
Technical Note

On the Floyd±Warshall algorithm for logic
programs

Christos Papadimitriou a,*, Martha Sideri b

a Division of Computer Science, U.C. Berkeley, Berkeley CA 94720, USA
b Athens University of Economics and Business, Athens, Greece

Received 19 December 1997; received in revised form 2 February 1999; accepted 10 February 1999

Abstract

We explore the possibility of evaluating single-rule Datalog programs e�ciently and with

logarithmic work space by a natural extension of the Floyd±Warshall algorithm for transitive

closure. We characterize exactly the single rule chain programs that can be so evaluated ± they

are rather modest generalizations of the transitive closure. The proof relies on an interesting

language-theoretic concept, total ambiguity. Extensions to more general classes of programs,

and more general algorithms, are discussed. Ó 1999 Published by Elsevier Science Inc. All

rights reserved.

Keywords: Floyd±Warshall algorithm; Logic programs; Datalog programs; Total ambiguity

1. Introduction

A Datalog program is a recursive method for de®ning functions from relations to
relations; for example, the program below de®nes the transitive closure of a relation
T0

T �x; y� T �x; z�; T �z; y�: �1�
In this paper we shall be interested in such single-rule Datalog programs, sirups 1 for
short. Sirups are important because they are extremely simple, and still they capture
the diversity and complexity of datalog. We are assuming that the de®ned relation T
in the sirup is initialized to a given initial value T0 (in this case the graph whose tran-
sitive closure is being computed); the clause T �x; y� T0�x; y� will always be implicit.
It is well-known that any sirup with a body containing k variables can be evaluated

The Journal of Logic Programming 41 (1999) 129±137
www.elsevier.com/locate/jlpr

* Corresponding author. Tel. +1-510-642-1559; fax: +1-510-642-5775; e-mail: christos@cs.berkeley.edu.
1 Sirups were ®rst introduced and studied in the work of our unforgettable friend Paris C. Kanellakis; we

dedicate this note to his memory.

0743-1066/99/$ ± see front matter Ó 1999 Published by Elsevier Science Inc. All rights reserved.

PII: S 0 7 4 3 - 1 0 6 6 (9 9) 0 0 0 1 3 - 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82410885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in O�nk� time (in the example above, in O�n3� time, where n is the number of con-
stants in the given relation T0) by the so-called semi-naive algorithm, a Horn-clause
decision procedure applied to the Horn formula implicit in the rule-goal graph of
the ground atoms [6,1]. During the past ®fteen years, a central problem in Database
Theory has been to ®nd more e�cient specialized algorithms for large classes of
Datalog programs ± see for example Refs. [3±5,2,1].

If a Datalog program is ®rst-order or nonrecursive (that is, if it does not mention in
the right-hand side any relation that occurs on the left-hand side), then it can be
computed by a simple iterative algorithm using logarithmic space [1]. The semi-naive
algorithm for Datalog programs is a more complex algorithm, relying on data struc-
tures that require O�nk� space, in addition to the relational store. In this paper we
consider an intriguing extension of ®rst-order programs which can be evaluated by
a di�erent, but also very simple, iterative algorithm.

The transitive closure program (1) can be evaluated by the (rather unDatalog-like)
Floyd±Warshall algorithm [7,8] as follows:

The Floyd±Warshall Algorithm
T :� T0;
let the universe be f1; 2; . . . ; ng;
for z :� 1 . . . n do

for x :� 1 . . . n do
for y :� 1 . . . n do
if T �x; z� and T �z; y� then add �x; y� to T

In fact, it is easy to see that the order in which variables x and y are considered does
not matter, as long as variable z increases monotonically in the outer loop.

In this paper we take the following more general view of the Floyd±Warshall al-
gorithm, applicable to any sirup. Let m be the number of variables in the sirup. Sup-
pose that we order all m-tuples of constants in the universe in a particular order �
(independent of the relation T0, and depending only on the program and the number
of constants n), and then run the following algorithm:

The Floyd±Warshall Algorithm for Datalog sirups
T :� T0;
for each m-tuple of database constants t in the order � do

if t satisfies the body of the rule, then add t0 to T ,

where by t0 we mean t with the free variables (z in our transitive closure example)
omitted. Notice that, for sirup (1), and if we take � to be any order that lists the tri-
ples in nondecreasing z (the second index), this algorithm correctly evaluates the sirup.
Obviously, for other sirups and choices of �, this algorithm may fail to compute the
correct semantics for T . Thus, given any Datalog sirup, it is an interesting question
whether an order exists for which the Floyd±Warshall algorithm succeeds in correct-
ly computing T , for all T0. If such an order exists, we say that the sirup has the Floyd±
Warshall property. For example, the transitive closure sirup (1) does have the Floyd±
Warshall property. In contrast, its slight variant shown below ± also computing the
transitive closure of T0 ± fails to have the Floyd±Warshall property (and so does the
symmetric one, with T ®rst and then T0):

130 C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137

T �x; y� T0�x; z�; T �z; y�: �2�
To see why, suppose that � orders �0; 1; 3� before �1; 2; 3� (for example, rename con-
stants so that �0; 1; 3� is the ®rst triple of distinct constants enumerated by �), and
consider the case in which T0 is the path �0; 1; 2; 3�: The Floyd±Warshall algorithm
will fail to insert the edge �0; 3�.

Although the Floyd±Warshall algorithm has the same asymptotic complexity as
the semi-naive one ± O�nm� ± it does have certain distinct advantages. It is extremely
simple, the constant in the O-notation is essentially one, and logarithmic local space
is required (in addition to the relational store) ± to be precise, only the work space
needed to enumerate the tuples in the order �. It would be extremely interesting if
this simple idea could be generalized to evaluate large classes of sirups.

In this paper we prove results strongly suggesting that, unfortunately, the ap-
plicability of the Floyd±Warshall idea to evaluating Datalog programs is quite
limited. That is, our main results are essentially negative. We give a characteriza-
tion of all chain sirups (an interesting special class of sirups ®rst studied in Ref.
[2]) that can be solved by the Floyd±Warshall algorithm (Theorem 1). They are
precisely those, whose underlying context-free grammar (see Ref. [2] and Section
2 for the relationship between chain sirups and context-free grammars) is of the
form T ! T �AT ��, where A contains only database relations ± that is to say, they
are rather modest generalizations of the transitive closure program above.
Our proof relies on an interesting and novel language-theoretic concept, total
ambiguity.

There are obstacles in extending our characterization to more general sirups. We
conjecture that there are no sirups with binary head with the Floyd±Warshall prop-
erty, other than the chain ones characterized in Theorem 1. Our attempts at a proof
of this conjecture encounter the usual `homomorphism' complications that haunt
many Datalog proofs [2]. It can be shown that no unary sirup, other than the
®rst-order ones, can have the Floyd±Warshall property (Proposition 2). However,
if we go beyond binary sirups, there are some other families of straightforward ex-
tensions of the transitive closure that do have the Floyd±Warshall property; we
conjecture that there are no others.

In the next section, after the necessary de®nitions, we show our main result, the
characterization of single-rule chain programs that have the Floyd±Warshall prop-
erty. In Section 3 we discuss the possible extensions of this result.

2. Chain rules

2.1. De®nitions

Let R be a vocabulary of relational symbols, with arity r : R7!N, and let X be a set
of variables. An atom is an object of the form T �x�, where T 2 R and x 2 X r�T �. A
Datalog rule is an object of the form a0 a1; . . . ; ak, where all ai's are atoms. A Da-
talog program is a nonempty, ®nite set of Datalog rules. In a Datalog program, the
de®ned relations are those that appear in some a0 atom, while the database relations
are all other elements of R appearing in the program. A single-rule program, or sirup,
is a Datalog program with one rule.

C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137 131

Let U be a nonempty, ®nite universe of constants (U may be assumed to always be
f1; 2 . . . ; jU jg), and for each T 2 R let T0 be a subset of U r�T �. If f : X 7!U , T 2 R,
T̂ � U r�T �, and a � T �x1; . . . ; xk� is an atom, then we say that T̂ satis®es a with f if
�f �x1�; . . . ; f �xk�� 2 T̂ . The semantics of a Datalog program is de®ned in terms of a re-
lation T̂ � Ur�T � for each T 2 R, such that (a) T0 � T̂ for each T 2 R; (b) for each
f : X 7!U , if a0 a1; . . . ; ak is a rule of the program, and the T̂ 's satisfy all atoms
a1; . . . ; ak with f , then they also satisfy a0 with f ; and (c) each of the T̂ 's is minimal
among all relations satisfying (a) and (b). For example, the semantics of the program
displayed in the introduction is precisely the transitive closure of the directed graph T0.

