of fact II s S II s S A r s lA s
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ˆ L̂ ˆŽ .S A © l. Now interchanging the roles of A and A in the WHM
theorem

L ˆ ˆ ˆ L ˆ ˆ ˆ L̂ ˆLA s a II m A s S A © II s S A © S A © l s A © l ,Ž . Ž . Ž .Ž .ˆŽ .A

Ž . Ž .hence l is a non-degenerate left integral in A. iii « iv is obvious since l
ˆ Ž . Ž .is a non-degenerate functional on A. iv « i Repeat the arguments

ˆŽ . Ž .above from i to iv with A replaced by A. Q.E.D.

Weak Hopf algebras satisfying any one of the conditions of the above
theorem will be called Frobenius WHAs. Note that since semisimple
algebras are Frobenius, in a semisimple WHA there exist both normalized
and non-degenerate integrals, although there may be no integral sharing
both properties.4

As an immediate consequence of the above considerations we have
L Ž R.Remark 3.17. The following properties for l g II r g II are equiva-

lent:

Ž . Ž .i l r is non-degenerate;
Ž . L Ž R.L, R L, Rii l is separating for II r is separating for II ;A A

Ž . L Ž R.L, R L, Riii l is cyclic for II r is cyclic for II .A A

In a Frobenius WHA A the group of invertible elements AR of AR acts=
LŽ .on the set II# A of non-degenerate left integrals transitively and freely.

A similar statement holds for the non-degenerate right integrals II#R,

II#L s lAR , II#R s AL r 3.43Ž .= =

for any l g II#L and r g II#R. A similar relation for the dual integrals shows
that there are one-to-one correspondences between non-degenerate inte-

ˆgrals of A and of A. The theorem below selects a distinguished ‘‘natural’’
one-to-one correspondence.

LŽ .THEOREM 3.18. Let A be a WHA and let l g II A be a left integral. If
ˆthere exists a l g A such that l © l s 1 then it is unique, it is a left integral

ˆ ˆin A, and both l and l are non-degenerate. Moreo¨er l © l s 1. Such a pair
Ž .l, l will be called a dual pair of left integrals.

R L̂Similarly, elements r g II# and l g II# are in one-to-one correspondence
ˆby either one of the equï alent relations l © r s 1 or l £ r s 1.

4 Ž .As an example consider M Z , the semisimple algebra of two by two matrices over the2 2
� 4field of mod 2 residue classes. Fix a set of matrix units e and introduce the coproducti j

Ž .D e [ e m e . Then we have two normalized left integrals l s Ý e for j s 1, 2 neitheri j i j i j j i i j
of which is non-degenerate. The only non-degenerate left integral is l s l q l for which1 2LŽ .however # l s 0.
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Ž . 5Proof. By Lemma 3.2 d if l is a left integral such that l © l s 1 then
l ( l s S. Since S is invertible, both l and l are invertible; i.e., l andR L R L

L ˆŽ .l are non-degenerate and l is unique. To show that l g II A ,

ˆ L ˆwl © l s w © 1 s # w l © l , w g AŽ .

ˆsuffices since l is a bijection. It remains to show that l © l s 1 whichR
L ˆŽ .eventually justifies the term ‘‘dual’’ left integral. For l g II A and l g A

we have

² :l © l s 1 m xl l, l s x x g A ,Ž1. Ž2.

² : y1m l, xl S l s x x g A ,Ž .Ž2. Ž1.

² :« l © l, x s « x x g A ,Ž .
ˆm l © l s 1.

L̂ RThe duality between II and II follows from the above duality
L̂ L opbetween II and II by passing from A to A . The other two twisted

versions of the theorem are not spelled out explicitly. They can also be
obtained by applying the antipode to the above relations. Q.E.D.

Recall that the quasi-basis of a non-degenerate functional f on A is an
Ž w x.element Ý a m b g A m A such that cf. 23 :i i i

f xa b s x s a f b x , x g A. 3.44Ž . Ž . Ž .Ý Ýi i i i
i i

Ž � 4 � 4If K is a field then this just means that b is a K-basis of A and a is itsi i
.dual basis w.r.t. f. In other words Ý a m b is simply the expressioni i i

y1 i ˆŽ .Ý f b m b of the inverse of f : A ª A as an element of A m A. Thei R i R
index of f is then defined by Index f [ Ý a b which belongs to Centeri i i

Ž .A. Now let l, l be a dual pair of left integrals. Then the quasi-basis of l
y1Ž .is l m S l andŽ2. Ž1.

Index l s Sy1 ( #L l g Z R . 3.45Ž . Ž .

In particular a non-degenerate left integral l is normalized if and only if its
dual has index 1.

5 ˆ Ž .Here we use the standard notations f , f : A ª A defined by f x [ f £ x andL R L
ˆŽ .f x [ x © f for any f g A.R
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3.5. Two-sided Non-degenerate Integrals

Ž . LŽ . RŽ .The space of two-sided integrals II A [ II A l II A in a weak
Hopf algebra A is a possibly zero subalgebra of A. The assumption
Ž . LŽ .II A / 0 is independent of the assumption II# A / B since Hopf alge-

w x LŽ . Ž .bras already provide examples 21 for II# A / B and II A s 0. In this
Ž . LŽ . Ž .subsection we make the stronger assumption II# A [ II# A l II A /

B and study some of the consequences. The main result will be finding a
criterion for a WHA to be a symmetric algebra.

