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Abstract

The plasma membrane of neurons can be divided into two domains, the soma-dendritic and the axonal. These domains
perform different functions: the dendritic surface receives and processes information while the axonal surface is specialized
for the rapid transmission of electrical impulses. This functional specialization is generated by sorting and anchoring
mechanisms that guarantee the correct delivery and retention of specific membrane proteins. Our understanding of neuronal
membrane protein sorting is primarily based on studies of protein overexpression in cultured neurons. These studies revealed
that newly synthesized membrane proteins are segregated in the Golgi apparatus in the cell body from where they are
transported to the axonal or dendritic surface. Such segregation presumably depends on sorting motifs in the proteins'
primary structure. They appear to be located in the cytoplasmic tail for dendritic proteins and in the transmembrane-
ectodomain for axonal proteins. Recent studies on neurotransmitter segregation suggest that anchoring in the correct
subdomain of the plasma membrane also requires cytoplasmic tail information for binding to the cytoskeleton either directly
or by linker proteins. Both mechanisms, sorting and retention, gradually mature during neural development. Young neurons
appear to develop initial polarity by other mechanisms, presumably analogous to the mechanisms used by migrating
cells. ß 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The transmission of a signal in a neuron is in
principle divided into four phases: (1) signal input,
(2) signal integration, (3) signal conduction, and (4)
signal output [1]. To achieve directionality each of
the phases are spatially segregated within the neuron,
as are the proteins on which the speci¢c phases are
based. To highlight the correlation between function
and protein distribution we brie£y outline the trans-
mission of a signal and mention some of the impor-
tant proteins (see Fig. 1). Signal input : neurotrans-
mitter (NT) receptors speci¢c for the NT released
from the presynaptic site are concentrated at the
postsynaptic site [2,3]. The receptors, which can be
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ionotropic or coupled to second messengers, modu-
late the chemical signal into an electrical signal by
allowing ion £ow across the plasma membrane upon

binding of the NT. Signal integration : the electrical
signals generated at the dendritic terminals are then
integrated via the dendrites and the cell body. Until

Fig. 1. Basic signal propagation in neurons. (1) Released neurotransmitter molecules bind to their speci¢c receptors located in the
postsynaptic membrane inducing the opening of ion channels and, hence, a change in the membrane potential in the form of a post-
synaptic potential, either excitatory (EPSP) or inhibitory (IPSP). (2) The di¡erent stimuli become integrated on the dendrites and the
cell body. At the axonal hillock an action potential is formed if the postsynaptic potential depolarizes the membrane over a certain
threshold. (3) The action potential travels actively down the axon. (4) At the nerve terminals membrane depolarization leads to the
exocytosis of neurotransmitter. For proper functioning of these steps the speci¢cally involved proteins have to be localized to their
place of action (see text).
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recently, the propagation of the signal in this phase
was thought to be passive, i.e. based on the isolating
properties of the plasma membrane and independent
of the opening of voltage gated ion channels. How-
ever, calcium mediated action potentials occur in
dendrites [4] and voltage sensitive N-type calcium
channels are also localized to dendrites [5] suggesting
modulation of the `passively' propagating signal [4].
(Note that there are also actively back-propagating
action potentials found in dendrites [131].) Signal
conduction : at the point of the axon hillock the in-
tegrated, graded signal triggers an action potential in
an all or none fashion. Upon local depolarization of
the membrane voltage dependent sodium channels
open and allow adjacent parts of the plasma mem-
brane to depolarize which again causes voltage gated
sodium channels to open. Hence, the action potential
propagates actively down the whole axon. Voltage
gated sodium channels are mainly found at the
axon hillock but also to a lesser extent at the cell
body and very proximal dendrites [6,7]. This corre-
lates with the electrophysiological ¢nding that the
threshold to induce an action potential is lowest at
the axonal hillock [8]. Signal output : when the action
potential reaches the synapses at the ending of the
axon, voltage gated calcium channels open and the
increased calcium concentration triggers vesicle fu-
sion and NT release [9]; the electrical signal is re-
modulated into a chemical signal. All the described
events are based on the proper position of membrane
proteins to di¡erent membrane domains. Further-
more, even members of the same family are localized
to di¡erent domains within one cell as in case of the
N-type calcium channels [5] and the voltage gated
sodium channels [10]. The picture becomes even
more complex when other subdomains of the neuro-
nal membrane are taken into account. Synapses oc-
cur not only in a dendro-axonal fashion, e.g. there
are also axo-axonal synapses modulating anterog-
rade action potentials or the depolarization of the
presynaptic site. This implies that certain NT recep-
tors also can be transported to the axon such as
some metabotropic glutamate receptor subunits
[11]. Moreover, myelinated axons show di¡erent pro-
tein composition under the myelinated sheath than at
the nodes of Ranvier [12]. Additionally, not all post-
synaptic densities of one cell contain the same recep-
tors; the receptor distribution is speci¢c for the NT

