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1. Introduction

In the last decade, the theory of fixed points and maximal elements for a family
multivalued maps defined on a product space has been investigated by many auth
for example [1,2,4–6,10–12,19]and references therein. It has many applications in a
economies, nonlinear analysis and other branches of mathematics.

In 1990, Mehta [14] used the Kuratowski measure of noncompactness to pro
existence of maximal elements for condensing preferences defined on a closed, b
and convex subset of a Banach space. Chebli and Florenzano [4] established the ma
mal element theorems forΦ-condensing andL-majorized multivalued maps defined in
Hausdorff locally convex topological vector space.

In this paper, we first establish some collective fixed points theorems for a fam
multivalued maps with or without assuming that the product of these multivalued m
Φ-condensing. As an application of our collective fixed points theorems, we derive a
cidence theorem for two families of multivalued maps defined on product spaces. Sec
we establish some existence resultsfor maximal elements of a family ofLS -majorized
multivalued maps whose product isΦ-condensing. We also prove some existence th
rems for maximal elements of a family of multivalued maps which are notLS -majorized
but their product isΦ-condensing. Our definition ofLS -majorized multivalued maps i
more general than the one given in [6] and therefore our results also more general th
those given in [6]. As applications of our results, some existence results for equilib
abstract economies are also derived. The results of this paper are more general tha
given in the literature. Further applications of the results of this paper to the syste
generalized vector quasi-equilibrium problems are under consideration in the next pap

2. Preliminaries

For a nonempty setD, we denote by 2D (respectively,〈D〉) the family of all subsets
(respectively, the family of all nonempty finite subsets) ofD. If D is a nonempty subset o
a vector space, then coD denotes the convex hull ofD. WhenD is a nonempty subset o
a topological space,̄D or clD and intD denote the closure and interior ofD, respectively.
Throughout the paper,I is any index set.

Let X andY be nonempty sets. LetM be a nonempty subset ofX andT :X → 2Y

a multivalued map. Then for allx ∈ X andy ∈ Y , we haveT (M) = ⋃{T (x): x ∈ M}
andx ∈ T −1(y) if and only if y ∈ T (x). Also T −1(N) = {x ∈ X: T (x) ∩ N �= ∅} for all
nonempty subsetN of Y . The multivalued map clT :X → 2Y is defined as(clT )(x) =
cl(T (x)) for all x ∈ X.

Let X andY be two sets,A :X → 2Y a multivalued map andS :Y → X a single-valued
map. Then the composition mapA ◦ S from Y to 2Y is defined byA ◦ S(y) = A(S(y)) for
all y ∈ Y .

A nonempty subsetD of a topological spaceX is said to becompactly open(respec-
tively, compactly closed) if for every nonempty compact subsetC of X, D ∩ C is open
(respectively, closed) inC. Thecompact interiorof D [7] is defined by

cintD =
⋃

{G: G ⊆ D andG is compactly open inX}.
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It is easy to see that cintD is a compactly open set inX and for each nonempty compa
subsetC of X with D ∩ C �= ∅, we have(cintD) ∩ C = intC(D ∩ C), where intC(D ∩ C)

denotes the interior ofD ∩ C in C. It is clear that a subsetD of X is compactly open inX
if and only if cintD = D.

Let X andY be topological spaces andT :X → 2Y a multivalued map. ThenT is said
to betransfer compactly open valued(respectively,transfer open valued) onX (see [7]) if
for everyx ∈ X, y ∈ T (x), there exists a point̂x ∈ X such thaty ∈ cintT (x̂) (respectively,
y ∈ intT (x̂)). T is said to becompactif T (X) is compact.

Throughout this paper, all topological spaces are assumed to be Hausdorff.
The following lemma immediately follows from the definition of a transfer compa

open valued map.

Lemma 2.1. Let X andY be two topological spaces and letG :X → 2Y be a multivalued
map. ThenG is transfer compactly open valued if and only if⋃

x∈X

G(x) =
⋃
x∈X

cintG(x).

By applying Lemma 2.1 and following the argument of Proposition 1 [13], we hav
following lemma.

Lemma 2.2. Let X andY be two topological spaces and letG :X → 2Y be a multivalued
map. Then the following statements are equivalent:

(i) G−1 :Y → 2X is transfer compactly open valued and for allx ∈ X, G(x) is nonempty;
(ii) X = ⋃

y∈Y cintG−1(y).

Following the same argument as in Lemma 5.1 [8], we have the following result.

Lemma 2.3. Let X be a topological space,Y a topological vector space andG :X → 2Y

a multivalued map. Letψ :X → 2Y be defined asψ(x) = coG(x). For all y ∈ Y , if G−1(y)

is compactly open, thenψ−1(y) is compactly open.

Definition 2.1. Let X be a topological space. For eachi ∈ I , let Yi be a nonempty conve
subset of a topological vector spaceEi . LetY = ∏

i∈I Yi andS :Y → X be a single-valued
map. For eachi ∈ I , Qi :X → 2Yi be a multivalued map. ThenQi is said to be

(i) of classLS if
(a) Qi is convex valued,
(b) yi /∈ Qi(S(y)) for eachy = (yi)i∈I ∈ Y , whereyi is theith projection ofy,
(c) Q−1

i (yi) is compactly open for eachyi ∈ Yi ;
(ii) LS -majorizedif for eachx ∈ X, there exist an open neighborhoodN(x) of x in X and

a convex valued mappingBx :X → 2Yi such that
(a) Qi(z) ⊆ Bx(z) for eachz ∈ N(x),
(b) yi /∈ Bx(S(y)) for eachy = (yi)i∈I ∈ Y , whereyi is theith projection ofy,
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(c) B−1
x (yi) is compactly open inX for eachyi ∈ Yi .

Here the mappingBix is called anLS -majoriant of Qi at x.

We shall denote byMS(X,Yi)i∈I (respectively,LS(X,Yi)i∈I ) the set of families
{Qi}i∈I such that for eachi ∈ I , Qi :X → 2Yi is LS -majorized (respectively, of classLS ).

In the caseX = ∏
i∈I Xi andYi = Xi and the mapS = IX the identity mapping onX,

we shall denoteM(X,Xi)i∈I (respectively,L(X,Xi)i∈I ) in place ofMIX(X,Xi)i∈I (re-
spectively,LIX(X,Xi)i∈I ).

