ADVANCES IN
Mathematics

Quantization of formal classical dynamical r-matrices: the reductive case

Damien Calaque
IRMA, 7 rue René Descartes, F-67084 Strasbourg, France
Received 4 March 2005; accepted 12 May 2005
Communicated by M. Hopkins
Available online 14 July 2005

Abstract

In this paper we prove the existence of a formal dynamical twist quantization for any triangular and non-modified formal classical dynamical r-matrix in the reductive case. The dynamical twist is constructed as the image of the dynamical r-matrix by a L_{∞}-quasi-isomorphism. This quasi-isomorphism also allows us to classify formal dynamical twist quantizations up to gauge equivalence.

© 2005 Elsevier Inc. All rights reserved.
MSC: 81R50; 17B37; 16E45
Keywords: Dynamical r-matrices; Dynamical twist quantization; Lie algebras; Morphisms up to homotopy

0. Introduction

In [Fe], Felder introduced dynamical versions of both classical and quantum YangBaxter equations which has been generalized to the case of a non-abelian base in [EV] for the classical part and in [X3] for the quantum part. Naturally this leads to quantization problems which have been formulated in terms of twist quantization à la Drinfeld [Dr1] in [X2,X3,EE1,EE2].
Let us formulate this problem in the general context. Consider an inclusion $\mathfrak{h} \subset \mathfrak{g}$ of Lie algebras equipped with an element $Z \in\left(\wedge^{3} \mathfrak{g}\right)^{\mathfrak{g}}$. A (modified) classical dynamical

[^0]r-matrix for $(\mathfrak{g}, \mathfrak{h}, Z)$ is a regular (meaning C^{∞}, meromorphic, formal, ... depending on the context) \mathfrak{h}-equivariant map $\rho: \mathfrak{h}^{*} \rightarrow \wedge^{2} \mathfrak{g}$ which satisfies the (modified) classical dynamical Yang-Baxter equation (CDYBE)
\[

$$
\begin{equation*}
\operatorname{CYB}(\rho)-\operatorname{Alt}(d \rho)=Z \tag{1}
\end{equation*}
$$

\]

where $\operatorname{CYB}(\rho):=\left[\rho^{1,2}, \rho^{1,3}\right]+\left[\rho^{1,2}, \rho^{2,3}\right]+\left[\rho^{1,3}, \rho^{2,3}\right]=\frac{1}{2}[\rho, \rho]$ and

$$
\operatorname{Alt}(d \rho):=\sum_{i}\left(h_{i}^{1} \frac{\partial \rho^{2,3}}{\partial \lambda^{i}}-h_{i}^{2} \frac{\partial \rho^{1,3}}{\partial \lambda^{i}}+h_{i}^{3} \frac{\partial \rho^{1,2}}{\partial \lambda^{i}}\right)
$$

Here $\left(h_{i}\right)$ and $\left(\lambda^{i}\right)$ are dual basis of \mathfrak{h} and \mathfrak{h}^{*}.
Let $\Phi=1+O\left(\hbar^{2}\right) \in\left(U \mathrm{~g}^{\otimes 3}\right)^{\mathfrak{g}}[[\hbar]]$ be an associator quantizing Z (of which the existence was proved in [Dr2, Proposition 3.10]). A dynamical twist quantization of a (modified) classical dynamical r-matrix ρ associated to Φ is a regular \mathfrak{b}-equivariant map $J=1+O(\hbar) \in \operatorname{Reg}\left(\mathfrak{h}^{*}, U \mathfrak{g}^{\otimes 2}\right)[[\hbar]]$ such that Alt $\frac{J-1}{\hbar}=\rho \bmod \hbar$ and which satisfies the (modified) dynamical twist equation (DTE)

$$
\begin{equation*}
J^{12,3}(\lambda) * J^{1,2}\left(\lambda+\hbar h^{3}\right)=\Phi^{-1} J^{1,23}(\lambda) * J^{2,3}(\lambda) \tag{2}
\end{equation*}
$$

where $*$ denotes the PBW star-product of functions on \mathfrak{b} * and

$$
J^{1,2}\left(\lambda+\hbar h^{3}\right):=\sum_{k \geqslant 0} \frac{\hbar^{k}}{k!} \sum_{i_{1}, \ldots, i_{k}}\left(\partial_{\lambda_{1}} \ldots \partial_{\lambda^{i_{k}}} J\right)(\lambda) \otimes\left(h_{i_{1}} \ldots h_{i_{k}}\right)
$$

Now observe that many (modified) classical dynamical r-matrices can be viewed as formal ones by taking their Taylor expansion at 0 . In this paper we are interested in the following conjecture:

Conjecture 1 ([EE1]). Any (modified) formal classical dynamical r-matrix admits a dynamical twist quantization.

Let us reformulate DTE in the formal framework. A formal (modified) dynamical twist is an element $J(\lambda)=1+O(\hbar) \in\left(U \mathfrak{g}^{\otimes 2} \hat{\otimes} \hat{S} \mathfrak{b}\right)^{\mathfrak{h}}[[\hbar]]$ which satisfies DTE, and $J^{1,2}\left(\lambda+\hbar h^{3}\right) \in\left(U \mathfrak{g}^{\otimes 3} \hat{\otimes} \hat{S} \mathfrak{b}\right)[[\hbar]]$ is equal to $\left(\mathrm{id}^{\otimes 2} \otimes \tilde{\Delta}\right)(J)$ where $\tilde{\Delta}: \hat{S} \mathfrak{h} \rightarrow$ $(U \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h})[[\hbar]]$ is induced by $\mathfrak{h} \ni x \mapsto \hbar x \otimes 1+1 \otimes x$. Then define $K:=J(\hbar \lambda) \in$ $\left(U \mathfrak{g}^{\otimes 2} \otimes S \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]]$ which we view as an element of $\left(U \mathfrak{g}^{\otimes 2} \otimes U \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]]$ using the symmetrization map $S \mathfrak{h} \rightarrow U \mathfrak{h}$. Since J is a solution of DTE K satisfies the (modified) algebraic dynamical twist equation (ADTE)

$$
\begin{equation*}
K^{12,3,4} K^{1,2,34}=\left(\Phi^{-1}\right)^{1,2,3} K^{1,23,4} K^{2,3,4} \tag{3}
\end{equation*}
$$

Moreover and by construction, $K=1+\sum_{n \geqslant 1} \hbar^{n} K_{n}$ has the \hbar-adic valuation property. Namely, $U \mathfrak{h}$ is filtered by $(U \mathfrak{h}) \leqslant n=\operatorname{ker}(\mathrm{id}-\eta \circ \varepsilon)^{\otimes n+1} \circ \Delta^{(n)}$ where $\varepsilon: U \mathfrak{h} \rightarrow \mathbf{k}$ and $\eta: \mathbf{k} \rightarrow U \mathfrak{h}$ are the counit and unit maps, and $K_{n} \in(U \mathfrak{h}) \leqslant n-1$. Conversely, any algebraic dynamical twist having the \hbar-adic valuation property can be obtained from a unique formal dynamical twist by this procedure.

This paper, in which we always assume $Z=0$ and $\Phi=1$ (non-modified case), is organized as follow.

In Section 1 we define two differential graded Lie algebras (dgla's), respectively, associated to classical dynamical r-matrices and algebraic dynamical twists. Then we formulate the main theorem of this paper which states that if \mathfrak{h} admits an adh-invariant complement (the reductive case) then these two dgla's are L_{∞}-quasi-isomorphic and we prove that it implies Conjecture 1 in this case, which generalizes Theorem 5.3 of [X2]:

Theorem 2. In the reductive case, any formal classical dynamical r-matrix for ($\mathfrak{g}, \mathfrak{h}, 0)$ admits a dynamical twist quantization (associated to the trivial associator).

The second section is devoted to the proof of the main theorem of Section 1: using an equivariant formality theorem for homogeneous spaces which is obtained from [Do], we construct a L_{∞}-quasi-isomorphism which we then modify in order to obtain the desired one. We use this L_{∞}-quasi-isomorphism to classify formal dynamical twist quantizations up to gauge equivalence for the reductive case in Section 3. In Section 4 we prove that if $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ for \mathfrak{h} abelian and \mathfrak{m} a Lie subalgebra then the results of Sections 1 and 2 are still true in this situation. We conclude the paper with some open questions, and recall basic results for L_{∞}-algebras in an appendix.

