

Available online at www.sciencedirect.com

Advances in Mathematics 204 (2006) 84-100

ADVANCES IN Mathematics

www.elsevier.com/locate/aim

Quantization of formal classical dynamical *r*-matrices: the reductive case

Damien Calaque

IRMA, 7 rue René Descartes, F-67084 Strasbourg, France

Received 4 March 2005; accepted 12 May 2005

Communicated by M. Hopkins Available online 14 July 2005

Abstract

In this paper we prove the existence of a formal dynamical twist quantization for any triangular and non-modified formal classical dynamical *r*-matrix in the reductive case. The dynamical twist is constructed as the image of the dynamical *r*-matrix by a L_{∞} -quasi-isomorphism. This quasi-isomorphism also allows us to classify formal dynamical twist quantizations up to gauge equivalence.

© 2005 Elsevier Inc. All rights reserved.

MSC: 81R50; 17B37; 16E45

Keywords: Dynamical r-matrices; Dynamical twist quantization; Lie algebras; Morphisms up to homotopy

0. Introduction

In [Fe], Felder introduced dynamical versions of both classical and quantum Yang– Baxter equations which has been generalized to the case of a non-abelian base in [EV] for the classical part and in [X3] for the quantum part. Naturally this leads to quantization problems which have been formulated in terms of twist quantization à *la* Drinfeld [Dr1] in [X2,X3,EE1,EE2].

Let us formulate this problem in the general context. Consider an inclusion $\mathfrak{h} \subset \mathfrak{g}$ of Lie algebras equipped with an element $Z \in (\wedge^3 \mathfrak{g})^{\mathfrak{g}}$. A *(modified) classical dynamical*

0001-8708/ $\ensuremath{\$}$ - see front matter @ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.aim.2005.05.009

E-mail address: calaque@math.u-strasbg.fr.

r-matrix for $(\mathfrak{g}, \mathfrak{h}, Z)$ is a regular (meaning C^{∞} , meromorphic, formal, ... depending on the context) \mathfrak{h} -equivariant map $\rho : \mathfrak{h}^* \to \wedge^2 \mathfrak{g}$ which satisfies the (*modified*) classical dynamical Yang–Baxter equation (CDYBE)

$$CYB(\rho) - Alt(d\rho) = Z,$$
(1)

where $\text{CYB}(\rho) := [\rho^{1,2}, \rho^{1,3}] + [\rho^{1,2}, \rho^{2,3}] + [\rho^{1,3}, \rho^{2,3}] = \frac{1}{2}[\rho, \rho]$ and

$$\operatorname{Alt}(d\rho) := \sum_{i} \left(h_i^1 \frac{\partial \rho^{2,3}}{\partial \lambda^i} - h_i^2 \frac{\partial \rho^{1,3}}{\partial \lambda^i} + h_i^3 \frac{\partial \rho^{1,2}}{\partial \lambda^i} \right).$$

Here (h_i) and (λ^i) are dual basis of \mathfrak{h} and \mathfrak{h}^* .

Let $\Phi = 1 + O(\hbar^2) \in (Ug^{\otimes 3})^{\mathfrak{g}}[[\hbar]]$ be an associator quantizing Z (of which the existence was proved in [Dr2, Proposition 3.10]). A *dynamical twist quantization* of a (modified) classical dynamical *r*-matrix ρ associated to Φ is a regular h-equivariant map $J = 1 + O(\hbar) \in \operatorname{Reg}(\mathfrak{h}^*, Ug^{\otimes 2})[[\hbar]]$ such that $\operatorname{Alt} \frac{J-1}{\hbar} = \rho \mod \hbar$ and which satisfies the (modified) dynamical twist equation (DTE)

$$J^{12,3}(\lambda) * J^{1,2}(\lambda + \hbar h^3) = \Phi^{-1} J^{1,23}(\lambda) * J^{2,3}(\lambda),$$
(2)

where \ast denotes the PBW star-product of functions on \mathfrak{h}^\ast and

$$J^{1,2}(\lambda + \hbar h^3) := \sum_{k \ge 0} \frac{\hbar^k}{k!} \sum_{i_1, \dots, i_k} (\partial_{\lambda^{i_1}} \dots \partial_{\lambda^{i_k}} J)(\lambda) \otimes (h_{i_1} \dots h_{i_k}).$$

Now observe that many (modified) classical dynamical *r*-matrices can be viewed as formal ones by taking their Taylor expansion at 0. In this paper we are interested in the following conjecture:

Conjecture 1 (*[EE1]*). Any (modified) formal classical dynamical r-matrix admits a dynamical twist quantization.

Let us reformulate DTE in the formal framework. A formal (modified) dynamical twist is an element $J(\lambda) = 1 + O(\hbar) \in (Ug^{\otimes 2} \otimes \hat{S}\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ which satisfies DTE, and $J^{1,2}(\lambda + \hbar h^3) \in (Ug^{\otimes 3} \otimes \hat{S}\mathfrak{h})[[\hbar]]$ is equal to $(\mathrm{id}^{\otimes 2} \otimes \tilde{\Delta})(J)$ where $\tilde{\Delta} : \hat{S}\mathfrak{h} \to (Ug \otimes \hat{S}\mathfrak{h})[[\hbar]]$ is induced by $\mathfrak{h} \ni x \mapsto \hbar x \otimes 1 + 1 \otimes x$. Then define $K := J(\hbar\lambda) \in (Ug^{\otimes 2} \otimes S\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ which we view as an element of $(Ug^{\otimes 2} \otimes U\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ using the symmetrization map $S\mathfrak{h} \to U\mathfrak{h}$. Since J is a solution of DTE K satisfies the (modified) algebraic dynamical twist equation (ADTE)

$$K^{12,3,4}K^{1,2,34} = (\Phi^{-1})^{1,2,3}K^{1,23,4}K^{2,3,4}.$$
(3)

Moreover and by construction, $K = 1 + \sum_{n \ge 1} \hbar^n K_n$ has the \hbar -adic valuation property. Namely, Uh is filtered by $(U\mathfrak{h})_{\le n} = \ker (\operatorname{id} - \eta \circ \varepsilon)^{\otimes n+1} \circ \Delta^{(n)}$ where $\varepsilon : U\mathfrak{h} \to \mathbf{k}$ and $\eta : \mathbf{k} \to U\mathfrak{h}$ are the counit and unit maps, and $K_n \in (U\mathfrak{h})_{\le n-1}$. Conversely, any algebraic dynamical twist having the \hbar -adic valuation property can be obtained from a unique formal dynamical twist by this procedure.

This paper, in which we always assume Z = 0 and $\Phi = 1$ (non-modified case), is organized as follow.

In Section 1 we define two differential graded Lie algebras (dgla's), respectively, associated to classical dynamical *r*-matrices and algebraic dynamical twists. Then we formulate the main theorem of this paper which states that if h admits an adh-invariant complement (the *reductive* case) then these two dgla's are L_{∞} -quasi-isomorphic and we prove that it implies Conjecture 1 in this case, which generalizes Theorem 5.3 of [X2]:

Theorem 2. In the reductive case, any formal classical dynamical r-matrix for $(\mathfrak{g}, \mathfrak{h}, 0)$ admits a dynamical twist quantization (associated to the trivial associator).

The second section is devoted to the proof of the main theorem of Section 1: using an equivariant formality theorem for homogeneous spaces which is obtained from [Do], we construct a L_{∞} -quasi-isomorphism which we then modify in order to obtain the desired one. We use this L_{∞} -quasi-isomorphism to classify formal dynamical twist quantizations up to gauge equivalence for the reductive case in Section 3. In Section 4 we prove that if $g = \mathfrak{h} \oplus \mathfrak{m}$ for \mathfrak{h} abelian and \mathfrak{m} a Lie subalgebra then the results of Sections 1 and 2 are still true in this situation. We conclude the paper with some open questions, and recall basic results for L_{∞} -algebras in an appendix.

