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Abstract

In this paper we prove the existence of a formal dynamical twist quantization for any triangular
and non-modified formal classical dynamical r-matrix in the reductive case. The dynamical
twist is constructed as the image of the dynamical r-matrix by a Lso-quasi-isomorphism. This
quasi-isomorphism also allows us to classify formal dynamical twist quantizations up to gauge
equivalence.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

In [Fe], Felder introduced dynamical versions of both classical and quantum Yang—
Baxter equations which has been generalized to the case of a non-abelian base in
[EV] for the classical part and in [X3] for the quantum part. Naturally this leads to
quantization problems which have been formulated in terms of twist quantization a la
Drinfeld [Drl] in [X2,X3,EE1,EE2].

Let us formulate this problem in the general context. Consider an inclusion b C g of
Lie algebras equipped with an element Z € (A%g)9. A (modified) classical dynamical
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r-matrix for (g, b, Z) is a regular (meaning C*°, meromorphic, formal, ... depending

on the context) h-equivariant map p : h* — A%g which satisfies the (modified) classical
dynamical Yang—Baxter equation (CDYBE)

CYB(p) — Alt(dp) = Z, (1)

where CYB(p) :=[p"%, p" 1+ [p"2, p>31 + [p"3, p>*1 = 31p, pl and

0 2,3 0 1,3
Alt(dp) :=Z<h} gﬂ. — ;i h*og” )

Here (h;) and (1') are dual basis of [ and bh*.

Let ® =1+ O(hz) € (Ug®3)9[[#]] be an associator quantizing Z (of which the
existence was proved in [Dr2, Proposition 3.10]). A dynamical twist quantization of a
(modified) classical dynamical r-matrix p associated to @ is a regular [)-equivariant map
J =14 O(h) € Reg(h*, Ug®?)[[#]] such that AltJT*1 = pmod# and which satisfies
the (modified) dynamical twist equation (DTE)

J230) % JV2 4+ a03) = @~ T2 () % 123 (), 2)

where * denotes the PBW star-product of functions on §* and

JR20 4+ k3 = Z o Z @51 - i ) @ (hiy ... hiy).

k>0 iy,

Now observe that many (modified) classical dynamical r-matrices can be viewed as
formal ones by taking their Taylor expansion at 0. In this paper we are interested in
the following conjecture:

Conjecture 1 ([EEI]). Any (modified) formal classical dynamical r-matrix admits a
dynamical twist quantization.

Let us reformulate DTE in the formal framework. A formal (modified) dynami-
cal twist is an element J(1) = 1+ O(h) € (Uq®2®Sb)b [7]] which satisfies DTE,
and J'2() 4 #ih?) € (Ug®3&SH)[[#]] is equal to (id®? @ A)(J) where A : S —
(Ug®Sb)[ [#]] is induced by b o x > #fix ® 1 + 1 ® x. Then define K := J(#l) €
Ug®? ® SI))[’[[h]] which we view as an element of (Ug®? ® UI))[’[[h]] using the
symmetrization map S — UD. Since J is a solution of DTE K satisfies the (modified)
algebraic dynamical twist equation (ADTE)

K1234K1234 (@~ 1)123K1234K234 (3)
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Moreover and by construction, K = 1+, >1 7" K,, has the #-adic valuation property.
Namely, U} is filtered by (UD)<, = ker (id — 0 £)®"*1 0 A® where ¢ : Uh — k
and n : k — Ul are the counit and unit maps, and K, € (Uh)<,—1. Conversely, any
algebraic dynamical twist having the #i-adic valuation property can be obtained from a
unique formal dynamical twist by this procedure.

This paper, in which we always assume Z = 0 and ® = 1 (non-modified case), is
organized as follow.

In Section 1 we define two differential graded Lie algebras (dgla’s), respectively,
associated to classical dynamical r-matrices and algebraic dynamical twists. Then we
formulate the main theorem of this paper which states that if Iy admits an adb-invariant
complement (the reductive case) then these two dgla’s are Lso-quasi-isomorphic and
we prove that it implies Conjecture 1 in this case, which generalizes Theorem 5.3
of [X2]:

Theorem 2. In the reductive case, any formal classical dynamical r-matrix for (g, b, 0)
admits a dynamical twist quantization (associated to the trivial associator).