1. Definitions and results

Let $\mathfrak{b} \subset \mathfrak{g}$ be an inclusion of Lie algebras.

1.1. Algebraic structures associated to CDYBE

Let us consider the following graded vector space

$$
\mathrm{CDYB}:=\wedge^{*} \mathfrak{g} \otimes S \mathfrak{h}=\bigoplus_{k \geqslant 0} \wedge^{k} \mathfrak{g} \otimes S \mathfrak{h}
$$

equipped with the differential d defined by

$$
\begin{equation*}
\mathrm{d}\left(x_{1} \wedge \cdots \wedge x_{k} \otimes h_{1} \ldots h_{l}\right):=-\sum_{i=1}^{l} h_{i} \wedge x_{1} \wedge \cdots \wedge x_{k} \otimes h_{1} \ldots h_{l} \hat{h}_{i} \tag{4}
\end{equation*}
$$

With the exterior product \wedge it becomes a differential graded commutative associative algebra. Moreover, one can define a graded Lie bracket of degree -1 on CDYB which is the Lie bracket of \mathfrak{g} extended to CDYB in the following way:

$$
\begin{equation*}
[a, b \wedge c]=[a, b] \wedge c+(-1)^{(|a|-1)|b|} b \wedge[a, c] \tag{5}
\end{equation*}
$$

Thus one can observe that polynomial solutions to CDYBE are exactly elements $\rho \in$ CDYB of degree 2 such that $\mathrm{d} \rho+\frac{1}{2}[\rho, \rho]=0$. We would like to say that such a ρ is a Maurer-Cartan element but (CDYB[1], $\mathrm{d},[$,$]) is not a differential graded Lie algebra$ (dgla).

Instead, remember that we are interested in \mathfrak{h}-equivariant solutions of CDYBE (i.e., dynamical r-matrices) and thus consider the subspace $\mathfrak{g}_{1}=(C D Y B)^{\mathfrak{h}}$ of \mathfrak{h}-invariants with the same differential and bracket.

Proposition 3. ($\left.\mathfrak{g}_{1}[1], \mathrm{d},[],\right)$ is a dgla. Moreover $\left(\mathfrak{g}_{1}, \mathrm{~d}, \wedge,[],\right)$ is a Gerstenhaber algebra.

Proof. Let $a=x_{1} \wedge \cdots \wedge x_{k} \otimes h_{1} \ldots h_{s}$ and $b=y_{1} \wedge \cdots \wedge y_{l} \otimes m_{1} \ldots m_{t}$ be \mathfrak{h}-invariant elements in \mathfrak{g}_{1}. We want to show that

$$
\begin{equation*}
\mathrm{d}[a, b]=[\mathrm{d} a, b]+(-1)^{k-1}[a, \mathrm{~d} b] . \tag{6}
\end{equation*}
$$

The 1.h.s. of (6) is equal to

$$
\begin{aligned}
& -\left(\sum_{i=1}^{s} h_{i} \wedge\left[x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \ldots \wedge y_{l}\right] \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{h}_{i}\right. \\
& \left.\quad+\sum_{j=1}^{t} m_{j} \wedge\left[x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{l}\right] \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{m}_{j}\right)
\end{aligned}
$$

The first term in the r.h.s. of (6) gives

$$
\begin{aligned}
& \sum_{i=1}^{s}\left((-1)^{k-1} x_{1} \wedge \cdots \wedge x_{k} \wedge\left[h_{i}, y_{1} \wedge \cdots \wedge y_{l}\right]-h_{i} \wedge\left[x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{l}\right]\right) \\
& \quad \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{h}_{i}
\end{aligned}
$$

and for the second term we obtain

$$
\begin{aligned}
& \sum_{j=1}^{t}\left((-1)^{k-1}\left[m_{j}, x_{1} \wedge \cdots \wedge x_{k}\right] \wedge y_{1} \wedge \cdots \wedge y_{l}-m_{j} \wedge\left[x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{l}\right]\right) \\
& \quad \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{m}_{j}
\end{aligned}
$$

Thus, the difference between the 1.h.s. and the r.h.s. of (6) is equal to

$$
\begin{aligned}
& (-1)^{k}\left(\sum_{i=1}^{k} x_{1} \wedge \cdots \wedge x_{k} \wedge\left[h_{i}, y_{1} \wedge \cdots \wedge y_{l}\right] \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{h}_{i}\right. \\
& \left.\quad+\sum_{j=1}^{l}\left[m_{j}, x_{1} \wedge \cdots \wedge x_{k}\right] \wedge y_{1} \wedge \cdots \wedge y_{l} \otimes h_{1} \ldots h_{s} m_{1} \ldots m_{t} \hat{m}_{j}\right) .
\end{aligned}
$$

Then using \mathfrak{b}-invariance of a and b one obtains

$$
\begin{aligned}
& (-1)^{k-1} \sum_{i, j} x_{1} \wedge \cdots \wedge x_{k} \wedge y_{1} \wedge \cdots \wedge y_{l} \\
& \quad \otimes\left(h_{1} \ldots h_{s} m_{1} \ldots m_{t}\left(\left[h_{i}, m_{j}\right]-\left[m_{j}, h_{i}\right]\right) \hat{h}_{i} \hat{m}_{j}\right)=0
\end{aligned}
$$

The second statement of the proposition is obvious from the definition (5) of the bracket.

Let $\rho(\lambda) \in\left(\wedge^{2} \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h}\right)^{\mathfrak{h}}$ be a formal classical dynamical r-matrix. Since ρ satisfies CDYBE, $\alpha:=\hbar \rho(\hbar \lambda) \in \hbar \mathfrak{g}_{1}[[\hbar]]$ is a Maurer-Cartan element (i.e., $\mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0$).

1.2. Algebraic structures associated to $A D T E$

Let us now consider the graded vector space

$$
\mathrm{ADT}:=T^{*} U \mathfrak{g} \otimes U \mathfrak{h}=\bigoplus_{k \geqslant 0} \otimes^{k} U \mathfrak{g} \otimes U \mathfrak{h}
$$

equipped with the differential b given by

$$
\begin{equation*}
b(P):=P^{2, \ldots, k+2}+\sum_{i=1}^{k+1}(-1)^{i} P^{1, \ldots, i i+1, \ldots, k+2} \quad \text { for } P \in \otimes^{k} U \mathfrak{g} \otimes U \mathfrak{h} . \tag{7}
\end{equation*}
$$

Remark 4. This is just the coboundary operator of Hochschild's cohomology with value in a comodule; and $b^{2}=0$ follows directly from an easy calculation.

One can define on ADT an associative product \cup (the cup product) which is given on homogeneous elements $P \in \otimes^{k} U \mathfrak{g} \otimes U \mathfrak{h}$ and $Q \in \otimes^{l} U \mathfrak{g} \otimes U \mathfrak{h}$ by

$$
P \cup Q:=P^{1, \ldots, k, k+1 \ldots k+l+1} Q^{k+1, \ldots, k+l+1} .
$$

Proposition 5. (ADT, b, \cup) is a differential graded associative algebra.

Proof. The cup product is obviously associative. Thus, the only thing we have to check is that

$$
\begin{equation*}
b(P \cup Q)=b P \cup Q+(-1)^{|P|} P \cup b Q \tag{8}
\end{equation*}
$$

Let $k=|P|$ and $l=|Q|$. The 1.h.s. of (8) is equal to

$$
\begin{aligned}
& P^{2, \ldots, k+1, k+2 \ldots k+l+2} Q^{k+2, \ldots, k+l+2}+\sum_{i=1}^{k}(-1)^{i} P^{1, \ldots, i i+1, \ldots, k+1, k+2 \ldots k+l+2} Q^{k+2, \ldots, k+l+2} \\
& \quad+\sum_{i=k+1}^{k+l+1}(-1)^{i} P^{1, \ldots, k, k+1 \ldots k+l+2} Q^{k+1, \ldots, i i+1, \ldots, k+l+2}
\end{aligned}
$$

The first line of this expression is equal to

$$
b P \cup Q-(-1)^{k+1} P^{1, \ldots, k, k+1 \ldots k+l+2} Q^{k+2, \ldots, k+l+2}
$$

and the last term of the same expression gives

$$
(-1)^{k}\left(P \cup b Q-P^{1, \ldots, k, k+1 \ldots k+l+2} Q^{k+2, \ldots, k+l+2}\right)
$$