We next de®ne an important syntactic subclass of Datalog programs, ®rst studied
in Ref. [2]. A Datalog rule a0 a1; . . . ; ak is a chain rule if for some sequence of dis-
tinct variables x0; . . . ; xk 2 X k�1, a0 is of the form T �x0; xk�, while for i P 1 ai is of the
form Ti�xiÿ1; xi�. A chain program is a Datalog program with only chain rules. The
transitive closure program in the introduction is a single-rule chain program (a chain
sirup).

Finally, consider the following attempt at evaluating sirups: For a ®xed sirup p
with k variables, we have an algorithm � that enumerates k-tuples of U �
f1; 2; . . . ; ng ± presumably, very e�ciently in time and space. The Floyd±Warshall al-
gorithm for p and � is then the one displayed in the introduction. We say that sirup p
has the Floyd±Warshall property if there is a � such that for every T0 the Floyd±War-
shall algorithm correctly computes its semantics T̂ . For example, all nonrecursive
programs have the Floyd±Warshall property, with any �; and it is a classical obser-
vation due to Floyd and Warshall independently [7,8], that the transitive closure pro-
gram (1) has the Floyd±Warshall property, with � being any enumeration of the
triples of nodes in nondecreasing second index. Thus, the Floyd±Warshall property
is an intriguing extension of ®rst order.

If p � T �x0; xk� T1�x0; x1�; . . . ; Tk�xkÿ1; xk� is a chain sirup, then its underlying
context-free grammar denoted G�p� consists of the two rules T ! T1 � � � Tk and
T ! T0, where T0 is the initializing relation in the de®nition of the semantics of p.
For example, the transitive closure program in the introduction has this underlying
grammar: T ! T T ; T ! T0.

2.2. The main result

Chain sirups are a benign class of Datalog programs, which exhibit very limited ho-
momorphisms, and are thus easier to understand and characterize. The context-free
connection is very important in such investigations. For example in Ref. [2] the par-
allel complexity of chain sirups was explored and characterized exactly, by using a
novel language-theoretic concept called the polynomial stack property. In this section
we shall characterize exactly the class of chain sirups that have the Floyd±Warshall
property by relying on another language-theoretic concept called total ambiguity.

Let G be a context-free grammar. A sentential form of G is a string derived, fol-
lowing the rules of the grammar, from the start symbol. Call a sentential form of
G nontrivial if it has a parse tree with at least two nodes of outdegree greater than
one (that is, if it contains at least two expansions of nonterminals). We say that a
context-free grammar is totally ambiguous if each nontrivial sentential form has at
least two distinct parse trees. For example, the grammar T ! T T jT0 which corre-
sponds to the transitive closure program is totally ambiguous. Any nontrivial senten-

132 C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137

tial form has at least two parse trees ± for example T T T can be parsed by expanding
either the ®rst or the second T of T T . In contrast, the equivalent grammars T !
T0T jT0 and T ! T T0jT0 are not totally ambiguous. Similarly, the grammars T !
T T T jT0 and T ! T T0T jT0 are totally ambiguous, whereas T ! T0T T jT0 is not ± the
nontrivial sentential form T0T0T T T has only one parse tree.

It is easy to see that this strong variant of ambiguity is decidable:

Proposition 1. For any sirup p, grammar G�p� is totally ambiguous if and only if each
parse tree with exactly two nodes of outdegree greater than one has an alternative parse
tree.

Proof. The only if direction follows trivially from the de®nition of total ambiguity. For
the if direction, an alternative tree of any parse tree containing more than two nodes of
outdegree greater than one can be obtained by varying its top-level subtree. �

We can now state and prove our main result.

Theorem 1. Let p be a single-rule chain program that is not ®rst-order (that is, T
appears on the rhs of the rule). Then the following are equivalent:

(a) p has the Floyd±Warshall property.
(b) G�p� is totally ambiguous.
(c) G�p� is of the form T ! T �DT �k, where k P 1, and D is a string (possibly empty)
of database predicates (that is, with no occurrences of T).