released from the presynaptic site [3]. Finally, even
postsynaptic densities with the same receptor type
may di¡er in their morphology and protein compo-
sition due to di¡erent stimuli from the presynaptic
site.

The multiple subdomains on the plasma mem-
brane highlight the elaborate sorting achieved by
neurons. To understand how neurons achieve this
compartmentalization one useful approach is to con-
ceptualize neuronal architecture as two domains:
axonal and dendritic. This allows one to make a
comparison between neurons and epithelial cells in
which plasma membrane is separated into apical and
basolateral and the sorting mechanisms are much
better understood. Although such studies have their
limitations, as will be discussed later, they have
helped to unravel some of the sorting signals operat-
ing in neurons.

1.1. The neuronal/epithelial sorting hypothesis

Early studies on membrane sorting in neuronal
cells relied on the use of di¡erent RNA viruses: Sem-
liki Forest virus (SFV), vesicular stomatitis virus
(VSV), and fowl plague virus (FPV). The rationale
behind this strategy is simple. These viruses allow to
distinguish between the apical and basolateral do-
main in polarized epithelial cells and could be used
to study axonal and dendritic sorting. Infection of
epithelial cells with the FPV leads to apical delivery
of hemagglutinin (HA) whereas infection with SFV
or VSV leads to basolateral delivery of the E2 and G
viral proteins, respectively [13^15]. Upon infection of
polarized hippocampal neurons with the same viruses
HA is largely delivered to the axon while the E2 and
G proteins are delivered to the dendritic surface [16^
18]. These results show (1) a similarity between the
axonal and the apical membrane domain as well as
between the dendritic and the basolateral membrane
domain and (2) the existence of a direct routing path-
way from the trans-Golgi network (TGN) in the cell
body to the axonal and to the dendritic plasma mem-
brane. It suggests that the mechanisms controlling
sorting in epithelial and neuronal cells may be sim-
ilar.

An important criterion for this hypothesis is the
distribution of endogenously expressed proteins. GPI
anchored proteins shown to be apically transported
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in Madin-Darby canine kidney (MDCK) cells, a pol-
arized epithelial cell line, are axonally localized in
hippocampal neurons in culture [19,20]. The Q-ami-
nobutyric acid (GABA) transporter is axonal in neu-
rons and apical if expressed in polarized epithelial
cells [21]. Somatodendritic-basolateral expression is
found for the transferrin receptor [22^25], for the
LDL receptors (De Strooper and Dotti, manuscript
in preparation), for the K-subunit of the GABAA

receptor [31,32], and for the human epithelial poly-
meric immunoglobulin receptor (pIgR) [26,27]. In
addition, a transcytotic pathway existing for the
pIgR in MDCK cells [28^30] also exists in neurons
in a similar fashion: upon viral expression pIgR ¢rst
appears in the dendritic plasma membrane and then
redistributes to the axonal domain [27].