The proposition is proved.
Recall that in the case $\mathfrak{h}=\{0\}$ one can define a brace algebra structure on $\left(T^{*} U \mathfrak{g}\right)[1]$ (see [Ge]). Unfortunately we are not able to extend this structure to ADT in general. Since we deal with \mathfrak{h}-equivariant solutions of ADTE we can consider the subspace $\mathfrak{g}_{2}=(A D T)^{\mathfrak{h}}$ of \mathfrak{h}-invariants. Let us now define a collection of linear homogeneous maps of degree zero $\{-\mid-, \ldots,-\}: \mathfrak{g}_{2}[1] \otimes \mathfrak{g}_{2}[1]^{\otimes m} \rightarrow \mathfrak{g}_{2}[1]$ indexed by $m \geqslant 0$, and $\left\{P \mid Q_{1}, \ldots, Q_{m}\right\}$ is given by

$$
\begin{aligned}
& \sum_{\substack{0 \leqslant i_{1}, i_{m}+k_{m} \leqslant n \\
i_{l}+k_{l} \leqslant i_{l+1}}}(-1)^{\varepsilon} P^{1, \ldots, i_{1}+1 \ldots i_{1}+k_{1}, \ldots, i_{m}+1 \ldots i_{m}+k_{m}, \ldots, n+1} \\
\times & \prod_{s=i}^{m} Q_{s}^{i_{s}+1, \ldots, i_{s}+k_{s}, i_{s}+k_{s}+1 \ldots n+1}
\end{aligned}
$$

where $k_{s}=\left|Q_{s}\right|, n=|P|+\sum_{s} k_{s}-m$ and $\varepsilon=\sum_{s}\left(k_{s}-1\right) i_{s}$.
Proposition 6. $\left(g_{2}[1],\{-\mid-, \ldots,-\}\right)$ is a brace algebra.
Proof. Since we work with \mathfrak{h}-invariant elements one can remark that if $i_{s}+k_{s} \leqslant i_{t}$ then $Q_{s}^{i_{s}+1, \ldots, i_{s}+k_{s}, i_{s}+k_{s}+1 \ldots n+1}$ and $Q_{t}^{i_{t}+1, \ldots, i_{t}+k_{t}, i_{t}+k_{t}+1 \ldots n+1}$ commute. Using this the proof becomes identical to the case when $\mathfrak{h}=0$ (see [Ge] for example).

Now observe that since $m=1^{\otimes \mathfrak{3}} \in\left(\otimes^{2} U \mathfrak{g} \otimes U \mathfrak{h}\right)^{\mathfrak{h}}$ is such that $\{m \mid m\}=0$ one obtains a B_{∞}-algebra structure $[\mathrm{Ba}]$ on \mathfrak{g}_{2} (see $[\mathrm{Kh}]$). More precisely, we have a differential graded bialgebra structure on the cofree tensorial coalgebra $T^{c}\left(\mathfrak{g}_{2}[1]\right)$ of which structure maps $a^{n}, a^{p, q}$ are given by

- $a^{1}(P)=b P=(-1)^{|P|-1}[m, P]_{G}$, where

$$
[P, Q]_{G}:=\{P \mid Q\}-(-1)^{(|P|-1)(|Q|-1)}\{Q \mid P\}
$$

- $a^{2}(P, Q)=\{m \mid P, Q\}=P \cup Q$.
- $a^{0,1}=a^{1,0}=\mathrm{id}$.
- $a^{1, n}\left(P ; Q_{1}, \ldots, Q_{n}\right)=\left\{P \mid Q_{1}, \ldots, Q_{n}\right\}$ for $n \geqslant 1$.
- All other maps are zero.

In particular, we have
Proposition 7. $\left(g_{2}[1], b,[,]_{G}\right)$ is a dgla.
Remark 8. Since that for any graded vector space V, dg bialgebra structures on the cofree coassociative coalgebra $T^{c} V$ are in one-to-one correspondence with dg Lie bialgebra structures on the cofree Lie coalgebra $L^{c} V$ (see [Ta, Section 5]), then $L^{c}\left(g_{2}[1]\right)$ becomes a dg Lie bialgebra with differential and Lie bracket given by maps $l^{n}, l^{p, q}$ such that $l^{1}=b$ and $l^{1,1}=[,]_{G}$. Therefore $d_{2}:=\sum_{i \geqslant 0} l^{i}+\sum_{p, q \geqslant 0} l^{p, q}$: $C^{c}\left(L^{c}\left(\mathfrak{g}_{2}[1]\right)\right) \rightarrow C^{c}\left(L^{c}\left(\mathfrak{g}_{2}[1]\right)\right)$ defines a G_{∞}-algebra structure on $\mathfrak{g}_{2}\left(d_{2} \circ d_{2}=0\right.$ since d_{2} is just the Chevalley-Eilenberg differential on the dg Lie algebra $\left.L^{c}\left(g_{2}[1]\right)\right)$.

1.3. Main result and proof of Theorem 2

First of all, observe that CDYB, \mathfrak{g}_{1} and $\mathcal{G}_{1}:=C^{c}\left(\mathfrak{g}_{1}[2]\right)$ have a natural grading induced by the one of $S \mathfrak{h}$. In the same way ADT, \mathfrak{g}_{2} and $\mathcal{G}_{2}:=C^{c}\left(\mathfrak{g}_{2}[2]\right)$ have a natural filtration induced by the one of $U \mathfrak{h}$. Our main goal is to prove the following theorem, which is sufficient to obtain algebraic dynamical twists from formal dynamical r-matrices.

Theorem 9. In the reductive case, there exists a L_{∞}-quasi-isomorphism

$$
\Psi:\left(\mathcal{G}_{1}, \mathrm{~d}+[,]\right) \rightarrow\left(\mathcal{G}_{2}, b+[,]_{G}\right)
$$

with the following two filtration properties:
(F1) $\forall X \in\left(\mathfrak{g}_{1}\right)_{k}, \Psi^{1}(X)=($ alt $\otimes \operatorname{sym})(X) \bmod \left(\mathfrak{g}_{2}\right)_{\leqslant k-1}$.
(F2) $\forall X \in\left(\Lambda^{n} \mathfrak{g}_{1}\right)_{k}, \Psi^{n}(X) \in\left(g_{2}\right)_{\leqslant n+k-1}$.
Thus, we have

Proof of Theorem 2. Now consider a formal solution $\rho(\lambda) \in\left(\wedge^{2} \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h}\right)^{\mathfrak{h}}$ to CDYBE. Let us define $\alpha:=\hbar \rho(\hbar \lambda) \in \hbar \mathfrak{g}_{1}[[\hbar]]$ which is a Maurer-Cartan element in $\hbar \mathfrak{g}_{1}[[\hbar]]$. The L_{∞}-morphism property implies that $\tilde{\alpha}:=\sum_{n=1}^{\infty} \frac{1}{n!} \Psi^{n}\left(\Lambda^{n} \alpha\right)$ is a Maurer-Cartan element in $\hbar \mathfrak{g}_{2}[[\hbar]]$; this exactly means that $K:=1+\widetilde{\alpha} \in\left(\otimes^{2} U \mathfrak{g} \otimes U \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]]$ satisfies ADTE. Moreover, due to (F2) the coefficient K_{n} of \hbar^{n} in K lies in $\left(\mathfrak{g}_{2}\right) \leqslant n-1$. It means that there exists $J \in\left(U \mathfrak{g}^{\otimes 2} \hat{\otimes} \hat{S} \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]]$ satisfying DTE and such that $K=$ $\left(\mathrm{id}^{\otimes 2} \otimes \operatorname{sym}\right)(J(\hbar \lambda))$. Finally, property (F1) obviously implies that the semi-classical limit condition $\frac{J-J^{\circ p}}{\hbar}=\rho \bmod \hbar$ is satisfied.

2. Proof of Theorem 9

In this section we assume that $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ with $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. Let us denote by $\mathrm{p}: \mathfrak{g} \rightarrow \mathfrak{m}$ the projection on \mathfrak{m} along \mathfrak{h}; it is \mathfrak{h}-equivariant.