Proof. (a) implies (b): Suppose for the sake of contradiction that p has the Floyd±
Warshall property, say with order �, and yet G�p� is not totally ambiguous. Then
by the proposition there is a parse tree with a single expansion that has no alternative
parse tree, say corresponding to the derivation T ! ATB! AATBB, where G�p� is
T ! ATB for some A;B 2 R�. We shall create, by an adversary argument, initial val-
ues for the database relations and for T0 that falsify the Floyd±Warshall algorithm.
The construction is a generalization of the argument given after Eq. (2). Let the uni-
verse U be the set f0; 1; . . . ; jAATBBjg, and let k � jATBj. Appropriately rename the
elements of U so that the k � 1-tuple t � �jAj; jAj � 1; . . . ; jAj � k� is enumerated by
� after the k � 1-tuple t0 � �0; 1; . . . ; jAj; jAj � k; jAj � k � 1; . . . ; jAATBBj� (this can
be achieved by renaming �0; 1; . . . ; jAj; jAj � k; jAj � k � 1; . . . ; jAATBBj� the ®rst
k � 1-tuple of � that has distinct elements). For each relation R 2 R, the initial rela-
tion R0 contains precisely the pairs �iÿ 1; i� 2 U 2 such that the ith symbol of
AATBB is an R. Then the correct value of T̂ contains the tuples in T0 [f�0;
jAATBBj�; �jAj; jAj � k�g, while the Floyd±Warshall algorithm will compute
T0 [f�jAj; jAj � k�g. That is, the Floyd±Warshall algorithm will fail to notice that
�0; jAATBBj� should also be included in T , because the tuple t0 above is enumerated
by � before the pair �jAj; jAj � k� is inserted. Hence the Floyd±Warshall algorithm
fails to correctly compute T̂ in this case, and the proof of this direction is complete.

(b) implies (c): This part is by string calculus. Suppose that we are given a sirup
with rule T ! R. Since the grammar is totally ambiguous, there are at least two oc-
currences of T in R. It is easy to see that, without loss of generality, we can write the
rule as T ! ATBTC, where we assume that A contains only database predicates, and

C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137 133

the alternative parse of ARBTC (which must exist, since G�p� is totally ambiguous) is
ATBRC. Then we must have the following string equality:

AATBTCBTC � ATBATBTCC:

For this equality to hold, A must be empty (since A has been assumed to contain no
occurrences of T), and also CBT � BTC. The latter equation is of the form X Y � Y X ,
and it is well-known (see, for example, Lemma 6(i) in Ref. [2]) that this equation has
a solution only if X and Y are both powers of the same string. If C is empty, then the
rule is T ! T BT . If not, de®ne DT to be the shortest string such that C � �DT �i for
some i; that is, DT is not a nontrivial power of any string. Then BT will also be a
power of the same string. We conclude that, in both cases, the rule is of the form
T ! T �DT �k; for some k > 0, where DT is not a proper power of any string.

It remains to show that D contains no occurrence of T . Suppose that it does con-
tain such occurrences, consider the leftmost occurrence of T in D, and write
D � X T Y . Then there must be an alternative parse of T X RY T �DT �kÿ1

. There are
two cases: (i) This alternative parse involves expanding an occurrence of T not within
Y , that is, it starts with T X T Y T . Then T X R has T X T Y T as a pre®x, and thus T Y T is
a pre®x of R. But this can happen only if Y T is a pre®x of X T Y T , or
DT � Y T X T � X T Y T . As we mentioned above, such equations imply that Y T and
X T are both powers of the same string, contradicting our assumption that DT is
the shortest string such that C � �DT �i. Or (ii) we can write Y � W T Z, and
T X RY T �DT �kÿ1 � T X T W RZT �DT �kÿ1

, and thus �DT �kW T � W T �DT �k. Since W T
was supposed to be a proper substring of DT , we conclude again that DT is a non-
trivial power of W T , a contradiction.

(c) implies (a): We shall show this for grammars of the form T ! T k�1 for k P 1;
the generalization to T ! T �DT �k with jDj � m P 1 is straightforward, by replacing
``constants'' by ``m� 1-tuples of constants related by D'' in the argument below.

Consider then the sirup

T �x; y� T �x; z1�; T �z1; z2�; . . . ; T �zkÿ1; zk�; T �zk; y�:
It computes all paths in T0 of length 1 mod k. We assume that the constants are
f1; 2; . . . ; ng. Consider all k-tuples of constants in increasing order of the smallest
constant appearing in them. That is, ®rst come all k-tuples containing a 1, then all
k-tuples containing a 2 but no 1, and so on. Among all k-tuples containing constants
i and above, we list those that start with an i ®rst. Call this order �. We claim that,
with this �, the Floyd±Warshall algorithm correctly evaluates this sirup.