The second section is devoted to the proof of the main theorem of Section 1: using
an equivariant formality theorem for homogeneous spaces which is obtained from [Do],
we construct a Lo-quasi-isomorphism which we then modify in order to obtain the
desired one. We use this Loo-quasi-isomorphism to classify formal dynamical twist
quantizations up to gauge equivalence for the reductive case in Section 3. In Section
4 we prove that if g =1 @ m for Iy abelian and m a Lie subalgebra then the results
of Sections 1 and 2 are still true in this situation. We conclude the paper with some
open questions, and recall basic results for Lo,-algebras in an appendix.

1. Definitions and results

Let ) C g be an inclusion of Lie algebras.

1.1. Algebraic structures associated to CDYBE

Let us consider the following graded vector space

CDYB := A*g® Sh= P r'g® Sh
k>0

equipped with the differential d defined by

~

l
dx A Axg @ hy ... hy) ::—ZhiAx1A~--Axk®h1...h1h[. )
i=l1
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With the exterior product A it becomes a differential graded commutative associative
algebra. Moreover, one can define a graded Lie bracket of degree —1 on CDYB which
is the Lie bracket of g extended to CDYB in the following way:

la,b Acl=la,b]Ac+ (—=D)II=DPIp A, c]. (5)

Thus one can observe that polynomial solutions to CDYBE are exactly elements p €
CDYB of degree 2 such that dp + %[p, p] = 0. We would like to say that such a p is
a Maurer-Cartan element but (CDYB[1], d, [, ]) is not a differential graded Lie algebra
(dgla).

Instead, remember that we are interested in f-equivariant solutions of CDYBE (i.e.,
dynamical r-matrices) and thus consider the subspace g; = (CDYB)I) of D-invariants
with the same differential and bracket.

Proposition 3. (g;[1],d,[,]) is a dgla. Moreover (g;,d, A, [.]) is a Gerstenhaber
algebra.

Proof. Leta=x|A---Axx®hy...hyand b =y A---Ay;®my ...m; be h-invariant
elements in g;. We want to show that

dla, b] = [da, b] + (~1)*'[a, db]. 6)
The Lh.s. of (6) is equal to

A

N
—(Zh,-/\[x1/\---/\xk,yl/\--~/\yl]®h1...hsm1...m,h,-
i=1

t
+ij/\[xlf\-~~/\xk,y1/\~~-/\yl]®h1...h‘ym1...mtn%j).
j=1

The first term in the r.h.s. of (6) gives

s

DD e A Ak AR U A Ayl = hi ALXUA - A X, YA A D)

i=1

®hy...hym ...m;fli

and for the second term we obtain

((_l)k_l[ijCl/\“'/\xk]/\YI/\"'/\)’l_mj/\[xl/\"‘/\xk,J’I/\“‘/\)’l])

t
=1

J

®h1...hsm1...m,ﬁ1j.
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Thus, the difference between the l.h.s. and the r.h.s. of (6) is equal to

N

k
(—1)"(2 XIA AX AR LA A ®hy .. hgmy .. mihi
i=1

1
+Z[mj,xlA---Axk]Ayl/\--~/\yz®h1...hsm1...m,r?zj).
j=1

Then using h-invariance of a and b one obtains

(—l)k_lle/\--~/\xk/\y1/\-~-/\yl
i,j

®(hy ... hgmy ...m(lhi,m;]— [mj, hiDhim;) = 0.

The second statement of the proposition is obvious from the definition (5) of the
bracket. [J

Let p(4) € (Azg®3’b)b be a formal classical dynamical r-matrix. Since p satisfies
CDYBE, o :=#p(fil) € fig;[[#]] is a Maurer-Cartan element (i.e., do + %[oc, o] = 0).

1.2. Algebraic structures associated to ADTE

Let us now consider the graded vector space

ADT :=T*Ug® Uh = P @ Ug® Ub

k=0
equipped with the differential b given by
k+1 ‘ -
b(P) := P2k +2 4 Z (=i ploniithekt2 for P e @FUGg @ UD. @)

i=1

Remark 4. This is just the coboundary operator of Hochschild’s cohomology with
value in a comodule; and b*> = 0 follows directly from an easy calculation.