Nevertheless, there are also discrepancies to the
hypothesis of analogue membrane domains in neu-
rons and epithelial cells. The L-subunit of the
GABAA receptor is somatodendritically distributed
in hippocampal neurons but it is apically transported
when expressed in MDCK cells. The L-subunit even
redirects the K-subunit to the apical side upon co-
transfection in MDCK cells. Another protein contra-
dicting the hypothesis is the amyloid precursor pro-
tein (APP) which is basolateral in epithelial cells and
axonal in neurons [33^38,132]. The hypothesis is also
contradicted by the immuno£uorescence demonstra-
tion that a (Na+K)-ATPase is present in both axon
and dendrites of hippocampal neurons but only in
the basolateral surface of epithelial cells [39]. How-
ever, this is caused by speci¢c retention of this pro-
tein mediated by the cytoskeletal linker protein an-
kyrin, rather than by a di¡erence in sorting [40]. In
epithelial cells, the (Na+K)-ATPase is delivered to
the apical and the basolateral side but retention is
only on the basolateral side of the protein [41]. The
importance of retention is further supported by re-
sults showing that retinal pigment epithelium cells
have the ankyrin-fodrin cytoskeletal linker proteins
attached to the apical side where also the (Na+K)-
ATPase localizes [42].

In conclusion, some proteins contradict the theory
of sorting similarities between epithelial and neuro-
nal cells. This is not surprising since di¡erent epithe-
lial cells of di¡erent origins sort the same proteins in
a di¡erent manner. Indeed, the LDL receptor is ap-
ical in the epithelial cells of the kidney tubule and

basolateral in the epithelial cells of the intestine and
liver and the same GPI-anchored proteins are apical
in kidney epithelial cells and basolateral in thyroid
epithelial cells [43,130]. Given that cells derived from
the same origin do not use the same sorting mecha-
nisms, it is extreme to think that this will be the case
for cells so diverse as neurons and epithelial cells.
When thinking of how the plasma membrane of
any given cell is made, one must accept that sorting
mechanisms are £exible and complex in order to gen-
erate cell speci¢city. Hence, the main goal now
should be to understand the mechanisms underlying
neuronal sorting.

1.2. Axonal and dendritic tra¤cking in fully polarized
neurons: the sorting signals

Studies on the sorting signals of membrane pro-
teins in neuronal cells pro¢ted from the use of viral
vectors as a tool for protein expression. The ¢rst
axonal sorting signals were identi¢ed in APP [38].
This protein is found in axons of central nervous
system neurons both in vitro and in situ. Expression
of APP in cultured hippocampal neurons with the
SFV expression vector results in its rapid axonal
transport [36] similar to the endogenous form [45].
Interestingly, expression of this neuronal protein in
MDCK epithelial cells results in its basolateral deliv-
ery [33,34]. In MDCK cells the basolateral sorting
information is contained in a short stretch of amino
acids in the cytoplasmic tail, but the ectodomain
controls basolateral secretion [33^35,132]. In neu-
rons, deletion experiments have shown that the axo-
nal sorting information is present in the transmem-
brane-ectodomain (see Fig. 2) and deletion of the
cytoplasmic tail does not a¡ect axonal targeting
[38], showing that epithelial and neuronal cells proc-
ess this protein in a cell-speci¢c form. Since this is a
neuronal protein one possible explanation is that ep-
ithelial cells do not have the sorting machinery capa-
ble of recognizing the axonal sorting information of
this protein as apical.

The importance of the transmembrane-ectodomain
as the site for axonal sorting information is not gen-
eral. Recent work demonstrates that a di¡erent axo-
nal membrane protein, synaptobrevin, contains sort-
ing information in the cytoplasmic domain [46] (see
Fig. 2). In this work it was shown that a chimera
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protein containing the cytoplasmic domain of synap-
tobrevin added to the complete transferrin receptor,
which alone is sorted to the dendrites, is capable of
directing the transferrin chimera protein to the axo-
nal territory [46]. The di¡erent sorting mechanisms
of these two axonal proteins, APP and synaptobre-
vin, highlight the complexity of the neuronal sorting
machinery and suggest that several di¡erent sorting
mechanisms must operate for the correct delivery of
membrane constituents to the axonal surface. Thus,
one possibility is that synaptobrevin and APP use
di¡erent sorting mechanisms to deliver the proteins
to di¡erent subdomains.