At first we observe that if a non-degenerate two-sided integral j exists
then the subspace of two-sided integrals is obtained from j by the action
of the central subalgebra Z R s AR l Center A,

II s jZ R , II# s jZ R for any j g II#. 3.46Ž .=

As a matter of fact if i g II then i is a left integral therefore there exists
R R R R R Ž .an x g AA such that i s jx . Thus for all y g A we have jx # y s

R R Ž R . R Rjx y s j # x y . Since j is separating for the right A -action, x
RŽ . R Ž R .# y s # x y . Therefore

x RS y s x RS y y S y s S y x R y S yŽ . Ž . Ž . Ž . Ž .Ž1. Ž2. Ž3. Ž1. Ž2. Ž3.

s S 1 y x R1 s S y x R ,Ž .Ž .Ž1. Ž2.

hence x R is central.
Next we recall some facts about ‘‘modular automorphisms.’’ Let A be a

finite-dimensional Frobenius algebra over a field K and let f : A ª K be
a non-degenerate functional. Then the modular automorphism of f is
defined to be the unique u g Aut A such thatf

f xy s f yu x , x , y , g A. 3.47Ž . Ž . Ž .Ž .f

It is worth it to give two other equivalent definitions of u ,

f £ x s u x © f , x g A , 3.48Ž . Ž .f

or simply

u s fy1 ( f . 3.49Ž .f R L

Since any two non-degenerate functionals f and g are related by g s x © f ,
w xwith x g A , the equivalence class u [ u of u modulo inner automor-= A f f

phisms is independent of the choice of f. If A is a WHA which is
w 2 xFrobenius then one may ask the question whether u s S .A
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DEFINITION 3.19. A non-degenerate functional f : A ª K over a WHA
A is called a q-trace if u s S2.f

In the term ‘‘q-trace’’ the letter ‘‘q’’ has no individual meaning. One may
as well read it as ‘‘skew trace’’ although we do not deny that our
motivation came from the theory of q-deformed Hopf algebras.

LEMMA 3.20. In a WHA A let l be a non-degenerate left integral. Then
Ž .S l s l if and only if its dual left integral l is a q-trace.

Proof. u s S2 is equivalent to that the quasi-basis of l satisfiesl

l m Sy1 l s S l m l . 3.50Ž .Ž . Ž .Ž2. Ž1. Ž1. Ž2.

Ž . Ž Ž ..Applying S to the second tensor factor we obtain D l s D S l which
Ž .yields l s S l by the existence of a counit. Q.E.D.

LEMMA 3.21. If non-degenerate two-sided integrals exist then all two-sided
Ž . Ž .integrals i g II A are S-in¨ariant, S i s i.

Proof. If we can show only that the non-degenerate two-sided integrals
Ž . Ž R.are S-invariant then we are ready since j s S j g II# implies S jz s

Ž R. R R R RS z j s z j s jz for all z g Z .
Ž . RSo let j g II#. Then S j g II# thus there exists an invertible z g Z

Ž .such that S j s jz. Let l be the dual of j as a left integral. Then for
L y1Ž y1 .arbitrary x g A and for z s S z ,

z LS x s z L l £ x © j s l £ x © z Lj s l £ x © Sy1 j ,Ž . Ž . Ž . Ž . Ž .
2 y1 ŷ1 ŷ1 y1S x z s j £ S l £ x s j (S ( l x s l ( l xŽ . Ž . Ž . Ž .L L R L

s u x .Ž .l

y1 Ž .Therefore z s u 1 s 1 and j is S-invariant. Q.E.D.l

THEOREM 3.22. The WHA A o¨er K is a symmetric algebra if and only if it
has non-degenerate two-sided integrals and the square of the antipode is an
inner automorphism.

ˆProof. Let A be a symmetric WHA, and t g A be a non-degenerate
ˆtrace. Then there exists a unique i g A such that i © t s 1 s t £ i. We

claim that i is a two-sided integral. As a matter of fact

ˆ L ˆ Lxi © t s x © 1 s # x © 1 s # x i © t ,Ž . Ž .

ˆ ˆ R Rt £ ix s 1 £ x s 1 £ # x s t £ i # x ,Ž . Ž .
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so by non-degeneracy of t , i g II. This integral i is also non-degenerate.
R R R R ˆ RFor any x g A one has ix © t s i © t £ x s 1 £ x , hence i is

separating for II R
L so non-degenerate by Remark 3.17.A

The innerness of S2 in a symmetric algebra follows if we can construct a
non-degenerate functional on A the modular automorphism of which is
S2. By Lemma 3.21 i is S-invariant so by Lemma 3.20 x , the dual left
integral to i, is such a non-degenerate q-trace.

Conversely, let S2 s Ad with some g g A and i g II#. Denoting theg =

dual left integral of i by x again, gy1 © x is a non-degenerate trace.
Q.E.D.

We close this subsection with a result arising from assuming the exis-
ˆtence of non-degenerate two-sided integrals in both A and A. Although

the arising structure is reminiscent to that of the ‘‘distinguished grouplike
element’’ in Hopf algebra theory it is not a generalization of that.

Ž .PROPOSITION 3.23. Let A be a WHA and assume that both II# A and
ˆ 4Ž .II# A are non-empty. Then S is inner and the square of u is the identity inA

ˆ ˆŽ .Out A. Moreo¨er and more explicitly, for h g II# A there exist in¨ertible
L L̂ Ž .elements a g A and a g A such that, with the notations a s S aL L R L

Ž̂ .and a s S a , we ha¨eR L

Ad y1 s S4 , 3.51Ž .a aL R

Ad s u
2 , 3.52Ž .ˆa a hL R

y1 y1 y1 y1 ˆa a © c £ a a s a a ca a , c g A. 3.53Ž .L R L R L R R L

ˆ ˆŽ . Ž .Proof. Choose h g II# A and h g II# A and let l be the dual of h
ˆand l be that of h, as left integrals. Define

ˆ ˆa s h © h , a s h © h. 3.54Ž .L L

Then

ˆ Lˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ² : ² :1 £ a s 1 h , h 1 s h , h h S h s # h £ hŽ .ž /L Ž1. Ž2. Ž1. Ž2. Ž3.

ˆ ˆs S h £ h s a , 3.55Ž .Ž . L

and introducing a and a as aboveR R

ˆ ˆ 2̂ ˆla s l £ a s l £ h £ h s h l £ h s h S h © l s h , 3.56Ž .Ž . Ž . Ž .Ž .L R
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ˆ ˆwhere q-trace property of l and S-invariance of h have been used.
Similarly,

a © l s h s la , 3.57Ž .R R

ˆa © l s h s la , 3.58Ž .R R

ˆl £ a s h s la . 3.59Ž .R L

ˆNon-degeneracy of h and h now imply invertibility of a , a , a , and a .L R L R
Ž .Hence Eq. 3.53 readily follows.

