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Abstract
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1. Introduction

In the last decade, the theory of fixed ps and maximal elements for a family of
multivalued maps defined on a product space has been investigated by many authors, see
for example [1,2,4-6,10-12,19] and references therein. It has many applications in abstract
economies, nonlinear analysis and other branches of mathematics.

In 1990, Mehta [14] used the Kuratowski measure of noncompactness to prove the
existence of maximal elements for condensing preferences defined on a closed, bounded
and convex subset of a Banach space. CheldiElnorenzano [4] established the maxi-
mal element theorems fab-condensing and.-majorized multivalued maps defined in a
Hausdorff locally convex topological vector space.

In this paper, we first establish some collective fixed points theorems for a family of
multivalued maps with or without assuming that the product of these multivalued maps is
@-condensing. As an application of our collective fixed points theorems, we derive a coin-
cidence theorem for two families of multivalued maps defined on product spaces. Secondly,
we establish some existence restitis maximal elements of a family of s-majorized
multivalued maps whose product @&-condensing. We also prove some existence theo-
rems for maximal elements of a fégnof multivalued maps which are ndtg-majorized
but their product isp-condensing. Our definition of s-majorized multivalued maps is
more general than the one given in [6] andréfere our results also more general than
those given in [6]. As applications of our results, some existence results for equilibria of
abstract economies are also derived. The results of this paper are more general than those
given in the literature. Further applications of the results of this paper to the systems of
generalized vector quasi-étjrium problems are under consideration in the next paper.

2. Preliminaries

For a nonempty seb, we denote by 2 (respectively(D)) the family of all subsets
(respectively, the family of all nonempty finite subsetsyoflf D is a nonempty subset of
a vector space, then @ denotes the convex hull d. When D is a nonempty subset of
a topological spacd) or ¢l D and intD denote the closure and interior B, respectively.
Throughout the papel,is any index set.

Let X andY be nonempty sets. Le¥ be a nonempty subset &f and7: X — 2
a multivalued map. Then for ak € X andy € Y, we haveT (M) = | J{T (x): x € M}
andx € T~1(y)ifand only if y € T(x). Also T~1(N) = {x € X: T(x) N N # ¢} for all
nonempty subse¥ of Y. The multivalued map & : X — 2" is defined agcI T)(x) =
cl(T(x)) forall x € X.

Let X andY be two setsA : X — 2¥ a multivalued map and: Y — X a single-valued
map. Then the composition maio S from ¥ to 2 is defined byA o S(y) = A(S(y)) for
allyey.

A nonempty subseb of a topological spac& is said to becompactly operfrespec-
tively, compactly closed) if for every nonempty compact sulisetf X, D N C is open
(respectively, closed) i@’. Thecompact interioof D [7] is defined by

cintD = U{G: G € D andG is compactly open irk}.
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Itis easy to see that cit is a compactly open set ixi and for each nonempty compact
subsetC of X with D N C # @, we havecint D) N C =intc(D N C), where ing (DN C)
denotes the interior ab N C in C. Itis clear that a subsé? of X is compactly open ik
if and only if cintD = D.

Let X andY be topological spaces arft: X — 2' a multivalued map. Thef is said
to betransfer compactly open valugrespectivelytransfer open valuedn X (see [7]) if
for everyx € X, y € T(x), there exists a point € X such thaty € cintT (x) (respectively,

y €intT (%)). T is said to becompacif T (X) is compact.

Throughout this paper, all topological spaces are assumed to be Hausdorff.

The following lemma immediately follows from the definition of a transfer compactly
open valued map.

Lemma2.1. Let X andY be two topological spaces and l6t: X — 2 be a multivalued
map. TherG is transfer compactly open valued if and only if

6w =JcintGw).

xeX xeX

By applying Lemma 2.1 and following the argument of Proposition 1 [13], we have the
following lemma.

Lemma2.2. Let X andY be two topological spaces and I6t: X — 2' be a multivalued
map. Then the following statements are equivalent

(i) G~1:Y — 2X istransfer compactly open valued and forake X, G(x) is nonempty
(i) X =U,cyCintG1(y).

Following the same argument as in Lemma 5.1 [8], we have the following result.

Lemma 2.3. Let X be a topological space; a topological vector space and: X — 27
amultivalued map. Lep : X — 2¥ be defined ag (x) = coG(x). Forall y € Y, if G~ 1(y)
is compactly open, theyr—1(y) is compactly open.

Definition 2.1. Let X be a topological space. For each I, let ¥; be a nonempty convex
subset of a topological vector spa€e LetY =[], ¥; andS:Y — X be a single-valued
map. For eacti e I, Q; : X — 2¥ be a multivalued map. The@; is said to be

(i) of classLyg if
(a) Q; is convex valued,
(b) yi ¢ Qi(S(y)) for eachy = (y;)ier € Y, wWherey; is theith projection ofy,
(©) le(yi) is compactly open for each € Y;;
(i) Ls-majorizedif for eachx € X, there exist an open neighborho¥dx) of x in X and
a convex valued mapping, : X — 2 such that
(a) Qi(z) € By (z) for eachz € N(x),
(b) y;i ¢ Bx(S(y)) for eachy = (y;)ic; € Y, Wherey; is theith projection ofy,
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(c) B71(y;) is compactly open irX for eachy; € Y;.
Here the mappin®; is called anL s-majoriant of Q; at x.