The dendritic sorting signals have been identi¢ed
in pIgR [26], transferrin receptor (TfR) [23] and low
density lipoprotein receptor (LDLR) (De Strooper
and Dotti) (see Fig. 2). All these proteins are deliv-
ered to the basolateral membrane in MDCK cells.
A preferential dendritic delivery of the newly syn-
thesized protein pIgR is observed upon infection of
hippocampal neurons with recombinant SFV en-
coding pIgR [26]. In epithelial cells expressing
pIgR the basolateral sorting information is con-
tained in a short segment of the cytoplasmic tail

(CT) that is 14 amino acids long (position 655^668:
RHRRNVDRVSICSY) [44]. Its deletion leads to ap-
ical delivery. When the same mutant pIgR is ex-
pressed in fully polarized neurons the newly synthe-
sized protein appears on the axonal surface [27].
However, at later times post infection the mutant
protein is also found on the dendritic surface. Den-
dritic transport must be because of missorting and
not because of transcytosis since deletion of the CT
blocks endocytosis. These results have two important
implications. On the one hand they highlight the im-
portance of the amino acid motif in the CT for den-
dritic delivery (see Fig. 2). On the other hand, the
late appearance of mutant pIgR suggests that the
axonal pathway is easily saturable because the CT
minus pIgR appears in the dendrites at late expres-
sion times. This is a common result with overex-
pressed axonal proteins in cultured hippocampal
neurons and has been also observed for the in£uenza
virus hemagglutinin (Ledesma and Dotti, unpub-
lished results), and APP [36] expressed in these cells.
Hence, to analyze whether or not a given protein is
sorted to the axonal surface, it appears necessary to
use fully polarized neurons in which endogenous

Fig. 2. Sorting signals of axonal and dendritic membrane proteins. Axonal and dendritic proteins exit the TGN in di¡erent transport
carriers (dendritic: blue; axonal: red, orange) which are moving on microtubules (black straight lines). Dendritic proteins such as the
polymeric immunoglobulin receptor (PIgR), the transferrin receptor (TfR) and the low density lipoprotein receptor (LDLR) have their
sorting signals in the cytoplasmic tail (represented as blue line outside of the dendritic transport structure). The axonal protein APP
comprises its sorting signal in the ectodomain/transmembrane domain (red line enclosed by an axonal transport structure). This, how-
ever, does not seem to be the case for synaptobrevin, another axonal protein (orange) which contains a cytoplasmic axonal sorting
motif.
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membrane as well as cytoskeletal proteins are cor-
rectly positioned, and a transfection method that al-
lows a close temporal follow-up between protein ex-
pression and protein distribution.

As opposed to the axonal sorting machinery, den-
dritic missorting to the axon is rarely seen. It is pos-
sible that the larger dendritic surface area accounts
[121] for this di¡erence in the sorting ¢delity between
the axonal and dendritic pathways. However, until
we know more about the molecular machinery
underlying membrane sorting it will not be possible
to solve this issue.

1.3. Proteins enriched in synaptic specializations:
sorting vs. retention

Sorting of membrane proteins from the TGN into
di¡erent vesicles is one way to achieve asymmetric
localization of proteins. However, proteins are also
heterogeneously distributed by speci¢c retention, i.e.
a mechanism by which membrane proteins are unse-
lectively transported to di¡erent plasma membrane
territories and only become retained upon speci¢c
binding to other proteins, thereby avoiding inclusion
in transporting endosomes. One example for reten-
tion is the (Na+K)-ATPase. It is transported to both
the apical and basolateral surfaces in MDCK cells
but becomes only stabilized on the basolateral sur-
face through interaction with cytoskeletal linker pro-
teins [40,41]. In neurons similar mechanisms could
determine the formation of microdomains. In this
section the selective enrichment of proteins in the
postsynaptic density is discussed.

