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Abstract

In this paper we prove the existence of a formal dynamical twist quantization for any triangular
and non-modified formal classical dynamical r-matrix in the reductive case. The dynamical
twist is constructed as the image of the dynamical r-matrix by a L∞-quasi-isomorphism. This
quasi-isomorphism also allows us to classify formal dynamical twist quantizations up to gauge
equivalence.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

In [Fe], Felder introduced dynamical versions of both classical and quantum Yang–
Baxter equations which has been generalized to the case of a non-abelian base in
[EV] for the classical part and in [X3] for the quantum part. Naturally this leads to
quantization problems which have been formulated in terms of twist quantization à la
Drinfeld [Dr1] in [X2,X3,EE1,EE2].

Let us formulate this problem in the general context. Consider an inclusion h ⊂ g of
Lie algebras equipped with an element Z ∈ (∧3g)g. A (modified) classical dynamical
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r-matrix for (g, h, Z) is a regular (meaning C∞, meromorphic, formal, . . . depending
on the context) h-equivariant map � : h∗ → ∧2g which satisfies the (modified) classical
dynamical Yang–Baxter equation (CDYBE)

CYB(�)− Alt(d�) = Z, (1)

where CYB(�) := [�1,2, �1,3] + [�1,2, �2,3] + [�1,3, �2,3] = 1
2 [�, �] and

Alt(d�) :=
∑

i

(
h1

i

��2,3

��i
− h2

i

��1,3

��i
+ h3

i

��1,2

��i

)
.

Here (hi) and (�i ) are dual basis of h and h∗.
Let � = 1 + O(22

) ∈ (Ug⊗3)g[[2]] be an associator quantizing Z (of which the
existence was proved in [Dr2, Proposition 3.10]). A dynamical twist quantization of a
(modified) classical dynamical r-matrix � associated to � is a regular h-equivariant map
J = 1 + O(2) ∈ Reg(h∗, Ug⊗2)[[2]] such that Alt J−1

2 = � mod 2 and which satisfies
the (modified) dynamical twist equation (DTE)

J 12,3(�) ∗ J 1,2(�+ 2h3) = �−1J 1,23(�) ∗ J 2,3(�), (2)

where ∗ denotes the PBW star-product of functions on h∗ and

J 1,2(�+ 2h3) :=
∑
k �0

2k

k!
∑

i1,...,ik

(��i1 . . . ��ik J )(�)⊗ (hi1 . . . hik ).

Now observe that many (modified) classical dynamical r-matrices can be viewed as
formal ones by taking their Taylor expansion at 0. In this paper we are interested in
the following conjecture:

Conjecture 1 ([EE1]). Any (modified) formal classical dynamical r-matrix admits a
dynamical twist quantization.

Let us reformulate DTE in the formal framework. A formal (modified) dynami-
cal twist is an element J (�) = 1 + O(2) ∈ (Ug⊗2⊗̂Ŝh)h[[2]] which satisfies DTE,
and J 1,2(� + 2h3) ∈ (Ug⊗3⊗̂Ŝh)[[2]] is equal to (id⊗2 ⊗ �̃)(J ) where �̃ : Ŝh →
(Ug⊗̂Ŝh)[[2]] is induced by h � x 	→ 2x ⊗ 1 + 1 ⊗ x. Then define K := J (2�) ∈
(Ug⊗2 ⊗ Sh)h[[2]] which we view as an element of (Ug⊗2 ⊗ Uh)h[[2]] using the
symmetrization map Sh→ Uh. Since J is a solution of DTE K satisfies the (modified)
algebraic dynamical twist equation (ADTE)

K12,3,4K1,2,34 = (�−1)1,2,3K1,23,4K2,3,4. (3)



86 D. Calaque / Advances in Mathematics 204 (2006) 84–100

Moreover and by construction, K = 1+∑
n�1 2

n
Kn has the 2-adic valuation property.

Namely, Uh is filtered by (Uh)�n = ker (id − � ◦ ε)⊗n+1 ◦ �(n) where ε : Uh → k
and � : k→ Uh are the counit and unit maps, and Kn ∈ (Uh)�n−1. Conversely, any
algebraic dynamical twist having the 2-adic valuation property can be obtained from a
unique formal dynamical twist by this procedure.

This paper, in which we always assume Z = 0 and � = 1 (non-modified case), is
organized as follow.

In Section 1 we define two differential graded Lie algebras (dgla’s), respectively,
associated to classical dynamical r-matrices and algebraic dynamical twists. Then we
formulate the main theorem of this paper which states that if h admits an adh-invariant
complement (the reductive case) then these two dgla’s are L∞-quasi-isomorphic and
we prove that it implies Conjecture 1 in this case, which generalizes Theorem 5.3
of [X2]:

Theorem 2. In the reductive case, any formal classical dynamical r-matrix for (g, h, 0)

admits a dynamical twist quantization (associated to the trivial associator).