ˆWe can now compute the modular automorphism of h using the
information u s S2. Thusl

ˆ 2h £ x s a © l £ x s a u x © l « u s Ad (S . 3.60Ž . Ž .ˆR R l h aR

ˆ ˆŽ .Computing S h £ x in two different ways

ˆ ˆ y1 ˆ ˆ y1 y1S h £ x s S x © h s h £ u S xŽ . Ž .Ž . Ž .ĥ

ˆ ˆ ˆ y1s S u x © h s h £ S u xŽ . Ž .Ž .Ž .ˆ ˆh h

yields

Sy1 (u s uy1 (Sy1 , 3.61Ž .ˆ ˆh h

and finally

Ad (Sy2 s u s Ad (S2 , 3.62Ž .ˆa h aL R

Ž . Ž .from which 3.51 and 3.52 follow immediately. Q.E.D.

3.6. Haar Integrals

Since finite-dimensional weak Hopf algebras do not go beyond the
‘‘compact’’ and ‘‘discrete’’ case, the following very conservative definition
of Haar measure will suffice.

DEFINITION 3.24. An element h of a WHA A is called a Haar integral
ˆin A or Haar measure on A if h is a normalized two-sided integral, i.e.,

Ž . LŽ . R Ž .h g II A and # h s # h s 1.

Obviously, if a Haar integral exists then it is a unique S-invariant
idempotent. As a matter of fact let h and h9 be Haar integrals. Then

LŽ . R Ž . 2h9 s # h h9 s hh9 s h # h9 s h. In particular h s h. S-invari-
Ž .ance follows from uniqueness since S h is always a Haar integral if h is.

In finding criteria for the existence of a Haar measure in A an
ˆimportant role will be played by a special element x g A the definition of
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w xwhich was inspired by similar computations in Hopf algebra theory 21 ,

i y2 ˆ ˆx [ b £ S b ' L9 1 , 3.63Ž . Ž .Ž .Ý i
i

i ˆ ˆ� 4 � 4where b and b are dual bases of A and A, respectively, and L9:i
ˆ ˆ ˆ i y2 ˆŽ . Ž .A ª A is given by L9 c [ Ý b c £ S b . Note that L9 is the ‘‘cop’’i i

ˆ Ž .version of the dual analogue L of the projection 3.23 onto the space of
ˆ ˆŽ .left integrals. Hence x is a left integral in A and therefore in A.cop

As we see below if x is non-degenerate and a q-trace then its dual left
integral is automatically the Haar measure. To see that it is a q-trace let

Ž .Tr be the standard trace on End A and introduce the notation Q x yA K y
[ yx. Then for x g A we have

² i y2 : y2x x s b , S b x s Tr Q x (S ,Ž . Ž . Ž .Ý i A y
i

x xy s Tr Q y (Q x (Sy2 s Tr Q y (Sy2 (Q S2 xŽ . Ž . Ž . Ž . Ž .Ž .A y y A y y

s x yS 2 x .Ž .Ž .
The next lemma is crucial in deciding whether x is non-degenerate.

ˆLEMMA 3.25. Let l be a left integral in a WHA A and let x g A be the
Ž .q-trace left integral defined in Eq. 3.63 . Then

2̂ ˆl © x s S 1 £ l . 3.64Ž .Ž .

Ž .Proof. Using the q-trace property of x and then 2.19a ,

i y2 ˆ y2l © x s b £ S b l s 1 £ 1 £ S 1 lŽ . Ž .Ý ž /i Ž1. Ž2.
i

ˆ y1 ˆ y2 ˆ y2 2̂ ˆ² :s 1 , S 1 1 1 £ S l s 1 £ S l s S 1 £ l .Ž . Ž . Ž .Ž .Ž1. Ž2. Ž1. Ž2.

Q.E.D.

PROPOSITION 3.26. Let A be a weak Hopf algebra o¨er a field K and let x
Ž .be gï en by 3.63 .

Ž .i The Haar integral h g A exists if and only if x is non-degenerate, in
Ž .which case h, x is a dual pair of left integrals. In particular Haar integrals

are non-degenerate.
Ž . LŽ . RŽ .ii A left integral l g II A is a Haar integral if and only if # l

s 1.

Ž .The characterization of Haar measures under ii is so simple that it could
be well used as a definition of Haar measure. Notice that in that case the
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formal difference between the notions of normalized left integral and
Ž L R.Haar measure were so tiny change # for # that it would smear out

the big conceptual difference: The existence of normalized left integrals is
equivalent to semisimplicity while the existence of Haar measures is much
stronger.

Ž . LŽ . RŽ .Proof. ii Assume l g II A satisfies # l s 1. Then by Lemma
ˆ Ž .3.25 l © x s 1. Therefore the duality Theorem Theorem 3.18 implies

Ž .that l, x is a dual pair of non-degenerate left integrals. Since x is a
q-trace, Lemma 3.20 shows that l is an S invariant non-degenerate left

LŽ . LŽ Ž .. RŽ .integral. Furthermore # l s # S l s S( # l s 1. Thus l is a
Haar integral. Now assume h is a Haar integral. Then obviously h is a left

RŽ .integral satisfying # h s 1.

Ž . Ž .i The ‘‘only if’’ part follows from the proof of ii . Assume x is
non-degenerate and let h be its dual left integral. Then by Lemma 3.20 h
is two-sided and by Lemma 3.25 it is normalized. Q.E.D.

However simple, the criteria of the above proposition are very difficult
to verify in concrete situations. So it is worth looking for other criteria
even if they are not applicable in full generality.

THEOREM 3.27. Let A be a WHA o¨er an algebraically closed field K.
Then a necessary and sufficient condition for the existence of Haar measure
h g A is that A is semisimple and there exists a g g A such that gxgy1

=
2Ž . Ž y1 .s S x for x g A and tr D g / 0 for all irreducible representation Dr r

of A.