The postsynaptic density (PSD) is specialized in
synaptic transmission. It contains a large number
of NT receptors, ion channels and pumps [2,47].
The clustering of NT receptors was initially analyzed
from preparations of neuromuscular junctions, the
structure at which the axonal terminal of motor neu-
rons connects skeletal muscle cells. This structure has
the advantage that synaptic components are easily
puri¢ed and that NT receptors are highly enriched
(104 nicotinic acetylcholine receptor (nAchR) mole-
cules per square micrometer are found on the PSD)
while non-synaptic areas are practically devoid of
AchR molecules [48^50]. Clustering of NT receptors
is mainly induced by extracellular clues but can also
occur in the absence of neuritic innervation. Hence,

much research focused onto these two aspects: (a)
which and how extracellular signals trigger and
maintain clustering and (b) which intracellular com-
ponents are necessary for the same event.

To be important for receptor clustering an intra-
cellularly acting candidate should ful¢ll several crite-
ria: (1) its coexpression should lead to the clustering
of the membrane protein; (2) inhibition of the ex-
pression of the associated protein should prevent
clustering; (3) the associated protein should bind in
vitro to the membrane protein; (4) it should colo-
calize in vivo; (5) it should be present at the earliest
time points of receptor clustering; (6) it should also
have a role in linking the receptor cluster to the
cytoskeleton, either by direct binding or via other
associated proteins, in order to arbour the cluster
at the correct position. A good candidate for cluster-
ing nAchR molecules is the cytosolic protein rapsyn,
formerly called 43 kDa protein, which copuri¢es with
AchR protein [51^53]. Rapsyn coexpressed with
AchR in the quail ¢broblast cell line QT-6 and in
Xenopus oocytes clusters AchR on the surface
[54,55]. AchR-rich membrane depleted of rapsyn by
alkaline treatment results in disordering of the AchR
clusters [56^59] and rapsyn de¢cient mice do not
show clustering of receptor in muscle ¢bers [60].
Crosslinking experiments show speci¢c interaction
of rapsyn with the L-subunit of AchR [61] although
any AchR subunit individually coexpressed with rap-
syn has the potential to cluster [62]. Rapsyn interacts
through L-dystroglycan and utrophin with the actin
cytoskeleton [63,64]. Rapsyn colocalizes with the ear-
liest nAchR clusters in embryonic mouse muscle [65]
as well as in Xenopus muscle cell culture [66,67].
However, in the developing electric organ in Torpedo
muscle where the ¢rst nAchR form before innerva-
tion takes place, rapsyn is not colocalized with the
nAchR clusters [68,69]. This last result suggests that
rapsyn is not the only factor that can cluster this
receptor. Indeed, conditioned media from a neuro-
blastoma-glioma cell line and extracellular matrix
isolated from the electric organ of Torpedo trigger
AchR clustering in ¢broblasts stably transfected
with nAchR but lacking rapsyn [70].

The importance of extracellular clues in cluster
formation is evident from the observation that regen-
erating myotubes form clusters only at the same po-
sitions where they were present before damage oc-
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curred when an intact basal lamina is present [71^
73]. The basal lamina at the synaptic specialization is
biochemically distinct and its characterization led to
the discovery of the basal lamina protein agrin.
Agrin causes clustering of nAchR [74^76], but the
mechanism of action is not yet understood. Agrin
induced clustering appears to act in a catalytic fash-
ion rather than by direct interaction between agrin
and nAchR. Whereas rapsyn and AchR occur
roughly in a 1:1 stoichiometry in the PSD, one agrin
molecule can cause 100 AchR molecules to cluster
[77]. Beside its e¡ect on clustering AchR, agrin also
induces tyrosine phosphorylation and inhibition of
phosphorylation blocks agrin-mediated clustering
[78^82]. In addition, agrin binds directly to K-dystro-
glycan. This extrinsic peripheral protein is covalently
attached to L-dystroglycan which in turn binds to the
intracellular cytoskeleton through dystrophin and the
dystrophin-related protein utrophin [83^87]. Hence,
it is probable that the agrin induced clustering may
be linked to the rapsyn clustering via L-dystroglycan
and utrophin.