The second section is devoted to the proof of the main theorem of Section 1: using
an equivariant formality theorem for homogeneous spaces which is obtained from [Do],
we construct a L∞-quasi-isomorphism which we then modify in order to obtain the
desired one. We use this L∞-quasi-isomorphism to classify formal dynamical twist
quantizations up to gauge equivalence for the reductive case in Section 3. In Section
4 we prove that if g = h ⊕m for h abelian and m a Lie subalgebra then the results
of Sections 1 and 2 are still true in this situation. We conclude the paper with some
open questions, and recall basic results for L∞-algebras in an appendix.

1. Definitions and results

Let h ⊂ g be an inclusion of Lie algebras.

1.1. Algebraic structures associated to CDYBE

Let us consider the following graded vector space

CDYB := ∧∗g⊗ Sh =
⊕
k �0

∧kg⊗ Sh

equipped with the differential d defined by

d(x1 ∧ · · · ∧ xk ⊗ h1 . . . hl) := −
l∑

i=1

hi ∧ x1 ∧ · · · ∧ xk ⊗ h1 . . . hlĥi . (4)
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With the exterior product ∧ it becomes a differential graded commutative associative
algebra. Moreover, one can define a graded Lie bracket of degree −1 on CDYB which
is the Lie bracket of g extended to CDYB in the following way:

[a, b ∧ c] = [a, b] ∧ c + (−1)(|a|−1)|b|b ∧ [a, c]. (5)

Thus one can observe that polynomial solutions to CDYBE are exactly elements � ∈
CDYB of degree 2 such that d�+ 1

2 [�, �] = 0. We would like to say that such a � is
a Maurer-Cartan element but (CDYB[1], d, [, ]) is not a differential graded Lie algebra
(dgla).

Instead, remember that we are interested in h-equivariant solutions of CDYBE (i.e.,
dynamical r-matrices) and thus consider the subspace g1 = (CDYB)h of h-invariants
with the same differential and bracket.

Proposition 3. (g1[1], d, [, ]) is a dgla. Moreover (g1, d,∧, [, ]) is a Gerstenhaber
algebra.

Proof. Let a = x1∧· · ·∧xk⊗h1 . . . hs and b = y1∧· · ·∧yl⊗m1 . . . mt be h-invariant
elements in g1. We want to show that

d[a, b] = [da, b] + (−1)k−1[a, db]. (6)

The l.h.s. of (6) is equal to

−
( s∑

i=1

hi ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl] ⊗ h1 . . . hsm1 . . . mt ĥi

+
t∑

j=1

mj ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl] ⊗ h1 . . . hsm1 . . . mt m̂j

)
.

The first term in the r.h.s. of (6) gives

s∑
i=1

(
(−1)k−1x1 ∧ · · · ∧ xk ∧ [hi, y1 ∧ · · · ∧ yl] − hi ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]

)

⊗h1 . . . hsm1 . . . mt ĥi

and for the second term we obtain

t∑
j=1

(
(−1)k−1[mj , x1 ∧ · · · ∧ xk] ∧ y1 ∧ · · · ∧ yl −mj ∧ [x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yl]

)
⊗h1 . . . hsm1 . . . mt m̂j .
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Thus, the difference between the l.h.s. and the r.h.s. of (6) is equal to

(−1)k
( k∑

i=1

x1 ∧ · · · ∧ xk ∧ [hi, y1 ∧ · · · ∧ yl] ⊗ h1 . . . hsm1 . . . mt ĥi

+
l∑

j=1

[mj , x1 ∧ · · · ∧ xk] ∧ y1 ∧ · · · ∧ yl ⊗ h1 . . . hsm1 . . . mt m̂j

)
.

Then using h-invariance of a and b one obtains

(−1)k−1
∑
i,j

x1 ∧ · · · ∧ xk ∧ y1 ∧ · · · ∧ yl

⊗(
h1 . . . hsm1 . . . mt ([hi, mj ] − [mj , hi])ĥim̂j

) = 0.

The second statement of the proposition is obvious from the definition (5) of the
bracket. �

Let �(�) ∈ (∧2g⊗̂Ŝh)h be a formal classical dynamical r-matrix. Since � satisfies
CDYBE, � := 2�(2�) ∈ 2g1[[2]] is a Maurer-Cartan element (i.e., d�+ 1

2 [�, �] = 0).

1.2. Algebraic structures associated to ADTE

Let us now consider the graded vector space

ADT := T ∗Ug⊗ Uh =
⊕
k �0

⊗kUg⊗ Uh

equipped with the differential b given by

b(P ) := P 2,...,k+2 +
k+1∑
i=1

(−1)iP 1,...,ii+1,...,k+2 for P ∈ ⊗kUg⊗ Uh. (7)

Remark 4. This is just the coboundary operator of Hochschild’s cohomology with
value in a comodule; and b2 = 0 follows directly from an easy calculation.