Remark 2.1. The definitions ofLS(X,Yi)i∈I and MS(X,Yi)i∈I are more general tha
those given in [6].

Following the argument of Lemma 5 in [6], we have the following result.

Lemma 2.4. Let X be a regular paracompact topological space. For eachi ∈ I , let Yi

be a nonempty convex subset of a topological vector spaceEi . Let Y = ∏
i∈I Yi and let

S :Y → X be a single-valued map and{Qi}i∈I ∈ MS(X,Yi)i∈I . Then there exists a fami
{Bi}i∈I ∈ LS(X,Yi)i∈I such thatQi(x) ⊆ Bi(x) for all x ∈ X and for eachi ∈ I .

Definition 2.2 [9]. Let E be a topological vector space and letC be a lattice with a mini-
mal element, denoted by0. A mappingΦ : 2E → C is calledmeasure of noncompactne
provided that the following conditions hold for anyM,N ∈ 2E :

(a) Φ(coM) = Φ(M), wherecoM denotes the closed convex hull ofM.
(b) Φ(M) = 0 if and only if M is precompact.
(c) Φ(M ∪ N) = max{Φ(M),Φ(N)}.

Definition 2.3 [9]. Let E be a topological vector space,X ⊆ E, and letΦ be a mea-
sure of noncompactness onE. A multivalued map (correspondence)T :X → 2E is called
Φ-condensingprovided that ifM ⊆ X with Φ(T (M)) � Φ(M) thenM is relative com-
pact, that is,M̄ is compact.

Remark 2.2. Note that every multivaluedmap defined on a compact set isΦ-condensing
for any measure of noncompactnessΦ. If E is locally convex, then a compact multivalu
map (i.e.,T (X) is precompact) isΦ-condensing for any measure of noncompactnesΦ.
Obviously, ifT :X → 2E is Φ-condensing andT ′ :X → 2E satisfiesT ′(x) ⊆ T (x) for all
x ∈ X, thenT ′ is alsoΦ-condensing.

Lemma 2.5 [14]. Let X be a nonempty, closed and convex subset of a topological
tor spaceE. Let Φ be a measure of noncompactness onX and let T :X → 2X be a
Φ-condensing multivalued map. Then there exists a nonempty compact convex subK of
X such thatT (K) ⊆ K.

Remark 2.3. In [14], E is assumed to be a locally convex topological vector space
Lemma 2.4 is true for any topological vector space as we can see in the proof.
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3. Collective fixed points theorems

The following collective fixed points theorem is one of the main results of this pap

Theorem 3.1. Let X be a topological space. For eachi ∈ I , let Yi be a nonempty conve
subset of a topological vector spaceEi . LetY = ∏

i∈I Yi and letS :Y → X be a continuous
single-valued map. For eachi ∈ I , let Pi,Qi :X → 2Yi be multivalued maps satisfying th
following conditions:

(a) For all x ∈ X, Pi(x) is nonempty andcoPi(x) ⊆ Qi(x).
(b) For eachyi ∈ Xi , P−1

i (yi) is compactly open.
(c) If X is not compact, then there exist a nonempty compact subsetK of X and a non-

empty compact convex subsetDi of Yi for each i ∈ I such that for allx ∈ X\K,
Pi(x) ∩ Di �= ∅ for all i ∈ I .

Then there exists̄y = (ȳi)i∈I ∈ Y such thatȳi ∈ Qi(S(ȳ)) for all i ∈ I .

Proof. SincePi(x) is nonempty for allx ∈ X and for eachi ∈ I , we have

X =
⋃{

P−1
i (yi): yi ∈ Yi

}
, for eachi ∈ I.

SinceK is a nonempty compact subset ofX, for eachi ∈ I , there exists a finite subsetMi

of Yi such that

X ∩ K = K ⊆
⋃{

P−1
i (yi): yi ∈ Mi

}
. (3.1)

For eachi ∈ I , let LMi = co{Mi ∪ Di}. ThenLMi is a compact convex subset ofYi . Let
LM = ∏

i∈I LMi . ThenLM is a compact convex subset ofY . Since for eachi ∈ I , Mi ⊆
LMi from (3.1) we have

X ∩ K ⊆
⋃{

P−1
i (yi): yi ∈ LMi

}
, for eachi ∈ I. (3.2)

From condition (c) for eachx ∈ X \K, there existsyi ∈ Di ⊆ LMi such thatyi ∈ Pi(x) for
eachi ∈ I and so

x ∈
⋃{

P−1
i (yi): yi ∈ Di

} ⊆
⋃{

P−1
i (yi): yi ∈ LMi

}
, for eachi ∈ I.

Therefore, for eachi ∈ I

X \ K ⊆
⋃{

P−1
i (yi): yi ∈ LMi

}
. (3.3)

By (3.2) and (3.3), we getX = ⋃{P−1
i (yi): yi ∈ LMi } for eachi ∈ I . Now for eachi ∈ I

Y = S−1(X) = S−1
(⋃{

P−1
i (yi): yi ∈ LMi

}) =
⋃{

S−1P−1
i (yi): yi ∈ LMi

}
.

SinceLM ⊆ Y , we have

LM ⊆
⋃{

S−1P−1
i (yi): yi ∈ LMi

}
, for eachi ∈ I. (3.4)

Also LM ⊆ S−1(S(LM)) and from (3.4) we have for eachi ∈ I
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LM ⊆
(⋃{

S−1P−1
i (yi): yi ∈ LMi

}) ∩ (
S−1(S(LM)

))
=

⋃{(
S−1P−1

i (yi) ∩ S−1(S(LM)
))

: yi ∈ LMi

}
=

⋃{
S−1(P−1

i (yi) ∩ S(LM)
)
: yi ∈ LMi

}
.

SinceLM is compact andS :Y → X is continuous,S(LM) is compact andS(LM) ∩
P−1

i (yi) is open inS(LM) because eachP−1
i (yi) is compactly open. Therefore for ea

i ∈ I and for ally ∈ LMi , (S−1[P−1
i (yi) ∩ S(LM)]) ∩ LM is open inLM and

LM =
⋃{

LM ∩ (
S−1[P−1

i (yi) ∩ S(LM)
])

: yi ∈ LMi

}
, for eachi ∈ I.