1. Definitions and results

Let $\mathfrak{h} \subset \mathfrak{g}$ be an inclusion of Lie algebras.

1.1. Algebraic structures associated to CDYBE

Let us consider the following graded vector space

$$\mathbf{CDYB} := \wedge^* \mathfrak{g} \otimes S\mathfrak{h} = \bigoplus_{k \ge 0} \wedge^k \mathfrak{g} \otimes S\mathfrak{h}$$

equipped with the differential d defined by

$$\mathbf{d}(x_1 \wedge \dots \wedge x_k \otimes h_1 \dots h_l) := -\sum_{i=1}^l h_i \wedge x_1 \wedge \dots \wedge x_k \otimes h_1 \dots h_l \hat{h}_i.$$
(4)

With the exterior product \wedge it becomes a differential graded commutative associative algebra. Moreover, one can define a graded Lie bracket of degree -1 on CDYB which is the Lie bracket of g extended to CDYB in the following way:

$$[a, b \wedge c] = [a, b] \wedge c + (-1)^{(|a|-1)|b|} b \wedge [a, c].$$
(5)

Thus one can observe that polynomial solutions to CDYBE are exactly elements $\rho \in$ CDYB of degree 2 such that $d\rho + \frac{1}{2}[\rho, \rho] = 0$. We would like to say that such a ρ is a Maurer-Cartan element but (CDYB[1], d, [,]) is not a differential graded Lie algebra (dgla).

Instead, remember that we are interested in \mathfrak{h} -equivariant solutions of CDYBE (i.e., dynamical *r*-matrices) and thus consider the subspace $\mathfrak{g}_1 = (\text{CDYB})^{\mathfrak{h}}$ of \mathfrak{h} -invariants with the same differential and bracket.

Proposition 3. $(g_1[1], d, [,])$ is a dgla. Moreover $(g_1, d, \wedge, [,])$ is a Gerstenhaber algebra.

Proof. Let $a = x_1 \land \cdots \land x_k \otimes h_1 \ldots h_s$ and $b = y_1 \land \cdots \land y_l \otimes m_1 \ldots m_t$ be \mathfrak{h} -invariant elements in \mathfrak{g}_1 . We want to show that

$$d[a,b] = [da,b] + (-1)^{k-1}[a,db].$$
(6)

The l.h.s. of (6) is equal to

$$-\Big(\sum_{i=1}^{s}h_{i}\wedge[x_{1}\wedge\cdots\wedge x_{k}, y_{1}\wedge\cdots\wedge y_{l}]\otimes h_{1}\dots h_{s}m_{1}\dots m_{t}\hat{h}_{i}$$
$$+\sum_{j=1}^{t}m_{j}\wedge[x_{1}\wedge\cdots\wedge x_{k}, y_{1}\wedge\cdots\wedge y_{l}]\otimes h_{1}\dots h_{s}m_{1}\dots m_{t}\hat{m}_{j}\Big).$$

The first term in the r.h.s. of (6) gives

$$\sum_{i=1}^{s} \left((-1)^{k-1} x_1 \wedge \cdots \wedge x_k \wedge [h_i, y_1 \wedge \cdots \wedge y_l] - h_i \wedge [x_1 \wedge \cdots \wedge x_k, y_1 \wedge \cdots \wedge y_l] \right)$$

$$\otimes h_1 \dots h_s m_1 \dots m_t \hat{h}_i$$

and for the second term we obtain

$$\sum_{j=1}^{t} \left((-1)^{k-1} [m_j, x_1 \wedge \cdots \wedge x_k] \wedge y_1 \wedge \cdots \wedge y_l - m_j \wedge [x_1 \wedge \cdots \wedge x_k, y_1 \wedge \cdots \wedge y_l] \right)$$

$$\otimes h_1 \dots h_s m_1 \dots m_t \hat{m}_j.$$

Thus, the difference between the l.h.s. and the r.h.s. of (6) is equal to

$$(-1)^{k} \Big(\sum_{i=1}^{k} x_{1} \wedge \dots \wedge x_{k} \wedge [h_{i}, y_{1} \wedge \dots \wedge y_{l}] \otimes h_{1} \dots h_{s} m_{1} \dots m_{t} \hat{h}_{i} \\ + \sum_{j=1}^{l} [m_{j}, x_{1} \wedge \dots \wedge x_{k}] \wedge y_{1} \wedge \dots \wedge y_{l} \otimes h_{1} \dots h_{s} m_{1} \dots m_{t} \hat{m}_{j} \Big).$$

Then using \mathfrak{h} -invariance of a and b one obtains

$$(-1)^{k-1} \sum_{i,j} x_1 \wedge \dots \wedge x_k \wedge y_1 \wedge \dots \wedge y_l$$
$$\otimes (h_1 \dots h_s m_1 \dots m_t ([h_i, m_j] - [m_j, h_i]) \hat{h}_i \hat{m}_j) = 0$$

The second statement of the proposition is obvious from the definition (5) of the bracket. $\hfill\square$

Let $\rho(\lambda) \in (\wedge^2 \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h})^{\mathfrak{h}}$ be a formal classical dynamical *r*-matrix. Since ρ satisfies CDYBE, $\alpha := \hbar \rho(\hbar \lambda) \in \hbar \mathfrak{g}_1[[\hbar]]$ is a Maurer-Cartan element (i.e., $d\alpha + \frac{1}{2}[\alpha, \alpha] = 0$).

1.2. Algebraic structures associated to ADTE

Let us now consider the graded vector space

$$ADT := T^*U\mathfrak{g} \otimes U\mathfrak{h} = \bigoplus_{k \ge 0} \otimes^k U\mathfrak{g} \otimes U\mathfrak{h}$$

equipped with the differential b given by

$$b(P) := P^{2,\dots,k+2} + \sum_{i=1}^{k+1} (-1)^i P^{1,\dots,ii+1,\dots,k+2} \quad \text{for } P \in \otimes^k U\mathfrak{g} \otimes U\mathfrak{h}.$$
(7)

Remark 4. This is just the coboundary operator of Hochschild's cohomology with value in a comodule; and $b^2 = 0$ follows directly from an easy calculation.

One can define on ADT an associative product \cup (the *cup* product) which is given on homogeneous elements $P \in \bigotimes^k U\mathfrak{g} \otimes U\mathfrak{h}$ and $Q \in \bigotimes^l U\mathfrak{g} \otimes U\mathfrak{h}$ by

$$P \cup O := P^{1,\dots,k,k+1\dots,k+l+1}O^{k+1,\dots,k+l+1}$$

Proposition 5. (ADT, b, \cup) is a differential graded associative algebra.