One can define on ADT an associative product ∪ (the cup product) which is given
on homogeneous elements P ∈ ⊗kUg⊗ Uh and Q ∈ ⊗lUg⊗ Uh by

P ∪Q := P 1,...,k,k+1...k+l+1Qk+1,...,k+l+1.

Proposition 5. (ADT, b,∪) is a differential graded associative algebra.
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Proof. The cup product is obviously associative. Thus, the only thing we have to check
is that

b(P ∪Q) = bP ∪Q+ (−1)|P |P ∪ bQ. (8)

Let k = |P | and l = |Q|. The l.h.s. of (8) is equal to

P 2,...,k+1,k+2...k+l+2Qk+2,...,k+l+2 +
k∑

i=1

(−1)iP 1,...,ii+1,...,k+1,k+2...k+l+2Qk+2,...,k+l+2

+
k+l+1∑
i=k+1

(−1)iP 1,...,k,k+1...k+l+2Qk+1,...,ii+1,...,k+l+2.

The first line of this expression is equal to

bP ∪Q− (−1)k+1P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2

and the last term of the same expression gives

(−1)k
(
P ∪ bQ− P 1,...,k,k+1...k+l+2Qk+2,...,k+l+2).

The proposition is proved. �

Recall that in the case h = {0} one can define a brace algebra structure on (T ∗Ug)[1]
(see [Ge]). Unfortunately we are not able to extend this structure to ADT in general.
Since we deal with h-equivariant solutions of ADTE we can consider the subspace
g2 = (ADT)h of h-invariants. Let us now define a collection of linear homogeneous
maps of degree zero {−|−, . . . ,−} : g2[1] ⊗ g2[1]⊗m → g2[1] indexed by m�0, and
{P |Q1, . . . , Qm} is given by∑

0� i1,im+km �n
il+kl � il+1

(−1)�P 1,...,i1+1...i1+k1,...,im+1...im+km,...,n+1

×
m∏

s=i

Qis+1,...,is+ks ,is+ks+1...n+1
s ,

where ks = |Qs |, n = |P | +∑
s ks −m and � =∑

s (ks − 1)is .

Proposition 6. (g2[1], {−|−, . . . ,−}) is a brace algebra.

Proof. Since we work with h-invariant elements one can remark that if is+ks � it then
Q

is+1,...,is+ks ,is+ks+1...n+1
s and Q

it+1,...,it+kt ,it+kt+1...n+1
t commute. Using this the proof

becomes identical to the case when h = 0 (see [Ge] for example). �
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Now observe that since m = 1⊗3 ∈ (⊗2Ug ⊗ Uh)h is such that {m|m} = 0 one
obtains a B∞-algebra structure [Ba] on g2 (see [Kh]). More precisely, we have a
differential graded bialgebra structure on the cofree tensorial coalgebra T c(g2[1]) of
which structure maps an, ap,q are given by

• a1(P ) = bP = (−1)|P |−1[m, P ]G, where

[P, Q]G := {P |Q} − (−1)(|P |−1)(|Q|−1){Q|P }

• a2(P, Q) = {m|P, Q} = P ∪Q.
• a0,1 = a1,0 = id.
• a1,n(P ;Q1, . . . , Qn) = {P |Q1, . . . , Qn} for n�1.
• All other maps are zero.

In particular, we have

Proposition 7. (g2[1], b, [, ]G) is a dgla.

Remark 8. Since that for any graded vector space V, dg bialgebra structures on
the cofree coassociative coalgebra T cV are in one-to-one correspondence with dg
Lie bialgebra structures on the cofree Lie coalgebra LcV (see [Ta, Section 5]), then
Lc(g2[1]) becomes a dg Lie bialgebra with differential and Lie bracket given by maps
ln, lp,q such that l1 = b and l1,1 = [, ]G. Therefore d2 := ∑

i �0 li +∑
p,q �0 lp,q :

Cc(Lc(g2[1])) → Cc(Lc(g2[1])) defines a G∞-algebra structure on g2 (d2 ◦ d2 = 0
since d2 is just the Chevalley–Eilenberg differential on the dg Lie algebra Lc(g2[1])).

1.3. Main result and proof of Theorem 2

First of all, observe that CDYB, g1 and G1 := Cc(g1[2]) have a natural grading
induced by the one of Sh. In the same way ADT, g2 and G2 := Cc(g2[2]) have a
natural filtration induced by the one of Uh. Our main goal is to prove the following
theorem, which is sufficient to obtain algebraic dynamical twists from formal dynamical
r-matrices.