The success in identifying the components that
cluster nAchR at the postsynaptic densities in the
neuromuscular junction also triggered the search
for proteins with receptor clustering ability in the
axo-dendritic synapses. The ¢rst protein discovered
was gephyrin, which seems to be responsible for glyc-
ine receptor (GlyR) cluster formation. Gephyrin co-
puri¢es with the GlyR as a peripheral membrane
protein [88,89]. GlyR clusters with gephyrin upon
coexpression in human embryonic kidney 293 cells
[90]. Interestingly, GlyR clusters not only at the plas-
ma membrane with gephyrin but also in intracellular
gephyrin aggregates. Moreover, the heterologously
expressed GlyR subunits as well as GlyR L-subunit
alone are re-routed to intracellular gephyrin aggre-
gates. This is not the case for the GlyR K-subunit
suggesting that the L-subunit contains the gephyrin
binding motif. Clustering of GlyR is inhibited in the
absence of gephyrin mRNA and protein in cultured
spinal neurons [91]. Gephyrin binds to an 18 amino
acid containing motif located in a cytoplasmic loop
of the GlyR L-subunit [92]. Insertion of the gephyrin
binding domain into the homologous cytoplasmic
loop of the GABAA receptor enables it to bind to
gephyrin and to cluster when coexpressed with geph-
yrin in 293 cells while most of the wild type

GABAA receptor neither binds to gephyrin in vitro
nor clusters upon coexpression with gephyrin in this
kidney cell line [92]. Gephyrin colocalizes in vivo
with GlyR in immuno£uorescence and electron mi-
croscopy [2,47,91,93,94] and there is some indication
that gephyrin aggregates are present at the plasma
membrane before GlyR [91,94,95]. Gephyrin can di-
rectly bind to microtubules [96,97] and upon phar-
macological manipulation of the cytoskeleton the
distribution of the gephyrin aggregates changes
[98]. For other NT receptor proteins less is known.
The N-methyl-D-aspartate (NMDA) receptors, a sub-
class of the ionotropic glutamate receptors, comprise
two families of homologous subunits, the principal
NR1 subunit and di¡erent modulatory NR2A-D
subunits. The NR1 subunit of the NMDA receptor
clusters when expressed in ¢broblast [99] and is regu-
lated on two levels, transcriptionally and posttransla-
tionally. NR1 expression alone is su¤cient for clus-
tering in QT-6 cells, a result di¡erent from the
nAchR and the GlyR. NR1 clustering occurs when
the ¢rst carboxy terminal exon cassette is present.
Upon insertion of the same cassette into GluR1, a
subunit of the K-amino-3-hydroxy-5-methyl-4-isoxa-
zol propionate (AMPA) receptors, the other iono-
tropic glutamate receptor subclass, the behavior of
GluR1 changes from a uniform to a clustered distri-
bution. Hence, the carboxy terminal exon cassette
seems to be necessary and su¤cient to regulate clus-
tering. Moreover, the cassette contains speci¢c pro-
tein kinase C phosphorylation sites. Treatment of the
cells with phorbol ester inducing phosphorylation of
these sites causes the clusters to be reversibly dis-
persed. Mutation of two of the serines to alanines
in this cassette inhibits dispersion of the clustering
[99].

Some NR1 splice variants (NR1-3, NR1-4
[133,134]) of the NMDA receptor subunits as well
as NR2 subunits interact with the postsynaptic den-
sity protein PSD-95 as shown by interaction in the
yeast two-hybrid system as well as by coimmunopre-
cipitation [100]. The interaction is mediated through
the second PDZ domain in PSD-95 and a carboxy
terminal motif of the NMDA receptor subunits re-
ferred to as t/SXV motif [100]. The t/SXV motif is
also found in K� channels and consist of a serine or
threonine followed one amino acid later by a valine.
The PDZ protein family, named after PSD-95, the

BBAMCR 14335 5-8-98

F. Bradke, C.G. Dotti / Biochimica et Biophysica Acta 1404 (1998) 245^258 251



Drosophila tumor suppressor gene lethal (1) disc
large (Dlg-A) and the human tight junction protein
zonula occludens-1 (ZO-1), seems to be involved in
binding or clustering of other proteins at the mem-
brane at places of cell-cell contact. Dlg-A, for exam-
ple, is localized in the presynaptic and postsynaptic
membrane of a subgroup of synaptic boutons at the
neuromuscular junction of Drosophila [101]. Muta-
tion of this gene alters the subsynaptic reticulum, a
postsynaptic specialization.