SinceLM is compact, for eachi ∈ I , there exists a finite setNi = {y(1)
i , . . . , y

ni+1
i } of LMi

for someni ∈ N such that

LM ⊆
ni+1⋃
j=1

(
LM ∩ (

S−1([P−1
i

(
y

(j)
i

) ∩ S(LM)
])))

.

SinceLM is compact, there also exists a continuous partition of unity{β(1)
i , . . . , β

(ni+1)
i }

subordinated to the open covering{LM ∩ (S−1([P−1
i (y

(j)

i ) ∩ S(LM)]))}ni+1
j=1 , that is,

for each j = 1, . . . , ni + 1, β
(j)
i :LM → [0,1] is continuous such that for allx ∈

LM ,
∑ni+1

j=1 β
(j)

i (x) = 1 and for eachj = 1, . . . , ni + 1, β
(j)

i (x) = 0 for x /∈ LM ∩
(S−1[P−1

i (y
(j)
i ) ∩ S(LM)]). In other words,β(j)

i (x) �= 0 impliesx ∈ S−1P−1
i (y

(j)
i ), that

is, y(j)

i ∈ Pi(S(x)) for all j = 1, . . . , ni + 1 and for eachi ∈ I .
Let φi :LM → ∆ni be a map defined by

ϕi(x) =
ni+1∑
j=1

β
(j)

i (x)e
(j)

i , for all x ∈ LM,

wheree
(j)

i is thej th unit vector inR
ni+1 and∆ni denotes the standardni -simplex.

For eachi ∈ I , let gi :∆ni → coHi ⊆ LMi be defined by

gi

(
ni+1∑
j=1

α
(j)

i e
(j)

i

)
=

ni+1∑
j=1

α
(j)

i y
(j)

i ,

where coHi = co{y(1)
i , . . . , y

(ni+1)
i }, α

(j)

i � 0 for all i ∈ I and 1� j � ni + 1 and∑ni+1
j=1 α

(j)

i = 1. Then clearlyϕi :LM → ∆ni and gi :∆ni → LMi are continuous func
tions.

Let Ji(x) = {1� j � ni + 1: β
(j)

i (x) �= 0}. Then for eachx ∈ LM ,

giφi(x) =
ni+1∑

β
(j)

i (x)yj =
∑

β
(j)

i (x)yj ∈ coPi

(
S(x)

) ⊆ Qi

(
S(x)

)∣∣
LM

.

j=1 j∈Ji(x)
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For eachi ∈ I , let Ei be the finite dimensional vector space containing∆ni and letC =∏
i∈I ∆ni . ThenC is a compact convex subset of the locally convex Hausdorff topolo

vector space. LetG :C → LM be defined by

G(z) = (
gi(zi)

)
i∈I

for z ∈ C,

wherezi is theith projection ofz. Let Ψ :LM → C be defined by

Ψ (x) = (
φi(x)

)
i∈I

for x ∈ LM.

Let F = Ψ ◦ G. ThenF : C → C is a continuous function. By Tychonoff’s fixed poi
theorem that there exists̄u ∈ C such thatū = F(ū) = Ψ ◦ G(ū). Let ȳ = (ȳi)i∈I = G(ū).
Thenȳi = giφi(ȳ) ∈ Qi(S(ȳ)) for all i ∈ I . �

As a simple consequence of Theorem 3.1, we have the following result.

Corollary 3.1. Let X be a topological space. For eachi ∈ I , let Yi be a nonempty conve
subset of a topological vector spaceEi . LetY = ∏

i∈I Yi and letS :Y → X be a continuous
single-valued map. For eachi ∈ I , let Pi,Qi :X → 2Yi be multivalued maps satisfying th
following conditions:

(a) For eachx ∈ X, coPi(x) ⊆ Qi(x).
(b) X = ⋃{cintP−1

i (yi): yi ∈ Yi}.
(c) If X is not compact, then there exist a nonempty compact subsetK of X and a non-

empty compact convex subsetDi of Yi for eachi ∈ I such that for allx ∈ X\K, there
existsỹi ∈ Di such thatx ∈ cintP−1

i (ỹi) for all i ∈ I .

Then there exists̄y = (ȳi)i∈I such thatȳi ∈ Qi(S(ȳ)) for all i ∈ I .

Proof. By condition (b) for eachi ∈ I and for allx ∈ X, there existsyi ∈ Yi such that
x ∈ cintP−1

i (yi). For eachi ∈ I and for allx ∈ X, define a multivalued mapFi :X → 2Yi

by

Fi(x) = {
yi ∈ Yi : x ∈ cintP−1

i (yi)
}
.

Then for eachi ∈ I and for allyi ∈ Yi , F−1
i (yi) = cintP−1

i (yi) is compactly open. Again
by condition (b), for eachi ∈ I and for all x ∈ X, Fi(x) is nonempty and coFi(x) ⊆
coPi(x) ⊆ Qi(x). By condition (c), for eachx ∈ X, there existsỹi ∈ Di such thatx ∈
cintP−1

i (ỹi), we haveỹi ∈ Pi(x) and henceFi(x) ∩ Di �= ∅. Thus the conclusion follow
from Theorem 3.1. �
Remark 3.1. Corollary 3.1 generalizes Theorem 3.1in [1] and thus Theorem 2.1 in [10].

Remark 3.2. Conditions (a) and (b) in Corollary 3.1 can be replaced by the follow
conditions:

(a′) For eachx ∈ X, Pi(x) is nonempty and coPi(x) ⊆ Qi(x).
(b′) P−1 is transfer compactly open valued onYi .
i
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Proof. By conditions (a′) and (b′), and Lemma 2.2, we have

X =
⋃{

cintP−1
i (yi): yi ∈ Yi

}
. �

Remark 3.3. ForY = X andS(x) = x for all x ∈ X, Corollary 3.1 along with Remark 3.
generalizes Corollary 3.1 of Lin et al. [11].

Corollary 3.2. Let X be a topological space. For eachi ∈ I , let Yi be a nonempty conve
subset of a topological vector spaceEi . LetY = ∏

i∈I Yi and letS :Y → X be a continuous
single-valued map. For eachi ∈ I , let Pi , Qi :X → 2Yi be multivalued maps satisfying th
following conditions:

(a) For all x ∈ X, Pi(x) is nonempty andcoPi(x) ⊆ Qi(x).
(b) For eachyi ∈ Yi , P−1

i (yi) contains compactly open subsetOyi (may be empty) of X

and

X =
⋃

{Oyi : yi ∈ Yi}.
(c) If X is not compact, then there exist a nonempty compact subsetK of X and a non-

empty compact convex subsetDi of Yi for eachi ∈ I such that for allx ∈ X\K, there
existsỹi ∈ Di such thatx ∈ Oỹi

for all i ∈ I .