Theorem 9. In the reductive case, there exists a L∞-quasi-isomorphism

� : (G1, d + [, ])→ (G2, b + [, ]G)

with the following two filtration properties:

(F1) ∀X ∈ (g1)k , �1(X) = (alt ⊗ sym)(X) mod (g2)�k−1.
(F2) ∀X ∈ (�ng1)k , �n(X) ∈ (g2)�n+k−1.

Thus, we have
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Proof of Theorem 2. Now consider a formal solution �(�) ∈ (∧2g⊗̂Ŝh)h to CDYBE.
Let us define � := 2�(2�) ∈ 2g1[[2]] which is a Maurer-Cartan element in 2g1[[2]].
The L∞-morphism property implies that �̃ := ∑∞

n=1
1
n! �

n(�n�) is a Maurer-Cartan

element in 2g2[[2]]; this exactly means that K := 1+ �̃ ∈ (⊗2Ug⊗Uh)h[[2]] satisfies
ADTE. Moreover, due to (F2) the coefficient Kn of 2n in K lies in (g2)�n−1. It
means that there exists J ∈ (Ug⊗2⊗̂Ŝh)h[[2]] satisfying DTE and such that K =
(id⊗2 ⊗ sym)(J (2�)). Finally, property (F1) obviously implies that the semi-classical
limit condition J−J op

2 = � mod 2 is satisfied. �

2. Proof of Theorem 9

In this section we assume that g = h ⊕ m with [h,m] ⊂ m. Let us denote by
p : g→ m the projection on m along h; it is h-equivariant.

2.1. Resolutions

Let us first observe that the bilinear map [, ]m := (∧·p) ◦ [, ] defines a graded Lie
bracket of degree −1 on (∧∗m)h. Then we prove

Proposition 10. The natural map p1 : (g1[1], d, [, ]) → ((∧∗m)h[1], 0, [, ]m) is a
morphism of dgla’s. Moreover, there exists an operator � : g∗1 → g∗−1

1 such that
�d + d� = id − p1, � ◦ � = 0 and �

(
(g1)k

) ⊂ (g1)k+1. In particular, p1 induces an
isomorphism in cohomology.

Proof. The projection p1 := (∧·p) ⊗ ε : (CDYB, d) → (∧∗m, 0) is a h-equivariant
morphism of complexes, and it obviously restricts to a morphism of (differential) graded
Lie algebras at the level of h-invariants.

Moreover, ∧ng ⊗ Sh�
⊕

p+q=n ∧pm ⊗ ∧qh ⊗ Sh as a h-module; and under this

identification d becomes −id ⊗ dK , where dK : ∧∗h⊗ Sh→ ∧∗+1h⊗ Sh is Koszul’s
coboundary operator, and p1 corresponds to the projection on the part of zero antisym-
metric and symmetric degrees in h. Let us define � = id⊗ �K with �K : ∧∗h⊗ S∗h→
∧∗−1h⊗ S∗+1h defined by

�K(x1 ∧ · · · ∧ xn ⊗ h1 . . . hm)

=
⎧⎨
⎩

1

m+ n

∑
i (−1)ix1 ∧ · · · x̂i · · · ∧ xn ⊗ h1 . . . hmxi if m+ n �= 0

0 otherwise

Finally, remark that � is a h-equivariant homotopy operator: �d + d� = id − p1 and
� ◦ � = 0. The proposition is proved. �

Now we prove a similar result for g2. Let us first define Um := sym(Sm) ⊂ Ug; this
is a sub-coalgebra of Ug and thus T ∗Um equipped with its Hochschild’s coboundary
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operator bm becomes a cochain subcomplex of the Hochschild complex (T ∗Ug, bg) of
Ug. We also have the following

Lemma 11. Ug = Ug ·h⊕Um as a filtered h-module. Moreover [, ]G,m := (⊗·p)◦ [, ]
defines a graded Lie bracket of degree −1 on (T ∗Um)h.

Proof. See [He, Chapter II Section 4.2] for the first statement. The second statement
follows from a direct computation. �

Then we prove

Proposition 12. The natural map p2 : (g2[1], b, [, ]G)→ ((T ∗Um)h[1], bm, [, ]G,m) is
a morphism of dgla’s. Moreover, there exists an operator � : g∗2 → g∗−1

2 such that
�b + b� = id − p2, � ◦ � = 0 and �

(
(g2)�k

) ⊂ (g2)�k+1. In particular, p2 induces
an isomorphism in cohomology.

Proof. The projection p2 := (⊗·p) ⊗ ε : (ADT, b) → (T ∗Um, bm) is a h-equivariant
morphism of complexes, and it obviously restricts to a morphism of dgla’s at the
level of h-invariants (by Lemma 11).

Remember that g2 has a natural filtration induced by the one of Uh. Then one
obtains a spectral sequence of which we compute the first terms:

E
∗,∗
0 = (T ∗Ug⊗ S∗h)h, d0 = bg ⊗ id,

E
∗,∗
1 = (∧∗g⊗ S∗h)h, d1 = d,

E
∗,∗
2 = E

∗,0
2 = (∧∗m)h, d2 = 0.