2.1. Resolutions

Let us first observe that the bilinear map $[,]_{\mathfrak{m}}:=(\wedge \mathfrak{p}) \circ[$,$] defines a graded Lie$ bracket of degree -1 on $\left(\wedge^{*} \mathfrak{m}\right)^{\mathfrak{h}}$. Then we prove

Proposition 10. The natural map $p_{1}:\left(\mathfrak{g}_{1}[1], \mathrm{d},[],\right) \rightarrow\left(\left(\wedge^{*} \mathfrak{m}\right)^{\mathfrak{h}}[1], 0,[,]_{\mathfrak{m}}\right)$ is a morphism of dgla's. Moreover, there exists an operator $\delta: \mathfrak{g}_{1}^{*} \rightarrow \mathfrak{g}_{1}^{*-1}$ such that $\delta \mathrm{d}+\mathrm{d} \delta=\mathrm{id}-p_{1}, \delta \circ \delta=0$ and $\delta\left(\left(\mathfrak{g}_{1}\right)_{k}\right) \subset\left(\mathfrak{g}_{1}\right)_{k+1}$. In particular, p_{1} induces an isomorphism in cohomology.

Proof. The projection $p_{1}:=\left(\wedge^{\prime} \mathrm{p}\right) \otimes \varepsilon:(\mathrm{CDYB}, \mathrm{d}) \rightarrow\left(\wedge^{*} \mathfrak{m}, 0\right)$ is a \mathfrak{h}-equivariant morphism of complexes, and it obviously restricts to a morphism of (differential) graded Lie algebras at the level of \mathfrak{h}-invariants.

Moreover, $\wedge^{n} \mathfrak{g} \otimes S \mathfrak{h} \cong \bigoplus_{p+q=n} \wedge^{p} \mathfrak{m} \otimes \wedge^{q} \mathfrak{h} \otimes S \mathfrak{h}$ as a \mathfrak{h}-module; and under this identification d becomes $-\mathrm{id} \otimes d_{K}$, where $d_{K}: \wedge^{*} \mathfrak{h} \otimes S \mathfrak{h} \rightarrow \wedge^{*+1} \mathfrak{h} \otimes S \mathfrak{h}$ is Koszul's coboundary operator, and p_{1} corresponds to the projection on the part of zero antisymmetric and symmetric degrees in \mathfrak{h}. Let us define $\delta=\mathrm{id} \otimes \delta_{K}$ with $\delta_{K}: \wedge^{*} \mathfrak{h} \otimes S^{*} \mathfrak{h} \rightarrow$ $\wedge^{*-1} \mathfrak{h} \otimes S^{*+1} \mathfrak{h}$ defined by

$$
\begin{aligned}
& \delta_{K}\left(x_{1} \wedge \cdots \wedge x_{n} \otimes h_{1} \ldots h_{m}\right) \\
& \quad= \begin{cases}\frac{1}{m+n} \sum_{i}(-1)^{i} x_{1} \wedge \cdots \hat{x}_{i} \cdots \wedge x_{n} \otimes h_{1} \ldots h_{m} x_{i} & \text { if } m+n \neq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Finally, remark that δ is a \mathfrak{h}-equivariant homotopy operator: $\delta \mathrm{d}+\mathrm{d} \delta=\mathrm{id}-p_{1}$ and $\delta \circ \delta=0$. The proposition is proved.

Now we prove a similar result for \mathfrak{g}_{2}. Let us first define $U \mathfrak{m}:=\operatorname{sym}(S \mathfrak{m}) \subset U \mathfrak{g}$; this is a sub-coalgebra of $U \mathfrak{g}$ and thus $T^{*} U \mathfrak{m}$ equipped with its Hochschild's coboundary
operator $b_{\mathfrak{m}}$ becomes a cochain subcomplex of the Hochschild complex ($T^{*} U \mathfrak{g}, b_{\mathfrak{g}}$) of $U \mathfrak{g}$. We also have the following

Lemma 11. $U \mathfrak{g}=U \mathfrak{g} \cdot \mathfrak{h} \oplus U \mathfrak{m}$ as a filtered \mathfrak{h}-module. Moreover $[,]_{G, \mathfrak{m}}:=(\otimes \mathfrak{p}) \circ[$, defines a graded Lie bracket of degree -1 on $\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}$.

Proof. See [He, Chapter II Section 4.2] for the first statement. The second statement follows from a direct computation.

Then we prove
Proposition 12. The natural map $p_{2}:\left(\mathfrak{g}_{2}[1], b,[,]_{G}\right) \rightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}[1], b_{\mathfrak{m}},[,]_{G, \mathfrak{m}}\right)$ is a morphism of dgla's. Moreover, there exists an operator $\kappa: \mathfrak{g}_{2}^{*} \rightarrow \mathfrak{g}_{2}^{*-1}$ such that $\kappa b+b \kappa=\mathrm{id}-p_{2}, \kappa \circ \kappa=0$ and $\kappa\left(\left(g_{2}\right) \leqslant k\right) \subset\left(g_{2}\right)_{\leqslant k+1}$. In particular, p2 induces an isomorphism in cohomology.

Proof. The projection $p_{2}:=(\otimes \mathfrak{p}) \otimes \varepsilon:(\mathrm{ADT}, b) \rightarrow\left(T^{*} U \mathfrak{m}, b_{\mathfrak{m}}\right)$ is a \mathfrak{h}-equivariant morphism of complexes, and it obviously restricts to a morphism of dgla's at the level of \mathfrak{h}-invariants (by Lemma 11).

Remember that \mathfrak{g}_{2} has a natural filtration induced by the one of $U \mathfrak{b}$. Then one obtains a spectral sequence of which we compute the first terms:

$$
\begin{aligned}
& E_{0}^{*, *}=\left(T^{*} U \mathfrak{g} \otimes S^{*} \mathfrak{h}\right)^{\mathfrak{h}}, \quad d_{0}=b_{\mathfrak{g}} \otimes \mathrm{id}, \\
& E_{1}^{*, *}=\left(\wedge^{*} \mathfrak{g} \otimes S^{*} \mathfrak{h}\right)^{\mathfrak{h}}, \quad d_{1}=\mathrm{d} \\
& E_{2}^{*, *}=E_{2}^{*, 0}=\left(\wedge^{*} \mathfrak{m}\right)^{\mathfrak{h}}, \quad d_{2}=0 .
\end{aligned}
$$

Then the proposition follows from Proposition 10.

2.2. Inverting p_{2}

In this subsection, taking our inspiration from [Mo, appendix], we prove the following

Proposition 13. There exists a L_{∞}-quasi-isomorphism

$$
\mathcal{Q}:\left(C^{c}\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}[2]\right), b_{\mathfrak{m}}+[,]_{G, \mathfrak{m}}\right) \rightarrow\left(C^{c}\left(\mathfrak{g}_{2}[2]\right), b+[,]_{G}\right)
$$

such that \mathcal{Q}^{1} is the natural inclusion and \mathcal{Q}^{n} takes values in $\left(\mathfrak{g}_{2}\right) \leqslant n-1$.
Proof. Let $\left(N, b_{N}\right) \subset\left(g_{2}, b\right)$ be the kernel of the surjective morphism of complexes $p_{2}:\left(\mathfrak{g}_{2}, b\right) \rightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}, b_{\mathfrak{m}}\right)$. It follows from Proposition 12 that there exists an operator $H: N^{*} \rightarrow N^{*-1}$ such that $H \circ H=0, b_{N} H+H b_{N}=$ id and $H\left(N_{\leqslant n}\right) \subset$ $N_{\leqslant n+1}$.

Now let us construct a L_{∞}-isomorphism

$$
\mathcal{F}:\left(C^{c}\left(\mathfrak{g}_{2}[2]\right), b+[,]_{G}\right) \xrightarrow{\sim}\left(C^{c}\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}[2] \oplus N[2]\right), b_{\mathfrak{m}}+b_{N}+[,]_{G, \mathfrak{m}}\right)
$$

with structure maps $\mathcal{F}^{n}: \Lambda^{n} \mathfrak{g}_{2} \rightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}} \oplus N\right)[1-n]$ such that

- \mathcal{F}^{1} is the sum of p_{2} with the projection on N along $\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}$ (in some sense \mathcal{F}^{1} is the identity),
- for any $n>1$ and $X \in\left(\Lambda^{n} g_{2}\right)_{\leqslant k}, \mathcal{F}^{n}(X) \in N_{\leqslant n+k-1}$.