The assumption on K is used only to ensure that A is split semisimple,
Ž .A s [ M K , once knowing that it is semisimple. In particular there willnr r
� ab 4be a K-basis e for A obeying matrix unit relations.r

Proof. Sufficiency: Let t : A ª K be the trace with trace vector
Ž y1 .t s tr D g . Then t is non-degenerate and has as quasi-basis ther r

element
nr1

ab bax m y [ e m e .Ý Ý Ýi i r rtrri a , bs1

Notice that Ý x gy1 y s 1. Now we define x 9 [ g © t and claim that x 9i i i
Ž .coincides with the x of Eq. 3.63 . As a matter of fact

x 9 x s t gx s t x gy1 y gx s t x Sy2 y xŽ . Ž . Ž .Ž . Ž .Ý Ýi i i i
i i

² y2 :s b , S b x s x x ,Ž . Ž .Ý i i
i
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where we used the fact that the dual of the basis b s y is b s t £ x .i i i i
Since x 9 was non-degenerate by construction, we conclude that the x of

Ž .Eq. 3.63 is non-degenerate and therefore its dual left integral l has
RŽ . Ž .# l s 1 by Eq. 3.64 . Therefore l is a Haar measure.

Necessity: If h g A is a Haar measure then A is semisimple by
Theorem 3.13. Therefore A is a symmetric algebra and u s id. ThisA
means that u is inner for all non-degenerate functional c . In particularc

u s S2 is inner where x is the dual left integral of h. Choose a g g Ax =

implementing S2 and construct the non-degenerate trace t [ gy1 © x .
Then

t x s x xgy1 s Tr Q xgy1 (Sy2 s Tr Q gy1 (Q x ,Ž . Ž .Ž . Ž . Ž .A y A q y

Ž .where Q x y [ xy is the left multiplication on A. Choosing a matrixq
unit basis to evaluate the trace we obtain

t x s tr D gy1 tr D x ,Ž . Ž .Ž .Ý r r
r

Ž y1 .and by non-degeneracy of t all components tr D g of the trace vectorr
are non-vanishing. Q.E.D.

4. C*-WEAK HOPF ALGEBRAS

In this section we introduce the C*-structure in WHAs which is in-
evitable if WHAs are to be used as symmetries of inclusions of von
Neumann algebras, in particular in quantum field theory. Utilizing the
results of Sections 2 and 3 we establish the existence of two canonical
elements in any C*-WHA, the Haar measure h and the canonical group-
like element g. While the Haar measure is well known for C*-Hopf
algebras, the canonical grouplike element cannot be recognized in finite-
dimensional Hopf algebras because it is always equal to 1. This is related

w xto involutivity of the antipode in finite-dimensional C*-Hopf algebras 24 .
The very fact that C*-WHAs can have non-involutive antipodes provides
the sufficient flexibility for the emergence of non-integer dimensions.

4.1. First Consequences of the C*-structure

Ž .DEFINITION 4.1. We define a *-WHA as a WHA A, 1, D, « , S over
the complex numbers C together with an antilinear involution * such that

Ž . Ž .i A, * is a *-algebra,
Ž . Ž . Ž . Ž . Ž .ii D is a *-algebra map, i.e., x* m x* s x * m x * forŽ1. Ž2. Ž1. Ž2.

all x g A.



WEAK HOPF ALGEBRAS, I 427

Ž .By uniqueness of the unit, counit, and the antipode see Lemma 2.8 we
have the additional relations

y11* s 1, « x* s « x , S x* * s S x . 4.1Ž . Ž . Ž . Ž . Ž .

Now it is easy to check that the projections # L and # R satisfy

#L x * s #L S x * , #R x * s #R S x * , 4.2Ž . Ž . Ž . Ž . Ž .Ž . Ž .

therefore AL and AR are *-subalgebras of A. As an elementary exercise
we obtain self-duality of the *-WHA:

Remark 4.2. Let A be a *-WHA and define a star operation on its dual
as

² : ² :w*, x \ w , S x * . 4.3Ž . Ž .

ˆThen A with this star operation becomes a *-WHA.
L L R̂ RFor a *-WHA A the canonical isomorphisms k : A ª A and k :A A

R L̂A ª A of Lemma 2.6 become *-algebra isomorphisms.
We omit the discussion of further properties of *-WHAs and turn to the

most important case of C*-WHAs.

DEFINITION 4.3. A *-WHA A possessing a faithful *-representation is
called a C*-weak Hopf algebra, or C*-WHA for short.

Being a finite-dimensional C*-algebra any C*-WHA can be uniquely
characterized, as an algebra, by the dimensions n g N of its blocks wherer
r is running over the finite set SS ec A of equivalence classes of irreducible

Ž .representations i.e., the sectors of A. So

A ( M , M s Mat n , C . 4.4Ž . Ž .[ n n rr r
rgSS ec A

AL and AR are unital *-subalgebras therefore they are C*-algebras as well
and we have natural numbers n , a g SS ec AL and n , b g SS ec AR

a b
characterizing the type of AL and AR, respectively. Thus

Ac ( M , c s L, R . 4.5Ž .[ n acagSS ec A

L RThe antiisomorphism S: A ª A establishes a bijection a ¬ a of the
L R Žblocks of A to the blocks of A such that n s n . We considera a

SS ec AL, SS ec AR, and SS ec A as disjoint sets which allows us to use one
.function n.
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The following elementary but important proposition will be the basic
ingredient in proving both the existence of Haar measures and rigidity of
the representation category of C*-WHAs.

PROPOSITION 4.4. Let A be a finite-dimensional C*-algebra and S: A ª
op Ž .2A an algebra isomorphism such that *(S s id . Then there existsA

g g A such that=

Ž .i g G 0
Ž . y1 2Ž .ii gxg s S x , x g A
Ž . Ž . Ž y1 .iii tr g s tr g , r g SS ec Ar r

Ž . Ž . y1iv S g s g

where tr denotes trace in the irreducible representation D . An element g g Ar r
satisfying only the first three properties is already unique.

<Proof. The restriction S is an algebra automorphism thereforeCenter A
Ž .acts on the minimal central idempotents e as S e s e where r ¬ r is ar r r

Upermutation of SS ec A. Since e s e and *(S is an involution, r ¬ r isr r
an involution.