We shall denote byMs(X, Y;);c; (respectively,Ls(X, Y;);c;) the set of families
{Qilier such that for eache I, Q, : X — 2% is Lg-majorized (respectively, of clads).

Inthe caseX = [[;.; X; andY; = X; and the mag$ = Ix the identity mapping oiX,
we shall denoté (X, X;);cs (respectivelyL(X, X;);cr) in place of My, (X, X;)icr (re-
spectively,L, (X, Xi)ier)-

Remark 2.1. The definitions ofLs(X, Y;);c; and Mg(X, Y;);c; are more general than
those given in [6].

Following the argument of Lemma 5 in [6], we have the following result.

Lemma 2.4. Let X be a regular paracompact topological space. For each/, let Y;
be a nonempty convex subset of a topological vector spacketY = [];.,; ¥; and let
S:Y — X be asingle-valued map ani@; };c; € Ms(X, Y;)ic;. Then there exists a family
{Bi}ier € Ls(X,Y;)ic; suchthatQ;(x) C B;(x) for all x € X and for each € I.

Definition 2.2 [9]. Let E be a topological vector space and &be a lattice with a mini-
mal element, denoted B A mapping® : 2 — C is calledmeasure of noncompactness
provided that the following conditions hold for any, N € 2E:

(a) @(CoM) =D (M), whereCoM denotes the closed convex hull &f.
(b) @(M) =0if and only if M is precompact.
() @(M UN)=max{® (M), ®(N))}.

Definition 2.3 [9]. Let E be a topological vector spac&, C E, and let® be a mea-
sure of noncompactness @&h A multivalued map (correspondence) X — 2F is called
@-condensingrovided that ifM C X with & (T (M)) > & (M) then M is relative com-
pact, that isM is compact.

Remark 2.2. Note that every multivaluethap defined on a compact set#¢scondensing
for any measure of noncompactn@ssif E is locally convex, then a compact multivalued
map (i.e., T (X) is precompact) i>-condensing for any measure of honcompactmess
Obviously, if T: X — 2F is @#-condensing and” : X — 2F satisfiesT’(x) C T'(x) for all

x € X, thenT’ is also®-condensing.

Lemma 2.5 [14]. Let X be a nonempty, closed and convex subset of a topological vec-
tor spaceE. Let @ be a measure of noncompactnessXrand let7:X — 2X be a
@-condensing multivalued map. Then there exists a nonempty compact convexkxsabset
X suchthatT (K) C K.

Remark 2.3. In [14], E is assumed to be a locally convex topological vector space, but
Lemma 2.4 is true for any topological vector space as we can see in the proof.
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3. Collectivefixed pointstheorems
The following collective fixed points theorem is one of the main results of this paper.

Theorem 3.1. Let X be a topological space. For eache I, let Y; be a nonempty convex
subset of a topological vector spake. LetY =[;., ¥; andletS:Y — X be a continuous
single-valued map. For eaghe I, let P;, Q; : X — 2¥i be multivalued maps satisfying the
following conditions

(a) Forall x € X, P;(x) is nonempty andoP; (x) € Q;(x).

(b) For eachy; € X;, Pl.‘l(y,») is compactly open.

(c) If X is not compact, then there exist a nonempty compact subs#tX and a non-
empty compact convex subset of ¥; for eachi € I such that for allx € X\K,
Pi(x)ND; £#@foralliel.

Then there exist§ = (y;);c; € Y such thaty; € Q; (S(y)) forall i e I.

Proof. SinceP;(x) is nonempty for alk € X and for each € I, we have
x = J{Pt0i): yievi}. foreachiel.

SinceK is a nonempty compact subsetXf for eachi € 7, there exists a finite subsaf;
of ¥; such that

xnkK=kc| J{P 0 yie i}, (3.1

For each € I, let Ly, = co{M; U D;}. ThenLy,; is a compact convex subset Bf. Let
Ly =[l;c; Lm;- ThenLy, is a compact convex subset bf Since for eachi € 1, M; C
Ly, from (3.1) we have

xnk c| J{P7 o0 yieLy,}. foreachiel. (3.2)

From condition (c) for each € X \ K, there existy; € D; € Ly, such thaty; € P;(x) for
eachi € I and so

xe U{P,-_l(yi)i vieDi} C U{P,»_l(yi)i yieLy), foreachiel.
Therefore, for eache 1

X\K < U{Pfl()’i)i yi € Ly, }. (3.3)
By (3.2) and (3.3), we geX = U{Pi‘l(yi): vi € Ly, } for eachi € I. Now for eachi € I

y=57100 =s7H(UJ(P 00 v e L }) =UIST P72 00: vie L ).
SinceL ) C Y, we have

Ly S| J{S7'P7 ) yieLy,}. foreachiel. (3.4)

Also Ly € S~1(S(Ly)) and from (3.4) we have for eacte 1



460 L.-J. Lin, Q.H. Ansari/ J. Math. Anal. Appl. 296 (2004) 455-472

L < (ST 72000 vi € Ly }) 0 (S7H(S L)
=UJ{(s7 Pt nSTHSEm))): yi € Ly}
= J{s7 (P o) N S(Lu)): yi € Lug }.