Then there exists̄y = (ȳi)i∈I ∈ Y such thatȳi ∈ Qi(S(ȳ)) for all i ∈ I .

Proof. By condition (b), we have for eachi ∈ I

X =
⋃

{Oyi : yi ∈ Yi} ⊆
⋃{

cintP−1
i (yi): yi ∈ Yi

} ⊆ X.

By condition (c) for eachx ∈ X\K, there exists̃yi ∈ Di such thatx ∈ Oỹi
⊆ cintP−1

i (ỹi)

for eachi ∈ I . Then the conclusion follows from Corollary 3.1.�
Remark 3.4. Condition (c) of Corollary 3.2 can be replaced by the following condition

(c′) If X is not compact, then for eachi ∈ I there exist a nonempty compact convex sub
Di of Yi and a finite subset{y1

i , . . . , y
(n)
i } of Yi such that

⋂
yi∈Di

Oc
yi

⊆
n⋃

j=1

O
y

(j)
i

whereOc
yi

denotes the complement ofOyi .

Proof. SetCi = co{Di ∪ {y(1)
i , . . . , y

(n)
i }} for eachi ∈ I . ThenCi is a nonempty compac

convex subset ofYi and by condition (c′) we have

⋂
Oc

ui
⊆

( ⋂
Oc

yi

)
∩

(
n⋂

Oc
yi

)
= ∅ ⊆ K
ui∈Ci yi∈Di j=1
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for any compact setK. Therefore for anyx ∈ X\K, there existsui ∈ Ci such thatx ∈
Oui . �
Remark 3.5. Corollary 3.2 improves and generalizes Theorem 1 in [15] Theorem 2 in
Theorem 2.1 in [17], and Theorem 1 in [8].

Corollary 3.3. Let X be a topological vector space. For eachi ∈ I , let Yi be a nonempty
convex subset of a topological vector spaceEi . Let Y = 	i∈IYi and letS :Y → X be a
continuous single-valued map. For eachi ∈ I , let Pi,Qi :X → 2Yi be multivalued map
satisfying the following conditions:

(a) For all x ∈ X, coPi(x) ⊆ Qi(x).
(b) X = ⋃{intP−1

i (yi): yi ∈ Yi}.
(c) If X is not compact, then there exist a nonempty compact subsetK of X and a non-

empty compact convex subsetDi of Yi for eachi ∈ I such that for allx ∈ X\K, there
existsỹi ∈ Di such thatx ∈ intP−1

i (ỹi) for all i ∈ I .

Then there exists̄y = (ȳi)i∈I ∈ Y such thatȳi ∈ Qi(S(ȳ)) for all i ∈ I .

Proof. By condition (b),

X =
⋃{

intP−1
i (yi): yi ∈ Yi

} ⊆
⋃{

cintP−1
i (yi): yi ∈ Yi

} ⊆ X.

ThereforeX = ⋃{cintP−1
i (yi): yi ∈ Yi} and hence the conclusion follows from Coro

lary 3.1. �
Next we shall establish a collective fixed points theorem for a family of multiva

maps whose product isΦ-condensing.

Theorem 3.2. For eachi ∈ I , let Xi be a nonempty closed convex subset of a topolog
vector spaceEi . Let X = ∏

i∈I Xi and letΦ be a measure of noncompactness onE =∏
i∈I Ei . For eachi ∈ I , letPi,Qi :X → 2Xi be multivalued maps satisfying the followi

conditions:

(a) For all x ∈ X, Pi(x) is nonempty andcoPi(x) ⊆ Qi(x).
(b) P−1

i is transfer compactly open valued.
(c) The multivalued mapQ :X → 2X defined byQ(x) = ∏

i∈I Qi(x) is Φ-condensing.

Then there exists̄x = (x̄i)i∈I ∈ X such thatx̄i ∈ Qi(x̄) for all i ∈ I .

Proof. Since for eachi ∈ I , Xi is a nonempty closed convex subset ofEi , we have
X = ∏

i∈I Xi is a nonempty closed convex subset ofE = ∏
i∈I Ei . SinceQ :X → 2X

is Φ-condensing, it follows from Lemma 2.5 that there exists a nonempty compact c
subsetK of X such thatQ(K) ⊆ K. LetK = ∏

i∈I Ki , whereKi is theith projection ofK.
ThenKi is a compact convex subset ofXi and for eachx ∈ K, coPi(x) ⊆ Qi(x) ⊆ Ki and
the conclusion follows from Corollary 3.1.�
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Remark 3.6. Theorem 3.2 along with Lemma 2.2 generalizes Theorem 1 in [12].

As an application of Corollary 3.1, we have the following coincidence theorem for
families of multivalued maps defined on product spaces.

Theorem 3.3. For eachi ∈ I , let Xi and Yi be nonempty convex subsets of topolog
vector spacesEi andẼi , respectively. LetX = ∏

i∈I Xi andY = ∏
i∈I Yi . For eachi ∈ I ,

let Ai :X → 2Yi andBi :Y → 2Xi be multivalued maps. Suppose that there exist none
compact subsetL ⊆ Y and K ⊆ X, and nonempty compact convex subsetCi ⊆ Yi and
Di ⊆ Xi for eachi ∈ I such that

(a) for eachi ∈ I , A−1
i , B−1

i are transfer compactly open valued onYi andXi , respec-
tively,

(b) for eachi ∈ I and for all x ∈ X and y ∈ Y , Ai(x) and Bi(y) are nonempty conve
sets,

(c) for each(x, y) ∈ X ×Y\K ×L, there existyi ∈ Ci , xi ∈ Di such thatx ∈ cintA−1
i (yi)

andy ∈ cintB−1
i (xi) for all i ∈ I .

Then there exists̄x = (x̄i)i∈I ∈ X andȳ = (ȳi)i∈I ∈ Y such thatȳi ∈ Ai(x̄) andx̄i ∈ Bi(ȳ)

for all i ∈ I .