One can define on ADT an associative product U (the cup product) which is given
on homogeneous elements P € @ Ug® Uh and Q € ® Ug® U by

PUQ = plokktloktlt] gkl ki1,

Proposition 5. (ADT, b, V) is a differential graded associative algebra.
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Proof. The cup product is obviously associative. Thus, the only thing we have to check
is that

b(PUQ)=bPUQ+ (—D!PlPUbO. (8)

Let k = |P| and [ = |Q|. The l.h.s. of (8) is equal to

k

i=k+1
The first line of this expression is equal to

BP U Q — (—1)kH! ploshktl kb2 o2 k42

and the last term of the same expression gives
(_l)k(P U bQ _ P],...,k,k+l...k+l+2Qk+2,...,k+l+2)'
The proposition is proved. [

Recall that in the case ) = {0} one can define a brace algebra structure on (T*Ug)[1]
(see [Ge]). Unfortunately we are not able to extend this structure to ADT in general.
Since we deal with h-equivariant solutions of ADTE we can consider the subspace
g = (ADT)Y of b-invariants. Let us now define a collection of linear homogeneous
maps of degree zero {—|—, ..., —}: g[1]® g2[1]®m — @go[1] indexed by m >0, and
{P|Q1,..., Qn} is given by

Z (= 1)E Pt H Lt bk it Lo i1

0< iy, im+hkm <n
itk <iry

m
« 1_[ Q?+l,...,ix+ks,is+kx+l...n+]’
s=i
where ky = |Qs|, n = |P|+ > k¢ —m and 6 = ) (kg — 1)is.

Proposition 6. (g,[1], {—|—, ..., —}) is a brace algebra.

Proof. Since we work with h-invariant elements one can remark that if is 4k, <i; then
istlds s s thsHlontl o Q;’+1"“’l’+k”"+k’+l“'"+] commute. Using this the proof
becomes identical to the case when ) = 0 (see [Ge] for example). O
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Now observe that since m = 193 € (®*Ug ® Ub)b is such that {m|m} = 0 one
obtains a Bso-algebra structure [Ba] on g, (see [Kh]). More precisely, we have a
differential graded bialgebra structure on the cofree tensorial coalgebra 7¢(g,[1]) of
which structure maps a”, a”4 are given by

e a'(P)=bP = (—=DPI=1[m, P)g, where
[P, Qlg = {P|Q} — (=1)(IPI=DUCI=D | py

e a2(P, Q) ={m|P,Q}=PUDQ.
o ¥l =410 =id.

o a'"(P;Q1,..., Qn) =(PIQ1, ..., Qn} for n>1.
e All other maps are zero.

In particular, we have
Proposition 7. (g,[11, 5, [, 1g) is a dgla.

Remark 8. Since that for any graded vector space V, dg bialgebra structures on
the cofree coassociative coalgebra 7°V are in one-to-one correspondence with dg
Lie bialgebra structures on the cofree Lie coalgebra LV (see [Ta, Section 5]), then
L¢(g,[1]) becomes a dg Lie bialgebra with differential and Lie bracket given by maps
1", IP4 such that /! = b and I'! = [, ]g. Therefore dy := Zi>oli + ZWI?OIWI :
C(L(gp[1D)) — C(L (g,[1])) defines a Goo-algebra structure on g, (daody = 0
since dj is just the Chevalley—Eilenberg differential on the dg Lie algebra L¢(g,[1])).

1.3. Main result and proof of Theorem 2

First of all, observe that CDYB, g; and G; := C(g;[2]) have a natural grading
induced by the one of SI. In the same way ADT, g, and Gy := C°(g,[2]) have a
natural filtration induced by the one of Ul. Our main goal is to prove the following
theorem, which is sufficient to obtain algebraic dynamical twists from formal dynamical

r-matrices.