The members of the rapidly growing PDZ family
have three shared domains: one domain homologous
to a yeast guanylate cyclase [102], a src homology 3
(SH3) domain, and at least one PDZ domain, also
referred to as GLGF motif. Two members of the
PDZ family, human homologue of dlg and p55,
can bind to the cytoskeleton through protein 4.1
[103,104], suggesting that this family of proteins act
as a linker between t/SXV motif carrying receptors
and the cytoskeleton.

For correct positioning on the plasma membrane
both sorting and retention may complement each
other. Thus, it is likely that proteins are delivered
to the correct destination using the described sorting
information and then, after fusion, retention signals
may speci¢cally anchor the membrane protein to the
cytoskeleton and other proteins. There has been
some evidence that insertion of nAchR into the plas-
ma membrane is not a random process, but prefer-
entially takes place at clusters in cultured myotubes
[106,107]. Hetero-oligomeric GlyR as well as its L-
subunit alone are clustered in intracellular gephyrin-
rich aggregates upon coexpression with gephyrin in
the 293 cell line [90]. Membrane receptors often are
synthesized before synapse formation [94] and in the
case for GluR1 and GlyR they exist in intradendritic
stores before cluster formation takes place
[91,108,109]. However, it has not been investigated
whether insertion from these pools into the plasma
membrane takes place at speci¢c sites or randomly.
There may be the need of direct routing of proteins
to achieve speci¢city. PSD-95, for example, can in-
teract with both the glutamate receptor subunit NR2
and the Shaker-type K� channel Kv1.4 [100,105], but
NR2 is found on the dendrites while the Shaker-type
K� channel localizes on subdomains of the axon
[100,135]. Possibly, these proteins may be trans-
ported on di¡erent carriers after leaving the TGN

as demonstrated for non-synaptic proteins (see
above) and PDZ-like proteins would then act during
retention. But this remains to be investigated.

1.4. Establishment of neuronal polarity

The mechanisms discussed so far concern mature
neurons but how does a neuron become polarized?
When is the sorting and clustering machinery mature
enough to speci¢cally deliver and anchor cargo to
the axon and the dendrites? Most studies addressing
this question are performed in cell culture systems,
mainly in hippocampal neurons derived from rat em-
bryos which readily di¡erentiate axons and dendrites
[110,111]. These neurons develop in well de¢ned
stages and in a stereotypic fashion [112]. Shortly
after plating the cells attach and form lamellipodia
around the cell body (stage 1). After 1 day in culture
the lamellipodia condenses and forms several neu-
rites that become 10^25 Wm long. These neurites
are similar to each other but are di¡erent from the
cell body in many respects, e.g. microtubules are
bundled in the neurites but form a netlike structure
in the cell body; the Golgi complex is located in the
cell body but is absent in the neurites [116]. (Note
that the Golgi apparatus is also localized to the cell
body in mature neurons and does not extend to the
distal neurites [136].) Within the next 24 h one of the
neurites starts to grow very rapidly whereas the other
neurites stay quiescent (stage 3). The growing neurite
becomes the axon of later stages. Stage 3 is therefore
the ¢rst manifestation of polarization. The other
neurites start to grow slower after 4^6 days in culture
(stage 4) and will later form the dendrites. After 10
days in culture the axons and dendrites form synap-
ses (stage 5). Although hippocampal neurons have an
intrinsic program to form only one axon, there ap-
pears to be a high degree of £exibility before the ¢nal
decision is made. All neurites have the potential to
become an axon as has been shown when axons of
stage 3 cells were lesioned [113,114]. In less £exible
neurons, such as the Ti1 unipolar neuron in the grass
hopper nervous system, the microtubule organizing
center (MTOC) and the Golgi apparatus are posi-
tioned at the site of the future axon before axonal
outgrowth takes place [115]. A similar analysis in the
multipolar hippocampal neurons shows that in this
system such a correlation does not exist [116]. Hence,
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other mechanisms may determine which of the multi-
ple processes becomes the axon. Since the axonal
membrane proteins synapsin 1, synaptophysin, syn-
aptotagmin and GAP-43 are enriched in the growing
axon of stage 3 cells [117^120] one may envision that
the appearance of membrane sorting is the determi-
nant of axon formation [118,121]. An alternative
view is that the initial polarization events of a neuron
are caused by a general cytoplasmic £ow including
axonal as well as dendritic transport structures into
one neurite that then triggers axonal outgrowth. This
situation is similar to migrating non-neuronal cells in
which membrane £ow in the form of exocytic vesicles
and microtubule stabilization is polarized towards
the leading edge of the cell [122^125]. Indeed, two
publications suggest that this is the case in neurons
[126,127]. Recent experiments in our group show
that a membrane £ow towards the growing axon
exists [127]. This £ow contains TGN-derived vesicles.
Furthermore, beside the enrichment of axonal mem-
brane proteins in the growing axon the AMPA re-
ceptor subunit GluR1 is also found concentrated in
the growing axon. This receptor subunit is typically
found in dendrites in adult neurons [3,128]. The vec-
torial cytoplasmic £ow also contains components
that are not directly involved in membrane transport
and insertion such as mitochondria, peroxisomes and
the cytosolic protein iron regulatory protein. These
results suggest that neuronal maturation is a two-
step phenomenon in which maturation is ¢rst mor-
phological (independent of molecular sorting) and
then functional (requiring sorting and anchoring).
Consistent with this, Ledesma et al. (submitted)
showed that certain axonal membrane proteins which
normally interact with sphingomyelin and cholesterol
in adult neurons do not show this interaction in
young neurons.