Proof. We follow the argument of Theorem 10 in [6]. LetW = K × L. For eachi ∈ I ,
let Vi = Ci × Di and defineWi :X × Y → 2Yi×Xi by Wi(x, y) = Ai(x) × Bi(y) for each
(x, y) ∈ X × Y . Let S :Y × X → X × Y be defined byS(y, x) = (x, y) for each(y, x) ∈
Y × X. Then all the conditions of Corollary 3.1 are satisfied and it follows that there e
(x̄, ȳ) = (x̄i , ȳi)i∈I ∈ X × Y such that(ȳi , x̄i) ∈ Wi(S(ȳ, x̄)) = Wi(x̄, ȳ) = Ai(x̄) × Bi(ȳ)

for all i ∈ I . Thusȳi ∈ Ai(x̄) andx̄i ∈ Bi(ȳ) for all i ∈ I . �
Remark 3.7. Theorem 3.3 improves and generalizes Theorem 10 in [6] and Theore
in [5].

4. Maximal elements for a family of multivalued maps

We recall that a pointx ∈ X is a maximal elementof a multivalued mapT from a
topological spaceX to another topological spaceY if T (x) = ∅.

For eachi ∈ I , Let Xi be a nonempty subset of a topological spaceEi andTi :X =∏
i∈I Xi → 2Xi a multivalued map. Then a pointx = (xi)i∈I ∈ X is called amaximal

elementfor the family of multivalued maps{Ti}i∈I if Ti(x) = ∅ for all i ∈ I .
In the recent past the existence theorems for a maximal element for a family of

valued maps have been used to prove the existence of a solution of system of var
inequalities and system of equilibrium problems, see for example [2,10–12,19] and
erences therein. It can be easily seen that the maximal elements theory for the family of
multivalued maps is useful to study the following qualitative game.
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A qualitative gameis a familyΓ = (Xi,Pi)i∈I of ordered pairs(Xi,Pi) where for each
i ∈ I , Xi is a topological space andPi :X = ∏

i∈I Xi → 2Xi is an irreflexive preferenc
correspondence, that is,xi /∈ Pi(x) for all x ∈ X. A pointx ∈ X is said to be anequilibrium
point of the qualitative gameΓ if Pi(x) = for all i ∈ I .

For further detail on qualitative games, we refer to [19] and reference therein.
We establish the following proposition which plays an important role throughout th

section.

Proposition 4.1. Let X andY be two nonempty subsets of atopological vector space an
T :X → 2Y a multivalued map. Then the following two statements are equivalent:

(a) For eachx ∈ X such thatT (x) �= ∅, there existsy ∈ Y such thatx ∈ cintT −1(y).
(b) T −1 is transfer compactly open valued onY .

Proof. (a) ⇒ (b). Let x ∈ X such thatx ∈ T −1(y) for somey ∈ Y , theny ∈ T (x) �= ∅.
By (a), there existsy ′ ∈ Y such thatx ∈ cintT −1(y ′). HenceT −1 is transfer compactly
open valued onY .

Conversely, letx ∈ X such thatT (x) �= ∅. Therefore,x ∈ T −1(y) for somey ∈ Y .
By (b), there existsy ′ ∈ Y such thatx ∈ cintT −1(y ′). �

Following the argument of proof of Theorem 8 in [6], we have the following result.

Theorem 4.1. Let X be a regular and paracompact topological space. For eachi ∈ I ,
let Yi be a nonempty convex subset of a topological vector spaceEi . Let Y = ∏

i∈I Yi ,
S :Y → X a continuous single-valued map andQi ∈ MS(X,Yi)i∈I . Suppose that ther
exists a nonempty compact subsetK of X and a nonempty compact convex subsetCi of Yi

for eachi ∈ I such that for allx ∈ X\K, there existsi ∈ I such thatQi(x) ∩Ci �= ∅. Then
there exists̄x ∈ K such thatQi(x̄) = ∅ for all i ∈ I .

Remark 4.1. Since our definition ofMS(X,Yi)i∈I is more general than the one given
[6], Theorem 4.1 generalizes Theorem 8 in [6].

As a particular case of above theorem, we have the following result.

Corollary 4.1. For eachi ∈ I , let Xi be a nonempty convex subset of a topological v
tor spaceEi . Let X = ∏

i∈I Xi and Qi ∈ M(X,Xi)i∈I . Suppose thatX is regular and
paracompact and there exist a nonempty compact subsetK of X and a nonempty compa
convex subsetCi of Xi for eachi ∈ I such that for allx ∈ X\K, there existsi ∈ I with
Qi(x) ∩ Ci �= ∅. Then there exists̄x ∈ K such thatQi(x̄) = ∅ for all i ∈ I .

Theorem 4.2. For eachi ∈ I , let Xi be a nonempty closed convex subset of a topolog
vector spaceEi . Let X = ∏

i∈I Xi and letΦ be a measure of noncompactness onE =∏
i∈I Ei . For eachi ∈ I , let Qi :X → 2Xi be a multivalued map satisfying the followin

conditions:
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(a) {Qi}i∈I ∈ M(X,Xi)i∈I .
(b) The multivalued mapQ :X → 2X defining byQ(x) = ∏

i∈I Qi(x) is Φ-condensing.

Then there exists̄x ∈ X such thatQi(x̄) = ∅ for all i ∈ I .

Proof. Since for eachi ∈ I , Xi is a nonempty closed convex subset ofEi , we haveX =∏
i∈I Xi is a nonempty closed convex subset ofE. SinceQ :X → 2X is Φ-condensing, it

follows from Lemma 2.5 that there exists a nonempty compact convex subsetK of X such
that Q(K) ⊆ K. SinceK is compact,K is regular and paracompact. By condition (
{Qi}i∈I ∈ M(X,Xi)i∈I and it is easy to see that{Qi |K}i∈I ∈ M(K,Ki)i∈I whereKi is
theith projection ofK. Then the conclusion follows from Corollary 4.1.�
Remark 4.2. Theorem 4.2 improves Proposition 2 in [4] in th following ways:

(i) For eachi ∈ I , Ei need not be locally convex.
(ii) Theorem 4.2 does not have the following condition:the set{x ∈ C: Qi(x) �= ∅} is

open inC, for every nonempty compact subsetC of X.