Let us prove it by induction on n. First \mathcal{F}^{1} is a morphism of complexes by definition. Then let us define $\mathcal{K}_{2}: \Lambda^{2} \mathfrak{g}_{2} \rightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}} \oplus N\right)[1]$ by

$$
\mathcal{K}_{2}(x \Lambda y)=\left[\mathcal{F}^{1}(x), \mathcal{F}^{1}(y)\right]_{G, \mathfrak{m}}-\mathcal{F}^{1}\left([x, y]_{G}\right) .
$$

It takes values in $N[1]$ and is such that $b_{N} \mathcal{K}_{2}(x, y)+\mathcal{K}_{2}(b x, y)+\mathcal{K}_{2}(x, b y)=0$. Consequently, $\mathcal{F}^{2}:=H \circ \mathcal{K}_{2}: \Lambda^{2} \mathfrak{g}_{2} \rightarrow N$ is such that

$$
b_{N} \mathcal{F}^{2}(x, y)-\mathcal{F}^{2}(b x, y)-\mathcal{F}^{2}(x, b y)=\mathcal{K}_{2}(x, y) \quad\left(L_{\infty} \text {-condition for } \mathcal{F}^{2}\right)
$$

and for any $X \in\left(\Lambda^{2} \mathfrak{g}_{2}\right) \leqslant k, \mathcal{F}^{2}(X) \in N_{\leqslant k+1}$. After this, suppose we have constructed $\mathcal{F}^{1}, \ldots, \mathcal{F}^{n}$ and let us define

$$
\mathcal{K}_{n+1}:=[,]_{G, \mathfrak{m}} \circ \mathcal{F} \leqslant n-\mathcal{F} \leqslant n \circ[,]_{G}: \Lambda^{2} \mathfrak{g}_{2} \rightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}} \oplus N\right)[1]
$$

It obviously takes values in $N[1]$ and is such that $b_{N} K_{n+1}+K_{n+1} b=0$. Consequently, $\mathcal{F}^{n+1}:=H \circ K_{n+1}$ satisfies the L_{∞}-condition

$$
b_{N} \mathcal{F}^{n+1}-\mathcal{F}^{n+1} b=b_{N} H K_{n+1}-H K_{n+1} b=\left(b_{N} H+H b_{N}\right) K_{n+1}=K_{n+1}
$$

and for any $X \in\left(\Lambda^{n} \mathfrak{g}_{2}\right)_{\leqslant n+1}, \mathcal{F}^{n+1}(X) \in N_{\leqslant n+k}$ (since $\left.\mathcal{K}_{n+1}(X) \in N_{\leqslant n+k-1}\right)$.
Now let \mathcal{H} be the inverse of the isomorphism \mathcal{F}, it is such that for any $n \geqslant 1$ and $X \in\left(\Lambda^{n} \mathfrak{g}_{2}\right)_{\leqslant k}, \mathcal{H}^{n}(X) \in N_{\leqslant n+k-1}$. Finally, we obtain \mathcal{Q} by composing \mathcal{H} with the inclusion of dgla's $\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}[1] \hookrightarrow\left(\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}} \oplus N\right)[1]$.

2.3. End of the proof

Recall from [He, Chapter II Section 4.2] that $\left(T^{*} U \mathfrak{m}\right)^{\mathfrak{h}}=\operatorname{Diff}^{*}(G / H)^{G}$ and $\left(\wedge^{*} \mathfrak{m}\right)^{\mathfrak{h}}=\Gamma\left(G / H, \wedge^{*} T(G / H)\right)^{G}$ as dgla's. Remember also from [No, Chapter II Section 8] that G-invariant connections on G / H are in one-to-one correspondence with \mathfrak{h}-equivariant linear maps $\alpha: \mathfrak{m} \otimes \mathfrak{m} \rightarrow \mathfrak{m}$, and that the torsion tensor is given by $\alpha-\alpha^{21}-\mathrm{p} \circ[$,$] . Thus G / H$ is equipped with a G-invariant torsion free connection ∇, corresponding to the map $\alpha:=\frac{1}{2} \mathrm{p} \circ[$,$] . Then using a theorem of Dol-$ gushev, see [Do, Theorem 5], we obtain a G-equivariant L_{∞}-quasi-isomorphism ϕ :
$\Gamma\left(G / H, \wedge^{*} T(G / H)\right) \rightarrow \operatorname{Diff}^{*}(G / H)$ with first structure map $\phi^{1}=$ alt, which restricts to a L_{∞}-quasi-isomorphism at the level of G-invariants. Let us define $\psi:=\mathcal{Q} \circ \phi \circ p_{1}$: $\left(C^{c}\left(\mathfrak{g}_{1}[2]\right), \mathrm{d}+[],\right) \rightarrow\left(C^{c}\left(g_{2}[2]\right), b+[,]_{G}\right)$; it is a L_{∞}-quasi-isomorphism with first structure map $\psi^{1}=(\operatorname{alt} \otimes 1) \circ(\wedge \mathrm{p} \otimes \varepsilon)$.

Finally, define $V:=($ alt $\otimes \operatorname{sym}) \circ \delta: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}[-1]$ and use Lemma 22 to construct a L_{∞}-quasi-morphism $\Psi:\left(C^{c}\left(\mathfrak{g}_{1}[2]\right), \mathrm{d}+[],\right) \rightarrow\left(C^{c}\left(\mathfrak{g}_{2}[2]\right), b+[,]_{G}\right)$ with first structure map $\Psi^{1}=\psi^{1}+b \circ V+V \circ \mathrm{~d}$. Since for any $X \in\left(\mathcal{G}_{1}\right)_{k}$, then

$$
b \circ(\operatorname{alt} \otimes \operatorname{sym})(X)=(\operatorname{alt} \otimes \operatorname{sym}) \circ \mathrm{d}(X) \bmod \left(\mathfrak{g}_{2}\right) \leqslant k-1
$$

and thus

$$
\begin{aligned}
\Psi^{1}(X) & =\psi^{1}(X)+b V(X)+V(\mathrm{~d} X) \\
& =(\operatorname{alt} \otimes \operatorname{sym}) \circ\left(p_{1}+\mathrm{d} \delta+\delta \mathrm{d}\right)(X) \bmod \left(\mathfrak{g}_{2}\right) \leqslant k-1 \\
& =(\operatorname{alt} \otimes \operatorname{sym})(X) \bmod \left(g_{2}\right)_{\leqslant k-1} .
\end{aligned}
$$

Consequently, Ψ satisfies (F1). Moreover, it follows from Remark 23 that Ψ also satisfies (F2).

3. Classification

Theorem 9 implies a stronger result than just the existence of the twist quantization. Namely, since Ψ is a L_{∞}-quasi-isomorphism there is a bijection between the moduli spaces of Maurer-Cartan elements of dgla's $\left(\mathfrak{g}_{1}[1]\right)[[\hbar]]$ and $\left(\mathfrak{g}_{2}[1]\right)[[\hbar]]$.

3.1. Classification of algebraic and formal dynamical twists

Following [EE1], two dynamical twists $J(\lambda)$ and $J^{\prime}(\lambda)$ are said to be gauge equivalent if there exists a regular \mathfrak{h}-equivariant map $T(\lambda)=\exp (q)+O(\hbar) \in \operatorname{Reg}\left(\mathfrak{h}^{*}, U \mathfrak{g}\right)^{\mathfrak{h}}$ $[[\hbar]]$, with $q \in \operatorname{Reg}\left(\mathfrak{h}^{*}, \mathfrak{g}\right)^{\mathfrak{h}}$ such that $q(0)=0$, and satisfying

$$
\begin{equation*}
J^{\prime}(\lambda)=T^{12}(\lambda) * J(\lambda) * T^{2}(\lambda)^{-1} * T^{1}\left(\lambda+\hbar h^{2}\right)^{-1} \tag{9}
\end{equation*}
$$

Dealing with formal functions one can easily derive an equivalence relation for the corresponding algebraic dynamical twists $K=J(\hbar \lambda)$ and $K^{\prime}=J^{\prime}(\hbar \lambda)$:

$$
\begin{equation*}
K^{\prime}=Q^{12,3} K\left(Q^{2,3}\right)^{-1}\left(Q^{1,23}\right)^{-1} \tag{10}
\end{equation*}
$$

in $\left(U \mathfrak{g}^{\otimes 2} \otimes U \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]]$, with $Q=1+O(\hbar) \in(U \mathfrak{g} \otimes U \mathfrak{h})^{\mathfrak{h}}[[\hbar]]$ given by $T(\hbar \lambda)$.
Assume now we are in the reductive case.