Proof. The cup product is obviously associative. Thus, the only thing we have to check is that

$$b(P \cup Q) = bP \cup Q + (-1)^{|P|} P \cup bQ.$$
(8)

Let k = |P| and l = |Q|. The l.h.s. of (8) is equal to

$$P^{2,\dots,k+1,k+2\dots,k+l+2}Q^{k+2,\dots,k+l+2} + \sum_{i=1}^{k} (-1)^{i}P^{1,\dots,ii+1,\dots,k+1,k+2\dots,k+l+2}Q^{k+2,\dots,k+l+2} + \sum_{i=k+1}^{k+l+1} (-1)^{i}P^{1,\dots,k,k+1\dots,k+l+2}Q^{k+1,\dots,ii+1,\dots,k+l+2}.$$

The first line of this expression is equal to

$$bP \cup Q - (-1)^{k+1}P^{1,\dots,k,k+1\dots,k+l+2}Q^{k+2,\dots,k+l+2}$$

and the last term of the same expression gives

$$(-1)^{k} (P \cup bQ - P^{1,\dots,k,k+1\dots,k+l+2}Q^{k+2,\dots,k+l+2}).$$

The proposition is proved. \Box

Recall that in the case $\mathfrak{h} = \{0\}$ one can define a brace algebra structure on $(T^*U\mathfrak{g})[1]$ (see [Ge]). Unfortunately we are not able to extend this structure to ADT in general. Since we deal with \mathfrak{h} -equivariant solutions of ADTE we can consider the subspace $\mathfrak{g}_2 = (ADT)^{\mathfrak{h}}$ of \mathfrak{h} -invariants. Let us now define a collection of linear homogeneous maps of degree zero $\{-|-, \ldots, -\}$: $\mathfrak{g}_2[1] \otimes \mathfrak{g}_2[1]^{\otimes m} \to \mathfrak{g}_2[1]$ indexed by $m \ge 0$, and $\{P|Q_1, \ldots, Q_m\}$ is given by

$$\sum_{\substack{0 \leq i_1, i_m + k_m \leq n \\ i_l + k_l \leq i_{l+1}}} (-1)^{\varepsilon} P^{1, \dots, i_1 + 1 \dots i_1 + k_1, \dots, i_m + 1 \dots i_m + k_m, \dots, n+1} \\ \times \prod_{s=i}^m Q_s^{i_s + 1, \dots, i_s + k_s, i_s + k_s + 1 \dots n+1},$$

where $k_s = |Q_s|$, $n = |P| + \sum_s k_s - m$ and $\varepsilon = \sum_s (k_s - 1)i_s$.

Proposition 6. $(\mathfrak{g}_2[1], \{-|-, \ldots, -\})$ is a brace algebra.

Proof. Since we work with \mathfrak{h} -invariant elements one can remark that if $i_s + k_s \leq i_t$ then $Q_s^{i_s+1,\ldots,i_s+k_s,i_s+k_s+1\ldots,n+1}$ and $Q_t^{i_t+1,\ldots,i_t+k_t,i_t+k_t+1\ldots,n+1}$ commute. Using this the proof becomes identical to the case when $\mathfrak{h} = 0$ (see [Ge] for example). \Box

Now observe that since $m = 1^{\otimes 3} \in (\otimes^2 U\mathfrak{g} \otimes U\mathfrak{h})^{\mathfrak{h}}$ is such that $\{m|m\} = 0$ one obtains a B_{∞} -algebra structure [Ba] on \mathfrak{g}_2 (see [Kh]). More precisely, we have a differential graded bialgebra structure on the cofree tensorial coalgebra $T^{c}(\mathfrak{g}_{2}[1])$ of which structure maps $a^n, a^{p,q}$ are given by

• $a^{1}(P) = bP = (-1)^{|P|-1}[m, P]_{G}$, where

$$[P, Q]_G := \{P|Q\} - (-1)^{(|P|-1)(|Q|-1)}\{Q|P\}$$

- $a^2(P, Q) = \{m | P, Q\} = P \cup Q.$ $a^{0,1} = a^{1,0} = id.$
- $a^{1,n}(P; Q_1, \dots, Q_n) = \{P | Q_1, \dots, Q_n\}$ for $n \ge 1$.
- All other maps are zero.

In particular, we have

Proposition 7. $(\mathfrak{g}_2[1], b, [,]_G)$ is a dgla.

Remark 8. Since that for any graded vector space V, dg bialgebra structures on the cofree coassociative coalgebra $T^{c}V$ are in one-to-one correspondence with dg Lie bialgebra structures on the cofree Lie coalgebra $L^{c}V$ (see [Ta, Section 5]), then $L^{c}(\mathfrak{g}_{2}[1])$ becomes a dg Lie bialgebra with differential and Lie bracket given by maps $l^{n}, l^{p,q}$ such that $l^{1} = b$ and $l^{1,1} = [,]_{G}$. Therefore $d_{2} := \sum_{i \ge 0} l^{i} + \sum_{p,q \ge 0} l^{p,q}$: $C^{c}(L^{c}(\mathfrak{g}_{2}[1])) \rightarrow C^{c}(L^{c}(\mathfrak{g}_{2}[1]))$ defines a G_{∞} -algebra structure on $\mathfrak{g}_{2}(d_{2} \circ d_{2} = 0)$ since d_2 is just the Chevalley–Eilenberg differential on the dg Lie algebra $L^c(\mathfrak{g}_2[1])$.

1.3. Main result and proof of Theorem 2

First of all, observe that CDYB, g_1 and $\mathcal{G}_1 := C^c(g_1[2])$ have a natural grading induced by the one of Sh. In the same way ADT, g_2 and $\mathcal{G}_2 := C^c(g_2[2])$ have a natural filtration induced by the one of $U\mathfrak{h}$. Our main goal is to prove the following theorem, which is sufficient to obtain algebraic dynamical twists from formal dynamical r-matrices.

Theorem 9. In the reductive case, there exists a L_{∞} -quasi-isomorphism

$$\Psi: (\mathcal{G}_1, \mathbf{d} + [,]) \to (\mathcal{G}_2, b + [,]_G)$$

with the following two filtration properties:

(F1) $\forall X \in (\mathfrak{g}_1)_k, \ \Psi^1(X) = (\operatorname{alt} \otimes \operatorname{sym})(X) \ \operatorname{mod} \ (\mathfrak{g}_2)_{\leq k-1}.$ (F2) $\forall X \in (\Lambda^n \mathfrak{g}_1)_k, \Psi^n(X) \in (\mathfrak{g}_2)_{\leq n+k-1}.$

Thus, we have

Proof of Theorem 2. Now consider a formal solution $\rho(\lambda) \in (\wedge^2 g \otimes \hat{S} \mathfrak{h})^{\mathfrak{h}}$ to CDYBE. Let us define $\alpha := \hbar \rho(\hbar \lambda) \in \hbar \mathfrak{g}_1[[\hbar]]$ which is a Maurer-Cartan element in $\hbar \mathfrak{g}_1[[\hbar]]$. The L_{∞} -morphism property implies that $\tilde{\alpha} := \sum_{n=1}^{\infty} \frac{1}{n!} \Psi^n(\Lambda^n \alpha)$ is a Maurer-Cartan element in $\hbar \mathfrak{g}_2[[\hbar]]$; this exactly means that $K := 1 + \tilde{\alpha} \in (\otimes^2 U \mathfrak{g} \otimes U \mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ satisfies ADTE. Moreover, due to (F2) the coefficient K_n of \hbar^n in K lies in $(\mathfrak{g}_2)_{\leq n-1}$. It means that there exists $J \in (U\mathfrak{g}^{\otimes 2} \otimes \hat{S}\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ satisfying DTE and such that $K = (\mathrm{id}^{\otimes 2} \otimes \mathrm{sym})(J(\hbar \lambda))$. Finally, property (F1) obviously implies that the semi-classical limit condition $\frac{J-J^{\circ p}}{\hbar} = \rho \mod \hbar$ is satisfied. \Box

2. Proof of Theorem 9

In this section we assume that $g = h \oplus m$ with $[h, m] \subset m$. Let us denote by $p : g \to m$ the projection on m along h; it is h-equivariant.