Corollary 4.2. For eachi ∈ I , let Xi be a nonempty closed convex subset of a topolog
vector spaceEi . Let X = ∏

i∈I Xi , {Qi}i∈I ∈ L(X,Xi)i∈I and let Φ be a measure o
noncompactness onE = ∏

i∈I Ei . Suppose that the multivalued mapQ :X → 2X defining
byQ(x) = ∏

i∈I Qi(x) is Φ-condensing. Then there existsx̄ ∈ K such thatQi(x̄) = ∅ for
all i ∈ I .

Proof. Since{Qi}i∈I ∈ L(X,Xi)i∈I andL(X,Xi)i∈I ⊆ M(X,Xi)i∈I , we have{Qi}i∈I ∈
M(X,Xi)i∈I and the result follows from Theorem 4.2.�
Theorem 4.3. For eachi ∈ I , let Xi be a nonempty closed convex subset of a topo
ical vector spaceEi . Let X = ∏

i∈I Xi and letΦ be a measure of noncompactness
E = ∏

i∈I Ei . For eachi ∈ I , assume that the multivalued mapQi :X → 2Xi satisfies the
following conditions:

(a) For eachx = (xi)i∈I ∈ X, xi /∈ coQi(x).
(b) For eachx ∈ X such thatQi(x) �= ∅, there existsyi ∈ Xi such thatx ∈ cintQ−1

i (yi).
(c) The multivalued mapQ :X → 2X defined asQ(x) = ∏

i∈I Qi(x) for all x ∈ X, is
Φ-condensing.

Then there exists̄x ∈ X such thatQi(x̄) = ∅ for all i ∈ I .

Proof. Suppose that the conclusion of this theorem is not true. Then for everyx ∈ X, there
existsjx ∈ I such thatQjx (x) �= ∅. For eachi ∈ I , let Fi :X → 2Xi be defined asFi(x) =
{yi ∈ Xi : x ∈ cintQ−1

i (yi)}. Then for eachyi ∈ Xi , F−1
i (yi) = cintQ−1

i (yi) is compactly
open and alsoFi(x) ⊆ Qi(x) for all x ∈ X. Since for eachx ∈ X, xi /∈ coQi(x) and
Fi(x) ⊆ Qi(x), we havexi /∈ coFi(x). Therefore{Fi}i∈I ∈ L(X,Xi)i∈I ⊆ M(X,Xi)i∈I .
Since for eachx ∈ X, Fi(x) ⊆ Qi(x) andQ :X → 2X is Φ-condensing, it follows tha
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F :X → 2X is alsoΦ-condensing, whereF(x) = ∏
i∈I Fi(x) for all x ∈ X. Then by The-

orem 4.2 that there exists̄x ∈ X such thatFi(x̄) = ∅ for all i ∈ I .
On the other hand, there existsjx̄ ∈ I such thatQjx̄ (x̄) �= ∅. Then by (b), there exist

yjx̄ ∈ Xjx̄ such thatx̄ ∈ cintQ−1
jx̄

(yjx̄ ). This shows thatyjx̄ ∈ Fjx̄ (x̄) = ∅ which leads to a
contradiction. Hence our supposition is wrong. �
Remark 4.3. Theorem 4.3 improves Corollary 4 in [4] and Corollary 4.1 in [11].

Corollary 4.3. For eachi ∈ I , let Xi be a nonempty convex subset of a topological ve
spaceEi . LetX = ∏

i∈I Xi and letΦ be a measure of noncompactness onE = ∏
i∈I Ei .

For each i ∈ I , let Qi,Ti :X → 2Xi be two multivalued maps satisfying the followi
conditions:

(a) For eachx ∈ X, coQi(x) ⊆ Ti(x).
(b) For eachx = (x̄i)i∈I ∈ X, xi /∈ Ti(x).
(c) For eachyi ∈ Xi , Q−1

i (yi) is transfer compactly open inX.
(d) The multivalued mapT :X → 2X defined asT (x) = ∏

i∈I Ti(x) for all x ∈ X, is
Φ-condensing.

Then there exists̄x ∈ X such thatQi(x̄) = ∅ for all i ∈ I .

Proof. By (b), for eachx = (xi)i∈I ∈ X, xi /∈ coQi(x). Defined multivalued mapQ :X →
2X by Q(x) = ∏

i∈I Qi(x) for all x ∈ X. From (a), we haveQ(x) ⊆ T (x) for all x ∈ X.
SinceT is Φ-condensing,Q is alsoΦ-condensing. The result follows from Theorem 4
and Proposition 4.1. �
Remark 4.4. (i) Corollary 4.3 improves Theorem 4.2 in [11] in the following way: “F
eachx ∈ X, I (x) = {i ∈ I : Qi(x) �= ∅} is finite” is not considered in Corollary 4.3.

(ii) If I is a singleton set, then Corollary 4.3 reduces to Corollary 2 in [12].

Following the argument of proof of Theorem 7 in [6], we have the following re
which generalizes Theorem 7 in [6].

Theorem 4.4. For eachi ∈ I , let Yi be a nonempty convex subset of a topological ve
spaceEi . Let Y = ∏

i∈I Yi , X a Hausdorff topological space,S :Y → X a continuous
single-valued map and{Qi}i∈I ∈ LS(X,Yi)i∈I . Suppose that there exist a nonempty co
pact subsetK of X and a nonempty compact convex subsetCi of Yi for eachi ∈ I such
that for all x ∈ X\K, there existsi ∈ I such thatQi(x) ∩ Ci �= ∅. Then there exists̄x ∈ K

such thatQi(x̄) = ∅ for all i ∈ I .

As a simple consequence of Theorem 4.4, we have the following existence resu
maximal elements.

Theorem 4.5. Let X be a topological vector space. For eachi ∈ I , let Yi be a nonempty
convex subset of a topological vector spaceEi , Qi :X → 2Yi a multivalued map and le
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S :Y = 	i∈I Yi → X be a continuous single-valued map. Assume that the following c
tions hold:

(a) For eachi ∈ I and for ally ∈ Y , yi /∈ coQi(S(y)).
(b) For x ∈ X such thatQi(x) �= ∅, there existsy ′

i ∈ Yi such thatx ∈ cintQ−1
i (y ′

i ).
(c) There exist a nonempty compact subsetK of X and a nonempty compact convex sub

Ci of Yi for eachi ∈ I such that for allx ∈ X\K, there existi ∈ I andyi ∈ Ci such
thatx ∈ cintQ−1

i (yi).

Then there exists̄x ∈ K such thatQi(x̄) = ∅ for all i ∈ I .