Then the proposition follows from Proposition 10. �

2.2. Inverting p2

In this subsection, taking our inspiration from [Mo, appendix], we prove the following

Proposition 13. There exists a L∞-quasi-isomorphism

Q : (Cc((T ∗Um)h[2]), bm + [, ]G,m)→ (Cc(g2[2]), b + [, ]G)

such that Q1 is the natural inclusion and Qn takes values in (g2)�n−1.

Proof. Let (N, bN) ⊂ (g2, b) be the kernel of the surjective morphism of complexes
p2 : (g2, b) → ((T ∗Um)h, bm). It follows from Proposition 12 that there exists an
operator H : N∗ → N∗−1 such that H ◦ H = 0, bNH + HbN = id and H(N�n) ⊂
N�n+1.
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Now let us construct a L∞-isomorphism

F : (Cc(g2[2]), b + [, ]G
)−̃→(

Cc((T ∗Um)h[2] ⊕N [2]), bm + bN + [, ]G,m

)
with structure maps Fn : �ng2 → ((T ∗Um)h ⊕N)[1− n] such that

• F1 is the sum of p2 with the projection on N along (T ∗Um)h (in some sense F1

is the identity),
• for any n > 1 and X ∈ (�ng2)�k , Fn(X) ∈ N�n+k−1.

Let us prove it by induction on n. First F1 is a morphism of complexes by definition.
Then let us define K2 : �2g2 → ((T ∗Um)h ⊕N)[1] by

K2(x�y) = [F1(x), F1(y)]G,m − F1([x, y]G).

It takes values in N [1] and is such that bNK2(x, y) + K2(bx, y) + K2(x, by) = 0.
Consequently, F2 := H ◦K2 : �2g2 → N is such that

bNF2(x, y)− F2(bx, y)− F2(x, by) = K2(x, y) (L∞-condition for F2)

and for any X ∈ (�2g2)�k , F2(X) ∈ N�k+1. After this, suppose we have constructed
F1, . . . ,Fn and let us define

Kn+1 := [, ]G,m ◦ F �n − F �n ◦ [, ]G : �2g2 → ((T ∗Um)h ⊕N)[1].

It obviously takes values in N [1] and is such that bNKn+1+Kn+1b = 0. Consequently,
Fn+1 := H ◦Kn+1 satisfies the L∞-condition

bNFn+1 − Fn+1b = bNHKn+1 −HKn+1b = (bNH +HbN)Kn+1 = Kn+1

and for any X ∈ (�ng2)�n+1, Fn+1(X) ∈ N�n+k (since Kn+1(X) ∈ N�n+k−1).
Now let H be the inverse of the isomorphism F , it is such that for any n�1 and

X ∈ (�ng2)�k , Hn(X) ∈ N�n+k−1. Finally, we obtain Q by composing H with the
inclusion of dgla’s (T ∗Um)h[1] ↪→ ((T ∗Um)h ⊕N)[1]. �

2.3. End of the proof

Recall from [He, Chapter II Section 4.2] that (T ∗Um)h = Diff∗(G/H)G and
(∧∗m)h = �(G/H,∧∗T (G/H))G as dgla’s. Remember also from [No, Chapter II
Section 8] that G-invariant connections on G/H are in one-to-one correspondence
with h-equivariant linear maps � : m ⊗ m → m, and that the torsion tensor is given
by � − �21 − p ◦ [, ]. Thus G/H is equipped with a G-invariant torsion free con-
nection ∇, corresponding to the map � := 1

2 p ◦ [, ]. Then using a theorem of Dol-
gushev, see [Do, Theorem 5], we obtain a G-equivariant L∞-quasi-isomorphism � :
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�(G/H,∧∗T (G/H))→ Diff∗(G/H) with first structure map �1 = alt, which restricts
to a L∞-quasi-isomorphism at the level of G-invariants. Let us define 	 := Q◦�◦p1 :
(Cc(g1[2]), d + [, ])→ (Cc(g2[2]), b + [, ]G); it is a L∞-quasi-isomorphism with first
structure map 	1 = (alt ⊗ 1) ◦ (∧·p⊗ ε).

Finally, define V := (alt⊗ sym) ◦ � : g1 → g2[−1] and use Lemma 22 to construct a
L∞-quasi-morphism � : (Cc(g1[2]), d+[, ])→ (Cc(g2[2]), b+[, ]G) with first structure
map �1 = 	1 + b ◦ V + V ◦ d. Since for any X ∈ (G1)k , then

b ◦ (alt ⊗ sym)(X) = (alt ⊗ sym) ◦ d(X) mod (g2)�k−1

and thus

�1(X) = 	1(X)+ bV (X)+ V (dX)

= (alt ⊗ sym) ◦ (p1 + d�+ �d)(X) mod (g2)�k−1

= (alt ⊗ sym)(X) mod (g2)�k−1.