Theorem 9. In the reductive case, there exists a Lo-quasi-isomorphism

Y: G, d+LD— Gb+1 1)

with the following two filtration properties:

(F1) VX € (g, P'(X) = (alt ® sym)(X) mod (g,) <k—1-
(F2) VX € (A"g)k, P"(X) € (82) <nth—1-

Thus, we have
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Proof of Theorem 2. Now consider a formal solution p(4) € (/\zg®3’b)b to CDYBE.
Let us define o := #ip(fiA) € figy[[7i]] which is a Maurer-Cartan element in fig;[[#]].
The Loo-morphism property implies that & := Y oo, % Y"(A"o) is a Maurer-Cartan
element in #g,[[#]]; this exactly means that K := 1 +3 € (®°Ug® U [))[’[[h]] satisfies
ADTE. Moreover, due to (F2) the coefficient K, of #" in K lies in (92) <n—1. It
means that there exists J € (U g®2®$’b)b[[ﬁ]] satisfying DTE and such that K =
(id®? ® sym)(J (fil)). Finally, property (F1) obviously implies that the semi-classical
limit condition £ _ﬁ] ? = pmod7 is satisfied. [

2. Proof of Theorem 9

In this section we assume that ¢ = [) & m with [h, m] C m. Let us denote by
p: g — m the projection on m along by; it is h-equivariant.

2.1. Resolutions

Let us first observe that the bilinear map [, Jiy := (A'p) o[, ] defines a graded Lie
bracket of degree —1 on (A*m)D. Then we prove

Proposition 10. The natural map py : (g[11,d,[,]) — ((/\*m)b[l],O, L) is a
morphism of dgla’s. Moreover, there exists an operator 6 : g — ng such that
od + déo =id — p;, 6000 =0 and 5((g1)k) C (81)k+1- In particular, p induces an
isomorphism in cohomology.

Proof. The projection p; := (A'p) ® ¢ : (CDYB,d) — (A*m,0) is a bh-equivariant
morphism of complexes, and it obviously restricts to a morphism of (differential) graded
Lie algebras at the level of h-invariants.

Moreover, A"g ® Sh= @p+q:n APm Q@ A1h ® Sbh as a h-module; and under this
identification d becomes —id ® dg, where dx : A*h ® Sh — A*T1h ® S is Koszul’s
coboundary operator, and p; corresponds to the projection on the part of zero antisym-
metric and symmetric degrees in [). Let us define 6 = id ® ox with dg : A*h® S*h —
A1 ® §*H1h defined by

Ok(Xi AN AXp Qhy...hy)

1 .
i Yi=Dixi A K AX, @By hyx; im0 #£0

0 otherwise

Finally, remark that J is a h-equivariant homotopy operator: dd + dé = id — p; and
000 = 0. The proposition is proved. [

Now we prove a similar result for g,. Let us first define Umnt := sym(Sm) C Ug; this
is a sub-coalgebra of Ug and thus T*Um equipped with its Hochschild’s coboundary
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operator by, becomes a cochain subcomplex of the Hochschild complex (T*Ug, by) of
Ug. We also have the following

Lemma 11. Ug=Ug-h® Um as a filtered h-module. Moreover [, |g.m := (®p)ol, ]
defines a graded Lie bracket of degree —1 on (T*U n)b.

Proof. See [He, Chapter II Section 4.2] for the first statement. The second statement
follows from a direct computation. [

Then we prove

Proposition 12. The natural map p; : (9,[11, b, [, 1) — ((T*Um)b[l], b, [, lc.m) is
a morphism of dgla’s. Moreover, there exists an operator K : g5 — g§_1 such that
kb + bk =id — po, kox = 0 and K((gz)gk) C (87) <k+1- In particular, py induces
an isomorphism in cohomology.

Proof. The projection p; := (' p) ® € : (ADT, b) — (T*Um, by,) is a h-equivariant
morphism of complexes, and it obviously restricts to a morphism of dgla’s at the
level of b-invariants (by Lemma 11).