� ab 4Choose matrix units e for the C*-algebra A and define the antiau-r
ab ba 2Ž .tomorphism S : A ª A by S e [ e . Then S s id and *(S s0 0 r r 0 A 0

S (*. Since S(S is an automorphism of A that acts as the identity on the0 0
center, there exists C g A invertible such that S s Ad (S . It followsC 0
that

*(S x s Cy1*S x* C*,Ž . Ž .0
4.6Ž .2 y1 y1*(S x s C *S C xS C C* s x ,Ž . Ž . Ž . Ž .0 0

Ž . Ž . Ž .therefore S C C* is central and so is its adjoint K [ CS C* s S C* C.0 0
So

S2 x s CS CS x Cy1 Cy1 s CS Cy1 xS C Cy1 , x g A ,Ž . Ž . Ž . Ž .Ž .0 0 0 0

4.7Ž .

Ž y1 . w Ž . xy1 y1 2hence T [ CS C s CC* S C C* s CC*K * implements S and0 0
its polar decomposition takes the form

1r2 y1r2y1T s ug9, u s K * K*K , g 9 s C K*K C*. 4.8Ž . Ž . Ž .

Ž .Using the centrality of the unitary part and the computations S T s
Ž . 2Ž y1 . Ž . y1 y1 y1 Ž . Ž . Ž .S C S C s S C TC T s T and S K s S K s C*S C s0 0
Ž . 2S C C* s K* we obtain that g 9 is positive invertible, implements S , and0

Ž . y1satisfies S g 9 s g 9 . These latter three properties, however, do not fix g



WEAK HOPF ALGEBRAS, I 429

Ž . y1completely. If c is positive, central, and satisfies S c s c then g s g 9c
will also satisfy the above three properties. Now defining

1r2y1tr g 9Ž .r
g [ g 9c where c s e , 4.9Ž .Ý r ž /tr g 9Ž .rr

Ž . Ž .it is easy to verify that g obeys i ] iv of the proposition. If f g A satisfies
Ž . Ž .only i ] iii then f s gc where c is positive invertible, central, and

Ž . Ž .y1satisfies D c s D c for all irrep D . Hence c s 1, proving unique-r r r
ness of g. Q.E.D.

4.2. The Haar Measure and Self-duality

Recall that the Haar measure in a WHA A has been defined in
Definition 3.24 as the unique element h g A making the integral Hw [
² :w, h of a function w : A ª C to be a non-degenerate functional invari-
ant under left and right translations and normalized according to Hw L s

L L L̂Ž .« w for w g A . The sufficient conditions for its existence given byˆ
Theorem 3.27 will be used here to prove the next theorem.

THEOREM 4.5. In a C*-WHA A Haar measure h g A exists. It is self-ad-
joint, h* s h, and such that

ˆ² :w , c [ w*c , h , w , c g A 4.10Ž . Ž .

ˆ ˆis a scalar product on A making A a Hilbert space and making the left regular
ˆ ˆ ˆmodule A a faithful *-representation of the *-WHA A. Thus A is a C*-WHA,Â

too.

Proof. A being a finite-dimensional C*-algebra is semisimple. By
Proposition 4.4 there exists a g implementing S2. This g was shown to be

Ž y1 .positive and invertible, hence tr D g ) 0 for all r g SS ec A. Thereforer
all the conditions of Theorem 3.27 are satisfied and Haar measure h exists.

Ž .Since h is non-degenerate, , is a non-degenerate sesquilinear form
ˆon A. So it remains to show positivity. By the equality

² : ² :² :c , c s c *c , h s c , S h * c , h , 4.11Ž . Ž .Ž .Ž1. Ž2.

Ž . Ž . Ž .positivity of , follows if we can show that S m id (D h belongs to the
positive cone

PP s aU m a ¬ a g A ; A m A. 4.12Ž .Ý k k k½ 5
k

Therefore the next lemma completes the proof. Q.E.D.
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� ab 4LEMMA 4.6. Choose matrix units e for A and let g denote the elementq
determined in Proposition 4.4. If furthermore Ý x m y is the quasi-basis ofi i i

Ž y1 .the trace t : A ª C with trace ¨ector t s tr g thenq q

1
y1 a b y1r2 y1r2 baS h m h s x m g y s e g m g e ,Ž . Ý Ý ÝŽ1. Ž2. i i q qtqi a bqgSS ec A

4.13Ž .

1
ab 1r2 1r2 bah m S h s x g m y s e g m g e . 4.14Ž .Ž . Ý Ý ÝŽ1. Ž2. i i q qtqi a bqgSS ec A

Proof. The quasi-basis of x s g © t is Ý x gy1 m y and since x is thei i
y1Ž .dual left integral of h, this quasi-basis is equal to h m S h . ThisŽ2. Ž1.

Ž .implies the first row. By property iii of Proposition 4.4 t is an S-invariant
trace, therefore its quasi-basis can also be written as Ý y m x si i i

y1Ž . y1Ž .Ý S x m S y . Thus the second row follows from the first. Q.E.D.i i i
From now on h g A will always denote the Haar measure of A and

ˆ ˆ ˆh g A that of A.

LEMMA 4.7. In a C*-WHA A the counit is a positï e linear functional,
Ž .« x*x G 0, x g A.

Proof.

« x*x s « x*1 « 1 1 « 1 x s « #L x * #L xŽ . Ž . Ž .Ž . Ž . Ž . Ž .Ž1. Ž2. Ž2 9. Ž19.

ˆ L L² :s h , # x * # x G 0,Ž . Ž .

ˆ L L< <where we have used h s « , which follows fromA A

L ˆ L L Lˆ ˆ ˆ² : ² : ² :h , x s # h , x s 1, xŽ .

for all x L g AL. Q.E.D.