Consequently, � satisfies (F1). Moreover, it follows from Remark 23 that � also
satisfies (F2). �

3. Classification

Theorem 9 implies a stronger result than just the existence of the twist quantization.
Namely, since � is a L∞-quasi-isomorphism there is a bijection between the moduli
spaces of Maurer-Cartan elements of dgla’s (g1[1])[[2]] and (g2[1])[[2]].

3.1. Classification of algebraic and formal dynamical twists

Following [EE1], two dynamical twists J (�) and J ′(�) are said to be gauge equiva-
lent if there exists a regular h-equivariant map T (�) = exp(q)+O(2) ∈ Reg(h∗, Ug)h
[[2]], with q ∈ Reg(h∗, g)h such that q(0) = 0, and satisfying

J ′(�) = T 12(�) ∗ J (�) ∗ T 2(�)−1 ∗ T 1(�+ 2h2)−1. (9)

Dealing with formal functions one can easily derive an equivalence relation for the
corresponding algebraic dynamical twists K = J (2�) and K ′ = J ′(2�):

K ′ = Q12,3K(Q2,3)−1(Q1,23)−1 (10)

in (Ug⊗2 ⊗ Uh)h[[2]], with Q = 1+O(2) ∈ (Ug⊗ Uh)h[[2]] given by T (2�).
Assume now we are in the reductive case.
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Since the composition Q2 ◦� : (Cc((∧m)h[2]), [, ]m)→ (Cc(g2[2]), b+[, ]G) in the
previous section is a L∞-quasi-isomorphism then we have a bijective correspondence

{
 ∈ 2(∧2m)h[[2]] s.t. [
, 
]m = 0}
G0

←→ {algebraic dynamical twists}
gauge equivalence (10)

, (11)

where G0 is the prounipotent group corresponding to the Lie algebra 2mh[[2]]. More-
over, since the structure maps Qn

2 take values in (g2)�n−1 then it appears that any
algebraic dynamical twist is gauge equivalent to a one with the 2-adic valuation property
and thus we have a bijection

{algebraic dynamical twists}
gauge equivalence (10)

←→ {formal dynamical twists}
gauge equivalence (9)

. (12)

3.2. Classical counterpart

Assume that we are in the reductive case. Since p1 is a L∞-quasi-isomorphism by
Proposition 10 then we have a bijection

{� ∈ 2(∧2g⊗ Sh)h[[2]] s.t. d�+ 1
2 [�, �] = 0}

G1

←→ {
 ∈ 2(∧
2m)h[[2]] s.t. [
, 
]m = 0}

G0
,

where G1 is a prounipotent group and its action (by affine transformations) is given
by the exponentiation of the infinitesimal action of its Lie algebra 2(g⊗ Sh)h[[2]]:

q · � = dq + [q, �] (
q ∈ 2(g⊗ Sh)h[[2]]). (13)

Then going along the lines of Section 2.2 one can prove the following

Proposition 14. There exists a L∞-quasi-isomorphism

Q1 : (Cc((∧∗m)h[2]), [, ]m)→ (Cc(g1[2]), d + [, ])

such that Q1
1 is the natural inclusion and Qn

1 takes values in (g1)�n−1.

Consequently, any Maurer-Cartan element in (g1[1])[[2]] is equivalent to a one of
the form 2�2(2�), where �2 ∈ (∧2g⊗̂Ŝh)h[[2]] satisfies CDYBE. In other words �2 is
a 2-dependant formal dynamical r-matrix. On such a �2 the infinitesimal action (13)
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becomes

q · �2 = −
∑

i

hi ∧ �q

��i
+ [q, �2] (q ∈ g⊗̂Ŝh)h[[2]]. (14)

This action integrates in an affine action of some group G̃1 of h-equivariant formal
maps with values in the Lie group G of g. And then we have a bijection

{
 ∈ 2(∧2m)h[[2]] s.t. [
, 
]m = 0}
G0

←→ {form. dynam. r-mat./R[[2]]}
G̃1

. (15)

Remark 15. This bijection has to be compared with Proposition 2.13 in [X2] and
Section 3 of [ES]

Finally, combining (15), (11) and (12) we obtain the following generalization of
Theorem 6.11 in [X2] to the case of a non-abelian base:

Theorem 16. Let 
 ∈ (∧2m)h such that [
, 
]m = 0. Then there are bijective corre-
spondences between

(1) the set of 2-dependant and G-invariant Poisson structures 
2 = 2
 mod 22 on G/H ,
modulo the action of G0,

(2) the set of 2-dependant formal dynamical r-matrices �2(�) such that �2(0) = 
 mod 2
in ∧2(g/h)[[2]], modulo the action (14) of G̃1,

(3) the set of formal dynamical twists J (�) satisfying Alt J (0)−1
2 = 
 mod 2 in ∧2(g/h)

[[2]], modulo gauge equivalence (9).