Remember that g, has a natural filtration induced by the one of UD. Then one
obtains a spectral sequence of which we compute the first terms:

Ei* = (T*Ug® S*D)Y,  do = by ®id,

Ef* = (A'g@ 8D, 4 =d,

Ey* = EX' = (Wb, dp=o.
Then the proposition follows from Proposition 10. O

2.2. Inverting p»

In this subsection, taking our inspiration from [Mo, appendix], we prove the following

Proposition 13. There exists a Lo-quasi-isomorphism
Q : (CEUT*UM 2], by + [ 1.m) = (CE(g[2D). b+ [ 16)
such that Q' is the natural inclusion and Q" takes values in (92) <n—1-
Proof. Let (N, by) C (g,,b) be the kernel of the surjective morphism of complexes
p2 i (8, b) = (T*U m)b, by). It follows from Proposition 12 that there exists an

operator H : N* — N*~! such that Ho H = 0, byH + Hby = id and H(Ng,) C
N<nyr-
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Now let us construct a Lo-isomorphism
F (C@l2D). b+ [16) > (C°(T UM [2] & NI2]). b + by + [ 16.m)

with structure maps F" : A"g, — (T*Um)® & N)[1 — n] such that

e F!is the sum of p, with the projection on N along (T*Um)Y (in some sense F'
is the identity),
o forany n > 1 and X € (A"gy) <k, F'(X) € N<ptk—1-

Let us prove it by induction on n. First F! is a morphism of complexes by definition.
Then let us define K : A2g2 — (T*Um)Y & N)[1] by

Ka(xAy) = [F ), F* D lgm — F ([x, ylo)-

It takes values in N[1] and is such that by Ky (x, y) + Ka(bx, y) + Ka(x, by) = 0.
Consequently, F2? := H o K5 : Azgz — N is such that

byF*(x,y) — FX(bx,y) — F2(x,by) = Ka(x,y) (Lso-condition for F2)

and for any X € (Azgz)gk, FX(X)eN <k+1. After this, suppose we have constructed
F'. ..., F" and let us define

Kns1 =L lgmo FS" = FS" o[, 1 : A2gy — (T*Um)Y @ N)[1].

It obviously takes values in N[1] and is such that by K, 11+ K, +1b = 0. Consequently,
F'tl = H o K, satisfies the Lo-condition

bN}“”‘H — Frtlp = bvHK,+1 — HK,+1b = (byH + HbN)K 41 = K1

and for any X € (A"g,) <pr1, F'"H(X) € Ncpax (since Kpp1(X) € N<pak—1).

Now let H be the inverse of the isomorphism F, it is such that for any n>1 and
X € (N'"gy) <k» H"(X) € N¢ptk—1. Finally, we obtain Q by composing H with the
inclusion of dgla’s (T*Um)[1] = (T*Um)Y @ N)[1]. O

2.3. End of the proof

Recall from [He, Chapter II Section 4.2] that (T*Um)Y = Diff*(G/H)®¢ and
(AFm)d = ['(G/H, N*T(G/H))¢ as dgla’s. Remember also from [No, Chapter II
Section 8] that G-invariant connections on G/H are in one-to-one correspondence
with -equivariant linear maps o : m ® m — 1, and that the torsion tensor is given
by o« — o' —po[,]. Thus G/H is equipped with a G-invariant torsion free con-
nection V, corresponding to the map o := %p o[,]. Then using a theorem of Dol-
gushev, see [Do, Theorem 5], we obtain a G-equivariant L.o-quasi-isomorphism ¢ :
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I'(G/H, N*T(G/H)) — Diff*(G/H) with first structure map ¢! = alt, which restricts
to a Loo-quasi-isomorphism at the level of G-invariants. Let us define  := Qo ¢op; :
(C(gi[2D,d+ [ = (C(gy3[2D), b+ [, ]6); it is a Loo-quasi-isomorphism with first
structure map 1,01 =(@t®l)o(ApRe).

Finally, define V := (alt®sym)od : g; — g,[—1] and use Lemma 22 to construct a
Loo-quasi-morphism ¥ : (C¢(g([2]), d+[, I) = (C(g,[2]), b+, lg) with first structure
map ¥' = W +boV +Vod. Since for any X € (Gj), then

b o (alt ® sym)(X) = (alt ® sym) o d(X) mod (g;) <i—1
and thus

LX) = Yy (X) + bV (X) + V(dX)
= (alt ® sym) o (p1 +dd + 0d)(X) mod (gy) <i—1
= (alt ® sym)(X) mod (g5) <k—1-

Consequently, ¥ satisfies (F1). Moreover, it follows from Remark 23 that ¥ also
satisfies (F2). O
3. Classification

Theorem 9 implies a stronger result than just the existence of the twist quantization.