Since Ly, is compact andS:Y — X is continuous,S(Lys) is compact andS(L ) N
Pl‘l(y,») is open inS(L,s) because eacﬁl.‘l(yi) is compactly open. Therefore for each
i e Iandforally € Ly,, (ST () N S(Lm)1) N L is openinLy and

Ly =Ly 0 (STHP T NS(La)]): yi € L} foreachi e 1.

SinceL, is compact, for eache I, there exists a finite se; = {y(l) {”'*1} of Ly,
for somen; € N such that
ni+1
Lu < |J@un (R ns@n))))-
j=1

Since Ly, is compact, there also exists a continuous partition of u{rﬂf ) ,3,.(”"“)}
subordinated to the open coveriig,y N (SL(P1(y\") N S(LM)]))}"’_Jrll, that is,
foreachj =1,...,n; + 1, ,Bi(j):LM — [0, 1] is continuous such that for alt €
Ly, Z”’“ﬂ(’)(x) 1 and for eachj = 1,...,n; + 1, ﬂi(j)(x) =0forx¢ Ly N
(S7HPLyY) N S(Lan)D). In other words B (x) # 0 impliesx € S~1P(y), that
is, yl(l) e Pi(S(x))forall j=1,...,n; + 1 and for each  I.
Leto;: Ly — A, be a map defined by
ni+1

@i(x) = Z ,3,-(j)(x)ei(j), forall x € Ly,
j=1

whereef-j) is the jth unit vector inR™ +1 andA,,; denotes the standang-simplex.
Foreach €1, letg;: A,; — cOH; C Ly, be defined by

ni+1

) () )

&(Z O[l_(J)el(J ) Z oz(]) (] ’
j=1

where caH; = co{yl(l),...,yl”“)} a(’) >0foraliel and 1< j <n; +1 and
Z’j’*lla(’) = 1. Then clearlyp; : Lyy — A,, andg;: A,;, — Ly, are continuous func-
tions.

Let J;(x) = {1< j <n; +1: B (x) # 0}. Then for each: € Ly,

n;i+1

gidi(x)=>_ B yj= > By ecoPi(S() S Qi(SW)|,

Jj=1 J€Ji(x)
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For eachi € I, let E; be the finite dimensional vector space containihg and letC =
[Tic; An:- ThenC is a compact convex subset of the locally convex Hausdorff topological
vector space. Let : C — Ly be defined by

G() = (gi(z));., forzeC,
wherez; is theith projection of;. Let¥ : Ly, — C be defined by
¥ (x) = (¢i(x),., forxeLy.

Let F=W¥ o G. ThenF : C — C is a continuous function. By Tychonoff’s fixed point
theorem that there exisise C such thati = F(u) =¥ o G(u). Let y = (3;)ic; = G(it).
Theny; = gi¢i(y) € Q:(S(y)) foralliel. O

As a simple consequence of Theorem 3.1, we have the following result.

Corollary 3.1. Let X be a topological space. For eacke I, let ¥; be a nonempty convex
subset of a topological vector spake. LetY =[];.; ¥; andletS:Y — X be a continuous
single-valued map. For eaghe I, let P;, Q; : X — 2¥i be multivalued maps satisfying the
following conditions

(a) Foreachx € X, coP;(x) C Q; (x).

(b) X =UfcintP(y): yi € ¥;}.

(c) If X is not compact, then there exist a nonempty compact subs#tX and a non-
empty compact convex subggtof ¥; for eachi € I such that for allx € X\ K, there
existsy; € D; such thatr e cint P, (3;) forall i € 1.

Then there exist§ = (y;);<; such thaty; € Q;(S(y)) forall i € I.

Proof. By condition (b) for each € I and for allx € X, there existsy; € ¥; such that
X € cintPi‘l(y,»). For each € I and for allx € X, define a multivalued map; : X — 2%

by
Fi(x)={y e ¥;: x ecintP 1 (y)}.

Then for eacti € I and for ally; € Y;, F,1(y:) = cintP " (y;) is compactly open. Again
by condition (b), for eachi € I and for allx € X, F;(x) is nonempty and cé;(x) €
CcoP;(x) C Q;(x). By condition (c), for each € X, there existsy; € D; such thatx
cintPl.‘l(y,»), we havey; € P;(x) and hencéF;(x) N D; # . Thus the conclusion follows
from Theorem 3.1. O

Remark 3.1. Corollary 3.1 generalizes Theorem 31[1] and thus Theorem 2.1 in [10].

Remark 3.2. Conditions (a) and (b) in Corollary 3.1 can be replaced by the following
conditions:

(d) Foreachr € X, P;(x) is nonempty and c8;(x) € Q; (x).
(sh) Pfl is transfer compactly open valued &n
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Proof. By conditions (8 and (B), and Lemma 2.2, we have
X= U{cintp;l(y,-): yie¥il. O

Remark 3.3. ForY = X andS(x) = x for all x € X, Corollary 3.1 along with Remark 3.2
generalizes Corollary 3.1 of Lin et al. [11].