2.1. Resolutions

Let us first observe that the bilinear map $[,]_{\mathfrak{m}} := (\wedge p) \circ [,]$ defines a graded Lie bracket of degree -1 on $(\wedge^*\mathfrak{m})^{\mathfrak{h}}$. Then we prove

Proposition 10. The natural map $p_1 : (\mathfrak{g}_1[1], \mathfrak{d}, [,]) \to ((\wedge^*\mathfrak{m})^{\mathfrak{h}}[1], \mathfrak{0}, [,]_{\mathfrak{m}})$ is a morphism of dgla's. Moreover, there exists an operator $\delta : \mathfrak{g}_1^* \to \mathfrak{g}_1^{*-1}$ such that $\delta \mathfrak{d} + \mathfrak{d} \delta = \mathfrak{i} \mathfrak{d} - p_1, \ \delta \circ \delta = 0$ and $\delta((\mathfrak{g}_1)_k) \subset (\mathfrak{g}_1)_{k+1}$. In particular, p_1 induces an isomorphism in cohomology.

Proof. The projection $p_1 := (\land p) \otimes \varepsilon$: (CDYB, d) $\rightarrow (\land^*\mathfrak{m}, 0)$ is a h-equivariant morphism of complexes, and it obviously restricts to a morphism of (differential) graded Lie algebras at the level of h-invariants.

Moreover, $\wedge^n \mathfrak{g} \otimes S\mathfrak{h} \cong \bigoplus_{p+q=n} \wedge^p \mathfrak{m} \otimes \wedge^q \mathfrak{h} \otimes S\mathfrak{h}$ as a \mathfrak{h} -module; and under this identification d becomes $-\mathrm{id} \otimes d_K$, where $d_K : \wedge^* \mathfrak{h} \otimes S\mathfrak{h} \to \wedge^{*+1} \mathfrak{h} \otimes S\mathfrak{h}$ is Koszul's coboundary operator, and p_1 corresponds to the projection on the part of zero antisymmetric and symmetric degrees in \mathfrak{h} . Let us define $\delta = \mathrm{id} \otimes \delta_K$ with $\delta_K : \wedge^* \mathfrak{h} \otimes S^* \mathfrak{h} \to \wedge^{*-1} \mathfrak{h} \otimes S^{*+1} \mathfrak{h}$ defined by

$$\delta_{K}(x_{1} \wedge \dots \wedge x_{n} \otimes h_{1} \dots h_{m}) = \begin{cases} \frac{1}{m+n} \sum_{i} (-1)^{i} x_{1} \wedge \dots \cdot \hat{x_{i}} \dots \wedge x_{n} \otimes h_{1} \dots h_{m} x_{i} & \text{if } m+n \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Finally, remark that δ is a h-equivariant homotopy operator: $\delta d + d\delta = id - p_1$ and $\delta \circ \delta = 0$. The proposition is proved. \Box

Now we prove a similar result for g_2 . Let us first define $U\mathfrak{m} := \operatorname{sym}(S\mathfrak{m}) \subset U\mathfrak{g}$; this is a sub-coalgebra of $U\mathfrak{g}$ and thus $T^*U\mathfrak{m}$ equipped with its Hochschild's coboundary

operator $b_{\mathfrak{m}}$ becomes a cochain subcomplex of the Hochschild complex $(T^*U\mathfrak{g}, b_{\mathfrak{g}})$ of $U\mathfrak{g}$. We also have the following

Lemma 11. $U\mathfrak{g} = U\mathfrak{g} \cdot \mathfrak{h} \oplus U\mathfrak{m}$ as a filtered \mathfrak{h} -module. Moreover $[,]_{G,\mathfrak{m}} := (\otimes p) \circ [,]$ defines a graded Lie bracket of degree -1 on $(T^*U\mathfrak{m})^{\mathfrak{h}}$.

Proof. See [He, Chapter II Section 4.2] for the first statement. The second statement follows from a direct computation. \Box

Then we prove

Proposition 12. The natural map $p_2 : (\mathfrak{g}_2[1], b, [,]_G) \to ((T^*U\mathfrak{m})^{\mathfrak{h}}[1], b_{\mathfrak{m}}, [,]_{G,\mathfrak{m}})$ is a morphism of dgla's. Moreover, there exists an operator $\kappa : \mathfrak{g}_2^* \to \mathfrak{g}_2^{*-1}$ such that $\kappa b + b\kappa = \mathrm{id} - p_2, \ \kappa \circ \kappa = 0$ and $\kappa((\mathfrak{g}_2)_{\leq k}) \subset (\mathfrak{g}_2)_{\leq k+1}$. In particular, p_2 induces an isomorphism in cohomology.

Proof. The projection $p_2 := (\otimes p) \otimes \varepsilon : (ADT, b) \to (T^*U\mathfrak{m}, b_\mathfrak{m})$ is a h-equivariant morphism of complexes, and it obviously restricts to a morphism of dgla's at the level of h-invariants (by Lemma 11).

Remember that g_2 has a natural filtration induced by the one of $U\mathfrak{h}$. Then one obtains a spectral sequence of which we compute the first terms:

$$E_0^{*,*} = (T^*U\mathfrak{g} \otimes S^*\mathfrak{h})^{\mathfrak{h}}, \quad d_0 = b_{\mathfrak{g}} \otimes \mathrm{id},$$
$$E_1^{*,*} = (\wedge^*\mathfrak{g} \otimes S^*\mathfrak{h})^{\mathfrak{h}}, \quad d_1 = \mathrm{d},$$
$$E_2^{*,*} = E_2^{*,0} = (\wedge^*\mathfrak{m})^{\mathfrak{h}}, \quad d_2 = 0.$$

Then the proposition follows from Proposition 10. \Box

2.2. Inverting p_2

In this subsection, taking our inspiration from [Mo, appendix], we prove the following

Proposition 13. There exists a L_{∞} -quasi-isomorphism

$$\mathcal{Q}: (C^{c}((T^{*}U\mathfrak{m})^{\mathfrak{g}}[2]), b_{\mathfrak{m}} + [,]_{G,\mathfrak{m}}) \to (C^{c}(\mathfrak{g}_{2}[2]), b + [,]_{G})$$

such that Q^1 is the natural inclusion and Q^n takes values in $(\mathfrak{g}_2)_{\leq n-1}$.

Proof. Let $(N, b_N) \subset (\mathfrak{g}_2, b)$ be the kernel of the surjective morphism of complexes $p_2 : (\mathfrak{g}_2, b) \rightarrow ((T^*U\mathfrak{m})^{\mathfrak{h}}, b_{\mathfrak{m}})$. It follows from Proposition 12 that there exists an operator $H : N^* \rightarrow N^{*-1}$ such that $H \circ H = 0$, $b_N H + H b_N = \mathrm{id}$ and $H(N_{\leq n}) \subset N_{\leq n+1}$.

Now let us construct a L_{∞} -isomorphism

$$\mathcal{F}: \left(C^{c}(\mathfrak{g}_{2}[2]), b + [,]_{G}\right) \xrightarrow{\sim} \left(C^{c}((T^{*}U\mathfrak{m})^{\mathfrak{h}}[2] \oplus N[2]), b_{\mathfrak{m}} + b_{N} + [,]_{G,\mathfrak{m}}\right)$$

with structure maps $\mathcal{F}^n : \Lambda^n \mathfrak{g}_2 \to ((T^*U\mathfrak{m})^{\mathfrak{h}} \oplus N)[1-n]$ such that

- \mathcal{F}^1 is the sum of p_2 with the projection on N along $(T^*U\mathfrak{m})^{\mathfrak{h}}$ (in some sense \mathcal{F}^1 is the identity),
- for any n > 1 and $X \in (\Lambda^n \mathfrak{g}_2)_{\leq k}$, $\mathcal{F}^n(X) \in N_{\leq n+k-1}$.