4. Another case when the twist quantization exists

In this section we assume that h is abelian and admits a Lie subalgebra m as
complement.

Note that since h is abelian and m a Lie subalgebra, the projection p : g→ g on m
along h extends to a morphsim of graded Lie algebras ∧·p : (∧g)h→ (∧g)h at the level
of h-invariants. And thus ∧·p ⊗ ε : (g1[1], d, [, ]) → ((∧g)h[1], 0, [, ]) is a morphism
of dgla’s. Then the natural inclusion id ⊗ 1 : (T ∗Ug)h → g2 obviously allows one
to consider (T ∗Ug)h[1] as a sub-dgla of g2[1]. Finally recall from [Ca, Section 3.3]
that there exists a L∞-quasi-isomorphism F : Cc((∧∗g)h[2])→ Cc((T ∗Ug)h[2]) with
F1 = alt. By composing these maps one obtains a L∞-morphism

F̃ : (G1, d + [, ])→ (G2, b + [, ]G),

with values in (G2)�0 and first structure map F̃1 = (alt ⊗ 1) ◦ (∧·p ⊗ ε).
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Theorem 17. There exists a L∞-quasi-isomorphism

� : (G1, d + [, ])→ (G2, b + [, ]G)

with properties (F1) and (F2) of Theorem 9.

Proof. First observe that since h is abelian then g1�((∧g)h ∩ ∧m) ⊗ ∧h ⊗ Sh as a
vector space. Thus, if �K is as in the proof of Proposition 10 then � := id ⊗ �K is a
homotopy operator: �d + d� = id − ∧·p ⊗ ε and � ◦ � = 0.

Now we proceed like in Section 2.3: use Lemma 22 to construct � with first structure
map �1 = F̃1 + b ◦ V + V ◦ d, where V := (alt ⊗ sym) ◦ � : g1 → g2[−1].

It remains to prove that � is a quasi-isomorphism. It follows from the first observa-
tion in this proof that H ∗(g1, d) = (∧g)h∩∧m, which also equals H ∗(g2, b) due to the
spectral sequence argument. Consequently, F̃1 is a quasi-isomorphism of complexes,
and so is �1. �

Finally, using the same argumentation as in the proof of Theorem 2 (Section 1.3)
one obtains the

Theorem 18. If h is an abelian subalgebra of g with a Lie subalgebra as a complement,
then any formal classical dynamical r-matrix for (g, h, 0) admits a dynamical twist
quantization (associated to the trivial associator).

Example 19. In particular, this allows us to quantize dynamical r-matrices arising from
semi-direct products g = m�Cn like in [EN, Example 3.7].

5. Concluding remarks

Let us first observe that if h is abelian then (∧∗g)h ∩ ∧∗m[1] (resp. (T ∗Ug)h ∩
T ∗sym(Sm)[1]) inherits a dgla structure from the one of g1[1] (resp. g2[1]) and
H ∗(g1, d) = (∧∗g)h∩∧∗m = H ∗(g2, b), for any complement m of h. Thus I conjecture
that there exists a L∞-quasi-isomorphism between (∧∗g)h ∩ ∧∗m[1] and (T ∗Ug)h ∩
T ∗sym(Sm)[1] which generalizes together � of Section 2.3 and F of Section 4. In
particular, this would imply Conjecture 1 in the abelian (and non-modified) case.

Let us then mention that one can consider a non-triangular (i.e., non-antisymmetric)
version of non-modified classical dynamical r-matrices. Namely, h-equivariant maps
r ∈ Reg(h∗, g⊗ g) such that CYB(r)−Alt(dr) = 0. According to [X3], a quantization
of such a r is a h-equivariant map R = 1 + 2r + O(22

) ∈ Reg(h∗, Ug⊗2)[[2]] that
satisfies the quantum dynamical Yang–Baxter equation (QDYBE)

R1,2(�) ∗ R1,3(�+ 2h2) ∗ R2,3(�) = R2,3(�+ 2h1) ∗ R1,3(�) ∗ R1,2(�+ 2h3). (16)

Question 1. Does such a quantization always exist?
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The most famous example of non-triangular dynamical r-matrices was found in [AM]
by Alekseev and Meinrenken, then extended successively to a more general context in
[EV,ES,EE1], and quantized in [EE1].