Corollary 3.2. Let X be a topological space. For eache I, let ¥; be a nonempty convex
subset of a topological vector spake. LetY =[], ¥; andletS: Y — X be a continuous
single-valued map. For eaghe 1, let P;, Q; : X — 2% be multivalued maps satisfying the
following conditions

(a) Forall x € X, P;(x) is nonempty andoP; (x) € Q;(x).
(b) For eachy; €Y;, Pi_l(y,') contains compactly open subsey, (may be empiyof X
and

X ={Jt0y: yievi).

(c) If X is not compact, then there exist a nonempty compact subs#tX and a non-
empty compact convex subggtof ¥; for eachi € I such that for allx € X\ K, there
existsy; € D; such thatx € Oy, foralli € I.

Then there exist§ = (y;);c; € Y such thaty; € Q; (S(y)) forall i e I.
Proof. By condition (b), we have for eadhe 1
X= U{Oy;3 yi €Yi} C U{cintPfl(y,»): yi€Yi} CX.

By condition (c) for eaclr € X\ K, there exists; € D; such thatx € Oy, C cintPl.‘l(yi)
for eachi € 1. Then the conclusion follows from Corollary 3.10

Remark 3.4. Condition (c) of Corollary 3.2 can be replaced by the following condition:

(¢) If X is notcompact, then for eaéle I there exist a nonempty compact convex subset
D; of ¥; and a finite subsdt?, .. ., yi(")} of ¥; such that

n
velJow
m Oyi — O_yl.(J)
yi€D; j=1

whereOy, denotes the complement o¥,,.

Proof. SetC; =co{D; U {yl.(l), e, yl.(”)}} for eachi € I. ThenC; is a nonempty compact
convex subset of; and by condition (§ we have

N Oﬁ,E(ﬂ 0§,>0(Q0§i)=®g1<

u,-EC,- yiEDi
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for any compact seK. Therefore for any € X\ K, there exists;; € C; such thatr €

Oy. O

Remark 3.5. Corollary 3.2 improves and generalizes Theorem 1 in [15] Theorem 2 in [16],
Theorem 2.1 in [17], and Theorem 1 in [8].

Corollary 3.3. Let X be a topological vector space. For eack I, let Y; be a nonempty
convex subset of a topological vector spatelLetY = I1;c;Y; and letS:Y — X be a
continuous single-valued map. For each I, let P;, Q; : X — 2% be multivalued maps
satisfying the following conditions

(@) Forall x € X, coP;(x) C Q;(x).

(b) X =Utint B (y): yi € Vi)

(c) If X is not compact, then there exist a nonempty compact subs#tX and a non-
empty compact convex subggtof ¥; for eachi € I such that for allx € X\ K, there
existsj; € D; such thatx e int P, (5;) forall i € 1.

Then there exist§ = (y;);c; € Y such thaty; € Q; (S(y)) forall i e I.

Proof. By condition (b),
X= U{int Pl yievi)c U{cintpfl(y,»): vieY;} S X.

ThereforeX = U{cintPi‘l(yi): y; € Y;} and hence the conclusion follows from Corol-
lary 3.1. O

Next we shall establish a collective fixed points theorem for a family of multivalued
maps whose product i8-condensing.

Theorem 3.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spacef;. Let X = [],.; X; and let® be a measure of noncompactnessiogr-
[lic; Ei-Foreachi e I,letP;, Q;: X — 2Xi pe multivalued maps satisfying the following
conditions

(a) Forall x € X, P;(x) is nonempty andoP; (x) C Q;(x).
(b) Pfl is transfer compactly open valued.
(c) The multivalued ma® : X — 2X defined byQ(x) = [lic; Qi(x) is @-condensing.

Then there exist8 = (x;);c; € X such thaty; € Q;(x) forall i € I.

Proof. Since for each € I, X; is a nonempty closed convex subset Bf we have

X = [1;e; Xi is @ nonempty closed convex subset®t= [],., Ei. SinceQ: X — 2%

is @-condensing, it follows from Lemma 2.5 that there exists a nonempty compact convex
subse of X suchthaiQ(K) € K. LetK =[], K;, wherek; is theith projection ofK .
Thenk; is a compact convex subset®f and for eachx € K, coP;(x) C Q;(x) C K; and

the conclusion follows from Corollary 3.1.0
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Remark 3.6. Theorem 3.2 along with Lemma 2.2 generalizes Theorem 1 in [12].

As an application of Corollary 3.1, we have the following coincidence theorem for two
families of multivalued maps defined on product spaces.

Theorem 3.3. For eachi € I, let X; and Y; be nonempty convex subsets of topological
vector space€; and E;, respectively. LeX = [],.,; X; andY =[],, ¥;. For eachi € I,

let A;: X — 2% andB; : Y — 2%i be multivalued maps. Suppose that there exist nonempty
compact subset C Y and K C X, and nonempty compact convex subGetC ¥; and

D; C X; for eachi € I such that

(a) for eachi €1, Afl, Bfl are transfer compactly open valued &nhand X;, respec-
tively,

(b) for eachi € I andforallx € X andy € Y, A;(x) and B;(y) are nonempty convex
sets,

(c) foreach(x, y) € X x Y\K x L, there existy; € C;, x; € D; such thatx € cintAi‘l(y,»)
andy e cintB 1(x;) foralli e I.