Let us prove it by induction on *n*. First \mathcal{F}^1 is a morphism of complexes by definition. Then let us define $\mathcal{K}_2 : \Lambda^2 \mathfrak{g}_2 \to ((T^*U\mathfrak{m})^{\mathfrak{h}} \oplus N)[1]$ by

$$\mathcal{K}_2(x\Lambda y) = [\mathcal{F}^1(x), \mathcal{F}^1(y)]_{G,\mathfrak{m}} - \mathcal{F}^1([x, y]_G).$$

It takes values in N[1] and is such that $b_N \mathcal{K}_2(x, y) + \mathcal{K}_2(bx, y) + \mathcal{K}_2(x, by) = 0$. Consequently, $\mathcal{F}^2 := H \circ \mathcal{K}_2 : \Lambda^2 \mathfrak{g}_2 \to N$ is such that

$$b_N \mathcal{F}^2(x, y) - \mathcal{F}^2(bx, y) - \mathcal{F}^2(x, by) = \mathcal{K}_2(x, y)$$
 (L_∞ -condition for \mathcal{F}^2)

and for any $X \in (\Lambda^2 \mathfrak{g}_2)_{\leq k}$, $\mathcal{F}^2(X) \in N_{\leq k+1}$. After this, suppose we have constructed $\mathcal{F}^1, \ldots, \mathcal{F}^n$ and let us define

$$\mathcal{K}_{n+1} := [,]_{G,\mathfrak{m}} \circ \mathcal{F}^{\leq n} - \mathcal{F}^{\leq n} \circ [,]_G : \Lambda^2 \mathfrak{g}_2 \to ((T^*U\mathfrak{m})^{\mathfrak{h}} \oplus N)[1].$$

It obviously takes values in N[1] and is such that $b_N K_{n+1} + K_{n+1}b = 0$. Consequently, $\mathcal{F}^{n+1} := H \circ K_{n+1}$ satisfies the L_{∞} -condition

$$b_N \mathcal{F}^{n+1} - \mathcal{F}^{n+1} b = b_N H K_{n+1} - H K_{n+1} b = (b_N H + H b_N) K_{n+1} = K_{n+1}$$

and for any $X \in (\Lambda^n \mathfrak{g}_2)_{\leq n+1}$, $\mathcal{F}^{n+1}(X) \in N_{\leq n+k}$ (since $\mathcal{K}_{n+1}(X) \in N_{\leq n+k-1}$).

Now let \mathcal{H} be the inverse of the isomorphism \mathcal{F} , it is such that for any $n \ge 1$ and $X \in (\Lambda^n \mathfrak{g}_2)_{\leq k}, \mathcal{H}^n(X) \in N_{\leq n+k-1}$. Finally, we obtain \mathcal{Q} by composing \mathcal{H} with the inclusion of dgla's $(T^*U\mathfrak{m})^{\mathfrak{h}}[1] \hookrightarrow ((T^*U\mathfrak{m})^{\mathfrak{h}} \oplus N)[1]$. \Box

2.3. End of the proof

Recall from [He, Chapter II Section 4.2] that $(T^*U\mathfrak{m})^{\mathfrak{h}} = \text{Diff}^*(G/H)^G$ and $(\wedge^*\mathfrak{m})^{\mathfrak{h}} = \Gamma(G/H, \wedge^*T(G/H))^G$ as dgla's. Remember also from [No, Chapter II Section 8] that G-invariant connections on G/H are in one-to-one correspondence with \mathfrak{h} -equivariant linear maps $\alpha : \mathfrak{m} \otimes \mathfrak{m} \to \mathfrak{m}$, and that the torsion tensor is given by $\alpha - \alpha^{21} - \mathfrak{p} \circ [$,]. Thus G/H is equipped with a G-invariant torsion free connection ∇ , corresponding to the map $\alpha := \frac{1}{2}\mathfrak{p} \circ [$,]. Then using a theorem of Dolgushev, see [Do, Theorem 5], we obtain a G-equivariant L_{∞} -quasi-isomorphism ϕ :

 $\Gamma(G/H, \wedge^*T(G/H)) \to \text{Diff}^*(G/H)$ with first structure map $\phi^1 = \text{alt}$, which restricts to a L_∞ -quasi-isomorphism at the level of *G*-invariants. Let us define $\psi := \mathcal{Q} \circ \phi \circ p_1 : (C^c(\mathfrak{g}_1[2]), d + [,]) \to (C^c(\mathfrak{g}_2[2]), b + [,]_G);$ it is a L_∞ -quasi-isomorphism with first structure map $\psi^1 = (\text{alt} \otimes 1) \circ (\wedge^{\circ} p \otimes \varepsilon)$.

Finally, define $V := (alt \otimes sym) \circ \delta : \mathfrak{g}_1 \to \mathfrak{g}_2[-1]$ and use Lemma 22 to construct a L_{∞} -quasi-morphism $\Psi : (C^c(\mathfrak{g}_1[2]), d+[,]) \to (C^c(\mathfrak{g}_2[2]), b+[,]_G)$ with first structure map $\Psi^1 = \psi^1 + b \circ V + V \circ d$. Since for any $X \in (\mathcal{G}_1)_k$, then

$$b \circ (\operatorname{alt} \otimes \operatorname{sym})(X) = (\operatorname{alt} \otimes \operatorname{sym}) \circ \operatorname{d}(X) \mod (\mathfrak{g}_2)_{\leq k-1}$$

and thus

$$\Psi^{1}(X) = \psi^{1}(X) + bV(X) + V(dX)$$

= (alt \otimes sym) \circ ($p_{1} + d\delta + \delta d$)(X) mod (\mathfrak{g}_{2}) $_{\leqslant k-1}$
= (alt \otimes sym)(X) mod (\mathfrak{g}_{2}) $_{\leqslant k-1}$.

Consequently, Ψ satisfies (F1). Moreover, it follows from Remark 23 that Ψ also satisfies (F2). \Box

3. Classification

Theorem 9 implies a stronger result than just the existence of the twist quantization. Namely, since Ψ is a L_{∞} -quasi-isomorphism there is a bijection between the moduli spaces of Maurer-Cartan elements of dgla's $(\mathfrak{g}_1[1])[[\hbar]]$ and $(\mathfrak{g}_2[1])[[\hbar]]$.

3.1. Classification of algebraic and formal dynamical twists

Following [EE1], two dynamical twists $J(\lambda)$ and $J'(\lambda)$ are said to be gauge equivalent if there exists a regular h-equivariant map $T(\lambda) = \exp(q) + O(\hbar) \in \operatorname{Reg}(\mathfrak{h}^*, U\mathfrak{g})^{\mathfrak{h}}$ [[\hbar]], with $q \in \operatorname{Reg}(\mathfrak{h}^*, \mathfrak{g})^{\mathfrak{h}}$ such that q(0) = 0, and satisfying

$$J'(\lambda) = T^{12}(\lambda) * J(\lambda) * T^{2}(\lambda)^{-1} * T^{1}(\lambda + \hbar h^{2})^{-1}.$$
(9)

Dealing with formal functions one can easily derive an equivalence relation for the corresponding algebraic dynamical twists $K = J(\hbar \lambda)$ and $K' = J'(\hbar \lambda)$:

$$K' = Q^{12,3} K (Q^{2,3})^{-1} (Q^{1,23})^{-1}$$
(10)

in $(U\mathfrak{g}^{\otimes 2} \otimes U\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$, with $Q = 1 + O(\hbar) \in (U\mathfrak{g} \otimes U\mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ given by $T(\hbar\lambda)$.