Since the composition $\mathcal{Q}_{2} \circ \phi:\left(C^{c}\left((\wedge \mathfrak{m})^{\mathfrak{h}}[2]\right),[,]_{\mathfrak{m}}\right) \rightarrow\left(C^{c}\left(\mathfrak{g}_{2}[2]\right), b+[,]_{G}\right)$ in the previous section is a L_{∞}-quasi-isomorphism then we have a bijective correspondence

$$
\begin{equation*}
\frac{\left\{\pi \in \hbar\left(\wedge^{2} \mathfrak{m}\right)^{\mathfrak{h}}[[\hbar]] \text { s.t. }[\pi, \pi]_{\mathfrak{m}}=0\right\}}{G_{0}} \longleftrightarrow \frac{\{\text { algebraic dynamical twists }\}}{\text { gauge equivalence }(10)} \tag{11}
\end{equation*}
$$

where G_{0} is the prounipotent group corresponding to the Lie algebra $\hbar \mathfrak{m}^{\mathfrak{h}}[[\hbar]]$. Moreover, since the structure maps \mathcal{Q}_{2}^{n} take values in $\left(g_{2}\right)_{\leqslant n-1}$ then it appears that any algebraic dynamical twist is gauge equivalent to a one with the \hbar-adic valuation property and thus we have a bijection

$$
\begin{equation*}
\frac{\{\text { algebraic dynamical twists }\}}{\text { gauge equivalence (10) }} \longleftrightarrow \frac{\{\text { formal dynamical twists }\}}{\text { gauge equivalence }(9)} \tag{12}
\end{equation*}
$$

3.2. Classical counterpart

Assume that we are in the reductive case. Since p_{1} is a L_{∞}-quasi-isomorphism by Proposition 10 then we have a bijection

$$
\begin{gathered}
\frac{\left\{\alpha \in \hbar\left(\wedge^{2} \mathfrak{g} \otimes S \mathfrak{h}\right)^{\mathfrak{h}}[[\hbar]] \text { s.t. } \mathrm{d} \alpha+\frac{1}{2}[\alpha, \alpha]=0\right\}}{G_{1}} \\
\longleftrightarrow \frac{\left\{\pi \in \hbar\left(\wedge^{2} \mathfrak{m}\right)^{\mathfrak{h}}[[\hbar]] \text { s.t. }[\pi, \pi]_{\mathfrak{m}}=0\right\}}{G_{0}}
\end{gathered}
$$

where G_{1} is a prounipotent group and its action (by affine transformations) is given by the exponentiation of the infinitesimal action of its Lie algebra $\hbar(\mathfrak{g} \otimes S \mathfrak{h})^{\mathfrak{h}}[[\hbar]]:$

$$
\begin{equation*}
q \cdot \alpha=\mathrm{d} q+[q, \alpha] \quad\left(q \in \hbar(\mathfrak{g} \otimes S \mathfrak{h})^{\mathfrak{h}}[[\hbar]]\right) . \tag{13}
\end{equation*}
$$

Then going along the lines of Section 2.2 one can prove the following
Proposition 14. There exists a L_{∞}-quasi-isomorphism

$$
\mathcal{Q}_{1}:\left(C^{c}\left(\left(\wedge^{*} \mathfrak{m}\right)^{\mathfrak{b}}[2]\right),[,]_{\mathfrak{m}}\right) \rightarrow\left(C^{c}\left(\mathfrak{g}_{1}[2]\right), \mathrm{d}+[,]\right)
$$

such that \mathcal{Q}_{1}^{1} is the natural inclusion and \mathcal{Q}_{1}^{n} takes values in $\left(\mathfrak{g}_{1}\right)_{\leqslant n-1}$.
Consequently, any Maurer-Cartan element in $\left(\mathfrak{g}_{1}[1]\right)[[\hbar]]$ is equivalent to a one of the form $\hbar \rho_{\hbar}(\hbar \lambda)$, where $\rho_{\hbar} \in\left(\wedge^{2} \mathfrak{g} \hat{\otimes} \hat{S} h\right)^{\mathfrak{h}}[[\hbar]]$ satisfies CDYBE. In other words ρ_{\hbar} is a \hbar-dependant formal dynamical r-matrix. On such a ρ_{\hbar} the infinitesimal action (13)
becomes

$$
\begin{equation*}
q \cdot \rho_{\hbar}=-\sum_{i} h_{i} \wedge \frac{\partial q}{\partial \lambda^{i}}+\left[q, \rho_{\hbar}\right] \quad(q \in \mathfrak{g} \hat{\otimes} \hat{S} \mathfrak{h})^{\mathfrak{h}}[[\hbar]] . \tag{14}
\end{equation*}
$$

This action integrates in an affine action of some group $\widetilde{G_{1}}$ of \mathfrak{b}-equivariant formal maps with values in the Lie group G of \mathfrak{g}. And then we have a bijection

$$
\begin{equation*}
\frac{\left\{\pi \in \hbar\left(\wedge^{2} \mathfrak{m}\right)^{\mathfrak{h}}[[\hbar]] \text { s.t. }[\pi, \pi]_{\mathfrak{m}}=0\right\}}{G_{0}} \longleftrightarrow \frac{\{\text { form. dynam. } r \text {-mat. } / \mathbb{R}[[\hbar]]\}}{\widetilde{G}_{1}} \tag{15}
\end{equation*}
$$

Remark 15. This bijection has to be compared with Proposition 2.13 in [X2] and Section 3 of [ES]

Finally, combining (15), (11) and (12) we obtain the following generalization of Theorem 6.11 in [X2] to the case of a non-abelian base:

Theorem 16. Let $\pi \in\left(\wedge^{2} \mathfrak{m}\right)^{\mathfrak{h}}$ such that $[\pi, \pi]_{\mathfrak{m}}=0$. Then there are bijective correspondences between
(1) the set of \hbar-dependant and G-invariant Poisson structures $\pi_{\hbar}=\hbar \pi \bmod \hbar^{2}$ on G / H, modulo the action of G_{0},
(2) the set of \hbar-dependant formal dynamical r-matrices $\rho_{\hbar}(\lambda)$ such that $\rho_{\hbar}(0)=\pi \bmod \hbar$ in $\wedge^{2}(\mathfrak{g} / \mathfrak{b})[[\hbar]]$, modulo the action (14) of $\widetilde{G_{1}}$,
(3) the set of formal dynamical twists $J(\lambda)$ satisfying Alt $\frac{J(0)-1}{\hbar}=\pi \bmod \hbar$ in $\wedge^{2}(\mathfrak{g} / \mathfrak{h})$ $[[\hbar]]$, modulo gauge equivalence (9).

4. Another case when the twist quantization exists

In this section we assume that \mathfrak{h} is abelian and admits a Lie subalgebra \mathfrak{m} as complement.
Note that since \mathfrak{h} is abelian and \mathfrak{m} a Lie subalgebra, the projection $p: \mathfrak{g} \rightarrow \mathfrak{g}$ on \mathfrak{m} along \mathfrak{h} extends to a morphsim of graded Lie algebras $\wedge^{\prime} p:(\wedge \mathfrak{g})^{\mathfrak{h}} \rightarrow(\wedge \mathfrak{g})^{\mathfrak{h}}$ at the level of \mathfrak{h}-invariants. And thus $\wedge p \otimes \varepsilon:\left(\mathfrak{g}_{1}[1], \mathrm{d},[],\right) \rightarrow\left((\wedge \mathfrak{g})^{\mathfrak{h}}[1], 0,[],\right)$ is a morphism of dgla's. Then the natural inclusion id $\otimes 1:\left(T^{*} U \mathfrak{g}\right)^{\mathfrak{h}} \rightarrow \mathfrak{g}_{2}$ obviously allows one to consider $\left(T^{*} U \mathfrak{g}\right)^{\mathfrak{h}}[1]$ as a sub-dgla of \mathfrak{g}_{2} [1]. Finally recall from [Ca, Section 3.3] that there exists a L_{∞}-quasi-isomorphism $\mathcal{F}: C^{c}\left(\left(\wedge^{*} \mathfrak{g}\right)^{\mathfrak{h}}[2]\right) \rightarrow C^{c}\left(\left(T^{*} U \mathfrak{g}\right)^{\mathfrak{h}}[2]\right)$ with $\mathcal{F}^{1}=$ alt. By composing these maps one obtains a L_{∞}-morphism

$$
\widetilde{\mathcal{F}}:\left(\mathcal{G}_{1}, \mathrm{~d}+[,]\right) \rightarrow\left(\mathcal{G}_{2}, b+[,]_{G}\right)
$$

with values in $\left(\mathcal{G}_{2}\right) \leqslant 0$ and first structure map $\widetilde{\mathcal{F}}^{1}=($ alt $\otimes 1) \circ\left(\wedge^{\prime} p \otimes \varepsilon\right)$.