Then there exists = (x;)ic; € X andy = (3;)ie; € Y such thaty; € A;(x) andx; € B; ()
foralli e 1.

Proof. We follow the argument of Theorem 10 in [6]. L8t = K x L. For each € I,

let V; = C; x D; and defineW; : X x Y — 2¥i*Xi py W;(x, y) = A; (x) x B;(y) for each
(x,y)e X xY.LetS:Y x X —> X x Y be defined by (y, x) = (x, y) foreach(y, x) €

Y x X. Then all the conditions of Corollary 3.1 are satisfied and it follows that there exists
(X,¥) = (Xi, yi)ier € X x Y such that(y;, x;) € Wi (S(y, X)) = W;(x, y) = A;(X) x Bi(y)
foralli € I. Thusy; € A;(x) andx; € B;(y) forallieI. O

Remark 3.7. Theorem 3.3 improves and generalizes Theorem 10 in [6] and Theorem 4.3
in [5].

4. Maximal elementsfor a family of multivalued maps

We recall that a poink € X is amaximal elemenbf a multivalued magr' from a
topological spac& to another topological spadeif 7' (x) = .

For eachi € I, Let X; be a nonempty subset of a topological sp&geandT;: X =
[lic; Xi — 2% a multivalued map. Then a point= (x;);c; € X is called amaximal
elemenfor the family of multivalued map§T; }i¢; if T;(x) =0 foralli € I.

In the recent past the existence theorems for a maximal element for a family of multi-
valued maps have been used to prove the existence of a solution of system of variational
inequalities and system ofjailibrium problems, see for example [2,10-12,19] and ref-
erences therein. It can be easily seen that tagimal elements they for the family of
multivalued maps is useful to study the following qualitative game.
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A qualitative gamés a familyI" = (X;, P;);<; of ordered pair$X;, P;) where for each
i € 1, X; is a topological space an® : X =[], X; — 2% is an irreflexive preference
correspondence, thatis, ¢ P;(x) forall x € X. A pointx € X is said to be aequilibrium
pointof the qualitative gamé™ if P;(x) =foralli e I.

For further detail on qualitative games, we refer to [19] and reference therein.

We establish the following proposition wifi plays an important role throughout this
section.

Proposition 4.1. Let X andY be two nonempty subsets ofapological vector space and
T:X — 2¥ a multivalued map. Then the following two statements are equivalent

(a) For eachx € X such thatT'(x) # @, there existy € Y such thatr € cint7—1(y).
(b) T~1is transfer compactly open valued &n

Proof. (a) = (b). Letx € X such thatx € T~1(y) for somey € Y, theny € T'(x) # #.
By (a), there exists’ € ¥ such thatx e cint7~1(y’). HenceT ~! is transfer compactly
open valued orY .

Conversely, letr € X such thatT (x) # @. Thereforex € T~1(y) for somey € Y.
By (b), there exists’ € Y such thatx e cint7~1(y’). O

Following the argument of proof of Theorem 8 in [6], we have the following result.

Theorem 4.1. Let X be a regular and paracompact topological space. For eaeh/,
let Y; be a nonempty convex subset of a topological vector spaceetY =[], Vi,
S:Y — X a continuous single-valued map am®t € Ms(X, Y;);c;. Suppose that there
exists a nonempty compact subkedf X and a nonempty compact convex suligetf Y;
for eachi € I such that for allx € X\ K, there existg € I such thatQ; (x) N C; #@. Then
there existsc € K such thatQ; (x) =@ forall i € I.

Remark 4.1. Since our definition ofg(X, Y;);c; is more general than the one given in
[6], Theorem 4.1 generalizes Theorem 8 in [6].

As a particular case of above theorem, we have the following result.

Corollary 4.1. For eachi € I, let X; be a nonempty convex subset of a topological vec-
tor spacek;. Let X = [[;.; X; and Q; € M(X, X;);c;. Suppose thak is regular and
paracompact and there exist a nonempty compact subs#tX and a nonempty compact
convex subsef; of X; for eachi € I such that for allx € X\ K, there exists € I with
Q;(x)NC; #@. Then there exists € K such thatQ; (x) =@ foralli e I.

Theorem 4.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spacek;. Let X =[];.; X; and let® be a measure of noncompactnessiogr=
[lic; Ei- Foreachi e I, let Q; : X — 2%i pe a multivalued map satisfying the following
conditions
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(@) {Qitier e M(X, Xy)icr.
(b) The multivalued ma@ : X — 2X defining byQ(x) = [lic; Qi(x) is @-condensing.

Then there exists € X such thatQ; (x) =@ forall i € I.

Proof. Since for each € 1, X; is a nonempty closed convex subsetif we haveX =
[T;c; Xi is a nonempty closed convex subsetbfSinceQ : X — 2 is @-condensing, it
follows from Lemma 2.5 that there exists a nonempty compact convex skitsiek’ such
that Q(K) € K. SinceK is compact,K is regular and paracompact. By condition (a),
{Qi}icr € M(X, X;)ier and it is easy to see th@Q;|x}ic; € M(K, K;);c; Wherek; is
theith projection ofK. Then the conclusion follows from Corollary 4.10

Remark 4.2. Theorem 4.2 improves Proposition 2 in [4] in th following ways:

(i) Foreach € I, E; need not be locally convex.
(i) Theorem 4.2 does not have the following conditithe set{x € C: Q;(x) # 0} is
open inC, for every nonempty compact subéeof X.