Assume now we are in the reductive case.

Since the composition $Q_2 \circ \phi : (C^c((\wedge \mathfrak{m})^{\mathfrak{h}}[2]), [,]_{\mathfrak{m}}) \to (C^c(\mathfrak{g}_2[2]), b + [,]_G)$ in the previous section is a L_{∞} -quasi-isomorphism then we have a bijective correspondence

$$\frac{\{\pi \in \hbar(\wedge^2 \mathfrak{m})^{\mathfrak{h}}[[\hbar]] \text{ s.t. } [\pi, \pi]_{\mathfrak{m}} = 0\}}{G_0} \longleftrightarrow \frac{\{\text{algebraic dynamical twists}\}}{\text{gauge equivalence (10)}}, \qquad (11)$$

where G_0 is the prounipotent group corresponding to the Lie algebra $\hbar \operatorname{m}^{\mathfrak{h}}[[\hbar]]$. Moreover, since the structure maps \mathcal{Q}_2^n take values in $(\mathfrak{g}_2)_{\leq n-1}$ then it appears that any algebraic dynamical twist is gauge equivalent to a one with the \hbar -adic valuation property and thus we have a bijection

$$\frac{\{\text{algebraic dynamical twists}\}}{\text{gauge equivalence (10)}} \longleftrightarrow \frac{\{\text{formal dynamical twists}\}}{\text{gauge equivalence (9)}}.$$
(12)

3.2. Classical counterpart

Assume that we are in the reductive case. Since p_1 is a L_{∞} -quasi-isomorphism by Proposition 10 then we have a bijection

$$\frac{\{\alpha \in \hbar(\wedge^2 \mathfrak{g} \otimes S\mathfrak{h})^{\mathfrak{h}}[[\hbar]] \text{ s.t. } d\alpha + \frac{1}{2}[\alpha, \alpha] = 0\}}{G_1}$$
$$\longleftrightarrow \frac{\{\pi \in \hbar(\wedge^2 \mathfrak{m})^{\mathfrak{h}}[[\hbar]] \text{ s.t. } [\pi, \pi]_{\mathfrak{m}} = 0\}}{G_0},$$

where G_1 is a prounipotent group and its action (by affine transformations) is given by the exponentiation of the infinitesimal action of its Lie algebra $\hbar(\mathfrak{g} \otimes \mathfrak{Sh})^{\mathfrak{h}}[[\hbar]]$:

$$q \cdot \alpha = \mathrm{d}q + [q, \alpha] \quad \left(q \in \hbar(\mathfrak{g} \otimes S\mathfrak{h})^{\mathfrak{h}}[[\hbar]]\right). \tag{13}$$

Then going along the lines of Section 2.2 one can prove the following

Proposition 14. There exists a L_{∞} -quasi-isomorphism

$$\mathcal{Q}_1: (C^c((\wedge^*\mathfrak{m})^{\mathfrak{h}}[2]), [,]_{\mathfrak{m}}) \to (C^c(\mathfrak{g}_1[2]), \mathfrak{d} + [,])$$

such that \mathcal{Q}_1^1 is the natural inclusion and \mathcal{Q}_1^n takes values in $(\mathfrak{g}_1)_{\leq n-1}$.

Consequently, any Maurer-Cartan element in $(g_1[1])[[\hbar]]$ is equivalent to a one of the form $\hbar \rho_{\hbar}(\hbar \lambda)$, where $\rho_{\hbar} \in (\wedge^2 g \hat{\otimes} \hat{S} \mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ satisfies CDYBE. In other words ρ_{\hbar} is a \hbar -dependent formal dynamical *r*-matrix. On such a ρ_{\hbar} the infinitesimal action (13) becomes

$$q \cdot \rho_{\hbar} = -\sum_{i} h_{i} \wedge \frac{\partial q}{\partial \lambda^{i}} + [q, \rho_{\hbar}] \quad (q \in \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h})^{\mathfrak{h}}[[\hbar]].$$
(14)

This action integrates in an affine action of some group \widetilde{G}_1 of h-equivariant formal maps with values in the Lie group G of g. And then we have a bijection

$$\frac{\{\pi \in \hbar(\wedge^2 \mathfrak{m})^{\mathfrak{h}}[[\hbar]] \text{ s.t. } [\pi, \pi]_{\mathfrak{m}} = 0\}}{G_0} \longleftrightarrow \frac{\{\text{form. dynam. } r\text{-mat.}/\mathbb{R}[[\hbar]]\}}{\widetilde{G}_1}.$$
 (15)

Remark 15. This bijection has to be compared with Proposition 2.13 in [X2] and Section 3 of [ES]

Finally, combining (15), (11) and (12) we obtain the following generalization of Theorem 6.11 in [X2] to the case of a non-abelian base:

Theorem 16. Let $\pi \in (\wedge^2 \mathfrak{m})^{\mathfrak{h}}$ such that $[\pi, \pi]_{\mathfrak{m}} = 0$. Then there are bijective correspondences between

- (1) the set of \hbar -dependant and G-invariant Poisson structures $\pi_{\hbar} = \hbar \pi \mod \hbar^2$ on G/H, modulo the action of G_0 ,
- (2) the set of ħ-dependant formal dynamical r-matrices ρ_ħ(λ) such that ρ_ħ(0) = π mod ħ in ∧²(g/ħ)[[ħ]], modulo the action (14) of G₁,
- (3) the set of formal dynamical twists $J(\lambda)$ satisfying $\operatorname{Alt} \frac{J(0)-1}{\hbar} = \pi \mod \hbar$ in $\wedge^2(\mathfrak{g}/\mathfrak{h})$ [[\hbar]], modulo gauge equivalence (9).

4. Another case when the twist quantization exists

~ .

In this section we assume that \mathfrak{h} is abelian and admits a Lie subalgebra \mathfrak{m} as complement.

Note that since \mathfrak{h} is abelian and \mathfrak{m} a Lie subalgebra, the projection $p: \mathfrak{g} \to \mathfrak{g}$ on \mathfrak{m} along \mathfrak{h} extends to a morphsim of graded Lie algebras $\wedge p: (\wedge \mathfrak{g})^{\mathfrak{h}} \to (\wedge \mathfrak{g})^{\mathfrak{h}}$ at the level of \mathfrak{h} -invariants. And thus $\wedge p \otimes \varepsilon : (\mathfrak{g}_1[1], \mathfrak{d}, [,]) \to ((\wedge \mathfrak{g})^{\mathfrak{h}}[1], \mathfrak{0}, [,])$ is a morphism of dgla's. Then the natural inclusion id $\otimes 1: (T^*U\mathfrak{g})^{\mathfrak{h}} \to \mathfrak{g}_2$ obviously allows one to consider $(T^*U\mathfrak{g})^{\mathfrak{h}}[1]$ as a sub-dgla of $\mathfrak{g}_2[1]$. Finally recall from [Ca, Section 3.3] that there exists a L_{∞} -quasi-isomorphism $\mathcal{F}: C^c((\wedge^*\mathfrak{g})^{\mathfrak{h}}[2]) \to C^c((T^*U\mathfrak{g})^{\mathfrak{h}}[2])$ with $\mathcal{F}^1 = \mathfrak{alt}$. By composing these maps one obtains a L_{∞} -morphism

$$\widetilde{\mathcal{F}}: (\mathcal{G}_1, \mathrm{d} + [,]) \to (\mathcal{G}_2, b + [,]_G),$$

with values in $(\mathcal{G}_2)_{\leq 0}$ and first structure map $\widetilde{\mathcal{F}}^1 = (\operatorname{alt} \otimes 1) \circ (\wedge p \otimes \varepsilon)$.