Namely, since W is a Lo-quasi-isomorphism there is a bijection between the moduli
spaces of Maurer-Cartan elements of dgla’s (g;[1])[[#]] and (g,[1D[[#]].

3.1. Classification of algebraic and formal dynamical twists
Following [EE1], two dynamical twists J(A1) and J'(1) are said to be gauge equiva-

lent if there exists a regular f-equivariant map T (1) = exp(q) + O(#i) € Reg(h*, Ug)?
[[#]], with g € Reg(h*, g)b such that ¢(0) = 0, and satisfying

J ) =T*WN)«JQ)*T>Q) "« T 'O+ x>~ 9)

Dealing with formal functions one can easily derive an equivalence relation for the
corresponding algebraic dynamical twists K = J(#il) and K’ = J'(fi2):

K/ — Q12,3K(Q2,3)—1(Q1,23)—1 (10)

in (Ug®2 ® Ub)b[[ﬁ]], with 0 =14+0%) € (Ug® Ub)b[[h]] given by T (Ai1).
Assume now we are in the reductive case.
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Since the composition Qp 0 ¢ : (C"((/\m)b[Z]), [, Im) = (C(g2[2]), b+, 1) in the
previous section is a Loo-quasi-isomorphism then we have a bijective correspondence

(e ﬁ(/\zm)h[[ﬁ]] s.t. [n, ]l = 0} PN {algebraic dynamical twists}

. ; 1D
Gy gauge equivalence (10)

where Gy is the prounipotent group corresponding to the Lie algebra #mb[[#]]. More-
over, since the structure maps Q5 take values in (g,)<,—1 then it appears that any
algebraic dynamical twist is gauge equivalent to a one with the %-adic valuation property
and thus we have a bijection

{algebraic dynamical twists} {formal dynamical twists}

12
gauge equivalence (10) gauge equivalence (9) (12)

3.2. Classical counterpart

Assume that we are in the reductive case. Since pj is a Lo-quasi-isomorphism by
Proposition 10 then we have a bijection

{o € H(A2g ® SHO[[A]] s.t. do+ (e, o] = 0}
Gy

(€ AAZMO[[A]] s.t. (7, Tl = O}
<> )
Go

where G is a prounipotent group and its action (by affine transformations) is given
by the exponentiation of the infinitesimal action of its Lie algebra #(g ® Sb)b[[h]]:

q-a=dg+1[g, 4 (q€(g® SHOIH). (13)

Then going along the lines of Section 2.2 one can prove the following

Proposition 14. There exists a Lyo-quasi-isomorphism
Q1 (CE(A MP[2]), [ Im) — (C(gy[2D).d + [, ])

such that Q% is the natural inclusion and Q’l’ takes values in (§1) <n—1-

Consequently, any Maurer-Cartan element in (g;[1])[[#]] is equivalent to a one of
the form #ip4(fil), where py € (/\2g®Sb)b[[h]] satisfies CDYBE. In other words py is
a fi-dependant formal dynamical r-matrix. On such a pj the infinitesimal action (13)
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becomes

Z hi Ay + [q.p4) (g € 3&SH)"[[A]]. (14)

This action integrates in an affine action of some group G~1 of bh-equivariant formal
maps with values in the Lie group G of g. And then we have a bijection

{r € Hi(A2m)O[[A]] s.t. [7, 7l = O} __, {form. dynam. r-mat./R[[#]]}
Go G '

s)

Remark 15. This bijection has to be compared with Proposition 2.13 in [X2] and
Section 3 of [ES]

Finally, combining (15), (11) and (12) we obtain the following generalization of
Theorem 6.11 in [X2] to the case of a non-abelian base:

Theorem 16. Let 7 € (/\zm)h such that [, wly = 0. Then there are bijective corre-
spondences between

(1) the set of fi-dependant and G-invariant Poisson structures ny = fit mod # on G /H,
modulo the action of Gy,

(2) the set of h-dependant formal dynamical r-matrices py, (4) such that py(0) = nmod i
in A2(g/D)[[A]], modulo the action (14) of G,

(3) the set of formal dynamical twists J(2) satisfying Alt—=—
[[#]], modulo gauge equivalence (9).

YO = wmodt in A*(g/h)

4. Another case when the twist quantization exists

In this section we assume that [) is abelian and admits a Lie subalgebra m as
complement.