Corollary 4.2. For eachi € I, let X; be a nonempty closed convex subset of a topological
vector spacek;. Let X = [],.; Xi, {Qi}ier € L(X, X;)ic; and let® be a measure of
noncompactness afi = [ [;.; E;. Suppose that the multivalued map X — 2X defining

by Q(x) =[1;c; Qi(x) is @-condensing. Then there existe K such thatQ, (x) = ¢ for
alliel.

Proof. Since{Q;}ic; € L(X, X;)ier andL(X, X;)ier € M(X, Xi)ier, We have{Q;}icr €
M (X, X;)ic; and the result follows from Theorem 4.20

Theorem 4.3. For eachi € I, let X; be a nonempty closed convex subset of a topolog-
ical vector spaceF;. Let X =[[,.; X; and let® be a measure of noncompactness on
E =[], Ei. For eachi € I, assume that the multivalued map : X — 2%/ satisfies the
following conditions

(a) Foreachx = (x;)je; € X, x; ¢ COQ; (x).

(b) For eachx € X such thatQ; (x) # ¥, there existy; € X; such thatx € cintQi‘l(yi).

(c) The multivalued mag : X — 2% defined asQ(x) = [lic; Qi(x) forall x € X, is
@-condensing.

Then there exists € X such thatQ; (x) =@ forall i € I.

Proof. Suppose that the conclusion of this theorem is not true. Then for every, there
existsj, € I such thatQ; (x) #%.Foreach eI, letF;: X — 2%i be defined ag; (x) =
{i € X;: x ecintQ; (y)}. Then for eachy; € X;, F;-(y;) = cintQ; *(y:) is compactly
open and alsaF;(x) € Q;(x) for all x € X. Since for eachx € X, x; ¢ coQ;(x) and
Fi(x) € Qi(x), we havex; ¢ coF;(x). Therefore{Fi}ic; € L(X, Xi)ier €S M(X, Xi)ier-
Since for eachx € X, Fi(x) € Q;(x) and Q: X — 2X is @#-condensing, it follows that
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F:X — 2X is also®-condensing, wheré (x) = [lic; Fi(x) forall x € X. Then by The-
orem 4.2 that there exisise X such thatF; (x) =@ foralli € I.

On the other hand, there existse I such thatQ ;. (x) # ¢. Then by (b), there exists
Yjz € Xj; such thatt € cintQ7*(y;;). This shows thag;; € Fj; (¥) = which leads to a
contradiction. Hene our suppositin is wrong. O

Remark 4.3. Theorem 4.3 improves Corollary 4 in [4] and Corollary 4.1 in [11].

Corollary 4.3. For eachi € I, let X; be a nonempty convex subset of a topological vector
spacek;. LetX =[],.; X; and let® be a measure of noncompactnessioe: [ [, Ei.

For eachi € I, let Q;, T; : X — 2% be two multivalued maps satisfying the following
conditions

(a) Foreachx € X,coQ;(x) C T;(x).

(b) For eachx = (x;);ic; € X, x; ¢ T;(x).

(c) Foreachy; € X;, Ql._l(y,') is transfer compactly open iX.

(d) The multivalued mag : X — 2X defined asT (x) =[]
@-condensing.

ie; Tix) for all x € X, is

Then there exists € X such thatQ; (x) =@ forall i € I.

Proof. By (b), foreachy = (x;)ic; € X, x; ¢ cOQ, (x). Defined multivalued map : X —

2X by Q(x) =[1;¢; Qi(x) for all x € X. From (a), we haved(x) C T(x) for all x € X.
SinceT is @-condensing( is also®-condensing. The result follows from Theorem 4.3
and Proposition 4.1. O

Remark 4.4. (i) Corollary 4.3 improves Theorem 4.2 in [11] in the following way: “For
eachx € X, I(x) ={i € I: Q;(x) # @} is finite” is not considered in Corollary 4.3.
(i) If 1 is a singleton set, then Corollary 4.3 reduces to Corollary 2 in [12].

Following the argument of proof of Theorem 7 in [6], we have the following result
which generalizes Theorem 7 in [6].

Theorem 4.4. For eachi € I, let ¥; be a nonempty convex subset of a topological vector
spacek;. LetY =[];., ¥i, X a Hausdorff topological space§:Y — X a continuous
single-valued map anf);};c; € Ls(X, Y;);c;. Suppose that there exist a nonempty com-
pact subse® of X and a nonempty compact convex sulisedf ¥; for eachi € I such
that for all x € X\ K, there existg € I such thatQ; (x) N C; # @. Then there existg € K
such thatQ;(x) =@ forall i € I.

As a simple consequence of Theorem 4.4, we have the following existence results for
maximal elements.

Theorem 4.5. Let X be a topological vector space. For eack I, let Y; be a nonempty
convex subset of a topological vector spage Q; : X — 2% a multivalued map and let
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S:Y =Tl;¢;Y; - X be acontinuous single-valued map. Assume that the following condi-
tions hold

(@) Foreachi e I andforally €Y, y; ¢ coQ;(S(y)).