A being semisimple the trivial representation V decomposes into irre-«

ducibles V each of them with multiplicity 1 by Proposition 2.15. Theq
sectors q g SS ec A occurring in V with non-zero multiplicity will be called«

¨acuum sectors. So

V ( V . 4.15Ž .[« q
qgVV ac A

By Proposition 2.15 there is a bijection q ¬ z L from the set VV ac A ofq
vacuum sectors to the set of minimal projections in Z L such that, with
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R Ž L.z [ S z , we haveq q

D z L s D e s D z R , 4.16Ž . Ž .Ž . Ž .« q « q « q

z L s #L e #R e s z R , 4.17Ž . Ž . Ž .q q q q

where e denotes the minimal central projection in A supporting theq
irreducible vacuum representation D .q

Ž .LEMMA 4.8. D h is a one-dimensional projection for r g VV ac A andr
Ž .D h s 0 if r is not a ¨acuum sector. The algebra of two-sided integrals isr

generated by minimal projections h :q

II A s hAh s Span h ¬ q g VV ac A , h s he . 4.18� 4Ž . Ž .q q q

The non-degenerate two-sided integrals are precisely the in¨ertible elements:
Ž . Ž .II# A s II A .=

Ž .Proof. If D h / 0 then pick up a non-zero vector ¨ from ther r
Ž .subspace D h V of the irreducible A-module V and definer r r

T : AL ª V , Tx L [ D x L ¨ . 4.19Ž . Ž .r r r

This map is a non-zero left A-module map if we equip AL with the
structure of the trivial A-module AL introduced in Lemma 2.12. Indeed,A

D x Tx L s D xx Lh ¨ s D #L xx L h ¨ s T #L xx L . 4.20Ž . Ž . Ž . Ž . Ž .Ž .r r r r r

Ž .Therefore r g VV ac A. This proves that D h s 0 for r f VV ac A.r
R̂Now let the Haar integral act on the trivial left A-module A .A

R R L̂ R̂ ˆD h w s h © w g A l A ' Z. 4.21Ž . Ž .«

R̂ ˆ LŽ .Thus D h : A ª Z is a projection, onto. If z is a minimal projection in«
L L ˆ ˆZ then z © 1 is a minimal projection in Z by Lemma 2.14. Hence

L R̂ L ˆ ˆ LŽ . Ž . Ž .D z h maps A onto z © 1 Z ( C. This proves that D z h , the« «

Ž .restriction of which is precisely D h for some q g VV ac A, is a one-di-q
mensional projection. If i g II then by the two-sided normalization of h
one can write i s hih. Conversely, hxh is a two-sided integral for all
x g A. This proves the remaining assertions. Q.E.D.
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The Haar measure provides conditional expectations

L L L ˆE : A ª A , E x s h © x , 4.22Ž . Ž .
R R R ˆE : A ª A , E x s x £ h. 4.23Ž . Ž .

L L ˆŽ .As a matter of fact by Lemma 3.2 c the image of E is in A since h is a
L ˆ Lleft integral. E is unit preserving since h is normalized. Finally, E is

ˆpositive since h is positive and D is a *-algebra map.

4.3. The Canonical Grouplike Element

In this subsection we investigate further properties of the element g of
Proposition 4.4. We show that it is always a product of left and right
elements, implying its grouplikeness immediately, and obtain expressions

ˆfor the modular automorphisms of the Haar measures of A and A.

PROPOSITION 4.9. In a C*-WHA A there exists a unique g g A such that

Ž .i g G 0 and in¨ertible,
Ž . y1 2Ž .ii gxg s S x for all x g A,
Ž .iii h m h s h m gh g.Ž2. Ž1. Ž1. Ž2.

Ž .Proof. Existence: Let g be the unique element defined by the condi-
tions of Proposition 4.4. As in the proof of Lemma 4.6 let t be the

Ž .S-invariant trace with trace vector t s tr g and Ý x m y be its quasi-q q i i
basis. Then

h m h s x m S gy1 y s Sy1 y m x g 4.24Ž . Ž .Ž .Ý ÝŽ2. Ž1. i i i i
i i

s Sy1 y gy1 m gx g s gSy1 y m gx g 4.25Ž . Ž .Ž .Ý Ýi i i i
i i

s S gy1 y m gx g s h m gh g . 4.26Ž .Ž .Ý i i Ž1. Ž2.
i

Ž . Ž .Uniqueness: Let g and g 9 satisfy i ] iii . Then g 9 s gc with c
Ž .central, positive, and invertible. Furthermore, since iii is equivalent to

² : ² :wc , h s c g © w £ g , h , 4.27Ž . Ž .

non-degeneracy of h implies

ˆg 9 © w £ g 9 s g © w £ g , w g A. 4.28Ž .
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2 ˆ 2Therefore c © w ' c © w £ c s w for all w g A. Thus c s 1 and, by
positivity, c s 1. Q.E.D.

Ž .Notice that property iii of Proposition 4.9 is equivalent to the state-
Ž .ment that the modular automorphism of the Haar functional w ¬ w h is

expressible in the form

ˆu c s g © c £ g , c g A. 4.29Ž . Ž .h

DEFINITION 4.10. Let A be a C*-weak Hopf algebra. Then the unique
element g g A determined either by the conditions of Proposition 4.4 or
by the conditions of Proposition 4.9 is called the canonical grouplike
element of A.

As one may suspect the canonical grouplike element is grouplike in the
sense of

DEFINITION 4.11. An element x of a WHA A is called grouplike if

D x s x1 m x1 s 1 x m 1 x , 4.30Ž . Ž .Ž1. Ž2. Ž1. Ž2.

S x x s 1. 4.31Ž . Ž .

Ž . Ž .We note that if 4.30 holds then condition 4.31 is equivalent to the
assumption that x is invertible. One should emphasize that grouplike
elements are not always like group elements if a *-operation is present.
Namely, we allow for x not to be unitary. Thus there can be positive
grouplike elements, for example, in a C*-WHA.

If x is an invertible element factorizable as x xy1 with x g AL andL R L
Ž . y1Ž .x s S x s S x then x is automatically grouplike. As a matter ofR L L
Ž . y1 y1fact D x s x 1 m x 1 s xx 1 m x 1 s x1 m x1 . Now it fol-L Ž1. R Ž2. R Ž1. R Ž2. Ž1. Ž2.

lows from the next lemma that the canonical grouplike element g is
grouplike.