Theorem 17. There exists a L_{∞} -quasi-isomorphism

$$\Psi: (\mathcal{G}_1, d+[,]) \to (\mathcal{G}_2, b+[,]_G)$$

with properties (F1) and (F2) of Theorem 9.

Proof. First observe that since \mathfrak{h} is abelian then $\mathfrak{g}_1 \cong ((\land \mathfrak{g})^{\mathfrak{h}} \cap \land \mathfrak{m}) \otimes \land \mathfrak{h} \otimes S\mathfrak{h}$ as a vector space. Thus, if δ_K is as in the proof of Proposition 10 then $\delta := \mathrm{id} \otimes \delta_K$ is a homotopy operator: $\delta d + d\delta = \mathrm{id} - \land p \otimes \varepsilon$ and $\delta \circ \delta = 0$.

Now we proceed like in Section 2.3: use Lemma 22 to construct Ψ with first structure map $\Psi^1 = \widetilde{\mathcal{F}}^1 + b \circ V + V \circ d$, where $V := (\text{alt} \otimes \text{sym}) \circ \delta : \mathfrak{g}_1 \to \mathfrak{g}_2[-1]$.

It remains to prove that Ψ is a quasi-isomorphism. It follows from the first observation in this proof that $H^*(\mathfrak{g}_1, \mathfrak{d}) = (\wedge \mathfrak{g})^{\mathfrak{h}} \cap \wedge \mathfrak{m}$, which also equals $H^*(\mathfrak{g}_2, b)$ due to the spectral sequence argument. Consequently, $\widetilde{\mathcal{F}}^1$ is a quasi-isomorphism of complexes, and so is Ψ^1 . \Box

Finally, using the same argumentation as in the proof of Theorem 2 (Section 1.3) one obtains the

Theorem 18. If \mathfrak{h} is an abelian subalgebra of \mathfrak{g} with a Lie subalgebra as a complement, then any formal classical dynamical *r*-matrix for $(\mathfrak{g}, \mathfrak{h}, 0)$ admits a dynamical twist quantization (associated to the trivial associator).

Example 19. In particular, this allows us to quantize dynamical *r*-matrices arising from semi-direct products $g = \mathfrak{m} \ltimes \mathbb{C}^n$ like in [EN, Example 3.7].

5. Concluding remarks

Let us first observe that if \mathfrak{h} is abelian then $(\wedge^* \mathfrak{g})^{\mathfrak{h}} \cap \wedge^* \mathfrak{m}[1]$ (resp. $(T^*U\mathfrak{g})^{\mathfrak{h}} \cap T^* sym(S\mathfrak{m})[1]$) inherits a dgla structure from the one of $\mathfrak{g}_1[1]$ (resp. $\mathfrak{g}_2[1]$) and $H^*(\mathfrak{g}_1, \mathfrak{d}) = (\wedge^* \mathfrak{g})^{\mathfrak{h}} \cap \wedge^* \mathfrak{m} = H^*(\mathfrak{g}_2, b)$, for any complement \mathfrak{m} of \mathfrak{h} . Thus I conjecture that there exists a L_∞ -quasi-isomorphism between $(\wedge^* \mathfrak{g})^{\mathfrak{h}} \cap \wedge^* \mathfrak{m}[1]$ and $(T^*U\mathfrak{g})^{\mathfrak{h}} \cap T^* sym(S\mathfrak{m})[1]$ which generalizes together ϕ of Section 2.3 and \mathcal{F} of Section 4. In particular, this would imply Conjecture 1 in the abelian (and non-modified) case.

Let us then mention that one can consider a non-triangular (i.e., non-antisymmetric) version of non-modified classical dynamical *r*-matrices. Namely, h-equivariant maps $r \in \text{Reg}(\mathfrak{h}^*, \mathfrak{g} \otimes \mathfrak{g})$ such that CYB(r) - Alt(dr) = 0. According to [X3], a quantization of such a *r* is a h-equivariant map $R = 1 + \hbar r + O(\hbar^2) \in \text{Reg}(\mathfrak{h}^*, U\mathfrak{g}^{\otimes 2})[[\hbar]]$ that satisfies the *quantum dynamical Yang–Baxter equation* (QDYBE)

$$R^{1,2}(\lambda) * R^{1,3}(\lambda + \hbar h^2) * R^{2,3}(\lambda) = R^{2,3}(\lambda + \hbar h^1) * R^{1,3}(\lambda) * R^{1,2}(\lambda + \hbar h^3).$$
(16)

Question 1. Does such a quantization always exist?

The most famous example of non-triangular dynamical *r*-matrices was found in [AM] by Alekseev and Meinrenken, then extended successively to a more general context in [EV,ES,EE1], and quantized in [EE1].

Following [EE1], remark that for any non-triangular dynamical *r*-matrix *r* such that $r + r^{\text{op}} = t \in (S^2\mathfrak{g})^{\mathfrak{g}}$ (quasi-triangular case) one can define $\rho := r - t/2$ and $Z := \frac{1}{4}[t^{1,2}, t^{2,3}]$. Then ρ is a modified dynamical *r*-matrix for $(\mathfrak{g}, \mathfrak{h}, Z)$; moreover, the assignment $r \mapsto \rho$ is a bijective correspondence between quasi-triangular dynamical *r*-matrices for $(\mathfrak{g}, \mathfrak{h}, t)$ and modified dynamical *r*-matrices for $(\mathfrak{g}, \mathfrak{h}, Z)$. Now observe that if $J(\lambda)$ is a dynamical twist quantizing ρ , then $R(\lambda) = J^{\text{op}}(\lambda)^{-1} * e^{\hbar t/2} * J(\lambda)$ is a quantum dynamical *R*-matrix quantizing *r*.

In this paper we have constructed such a dynamical twist in the triangular case t = 0. One can ask

Question 2. Does such a dynamical twist exist for any quasi-triangular dynamical *r*-matrix? At least in the reductive and abelian cases?

This question seems to be more reasonable than the previous one.

More generally one can ask if Conjecture 1 (and its smooth and meromorphic versions) is true in general. A positive answer was given in [EE1] when $\mathfrak{h} = \mathfrak{g}$; but unfortunately it is not known in general, even for the non-dynamical case $\mathfrak{h} = \{0\}$ (which is the last problem of Drinfeld [Dr1]: quantization of coboundary Lie bialgebras).

Finally, let me mention that if $r(\lambda)$ is a triangular dynamical *r*-matrix for $(\mathfrak{g}, \mathfrak{h})$, then the bivector field

$$\pi := \overrightarrow{r(\lambda)} + \sum_{i} \frac{\partial}{\partial \lambda^{i}} \wedge \overrightarrow{h_{i}} + \pi_{\mathfrak{h}^{*}}$$

is a $G \times H$ -biinvariant Poisson structure on $G \times \mathfrak{h}^*$ and the projection $p : G \times \mathfrak{h}^* \to \mathfrak{h}^*$ is a momentum map. Moreover, according to [X3] any dynamical twist quantization $J(\lambda)$ of $r(\lambda)$ allows us to define a $G \times H$ -biinvariant star-product * quantizing π on $G \times \mathfrak{h}^*$ as follows:

$$\begin{split} f * g &= f *_{PBW} g & \text{if } f, g \in C^{\infty}(\mathfrak{h}^*), \\ f * g &= fg & \text{if } f \in C^{\infty}(G), g \in C^{\infty}(\mathfrak{h}^*), \\ f * g &= \exp\left(\hbar \sum_{i} \frac{\partial}{\partial \lambda^i} \otimes \overrightarrow{h_i}\right) \cdot (f \otimes g) & \text{if } f \in C^{\infty}(\mathfrak{h}^*), g \in C^{\infty}(G), \\ f * g &= \overrightarrow{J(\lambda)}(f \otimes g) & \text{if } f, g \in C^{\infty}(G). \end{split}$$

This way the map p^* : (Fct(\mathfrak{h}^*)[[\hbar]], $*_{PBW}$) \rightarrow (Fct($G \times \mathfrak{h}^*$)[[\hbar]], *) becomes a quantum momentum map in the sens of [X1].