(b) For x € X such thatQ; (x) # @, there existy, € ¥; such thatx € cintle(y[).

(c) There exist a nonempty compact suli§edf X and a nonempty compact convex subset
C; of Y; for eachi € I such that for allx € X\ K, there exist € I andy; € C; such
thatx € cintQ; *(y).

Then there exist € K such thatQ;(x) =@ forall i € I.

Proof. Suppose that the conclusion is false. Then for eaehX, there existg, € I such
that Q; (x) #0. Foreachi e I, let F;: X — 2%i be defined byF;(x) = {y; € ¥;: x €
cintQ:1(y;)} for all x € X. Then for each € I and eachy; € ¥;, F, 2 (y;) = cintQ; 1 (m)

is compactly open. By Lemma 2.3, for each I andy; € Y;, (coF;)~1(y;) is compactly
open. Since for alk € X and for each € I, F;(x) € Q;(x) andy; ¢ coQ;(S(y)) for

all y = (yi)iesr €Y, we havey; ¢ coF;(S(y)) for all y = (y;)ie; andi € I. Therefore
{COF;}ic; € Ls(X, Yy)icr. By (€), for allx € X\K, there exist € I andy; € C; such that

X € cintQi‘l(yi). Theny; € F;(x) and F; (x) N C; # @ and hence by Theorem 4.4, there
existsx € X such that ca&; (x) =@ foralli € I.

On the other hand, for each there existsjz € I such thatQ; (x) # ¥. Since
Q. (x) # ¥ and from condition (b), we have cintQj;l(y;.;) for somey}i € Y;. and
thUSy}; € Fj% (x) # 9. Therefore, cd ;. (x) # . This leads to a contradiction. Hence our
supposition is not true. O

Remark 4.5. Condition (b) of Theorem 4.5 can be replaced by the following condition:
(b') Foreach €1, Qi‘1 is transfer compactly open valued &n

As a simple consequence of Theorem 4.4, we have the following corollary.

Corollary 4.4. For eachi € I, let X; be a nonempty convex subset of a topological vector
spacek; andletQ;, T; : X =[[;c; Xi = 2% pe multivalued maps satisfying the following
conditions

(@) Foreachi e I andforallx € X,coQ;(x) C T;(x).

(b) For eachi € I and for all x = (x;);e; € X, x; ¢ T;(x), wherex; is theith projection
of x.

(c) Foreachi € I and for ally; € X;, Ql._l(y,') is compactly open iX.

(d) There exists a nonempty compact sub§edf X and a nonempty compact convex
subsetC; of X; for eachi € I such that for allx € X\ K, there exists € I such that
Qi(x)NC; #0.

Then there existg € X such thatQ; (x) =@ forall i € I.
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Proof. Let the multivalued magG; : X — 2% be defined byG;(x) = coQ;(x) for all

x € X. By (b), for eachi € I and for allx = (x;);es € X, x; ¢ G;(x). By Lemma 2.3,
for eachy; € X;, Gl._l(y,') is compactly open irX and therefordG;}ic; € L(X, Xi)ier-

By (d), for all x € X\K there exists € I such thatG;(x) N C; # @. It follows from

Theorem 4.4 that there exists= X suchthaG;(x) =@ foralli € I. ThereforeQ;(x) =9

foralliel. O

Remark 4.6. In view of Proposition 4.1, condition (c) of Corollary 4.4 can be replaced by
the following condition:

(¢) Foreach € I, multivalued maprl is transfer compactly open valued &mn.

Remark 4.7. Corollary 5.2 improves Theorem 4.1 in [11] in the way that the condition
“foreachx € X, I (x) ={i € I: S;(x) # @} is finite” is not considered in Corollary 5.2.

5. Equilibria of abstract economies

Let 7 be a any (finite or infinite) set of agents. Ahstract economig defined as a family
of order quadruples = (X;, A;, Bi, P;)ic; Where foreach € I, X; is a topological space,
Ai, Bi: X =[];c; — 2% are constraint correspondences ahdX — 2% is a preference
correspondence. Arquilibrium for I' is a pointx € X such that for eaclh € I, x; €
clB;(x)andA;(x)NP;(x) =@. WhenA; = B; forall i € I, above definitions of an abstract
economy and an equilibrium coincide withetistandard definitions, for example in [3] or
in [18].

Theorem 5.1. For eachi € I, let X; be a nonempty convex subset of a topological vector
spacek;. Let X =[];.; X; and let® be a measure of noncompactnessioe: [ [, Ei.

For eachi € I, letcl B; : X — 2%i be an upper semicontinuous multivalued map, X —

2% a nonempty convex valued multivalued map such that for each Ai_l(y,') is open

in X and P, : X — 2Xi a preference correspondence. Assume that the following conditions
hold:

(a) Foreachi e I and forallx € X, coA;(x) C B; (x).

(0) {Ai N Pi}ies € M(X, Xi)ier-

(c) The multivalued map : X — 2X defined byA (x) = [Tic; Ai(x) is @-condensing.
Then there exists = (x;);e; € X such thaty; € ¢l B;(x) and A; (x) N P;(x) = @ for all
iel.