Note that since b is abelian and m a Lie subalgebra, the projection p : ¢ — g on m
along [) extends to a morphsim of graded Lie algebras A'p : (/\g)b — (/\g)b at the level
of h-invariants. And thus A'p ® ¢ : (g;[11,d,[,]) — ((/\g)b[l], 0,[, D is a morphism
of dgla’s. Then the natural inclusion id ® 1 : (T*U g)b — g, obviously allows one
to consider (T*U g)[’[l] as a sub-dgla of g,[1]. Finally recall from [Ca, Section 3.3]
that there exists a Loo-quasi-isomorphism F : CC((/\*g)b[Z]) — CC((T*Ug)b[Z]) with
F! = alt. By composing these maps one obtains a L ,-morphism

F:Gd+[LD)— Gunb+116).

with values in (G2) <o and first structure map Fl = @alt®1)o(A'pQe).
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Theorem 17. There exists a Lo-quasi-isomorphism

Y:@d+[D)— (G, b+1[16)

with properties (F1) and (F2) of Theorem 9.

Proof. First observe that since b is abelian then g, >~ (AP N AM) @ AD® Sh as a
vector space. Thus, if dg is as in the proof of Proposition 10 then ¢ :=id ® dg is a
homotopy operator: dd +dé =id —A'p® ¢ and 606 = 0.

Now we proceed like in Section 2.3: use Lemma 22 to construct ‘¥ with first structure
map W' = F!' +boV + Vod, where V := (alt ® sym) 0 d : g; — go[—1].

It remains to prove that ¥ is a quasi-isomorphism. It follows from the first observa-
tion in this proof that H*(g;, d) = (/\g)bﬂ/\rg, which also equals H*(g,, b) due to the
spectral sequence argument. Consequently, F' is a quasi-isomorphism of complexes,
and so is P'. O

Finally, using the same argumentation as in the proof of Theorem 2 (Section 1.3)
one obtains the

Theorem 18. If ) is an abelian subalgebra of g with a Lie subalgebra as a complement,
then any formal classical dynamical r-matrix for (g,1,0) admits a dynamical twist
quantization (associated to the trivial associator).

Example 19. In particular, this allows us to quantize dynamical r-matrices arising from
semi-direct products g = mxC" like in [EN, Example 3.7].

5. Concluding remarks

Let us first observe that if ) is abelian then (/\*g)b N A*m[1] (resp. (T*Ug)b N
T*sym(Sm)[1]) inherits a dgla structure from the one of g;[1] (resp. g,[1]) and
H*(g;,d) = (/\*g)bﬂ/\*m = H*(g,, b), for any complement nt of f). Thus I conjecture
that there exists a Lso-quasi-isomorphism between (/\*g)b N A*m[1] and (T*U g)b N
T*sym(Sm)[1] which generalizes together ¢ of Section 2.3 and F of Section 4. In
particular, this would imply Conjecture 1 in the abelian (and non-modified) case.

Let us then mention that one can consider a non-triangular (i.e., non-antisymmetric)
version of non-modified classical dynamical r-matrices. Namely, bh-equivariant maps
r € Reg(h*, g® g) such that CYB(r) — Alt(dr) = 0. According to [X3], a quantization
of such a r is a bh-equivariant map R = 1 + #Air + O(ﬁz) € Reg(h*, Ug®?)[[#]] that
satisfies the quantum dynamical Yang—Baxter equation (QDYBE)

RY2(0) * RV +#k%) « RZ3(J) = R (L +#hY) « RV () + RV2(U.+ A1), (16)

Question 1. Does such a quantization always exist?
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The most famous example of non-triangular dynamical r-matrices was found in [AM]
by Alekseev and Meinrenken, then extended successively to a more general context in
[EV.ES,EE1], and quantized in [EE1].

Following [EE1], remark that for any non-triangular dynamical r-matrix r such that
r+r? =1t e (5%g)9 (quasi-triangular case) one can define p :=r —¢/2 and Z :=
}‘[tl’z,t“]. Then p is a modified dynamical r-matrix for (g, b, Z); moreover, the
assignment » —> p is a bijective correspondence between quasi-triangular dynamical
r-matrices for (g, D, ) and modified dynamical r-matrices for (g, ), Z). Now observe
that if J(A) is a dynamical twist quantizing p, then R(1) = JP(1)~! « M2 % J(2) is
a quantum dynamical R-matrix quantizing r.