Speci®cally, we shall show the following inductive statement. If there is a path of
length 1 mod k between two nodes in T0, then, after the i ®rst stages of the Floyd±
Warshall algorithm ± that is, once all k-tuples that contain any constant in
f1; 2; . . . ; ig have been generated ± there is such a path in T between the same nodes
that contains no constants in f1; 2; . . . ; ig. Notice that this inductive statement
proves the correctness of the Floyd±Warshall algorithm. After n stages, there is a
direct edge between any nodes connected, in T0, by a path of length 1 mod k.

Consider a path of length 1 mod k just before the ith stage, say

a0a1a2 � � � apÿ1i � � � iap�1ap�2 � � � an;

where 0 < p < n, aj > i for all 0 < j < n (that is, the endpoints can be i), and there
are c� 1 appearances of i between apÿ1 and ap�1. Notice that if c < 1 ± that is, if the

134 C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137

path has either no appearance of i, or just one, as internal nodes ± then we are done
with either no shortcuts or one shortcut. Otherwise, the above path can be consi-
dered as a path of length n a0a1a2 � � � apÿ1iap�1ap�2 � � � an, with c cycles attached to
it at the point i. Suppose that the lengths of these cycles are `1; . . . ; `c.

Suppose ®rst that there is a cycle of length ` that is prime to k. If ` � 1 (that is, if
the cycle is a self-loop), then with a single shortcut we can obtain a path of length
1 mod k, so assume that ` > 1. Consider the path of the aj's and this cycle:

a0a1a2 � � � apÿ1ib1b2 � � � b`ÿ1iap�1ap�2 � � � an:

First, consider the case in which k � 1 is a multiple of `. When the k-tuples starting
with i are considered at the beginning of the ith stage 2, edges �apÿ1; b`ÿ1� and
�b`ÿ1; b`ÿ1� are added. Also, subsequently in the ith stage, the edge �b`ÿ1; ap�1� will
be added (while considering the k-tuple �b`ÿ1; . . . ; b`ÿ1; i�, with b`ÿ1 repeated k ÿ 1
times). Thus, the path from a0 to apÿ1 to b`ÿ1, looping back to b`ÿ1 �1ÿ n mod k�
times, then to ap�1 and on to an, is a path of length 1 mod k involving only nodes
larger than i.

So, suppose that ` does not divide k � 1. Consider again the graph G consisting of
just the path and this cycle:

a0a1a2 � � � apÿ1ib1b2 � � � b`ÿ1iap�1ap�2 � � � an:

After the ith stage (during which all paths of length k � 1 containing an i are shortcut
by a single edge), node i is deleted, but these edges are added (among others):
1. �apÿ1; bk mod `�,
2. �b`ÿk mod `; ap�1�,
3. �bj; bj�k�1 mod `�; j 2 f1; . . . ; `ÿ 1g ÿ fÿk ÿ 1 mod `g.
Consider G with all aj's and i deleted, but the edges in (3) added. This graph, call it
G0, is a cycle with one node deleted, and all chords in (3) added. It is easy to see that
G0 (1) has a cycle of length q � ÿk mod ` (in fact, several such cycles), and (2) it is
strongly connected (by induction, there is a path from each bj to b1, and we know
there is a path the other way; here we are using our assumption that ` does not divide
k � 1).

We shall show that there exists an L > 0 such that there are paths from a0 to an,
not going through i, of length L� m � q for all m P 0. This is obtained by ®rst ®nding
a path of the form

a0a1a2 � � � apÿ1bk mod `Bb`ÿk mod `ap�1ap�2 � � � an;

where B is a path in G0 that goes through one of the cycles of length q. Let L be the
length of this path. The desired paths are then obtained by adding m copies of the
cycle of length q. Since q � ÿk mod ` is prime to k, this means that there is an m such
that L� m � q � 1 mod k.

If there is no cycle whose length is prime to k, then consider the greatest common
divisor d of `1; . . . ; `c. Assume ®rst that d � 1. The argument now is similar to the
previous case, but it involves all c cycles. The addition of the edges in the ith stage
creates strongly connected components with cycles of length qj � `j ÿ k mod k for
j � 1; . . . ; c, and thus paths of length L�Pc

j�1 mj � qj for any integer combination

2 This is the only place in which this restriction in � is needed.

C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137 135

of mj's. Since the greatest common divisor of k and the lj's is one, there is a combi-
nation of the mj's such that this length is 1 mod k.