So there may be a way to see momentum maps and their quantum analogues as Maurer-Cartan elements in dgla's.

Acknowledgements

I thank Benjamin Enriquez for many useful discussions on this subject. I also thank the referee for his warned comments.

Appendix: Homotopy Lie algebras

See [HS] for a detailed discussion of the theory.

Recall that a L_{∞} -algebra structure on a graded vector space g is a degree 1 coderivation Q on the cofree cocommutative coalgebra $C^{c}(\mathfrak{g}[1])$ such that $Q \circ Q = 0$. By cofreeness, such a coderivation Q is uniquely determined by structure maps $Q^{n} : \Lambda^{n}\mathfrak{g} \to \mathfrak{g}[2-n]$ which satisfy an infinite collection of equations. In particular (\mathfrak{g}, Q^{1}) is a cochain complex.

Example 20. Any dgla (g, d, [,]) is canonically a L_{∞} -algebra. Namely, Q is given by structure maps $Q^1 = d$, $Q^2 = [,]$ and $Q^n = 0$ for n > 2.

A L_{∞} -morphism between two L_{∞} -algebras $(\mathfrak{g}_1, \mathcal{Q}_1)$ and $(\mathfrak{g}_2, \mathcal{Q}_2)$ is a degree 0 morphism of coalgebras $F : C^c(\mathfrak{g}_1[1]) \to C^c(\mathfrak{g}_2[1])$ such that $F \circ \mathcal{Q}_1 = \mathcal{Q}_2 \circ F$. Again by cofreeness, such a morphism is uniquely determined by structure maps $F^n : \Lambda^n \mathfrak{g}_1 \to \mathfrak{g}_2[1-n]$ which satisfy an infinite collection of equations. In particular $F^1 : \mathfrak{g}_1 \to \mathfrak{g}_2$ is a morphism of complexes; when it induces an isomorphism in cohomology we say that F is a L_{∞} -quasi-isomorphism.

Example 21. Any morphism of dgla's is a L_{∞} -morphism with all structure maps equal to zero except the first one.

In this paper we use many times the following

Lemma 22 (Dolgushev [Do]). Let $F : C^{c}(\mathfrak{g}_{1}[1]) \to C^{c}(\mathfrak{g}_{2}[1])$ be a L_{∞} -morphism. For any linear map $V : \mathfrak{g}_{1} \to \mathfrak{g}_{2}[-1]$ there exists a L_{∞} -morphism $\Psi : C^{c}(\mathfrak{g}_{1}[1]) \to C^{c}(\mathfrak{g}_{2}[1])$ with first structure map $\Psi^{1} = F^{1} + Q_{2}^{1} \circ V + V \circ Q_{1}^{1}$. Moreover, if F is a L_{∞} -quasi-isomorphism then Ψ is also.

Proof. First remark that V extends uniquely to a linear map $C^c(\mathfrak{g}_1[1]) \to C^c(\mathfrak{g}_2[1])$ of degree -1 such that

$$\Delta_2 \circ V = \left(F \otimes V + V \otimes F + \frac{1}{2} V \otimes (Q_2 \circ V + V \circ Q_1) \right. \\ \left. + \frac{1}{2} (Q_2 \circ V + V \circ Q_1) \otimes V \right) \circ \Delta_1,$$

where Δ_1 and Δ_2 denote comultiplications in $C^c(\mathfrak{g}_1[1])$ and $C^c(\mathfrak{g}_2[1])$, respectively. Then define $\Psi := F + Q_2 \circ V + V \circ Q_1$. \Box **Remark 23.** Assume that in the previous lemma \mathfrak{g}_1 and \mathfrak{g}_2 are filtrated, F is such that F^n takes values in $(\mathfrak{g}_2)_{\leq n-1}$, and $V((\mathfrak{g}_1)_{\leq k}) \subset (\mathfrak{g}_2)_{\leq k+1}$. Then one can obviously check that for any $X \in (\Lambda^n \mathfrak{g}_1)_{\leq k}$, $F^n(X) \in (\mathfrak{g}_2)_{\leq n+k-1}$.

References

- [AM] A. Alekseev, E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000) 135–172.
- [Ba] J.H. Baues, The double bar and cobar construction, Compos. Math. 43 (1981) 331-341.
- [Ca] D. Calaque, Formality for Lie algebroids, Comm. Math. Phys. 257 (3) (2005) 563-578.
- [Do] V. Dolgushev, Covariant and equivariant formality theorem, Adv. Math. 191 (2005) 147-177.
- [Dr2] V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419–1457.
- [Dr1] V. Drinfeld, On some unsolved problems in quantum group theory, Lecture Notes Math. 1510 (1992) 1–8.
- [EE1] B. Enriquez, P. Etingof, Quantization of Alekseev–Meinrenken dynamical r-matrices, Trans. Amer. Math. Soc. (ser. 2) 210 (2003) 81–98.
- [EE2] B. Enriquez, P. Etingof, Quantization of classical dynamical *r*-matrices with nonabelian base, Comm. Math. Phys. 254 (3) (2005) 603–650.
- [EN] P. Etingof, D. Nikshych, Vertex-IRF transformations and quantization of dynamical r-matrices, Math. Res. Lett. 8 (2001) 331–345.
- [ES] P. Etingof, O. Schiffmann, On the moduli space of classical dynamical r-matrices, Math. Res. Lett. 8 (2001) 157–170.
- [EV] P. Etingof, A. Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998) 77–120.
- [Fe] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians, vol. 1, 2, Zurich, 1994, Birkhäuser, Basel, 1995, pp. 1247–1255.
- [Ge] E. Getzler, Cartan homotopy formula and the Gauss-Manin connection in cyclic homology, Israel Math. Conf. Proc. 102 (1993) 256–283.
- [He] S. Helgason, Groups and Geometric Analysis, Pure Applied Mathematics, vol. 113, Orlando, 1984.
- [HS] V. Hinich, V. Schechtman, Homotopy Lie algebras, I.M. Gelfand Seminar, Adv. Sov. Math. 16 (2) (1993) 1–28.
- [Kh] M. Khalkhali, Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys. 202 (2) (1999) 309–323.
- [Mo] T. Mochizuki, An application of formality theorem to a quantization of dynamical *r*-matrices, unpublished preprint.
- [No] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954) 33–65.
- [Ta] D. Tamarkin, Another proof of M. Kontsevich formality theorem for \mathbb{R}^n , preprint math.QA/9803025, 1998.
- [X1] P. Xu, Fedosov *-products and quantum momentum maps, Comm. Math. Phys. 197 (1998) 167–197.
- [X2] P. Xu, Triangular dynamical r-matrices and quantization, Adv. Math. 166 (1) (2002) 1-49.
- [X3] P. Xu, Quantum dynamical Yang–Baxter equation over a nonabelian base, Comm. Math. Phys. 226 (3) (2002) 475–495.

100