In this paper we have constructed such a dynamical twist in the triangular case r = 0.
One can ask

Question 2. Does such a dynamical twist exist for any quasi-triangular dynamical
r-matrix? At least in the reductive and abelian cases?

This question seems to be more reasonable than the previous one.

More generally one can ask if Conjecture 1 (and its smooth and meromorphic ver-
sions) is true in general. A positive answer was given in [EE1] when ) = g; but
unfortunately it is not known in general, even for the non-dynamical case [) = {0}
(which is the last problem of Drinfeld [Drl]: quantization of coboundary Lie bialge-
bras).

Finally, let me mention that if () is a triangular dynamical r-matrix for (g, b)), then
the bivector field

—

0
n:=r(i)+zﬁ/\ﬁ+ﬂ:b*

is a G x H-biinvariant Poisson structure on G x h* and the projection p : G x h* — h*
is a momentum map. Moreover, according to [X3] any dynamical twist quantization
J(2) of r(Z) allows us to define a G x H-biinvariant star-product * quantizing 7 on
G x b* as follows:

fxg=f*prpwg if f, g€ C®®h"),
fxg=rfg N if feC®G), g C®DH"),
frg=exp (Y L @) (f@g if feC®O), ge ™),
frg=TR(f®g) if f, geC®0).

This way the map p* : (Fct(h™)[[#]], *ppw) — (Fct(G x h*)[[#]], *) becomes a quan-
tum momentum map in the sens of [X1].

So there may be a way to see momentum maps and their quantum analogues as
Maurer-Cartan elements in dgla’s.
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Appendix: Homotopy Lie algebras

See [HS] for a detailed discussion of the theory.

Recall that a Loo-algebra structure on a graded vector space ¢ is a degree 1 coderiva-
tion Q on the cofree cocommutative coalgebra C¢(g[1]) such that Qo Q = 0. By cofree-
ness, such a coderivation Q is uniquely determined by structure maps Q" : A"g —
g[2 — n] which satisfy an infinite collection of equations. In particular (g, Q') is a
cochain complex.

Example 20. Any dgla (g,d,[,]) is canonically a Ls.-algebra. Namely, Q is given
by structure maps Q' =d, Q> =[,] and Q" =0 for n > 2.

A Ly,-morphism between two Lo-algebras (g, Q1) and (g,, O2) is a degree 0
morphism of coalgebras F' : C°(g;[1]) = C(g,[1]) such that F o Q1 = Q20 F. Again
by cofreeness, such a morphism is uniquely determined by structure maps F" : A"g; —
g,[1 — n] which satisfy an infinite collection of equations. In particular F L. g; — 0
is a morphism of complexes; when it induces an isomorphism in cohomology we say
that F is a Lso-quasi-isomorphism.

Example 21. Any morphism of dgla’s is a Ly-morphism with all structure maps
equal to zero except the first one.

In this paper we use many times the following

Lemma 22 (Dolgushev [Do]). Let F : C°(g;[1]) — C(9,[1]) be a Loo-morphism.
For any linear map V : g; — @,[—1] there exists a Loo-morphism ¥ : C°(g;[1]) —
C(gp[1]) with first structure map y! = Fl 4 Q% oV+Vo Q%. Moreover, if F is a
L o-quasi-isomorphism then Y is also.

Proof. First remark that V extends uniquely to a linear map C(g;[1]) — C(g,[1])
of degree —1 such that

AoV =(FOV+VR®F+35V®(Q20V+Vo0))
+3(020V+Vo0)®V)oA,

where A; and A, denote comultiplications in C¢(g;[1]) and C(g,[1]), respectively.
Then define ¥ .= F+ Q20 V+VoQ;. O
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Remark 23. Assume that in the previous lemma g; and g, are filtrated, F is such that
F" takes values in (g,)<n—1, and V((gl)gk) C (92) <k+1- Then one can obviously
check that for any X € (A"g) <k, F"(X) € (82) <n-tk—1-
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