Theorem 17. There exists a L_{∞}-quasi-isomorphism

$$
\Psi:\left(\mathcal{G}_{1}, \mathrm{~d}+[,]\right) \rightarrow\left(\mathcal{G}_{2}, b+[,]_{G}\right)
$$

with properties (F1) and (F2) of Theorem 9.
Proof. First observe that since \mathfrak{h} is abelian then $\mathfrak{g}_{1} \cong\left((\wedge \mathfrak{g})^{\mathfrak{h}} \cap \wedge \mathfrak{m}\right) \otimes \wedge \mathfrak{h} \otimes S \mathfrak{h}$ as a vector space. Thus, if δ_{K} is as in the proof of Proposition 10 then $\delta:=\mathrm{id} \otimes \delta_{K}$ is a homotopy operator: $\delta \mathrm{d}+\mathrm{d} \delta=\mathrm{id}-\wedge^{\wedge} p \otimes \varepsilon$ and $\delta \circ \delta=0$.

Now we proceed like in Section 2.3: use Lemma 22 to construct Ψ with first structure map $\Psi^{1}=\widetilde{\mathcal{F}}^{1}+b \circ V+V \circ \mathrm{~d}$, where $V:=($ alt $\otimes \operatorname{sym}) \circ \delta: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}[-1]$.

It remains to prove that Ψ is a quasi-isomorphism. It follows from the first observation in this proof that $H^{*}\left(\mathfrak{g}_{1}, \mathrm{~d}\right)=(\wedge \mathfrak{g})^{\mathfrak{h}} \cap \wedge \mathfrak{\mathfrak { m }}$, which also equals $H^{*}\left(\mathfrak{g}_{2}, b\right)$ due to the spectral sequence argument. Consequently, $\widetilde{\mathcal{F}}^{1}$ is a quasi-isomorphism of complexes, and so is Ψ^{1}.

Finally, using the same argumentation as in the proof of Theorem 2 (Section 1.3) one obtains the

Theorem 18. If \mathfrak{h} is an abelian subalgebra of \mathfrak{g} with a Lie subalgebra as a complement, then any formal classical dynamical r-matrix for $(\mathfrak{g}, \mathfrak{h}, 0)$ admits a dynamical twist quantization (associated to the trivial associator).

Example 19. In particular, this allows us to quantize dynamical r-matrices arising from semi-direct products $\mathfrak{g}=\mathfrak{m} \ltimes \mathbb{C}^{n}$ like in [EN, Example 3.7].

5. Concluding remarks

Let us first observe that if \mathfrak{h} is abelian then $\left(\wedge^{*} \mathfrak{g}\right)^{\mathfrak{h}} \cap \wedge^{*} \mathfrak{m}[1]$ (resp. $\left(T^{*} U \mathfrak{g}\right)^{\mathfrak{h}} \cap$ $\left.T^{*} \operatorname{sym}(\mathrm{Sm})[1]\right)$ inherits a dgla structure from the one of $\mathfrak{g}_{1}[1]$ (resp. $\left.\mathfrak{g}_{2}[1]\right)$ and $H^{*}\left(\mathfrak{g}_{1}, \mathrm{~d}\right)=\left(\wedge^{*} \mathfrak{g}\right)^{\mathfrak{h}} \cap \wedge^{*} \mathfrak{m}=H^{*}\left(\mathfrak{g}_{2}, b\right)$, for any complement \mathfrak{m} of \mathfrak{h}. Thus I conjecture that there exists a L_{∞}-quasi-isomorphism between $\left(\wedge^{*} \mathfrak{g}\right)^{\mathfrak{h}} \cap \wedge^{*} \mathfrak{m}[1]$ and $\left(T^{*} U \mathfrak{g}\right)^{\mathfrak{h}} \cap$ $T^{*} \operatorname{sym}(S \mathfrak{m})[1]$ which generalizes together ϕ of Section 2.3 and \mathcal{F} of Section 4. In particular, this would imply Conjecture 1 in the abelian (and non-modified) case.

Let us then mention that one can consider a non-triangular (i.e., non-antisymmetric) version of non-modified classical dynamical r-matrices. Namely, \mathfrak{b}-equivariant maps $r \in \operatorname{Reg}\left(\mathfrak{h}^{*}, \mathfrak{g} \otimes \mathfrak{g}\right)$ such that $\operatorname{CYB}(r)-\operatorname{Alt}(d r)=0$. According to [X3], a quantization of such a r is a \mathfrak{h}-equivariant map $R=1+\hbar r+O\left(\hbar^{2}\right) \in \operatorname{Reg}\left(\mathfrak{h}^{*}, U \mathfrak{g}^{\otimes 2}\right)[[\hbar]]$ that satisfies the quantum dynamical Yang-Baxter equation (QDYBE)

$$
\begin{equation*}
R^{1,2}(\lambda) * R^{1,3}\left(\lambda+\hbar h^{2}\right) * R^{2,3}(\lambda)=R^{2,3}\left(\lambda+\hbar h^{1}\right) * R^{1,3}(\lambda) * R^{1,2}\left(\lambda+\hbar h^{3}\right) \tag{16}
\end{equation*}
$$

Question 1. Does such a quantization always exist?

The most famous example of non-triangular dynamical r-matrices was found in [AM] by Alekseev and Meinrenken, then extended successively to a more general context in [EV,ES,EE1], and quantized in [EE1].

Following [EE1], remark that for any non-triangular dynamical r-matrix r such that $r+r^{\mathrm{op}}=t \in\left(S^{2} \mathfrak{g}\right)^{\mathfrak{g}}$ (quasi-triangular case) one can define $\rho:=r-t / 2$ and $Z:=$ $\frac{1}{4}\left[t^{1,2}, t^{2,3}\right]$. Then ρ is a modified dynamical r-matrix for $(\mathfrak{g}, \mathfrak{h}, Z)$; moreover, the assignment $r \longmapsto \rho$ is a bijective correspondence between quasi-triangular dynamical r-matrices for $(\mathfrak{g}, \mathfrak{h}, t)$ and modified dynamical r-matrices for $(\mathfrak{g}, \mathfrak{h}, Z)$. Now observe that if $J(\lambda)$ is a dynamical twist quantizing ρ, then $R(\lambda)=J^{\circ \mathrm{op}}(\lambda)^{-1} * e^{\hbar t / 2} * J(\lambda)$ is a quantum dynamical R-matrix quantizing r.

In this paper we have constructed such a dynamical twist in the triangular case $t=0$. One can ask

Question 2. Does such a dynamical twist exist for any quasi-triangular dynamical r-matrix? At least in the reductive and abelian cases?

This question seems to be more reasonable than the previous one.
More generally one can ask if Conjecture 1 (and its smooth and meromorphic versions) is true in general. A positive answer was given in [EE1] when $\mathfrak{h}=\mathfrak{g}$; but unfortunately it is not known in general, even for the non-dynamical case $\mathfrak{h}=\{0\}$ (which is the last problem of Drinfeld [Dr1]: quantization of coboundary Lie bialgebras).