Based on this, establishment of functional polarity
will be dependent on the maturation of many com-
ponents. The sorting machinery in the Golgi appara-
tus has to mature in such a way that axonal and
dendritic cargo can be sorted into distinct vesicles.
Maturation of the transport machinery must occur
to send the segregated cargo to either the axon or the
dendrites. This implies the expression of microtubule
associated and mechanochemical proteins to support
tra¤c along axonal and dendritic microtubules. This

seems to occur before the maturation of the Golgi
sorting pathway as di¡erent MAPs, motor proteins,
as well as the formation of microtubules of mixed
polarity appear polarized very early in development,
coincident with dendritic growth (stage 4) [129].
Thus, the cytoskeleton appears to be mature before
stage 5, when the sorting and anchoring machinery is
properly functioning. Glutamate receptors are sorted
to the dendrites before synaptogenesis but only clus-
ter after synapse formation [3]. Besides the matura-
tion of the anchoring machinery for synaptic pro-
teins one would envision that the fusion machinery
speci¢c for axonal and dendritic cargo probably us-
ing speci¢c v-SNAREs/t-SNAREs must also mature.
These aspects still remain to be investigated.

2. Conclusion

Neurons reach functional maturation by a series of
sequential events. First, there is a morphological dif-
ferentiation. The axons are formed using intracellular
mechanisms common to migrating non-neuronal
cells. Later, molecular segregation of axonal and
dendritic protein occurs using sorting motifs placed
in the cytoplasmic tail or in the transmembrane-ec-
todomain. There are probably more routing path-
ways than one axonal and one dendritic re£ected
by the di¡erent axonal sorting motif positions. This
may be one origin of the formation of subdomains
within neurons. Subdomain formation also depends
on retention of speci¢c membrane protein on the
plasma membrane linked at the correct positioning
to the cytoskeleton. The interplay between sorting
and routing of proteins and their speci¢c retention
remains to be investigated.

The hypothesis of neuronal and epithelial mem-
brane tra¤c similarity reaches its natural end. It
showed substantial success in unraveling sorting
pathway in neurons by applying tools and models
derived from the work with epithelial cells onto neu-
rons. However, we reached a knowledge about the
sorting signals, retention signals and the development
of sorting pathways which stresses the speci¢c prop-
erties of neurons themselves. We think that future
research on neuronal polarity should focus now on
the concrete sorting mechanisms in neurons.
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