Proof. Suppose that the conclusion is false. Then for eachx ∈ X, there existsjx ∈ I such
that Qjx (x) �= ∅. For eachi ∈ I , let Fi :X → 2Yi be defined byFi(x) = {yi ∈ Yi : x ∈
cintQ−1

i (yi)} for all x ∈ X. Then for eachi ∈ I and eachyi ∈ Yi , F−1
i (yi) = cintQ−1

i (yi)

is compactly open. By Lemma 2.3, for eachi ∈ I andyi ∈ Yi , (coFi)
−1(yi) is compactly

open. Since for allx ∈ X and for eachi ∈ I , Fi(x) ⊆ Qi(x) andyi /∈ coQi(S(y)) for
all y = (yi)i∈I ∈ Y , we haveyi /∈ coFi(S(y)) for all y = (yi)i∈I and i ∈ I . Therefore
{coFi}i∈I ∈ LS(X,Yi)i∈I . By (c), for allx ∈ X\K, there existi ∈ I andyi ∈ Ci such that
x ∈ cintQ−1

i (yi). Thenyi ∈ Fi(x) andFi(x) ∩ Ci �= ∅ and hence by Theorem 4.4, the
existsx̄ ∈ X such that coFi(x̄) = ∅ for all i ∈ I .

On the other hand, for each̄x there existsjx̄ ∈ I such thatQjx̄ (x̄) �= ∅. Since
Qjx̄ (x̄) �= ∅ and from condition (b), we havēx ∈ cintQ−1

jx̄
(y ′

jx̄
) for somey ′

jx̄
∈ Yjx̄ and

thusy ′
jx̄

∈ Fjx̄ (x̄) �= ∅. Therefore, coFjx̄ (x̄) �= ∅. This leads to a contradiction. Hence o
supposition is not true. �
Remark 4.5. Condition (b) of Theorem 4.5 can be replaced by the following condition

(b′) For eachi ∈ I , Q−1
i is transfer compactly open valued onYi .

As a simple consequence of Theorem 4.4, we have the following corollary.

Corollary 4.4. For eachi ∈ I , let Xi be a nonempty convex subset of a topological ve
spaceEi and letQi,Ti : X = ∏

i∈I Xi → 2Xi be multivalued maps satisfying the followi
conditions:

(a) For eachi ∈ I and for allx ∈ X, coQi(x) ⊆ Ti(x).
(b) For eachi ∈ I and for all x = (xi)i∈I ∈ X, xi /∈ Ti(x), wherexi is theith projection

of x.
(c) For eachi ∈ I and for allyi ∈ Xi , Q−1

i (yi) is compactly open inX.
(d) There exists a nonempty compact subsetK of X and a nonempty compact conv

subsetCi of Xi for eachi ∈ I such that for allx ∈ X\K, there existsi ∈ I such that
Qi(x) ∩ Ci �= ∅.

Then there exists̄x ∈ X such thatQi(x̄) = ∅ for all i ∈ I .



L.-J. Lin, Q.H. Ansari / J. Math. Anal. Appl. 296 (2004) 455–472 469

by

tion

,

ct
or

ctor

itions

pact
Proof. Let the multivalued mapGi :X → 2Xi be defined byGi(x) = coQi(x) for all
x ∈ X. By (b), for eachi ∈ I and for allx = (xi)i∈J ∈ X, xi /∈ Gi(x). By Lemma 2.3,
for eachyi ∈ Xi , G−1

i (yi) is compactly open inX and therefore{Gi}i∈I ∈ L(X,Xi)i∈I .
By (d), for all x ∈ X\K there existsi ∈ I such thatGi(x) ∩ Ci �= ∅. It follows from
Theorem 4.4 that there existsx̄ ∈ X such thatGi(x̄) = ∅ for all i ∈ I . Therefore,Qi(x̄) = ∅
for all i ∈ I . �
Remark 4.6. In view of Proposition 4.1, condition (c) of Corollary 4.4 can be replaced
the following condition:

(c′) For eachi ∈ I , multivalued mapQ−1
i is transfer compactly open valued onXi .

Remark 4.7. Corollary 5.2 improves Theorem 4.1 in [11] in the way that the condi
“for eachx ∈ X, I (x) = {i ∈ I : Si(x) �= ∅} is finite” is not considered in Corollary 5.2.

5. Equilibria of abstract economies

Let I be a any (finite or infinite) set of agents. Anabstract economyis defined as a family
of order quadruplesΓ = (Xi,Ai,Bi,Pi)i∈I where for eachi ∈ I , Xi is a topological space
Ai,Bi :X = ∏

i∈I → 2Xi are constraint correspondences andPi :X → 2Xi is a preference
correspondence. Anequilibrium for Γ is a point x̄ ∈ X such that for eachi ∈ I , x̄i ∈
clBi(x̄) andAi(x̄)∩Pi(x̄) = ∅. WhenAi = Bi for all i ∈ I , above definitions of an abstra
economy and an equilibrium coincide with the standard definitions, for example in [3]
in [18].

Theorem 5.1. For eachi ∈ I , let Xi be a nonempty convex subset of a topological ve
spaceEi . LetX = ∏

i∈I Xi and letΦ be a measure of noncompactness onE = ∏
i∈I Ei .

For eachi ∈ I , let clBi :X → 2Xi be an upper semicontinuous multivalued map,Ai :X →
2Xi a nonempty convex valued multivalued map such that for eachi ∈ I , A−1

i (yi) is open
in X andPi :X → 2Xi a preference correspondence. Assume that the following cond
hold:

(a) For eachi ∈ I and for allx ∈ X, coAi(x) ⊆ Bi(x).
(b) {Ai ∩ Pi}i∈I ∈ M(X,Xi)i∈I .
(c) The multivalued mapA :X → 2X defined byA(x) = ∏

i∈I Ai(x) is Φ-condensing.

Then there exists̄x = (x̄i)i∈I ∈ X such thatx̄i ∈ clBi(x̄) and Ai(x̄) ∩ Pi(x̄) = ∅ for all
i ∈ I .

Proof. SinceA is Φ-condensing, it follows from Lemma 2.45 that there exists a com
convex subsetK ⊆ X such thatA(K) ⊆ K.