ˆLEMMA 4.12. In a weak C*-Hopf algebra A the elements h £ h and
ĥ © h are positï e and in¨ertible. The canonical grouplike element of A can be
factorized as

g s g gy1 , 4.32Ž .L R

where

1r2 1r2ˆ ˆg [ h © h , g s h £ h . 4.33Ž .Ž . Ž .L R

ˆ L L ˆŽ . Ž .Proof. h © h s E h s E h*h G 0 and similarly h £ h G 0 by pos-
Ž .itivity of the conditional expectations 4.22 . Invertibility follows from the

ˆ ˆ ˆ ˆŽ . Ž .Ž .existence of the dual left integral x since h £ h © x s S h h © x s h
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ˆ ˆcan hold for the non-degenerate x and h only if h £ h is invertible. Thus
ˆ ˆŽ .h © h s S h £ h is invertible, too.

ˆ ˆThe next point is to observe that the three elements h © h, h £ h, and
g commute with each other. For g and any one of the others this follows

ˆ ˆ 2from the fact that h © h and h £ h are invariant under S . For the
commutativity of the remaining two notice that one of them belongs to AL

the other to AR. Now compare the following expressions,

ˆ ˆ ˆh s h £ h © x s h £ h g © t , 4.34Ž .Ž . Ž .

ˆ ŷ1 ˆ y1 ˆ y1 ˆh s S h s t £ g h © h s g h © h © t . 4.35Ž .Ž . Ž . Ž .

By non-degeneracy of t we obtain

ˆ y1 ˆh © h g s h £ h g ,Ž . Ž .
y1 2ˆ ˆh © h h £ h s g ,Ž . Ž .

Ž .and taking the positive square root the lemma is proven. Q.E.D.

LEMMA 4.13. The left]right components of the canonical grouplike ele-
ˆment g of A and g of A obeyˆ

ˆ ˆg s 1 £ g s 1 £ g g s 1 £ g s 1 £ g , 4.36Ž .ˆ ˆ ˆL L R L L R

ˆ ˆg s g © 1 s g © 1 g s g © 1 s g © 1, 4.37Ž .ˆ ˆ ˆR R L R R L

y1 ˆ ŷ1S g s g s S g S g s g s S g . 4.38Ž . Ž . Ž .Ž . Ž .ˆ ˆ ˆL R L L R L

Proof. Since g g AL and g g AR, they commute and both of themL R
are invariant under S2 s Ad . So are the C*-algebras generated by eachg

Ž 1r2 . y1Ž 1r2 . Ž 1r2 .of them, pointwise. Hence S g * s S g s S g thereforeL L L
Ž . Ž 1r2 .2 Ž .2 Ž 2 . 2S g s S g G 0. On the other hand S g s S g s g , thereforeL L L L R
Ž . 2 Ž .S g is the positive square root of g , i.e., S g s g .L R L R

ˆ ˆ ˆŽ .Next we want to show that 1 £ h © h s h © h. Since both sides
L̂belong to A , the identity

ˆ ˆ R ˆ R ˆ R² :1 £ h © h , x s « h © h S x s « h © hS xŽ . Ž .Ž . Ž . Ž .Ž .
ˆ R ˆ R² : ² :s h £ h , S x s h © h , xŽ .

R R ˆ 2 2 ˆ 2 2valid for x g A , suffices. Therefore 1 £ g s g , or 1 £ g s g . Nowˆ ˆL L R L
R R ˆ R L̂Ž .use the fact that A 2 x ¬ 1 £ x g A is a *-algebra isomorphism.

Hence passing to the square roots we obtain 1 £ g s g . All the remain-ˆR L
ing identities are simple consequences of this. Q.E.D.
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ˆPROPOSITION 4.14. Let A be a C*-WHA with dual A and let h g A,
ˆ ˆh g A be the corresponding Haar measures. Then

ˆŽ .i the modular automorphism of the Haar functional h is implemented
Ž . y1 y1by g g ; i.e., for all x g A we ha¨e u x s g g xg g ;ˆL R h L R R L

ˆ y2Ž .ii the dual left integral of h can be expressed as x s hg ;R̂

Ž . y1iii the S-in¨ariant trace functional t s g © x and the Haar func-
ˆtional h are related by

y1ˆ y1t s g hg , 4.39Ž .ˆ ˆL R

ĥ s g g © t . 4.40Ž .L R

Ž .Proof. i Using identities like g © x s g x, . . . , etc., which followL̂ R
from Remark 2.7, one can easily verify g © x £ g s g g xgy1 gy1, forˆ ˆ L R R L
x g A.

ˆ 2 2 ˆ y2Ž .ii The identity h © h s g s 1 £ g implies 1 s h © h £ g sˆ ˆL R R
ˆ y2 y2 y2 ˆh © hg , hence hg s hg is the dual left integral of h. By duality,L L R
ˆ y2hg is the dual left integral x of h.R̂

y1 ˆ y2 y1 ˆ y2 y1ˆ y1 y1Ž . Ž .iii t s g © hg s g hg g s g hg and t s g ©ˆ ˆ ˆ ˆ ˆ ˆR R R R L R
y2 ˆ y1 y1 ˆŽ .g © h s g g © h completes the proof. Q.E.D.R L R

Cyclicity and separability of the vector h in the right AL, R-module II L

R̂Ž .cf. Remark 3.17 allows us to introduce A -valued ‘‘Radon-Nikodym
derivatives’’ of left integrals l with respect to the Haar measure. At first

LŽ . R Ž . y1Ž R Ž ..note that l s # h l s hl s h # l s hS # l therefore using
Remark 2.7 we have

² : ² : ² :w , l s wr , h s r w , h , 4.41Ž .R L

R ˆ y1 R ˆ 2̂Ž . Ž Ž .. Ž .where r s # l © 1 and r s S # l © 1 s S r .R L R

L R̂Ž .PROPOSITION 4.15. The bijections II A ª A pro¨ided by the left and
right Radon]Nikodym derï atï es l ¬ r and l ¬ r , respectï ely, obey theL R
following properties.