Following [EE1], remark that for any non-triangular dynamical r-matrix r such that
r + rop = t ∈ (S2g)g (quasi-triangular case) one can define � := r − t/2 and Z :=
1
4 [t1,2, t2,3]. Then � is a modified dynamical r-matrix for (g, h, Z); moreover, the
assignment r 	−→ � is a bijective correspondence between quasi-triangular dynamical
r-matrices for (g, h, t) and modified dynamical r-matrices for (g, h, Z). Now observe
that if J (�) is a dynamical twist quantizing �, then R(�) = J op(�)−1 ∗ e2t/2 ∗ J (�) is
a quantum dynamical R-matrix quantizing r.

In this paper we have constructed such a dynamical twist in the triangular case t = 0.
One can ask

Question 2. Does such a dynamical twist exist for any quasi-triangular dynamical
r-matrix? At least in the reductive and abelian cases?

This question seems to be more reasonable than the previous one.
More generally one can ask if Conjecture 1 (and its smooth and meromorphic ver-

sions) is true in general. A positive answer was given in [EE1] when h = g; but
unfortunately it is not known in general, even for the non-dynamical case h = {0}
(which is the last problem of Drinfeld [Dr1]: quantization of coboundary Lie bialge-
bras).

Finally, let me mention that if r(�) is a triangular dynamical r-matrix for (g, h), then
the bivector field


 := −−→r(�)+
∑

i

�

��i
∧ −→hi + 
h∗

is a G×H -biinvariant Poisson structure on G×h∗ and the projection p : G×h∗ → h∗
is a momentum map. Moreover, according to [X3] any dynamical twist quantization
J (�) of r(�) allows us to define a G × H -biinvariant star-product ∗ quantizing 
 on
G× h∗ as follows:

f ∗ g = f ∗PBW g if f, g ∈ C∞(h∗),
f ∗ g = fg if f ∈ C∞(G), g ∈ C∞(h∗),
f ∗ g = exp

(
2

∑
i

�
��i ⊗−→hi

) · (f ⊗ g) if f ∈ C∞(h∗), g ∈ C∞(G),

f ∗ g = −−→J (�)(f ⊗ g) if f, g ∈ C∞(G).

This way the map p∗ : (Fct(h∗)[[2]], ∗PBW )→ (Fct(G× h∗)[[2]], ∗) becomes a quan-
tum momentum map in the sens of [X1].

So there may be a way to see momentum maps and their quantum analogues as
Maurer-Cartan elements in dgla’s.
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Appendix: Homotopy Lie algebras

See [HS] for a detailed discussion of the theory.
Recall that a L∞-algebra structure on a graded vector space g is a degree 1 coderiva-

tion Q on the cofree cocommutative coalgebra Cc(g[1]) such that Q◦Q = 0. By cofree-
ness, such a coderivation Q is uniquely determined by structure maps Qn : �ng →
g[2 − n] which satisfy an infinite collection of equations. In particular (g, Q1) is a
cochain complex.

Example 20. Any dgla (g, d, [, ]) is canonically a L∞-algebra. Namely, Q is given
by structure maps Q1 = d, Q2 = [, ] and Qn = 0 for n > 2.

A L∞-morphism between two L∞-algebras (g1, Q1) and (g2, Q2) is a degree 0
morphism of coalgebras F : Cc(g1[1])→ Cc(g2[1]) such that F ◦Q1 = Q2 ◦F . Again
by cofreeness, such a morphism is uniquely determined by structure maps Fn : �ng1 →
g2[1− n] which satisfy an infinite collection of equations. In particular F 1 : g1 → g2
is a morphism of complexes; when it induces an isomorphism in cohomology we say
that F is a L∞-quasi-isomorphism.

Example 21. Any morphism of dgla’s is a L∞-morphism with all structure maps
equal to zero except the first one.

In this paper we use many times the following

Lemma 22 (Dolgushev [Do]). Let F : Cc(g1[1]) → Cc(g2[1]) be a L∞-morphism.
For any linear map V : g1 → g2[−1] there exists a L∞-morphism � : Cc(g1[1]) →
Cc(g2[1]) with first structure map �1 = F 1 +Q1

2 ◦ V + V ◦Q1
1. Moreover, if F is a

L∞-quasi-isomorphism then � is also.

Proof. First remark that V extends uniquely to a linear map Cc(g1[1]) → Cc(g2[1])
of degree −1 such that

�2 ◦ V = (
F ⊗ V + V ⊗ F + 1

2 V ⊗ (Q2 ◦ V + V ◦Q1)

+ 1
2 (Q2 ◦ V + V ◦Q1)⊗ V

) ◦ �1,

where �1 and �2 denote comultiplications in Cc(g1[1]) and Cc(g2[1]), respectively.
Then define � := F +Q2 ◦ V + V ◦Q1. �
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Remark 23. Assume that in the previous lemma g1 and g2 are filtrated, F is such that
Fn takes values in (g2)�n−1, and V

(
(g1)�k

) ⊂ (g2)�k+1. Then one can obviously
check that for any X ∈ (�ng1)�k , Fn(X) ∈ (g2)�n+k−1.
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