Finally, let me mention that if $r(\lambda)$ is a triangular dynamical r-matrix for $(\mathfrak{g}, \mathfrak{h})$, then the bivector field

$$
\pi:=\overrightarrow{r(\lambda)}+\sum_{i} \frac{\partial}{\partial \lambda^{i}} \wedge \overrightarrow{h_{i}}+\pi_{\mathrm{b}^{*}}
$$

is a $G \times H$-biinvariant Poisson structure on $G \times \mathfrak{h}^{*}$ and the projection $p: G \times \mathfrak{h}^{*} \rightarrow \mathfrak{b}$ * is a momentum map. Moreover, according to [X3] any dynamical twist quantization $J(\lambda)$ of $r(\lambda)$ allows us to define a $G \times H$-biinvariant star-product $*$ quantizing π on $G \times \mathfrak{b}^{*}$ as follows:

$$
\begin{array}{ll}
f * g=f * P B W & \text { if } f, g \in C^{\infty}\left(\mathfrak{h}^{*}\right), \\
f * g=f g & \text { if } f \in C^{\infty}(G), g \in C^{\infty}\left(\mathfrak{b}^{*}\right), \\
f * g=\exp \left(\hbar \sum_{i} \frac{\partial}{\partial \lambda^{i}} \otimes \overrightarrow{h_{i}}\right) \cdot(f \otimes g) & \text { if } f \in C^{\infty}\left(\mathfrak{h}^{*}\right), g \in C^{\infty}(G), \\
f * g=\overrightarrow{J(\lambda)}(f \otimes g) & \text { if } \quad f, g \in C^{\infty}(G) .
\end{array}
$$

This way the map $p^{*}:\left(\operatorname{Fct}\left(\mathfrak{h}^{*}\right)[[\hbar]], * P B W\right) \rightarrow\left(\operatorname{Fct}\left(G \times \mathfrak{h}^{*}\right)[[\hbar]], *\right)$ becomes a quantum momentum map in the sens of [X1].

So there may be a way to see momentum maps and their quantum analogues as Maurer-Cartan elements in dgla's.

Acknowledgements

I thank Benjamin Enriquez for many useful discussions on this subject. I also thank the referee for his warned comments.

Appendix: Homotopy Lie algebras

See [HS] for a detailed discussion of the theory.
Recall that a L_{∞}-algebra structure on a graded vector space \mathfrak{g} is a degree 1 coderivation Q on the cofree cocommutative coalgebra $C^{c}(\mathfrak{g}[1])$ such that $Q \circ Q=0$. By cofreeness, such a coderivation Q is uniquely determined by structure maps $Q^{n}: \Lambda^{n} \mathfrak{g} \rightarrow$ $\mathfrak{g}[2-n]$ which satisfy an infinite collection of equations. In particular $\left(\mathfrak{g}, Q^{1}\right)$ is a cochain complex.

Example 20. Any dgla (\mathfrak{g}, d, [,]) is canonically a L_{∞}-algebra. Namely, Q is given by structure maps $Q^{1}=\mathrm{d}, Q^{2}=[$,$] and Q^{n}=0$ for $n>2$.

A L_{∞}-morphism between two L_{∞}-algebras $\left(\mathfrak{g}_{1}, Q_{1}\right)$ and $\left(g_{2}, Q_{2}\right)$ is a degree 0 morphism of coalgebras $F: C^{c}\left(g_{1}[1]\right) \rightarrow C^{c}\left(g_{2}[1]\right)$ such that $F \circ Q_{1}=Q_{2} \circ F$. Again by cofreeness, such a morphism is uniquely determined by structure maps $F^{n}: \Lambda^{n} \mathfrak{g}_{1} \rightarrow$ $\mathfrak{g}_{2}[1-n]$ which satisfy an infinite collection of equations. In particular $F^{1}: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a morphism of complexes; when it induces an isomorphism in cohomology we say that F is a L_{∞}-quasi-isomorphism.

Example 21. Any morphism of dgla's is a L_{∞}-morphism with all structure maps equal to zero except the first one.

In this paper we use many times the following
Lemma 22 (Dolgushev [Dof). Let $F: C^{c}\left(\mathfrak{g}_{1}[1]\right) \rightarrow C^{c}\left(\mathfrak{g}_{2}[1]\right)$ be a L_{∞}-morphism. For any linear map $V: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}[-1]$ there exists a L_{∞}-morphism $\Psi: C^{c}\left(\mathfrak{g}_{1}[1]\right) \rightarrow$ $C^{c}\left(g_{2}[1]\right)$ with first structure map $\Psi^{1}=F^{1}+Q_{2}^{1} \circ V+V \circ Q_{1}^{1}$. Moreover, if F is a L_{∞}-quasi-isomorphism then Ψ is also.

Proof. First remark that V extends uniquely to a linear map $C^{c}\left(\mathfrak{g}_{1}[1]\right) \rightarrow C^{c}\left(g_{2}[1]\right)$ of degree -1 such that

$$
\begin{aligned}
\Delta_{2} \circ V= & \left(F \otimes V+V \otimes F+\frac{1}{2} V \otimes\left(Q_{2} \circ V+V \circ Q_{1}\right)\right. \\
& \left.+\frac{1}{2}\left(Q_{2} \circ V+V \circ Q_{1}\right) \otimes V\right) \circ \Delta_{1},
\end{aligned}
$$

where Δ_{1} and Δ_{2} denote comultiplications in $C^{c}\left(\mathfrak{g}_{1}[1]\right)$ and $C^{c}\left(\mathfrak{g}_{2}[1]\right)$, respectively.
Then define $\Psi:=F+Q_{2} \circ V+V \circ Q_{1}$.

Remark 23. Assume that in the previous lemma \mathfrak{g}_{1} and \mathfrak{g}_{2} are filtrated, F is such that F^{n} takes values in $\left(\mathfrak{g}_{2}\right)_{\leqslant n-1}$, and $V\left(\left(\mathfrak{g}_{1}\right) \leqslant k\right) \subset\left(\mathfrak{g}_{2}\right) \leqslant k+1$. Then one can obviously check that for any $X \in\left(\Lambda^{n} \mathfrak{g}_{1}\right) \leqslant k, F^{n}(X) \in\left(\mathfrak{g}_{2}\right) \leqslant n+k-1$.

References

[AM] A. Alekseev, E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000) 135-172.
[Ba] J.H. Baues, The double bar and cobar construction, Compos. Math. 43 (1981) 331-341.
[Ca] D. Calaque, Formality for Lie algebroids, Comm. Math. Phys. 257 (3) (2005) 563-578.
[Do] V. Dolgushev, Covariant and equivariant formality theorem, Adv. Math. 191 (2005) 147-177.
[Dr2] V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419-1457.
[Dr1] V. Drinfeld, On some unsolved problems in quantum group theory, Lecture Notes Math. 1510 (1992) 1-8.
[EE1] B. Enriquez, P. Etingof, Quantization of Alekseev-Meinrenken dynamical r-matrices, Trans. Amer. Math. Soc. (ser. 2) 210 (2003) 81-98.
[EE2] B. Enriquez, P. Etingof, Quantization of classical dynamical r-matrices with nonabelian base, Comm. Math. Phys. 254 (3) (2005) 603-650.
[EN] P. Etingof, D. Nikshych, Vertex-IRF transformations and quantization of dynamical r-matrices, Math. Res. Lett. 8 (2001) 331-345.
[ES] P. Etingof, O. Schiffmann, On the moduli space of classical dynamical r-matrices, Math. Res. Lett. 8 (2001) 157-170.
[EV] P. Etingof, A. Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998) 77-120.
[Fe] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians, vol. 1, 2, Zurich, 1994, Birkhäuser, Basel, 1995, pp. 1247-1255.
[Ge] E. Getzler, Cartan homotopy formula and the Gauss-Manin connection in cyclic homology, Israel Math. Conf. Proc. 102 (1993) 256-283.
[He] S. Helgason, Groups and Geometric Analysis, Pure Applied Mathematics, vol. 113, Orlando, 1984.
[HS] V. Hinich, V. Schechtman, Homotopy Lie algebras, I.M. Gelfand Seminar, Adv. Sov. Math. 16 (2) (1993) 1-28.
[Kh] M. Khalkhali, Operations on cyclic homology, the X complex, and a conjecture of Deligne, Comm. Math. Phys. 202 (2) (1999) 309-323.
[Mo] T. Mochizuki, An application of formality theorem to a quantization of dynamical r-matrices, unpublished preprint.
[No] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954) 33-65.
[Ta] D. Tamarkin, Another proof of M. Kontsevich formality theorem for \mathbb{R}^{n}, preprint math.QA/9803025, 1998.
[X1] P. Xu, Fedosov *-products and quantum momentum maps, Comm. Math. Phys. 197 (1998) 167-197.
[X2] P. Xu, Triangular dynamical r-matrices and quantization, Adv. Math. 166 (1) (2002) 1-49.
[X3] P. Xu, Quantum dynamical Yang-Baxter equation over a nonabelian base, Comm. Math. Phys. 226 (3) (2002) 475-495.

[^0]: E-mail address: calaque@math.u-strasbg.fr.