Ž .i l is non-degenerate iff r is in¨ertible.R , L

Ž . 2ii If l is non-degenerate then l is normalized iff l s l.
ˆ RŽ . ² : Ž .iii l is of positï e type; i.e., w*w, l G 0 for all w g A, iff # l G

1r2 R̂ y1r2 R̂ R̂0 iff r g g A g where A is the cone of positï e elements in A . Inˆ ˆR R q R q
U ˆ ² : ² :this case r s r and there exists a j g A such that w, l s j *wj , h forL R

ˆw g A.
Ž .iv Let l be the dual left integral of l. Then the Radon]Nikodym

R ˆ R y2Ž .Ž Ž . .derï atï es of l and l are related by # l # l © 1 s g .R
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Ž . L Ž . 2 Ž LŽ .RProof. i follows from cyclicity of h in II . ii l s l implies # lA
.y 1 l s 0 and acting with l © , where l is the dual left integral of l, one

LŽ . Ž .obtains # l s 1. The converse implication is trivial. iii As in the proof
Ž .of Theorem 4.5 l is of positive type iff S l m l belongs to the positiveŽ1. Ž2.

Ž . RŽ . Ž . RŽ .cone 4.12 . If it does then # l s S l l G 0. Now assume # l GŽ1. Ž2.
R 1r2 ˆ R 1r2Ž . Ž .0. Then introducing j s # l © 1 we have # l s j © 1,

y1 R 1r2 ŷ1Ž Ž . . Ž . Ž Ž ..S # l s S j © 1 * s 1 £ S j * s 1 £ j * therefore l s
y1Ž R Ž .1r2 . RŽ .1r2hS # l # l s j © h £ j * proving that l is of positive

RŽ .type. It remains to reformulate positivity of # l in terms of r . Use theR
R R ˆ R R̂Ž .fact that the antimultiplicative map x ¬ x © 1 from A to A sends

R ˆ y1 R ˆŽ Ž . .the *-operation into a new involution, x * © 1 s S x © 1 * s
y2 R ˆ R y1 ˆ R ˆ y1Ž Ž . . Ž . Ž .S x © 1 * s g x g © 1 * s g x © 1 *g . Therefore theˆ ˆR R R R

RŽ . R R R Requality # l s x *x for some x g A is equivalent to the equality
R ˆ R ˆ 1r2 y1r2 y1r2 R ˆ 1r2Ž .Ž . Ž .r s x © 1 x * © 1 s g hh*g with h s g x © 1 g gˆ ˆ ˆ ˆR R R R R

R̂ Ž .A . iv follows by an elementary calculus starting from the identity
ˆ R y1 Rˆ Ž . Ž Ž ..1 s l © l s h # l © hS # l . Q.E.D.

APPENDIX: THE WEAK HOPF ALGEBRA B m Bop

Let B be a separable algebra over the field K and let E: B ª K be a
non-degenerate functional with index 1. These are the data needed for
constructing a WHA structure on the algebra B m Bop. For a similar

w xconstruction of a WBA see 14 .
� 4 � 4At first choose a basis e of B over K and let f be its dual basis w.r.t.i i

Ž .E, i.e. E e f s d . Theni j i j

Ž . � 4a Ý f m e g B m B is independent of the choice of e ;i i i i

Ž . Ž . Ž .b Ý E xf e s x s Ý f E e x , x g B;i i i i i i

Ž .c Ý f e s 1;i i i

Ž .d Ý xf m e s Ý f m e x, x g B;i i i i i i

Ž . Ž .e if u denotes the modular automorphism of E, i.e., E xy s
Ž Ž ..E yu x , x, y g B, then

f m xe s f u x m e , x g B ;Ž .Ý Ýi i i i
i i

Ž . y1Ž . Ž .f Ý f m e s Ý e m u f s Ý u e m f .i i i i i i i i i
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op Ž .ŽThe algebra B m B is the K-space B m B with multiplication a m b x
. Ž .m y [ ax m yb . Its WHA structure is defined by

D x m y s x m f m e m y , A1Ž . Ž . Ž . Ž .Ý i i
i

« x m y s E xy , A2Ž . Ž . Ž .
S x m y s y m u x . A3Ž . Ž . Ž .

The verification of the WHA axioms is left to the reader. The left and
right subalgebras of B m Bop are B m 1 and 1 m B, respectively, because
we have

#L x m y s xy m 1, #R x m y s 1 m yu x . A4Ž . Ž . Ž . Ž .

Let A be an arbitrary WHA over K. Then ALAR is a sub-WHA with
hypercenter AL l AR. Thus ALAR decomposes into a direct sum of
WHAs each summand being isomorphic to a WHA of the type B m Bop.

Since B m Bop is separable, by Theorem 3.13, it must contain a normal-
ized left integral. Indeed,

l [ f m e ' S2 1 1 A5Ž .Ž .Ý i i Ž2. Ž1.
i

is such a left integral. What is more, it is non-degenerate.
Before looking for Haar integrals some remarks about innerness of u

are in order. The quantity q s Ý e f always implements uy1 ; i.e., xq si i i
Ž . Žqu x for x g B, but it is not necessarily invertible. For example, for

Ž .B s M Z and for any non-degenerate functional E the q is identically2 2
.zero. In fact q is invertible iff the left regular trace on B is non-degener-
Ž .ate especially if K is of characteristic zero . Fortunately one can circum-

vent this nuisance by using the existence of a non-degenerate trace tr on
Ž w x.any separable algebra B see 5 . Then the Radon]Nykodim derivative g

of E w.r.t. tr provides an invertible element implementing u ,

E x s tr xg , u x s g xgy1 , x g B. A6Ž . Ž . Ž . Ž .

This proves that u is inner and therefore so is the square of the antipode,
S2 s u m u .

Omitting the details we can now formulate the condition for the exis-
ˆ optence of the Haar measures h and h as follows. Haar measure in B m B$op2exists iff Ý f g e is invertible and Haar measure in B m B exists iffi i i

Ž .E 1 / 0.B
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