Proof. SinceA is @-condensing, it follows from Lemma 2.45 that there exists a compact
convex subsek C X suchthatA(K) C K.

Let F = {x = (xj)ies € K: x; € ¢l B;(x)}. Then clearlyF; is a closed subset & for
eachi € I. By Lemma 2.4, there existd;}ic; € L(K, X;);c; Such thatA; (x) N P;(x) C
T;(x) foralli e I andx € K.
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Let the multivalued ma, : K — 2% be defined as

TN Ax) if xeF,
Q"(x)‘{A,»(x) it K\,

whereK; is theith projection ofK. Since{T;};c; € L(K, X;) for eachi € I and for all
x = (x;)ic; € X, We havex; ¢ Q;(x). Itis easy to see that
07 i) = (T, ) N (ADHw) U ((K\F) N (A1 ()

is compactly open inK for eachy; € K; and Q; is convex valued multivalued map.
Therefore {Q;}ier € L(K, K;)iecr € M(K, K;)ijc;. Since K is a compact setQ =
[lic; Qi : K — 2K is ®-condensing. It follows from Theorem 4.2 that there exists
(*1)ier € K such thatQ;(x) = ¥ for eachi € I. If X € X\F; for somej € I, then
A (%) = Q;(x) =¥, which contradicts with4;(x) is nonempty for allx € X and for
eachi € I. Thereforex € F; forall i € I. Hencex; € ¢l B;(x) andA; (x) N T; (x) = ¥ for
alli e I. Thisshows thati;(x) N Pi(x)=@foralliel. O

Remark 5.1. Condition (b) of Theorem 5.1 can be replaced by the following conditions:

(b1) Foreach eI and forallx = (x;);cs, x; ¢ Pi(X).
(b2) Foreach €I and for allx € X, P;(x) is convex.
(b3) Foreach € I and for ally; € X;, Pl._l(y,') is compactly open.

As a particular case of Theorem 5.1, we have the following corollary.
Corollary 5.1. Let I = (X;, A;, P;)ie; be an abstract economy satisfying for each/:

(i) X; is a nonempty closed and convex subset of a topological vector dpaead
X = ]_[l-e, Xi.
(i) Foreachx € X, A;(x) is nonempty and convex.
(iii) Forall y; € X;, A7 (y) is open.
(iv) cl A;: X — 2%i is upper semicontinuous.
(V) (AiN Picr € M(X, Xi)ier-
(Vi) A(x)=T]],;c; Ai(x) is @-condensing.

Then there exist = (x;);e; € X such thatx; € clA;(x) and A; (x) N P;(x) = ¥ for all
iel.

Remark 5.2. Corollary 5.1 improves Proposition 3 in [4].

Theorem 5.2. For eachi € I, let X; be a nhonempty convex subset of a topological vec-
tor spaceE;. Let X =[[,.; X; and let® be a measure of noncompactness Br=
[lic; Ei. Foreachi e I, letcl B; : X — 2%i pe an upper semicontinuous multivalued map,
A; X — 2% amultivalued map with nonempty values such that for gaehX;, Ajl(y,»)

is compactly open irX, P;: X — 2% a preference correspondence a6g@: X — 2% a
multivalued map. Assume thatetfollowing conditions hold
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(a) Foreachi e I and forallx € X, coA;(x) C B; (x).

(b) For eachi € I and for all y; € X;, Pfl(y,-) is compactly open iX.

(c) Foreachi € I andforallx = (x;)ic; € X, x; ¢ G;(x).

(d) Foreachi e I and forallx € X, coP;(x) C G;(x).

(e) The multivalued mapt = [];; A; : X — 2% defined asA(x) = [];; Ai(x), is ®-
condensing.

iel

Then there exists = (x;);e; € X such thatx; € ¢l B;(x) and A;(x) N P;(x) = @ for all
iel.

Proof. SinceA: X — 2X is @-condensing, it follows from Lemma 2.5 that there exists a
nonempty compact convex skt=[[,;.; K; of X such thatd(K) C K. For each € I, let

Fi ={x=(x))ier € K: x; € ¢l B;(x)}. Then clearlyF; is closed for eacth € I. For each

i € 1, define multivalued mapg;, T; : X — 2Xi by

o JA®NPE) if xeF,
Q:(x)—{Ai(x) if x e K\F

and

_JeBix)nGi(x)]1 if xeF,
Ti(x)_{CIB,-(x) it x € K\F,

for all x € X. By condition (a) and (d), for eache 7 and for allx € X, coQ;(x) C T;(x).
By condition (b)

07 o0 = [ATT o0 NPT O] U [(X\F) N A7 ()]

is compactly open inX for eachy; € X;. By condition (c) for eachi € I and
x = (X;)ier € X, x; ¢ T;(x). SinceK iscompact] =[], i : K — 2K is @-condensing.
It follows from Corollary 4.3 that there exisfs= (;);c; € X such thatQ; (x) = ¢ for all
iel. If xe K\F; for somej eI, thenA;(x) = Q;(x) =¥ which contradicts with
A;(x) is nonempty for ali € I andx € X. Thereforex € F; for all i € I. This shows that
Xi €clB;(x)andA;(x)NP(x)=@foralliel. O
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