Let F = {x = (xi)i∈I ∈ K: xi ∈ clBi(x)}. Then clearlyFi is a closed subset ofK for
eachi ∈ I . By Lemma 2.4, there exists{Ti}i∈I ∈ L(K,Xi)i∈I such thatAi(x) ∩ Pi(x) ⊆
Ti(x) for all i ∈ I andx ∈ K.
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Let the multivalued mapQi :K → 2Ki be defined as

Qi(x) =
{

Ti(x) ∩ Ai(x) if x ∈ Fi ,

Ai(x) if K\Fi ,

whereKi is theith projection ofK. Since{Ti}i∈I ∈ L(K,Xi) for eachi ∈ I and for all
x = (xi)i∈I ∈ X, we havexi /∈ Qi(x). It is easy to see that

Q−1
i (yi) = (

T −1
i (yi) ∩ (Ai)

−1(yi)
) ∪ (

(K\Fi ) ∩ (Ai)
−1(yi)

)
is compactly open inK for eachyi ∈ Ki and Qi is convex valued multivalued ma
Therefore {Qi}i∈I ∈ L(K,Ki)i∈I ⊆ M(K,Ki)i∈I . Since K is a compact set,Q =∏

i∈I Qi :K → 2K is Φ-condensing. It follows from Theorem 4.2 that there existsx̄ =
(x̄i)i∈I ∈ K such thatQi(x̄) = ∅ for each i ∈ I . If x̄ ∈ X\Fj for somej ∈ I , then
Aj(x̄) = Qj(x̄) = ∅, which contradicts withAi(x) is nonempty for allx ∈ X and for
eachi ∈ I . Therefore,̄x ∈ Fi for all i ∈ I . Hencex̄i ∈ clBi(x̄) andAi(x̄) ∩ Ti(x̄) = ∅ for
all i ∈ I . This shows thatAi(x̄) ∩ Pi(x̄) = ∅ for all i ∈ I . �
Remark 5.1. Condition (b) of Theorem 5.1 can be replaced by the following condition

(b1) For eachi ∈ I and for allx = (xi)i∈I , xi /∈ Pi(x̄).
(b2) For eachi ∈ I and for allx ∈ X, Pi(x) is convex.
(b3) For eachi ∈ I and for allyi ∈ Xi , P−1

i (yi) is compactly open.

As a particular case of Theorem 5.1, we have the following corollary.

Corollary 5.1. LetΓ = (Xi,Ai,Pi)i∈I be an abstract economy satisfying for eachi ∈ I :

(i) Xi is a nonempty closed and convex subset of a topological vector spaceEi and
X = ∏

i∈I Xi .
(ii) For eachx ∈ X, Ai(x) is nonempty and convex.
(iii) For all yi ∈ Xi , A−1

i (yi) is open.
(iv) cl Ai :X → 2Xi is upper semicontinuous.
(v) (Ai ∩ Pi)i∈I ∈ M(X,Xi)i∈I .
(vi) A(x) = ∏

i∈I Ai(x) is Φ-condensing.

Then there exist̄x = (x̄i)i∈I ∈ X such thatx̄i ∈ clAi(x̄) and Ai(x̄) ∩ Pi(x̄) = ∅ for all
i ∈ I .

Remark 5.2. Corollary 5.1 improves Proposition 3 in [4].

Theorem 5.2. For eachi ∈ I , let Xi be a nonempty convex subset of a topological v
tor spaceEi . Let X = ∏

i∈I Xi and let Φ be a measure of noncompactness onE =∏
i∈I Ei . For eachi ∈ I , let clBi :X → 2Xi be an upper semicontinuous multivalued m

Ai :X → 2Xi a multivalued map with nonempty values such that for eachyi ∈ Xi , A
−1
i (yi)

is compactly open inX, Pi :X → 2Xi a preference correspondence andGi :X → 2Xi a
multivalued map. Assume that the following conditions hold:
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(a) For eachi ∈ I and for allx ∈ X, coAi(x) ⊆ Bi(x).
(b) For eachi ∈ I and for allyi ∈ Xi , P−1

i (yi) is compactly open inX.
(c) For eachi ∈ I and for allx = (xi)i∈I ∈ X, xi /∈ Gi(x).
(d) For eachi ∈ I and for allx ∈ X, coPi(x) ⊆ Gi(x).
(e) The multivalued mapA = ∏

i∈I Ai :X → 2X defined asA(x) = ∏
i∈I Ai(x), is Φ-

condensing.

Then there exists̄x = (x̄i)i∈I ∈ X such thatx̄i ∈ clBi(x̄) and Ai(x̄) ∩ Pi(x̄) = ∅ for all
i ∈ I .

Proof. SinceA :X → 2X is Φ-condensing, it follows from Lemma 2.5 that there exis
nonempty compact convex setK = ∏

i∈I Ki of X such thatA(K) ⊆ K. For eachi ∈ I , let
Fi = {x = (xi)i∈I ∈ K: xi ∈ clBi(x)}. Then clearlyFi is closed for eachi ∈ I . For each
i ∈ I , define multivalued mapsQi , Ti :X → 2Xi by

Qi(x) =
{

Ai(x) ∩ Pi(x) if x ∈Fi ,

Ai(x) if x ∈ K\Fi

and

Ti(x) =
{

clBi(x) ∩ Gi(x)] if x ∈Fi ,

clBi(x) if x ∈ K\Fi ,

for all x ∈ X. By condition (a) and (d), for eachi ∈ I and for allx ∈ X, coQi(x) ⊆ Ti(x).
By condition (b)

Q−1
i (yi) = [

A−1
i (yi) ∩ P−1

i (yi)
] ∪ [

(X\Fi ) ∩ A−1
i (yi)

]
is compactly open inX for each yi ∈ Xi . By condition (c) for eachi ∈ I and
x = (x̄i)i∈I ∈ X, xi /∈ Ti(x). SinceK is compact,T = ∏

i∈I Ti :K → 2K is Φ-condensing
It follows from Corollary 4.3 that there exists̄x = (x̄i)i∈I ∈ X such thatQi(x̄) = ∅ for all
i ∈ I . If x̄ ∈ K\Fj for somej ∈ I , thenAj(x̄) = Qj(x̄) = ∅ which contradicts with
Ai(x) is nonempty for alli ∈ I andx ∈ X. Thereforex̄ ∈ Fi for all i ∈ I . This shows tha
x̄i ∈ clBi(x̄) andAi(x̄) ∩ Pi(x̄) = ∅ for all i ∈ I . �
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