Suppose then that d > 1. If d � k, then the existence of a shortcut is immediate,
since the path a0a1a2 � � � apÿ1iap�1ap�2 � � � an has length n � 1 mod k, and will be short-
cut in the ith stage. Finally, if 1 < d < k, the argument of the previous paragraph
applies, and the existence of the desired path follows from the facts that (a) d divides
all qj's, and (b) n � 1 mod d.

This completes the proof of the inductive statement, of the direction from (c) to
(a), and therefore of the theorem. �

3. Extensions

It would be interesting to extend the characterization in Theorem 1 to more gen-
eral Datalog programs. We shall consider only sirups ± it is not obvious how one
should de®ne the Floyd±Warshall algorithm for multi-rule programs. One important
observation in this regard is that the implication from (a) to (b) in Theorem 1 is of
very general validity: A similar adversary argument shows that all shallow proof
trees of programs with the Floyd±Warshall property must have alternative proof
trees. This observation immediately leads to the following result regarding unary sir-
ups ± that is, sirups in which the left-hand predicate T is unary, although database
predicates may have higher arity.

Proposition 2. A unary single-rule program has the Floyd±Warshall property if and
only if it is ®rst-order (that is, nonrecursive).

Proof (sketch). Consider any single expansion of the body of a unary sirup. The oc-
currence of T that was expanded can be uniquely determined, and the adversary ar-
gument of the proof of the direction (a) to (b) of the main theorem repeated. �

Returning to binary sirups, we strongly suspect the following:

Conjecture 1. The programs identi®ed in Theorem 1 are the only binary sirups that
have the Floyd±Warshall property.

The obstacles to proving this conjecture are the usual homomorphism problems
(unexpected ways of mapping variables in expanded rules, see, for example, citeAP)
present in Datalog arguments.

Looking beyond binary sirups, we immediately notice that the following ones do
have the Floyd±Warshall property:
1. T �x; y;w� T �x; z;w�; T �z; y;w�; this is the computation of the transitive closures

of a collection of directed graphs, indexed by w. Similarly for multiply indexed
collections.

2. T �x; y;w� T �x; z;w0�; T �z; y;w00�; this is the transitive closures of the union of a
collection of directed graphs.

3. T �x; x0; y; y0� T �x; x0; z; z0�; T �z; z0; y; y0�; this is the transitive closure of a directed
graph whose nodes are pairs of constants. Similarly for triples etc.

136 C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137

4. T �x; y� T �x; z�; T �z; y�;A�z�; this is an adorned version of the transitive closure,
only seeking paths through acceptable points. It can be generalized to various
kinds of adornments.

5. The generalizations of these programs to more than two T 's, as in the programs in
Theorem 1(c).

6. Combinations of these generalizations of transitive closure. Example: adorned
versions of collections of graphs de®ned on triples of nodes, with odd paths sought
± three copies of T , or k � 2 in Theorem 1. (We omit the cumbersome formal def-
inition of this class of sirups.)
It is easy to see that all sirups described in (1)±(6) above have the Floyd±Warshall

property. A very plausible strengthening of Conjecture 1 is, that these are the only
sirups that have the Floyd±Warshall property.

Finally, even in programs without the Floyd±Warshall property, we may want to
apply a Floyd±Warshall-like algorithm, only with � being an enumeration of k-tu-
ples with repetitions. All sirups can be evaluated this way, with a sequence of k-tuples
of length nr�k, where k is the number of variables in the rhs rule, and r the arity of the
de®ned relation T . But certain programs require less. For example, the variant T !
T0T of the transitive closure can be carried out with (and seems to require) n4 triples,
instead of n5. Thus, the Floyd±Warshall algorithm seems to suggest an intriguing
quantitative hierarchy of Datalog programs, which it would be very interesting to in-
vestigate. For example, is X�n4� necessary for T ! T0T ? And are there simple sirups
for which X�nr�k� is required?

Acknowledgements

Many thanks to Foto Afrati for discussions on this topic, and to three referees for
their criticism, and for valuable suggestions for improving the presentation. This re-
search was supported by the National Science Foundation under grant CCR-
9626361, and by a Greek Government grant (PENED) to the Computer Technology
Institute in Patras, Greece.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.

[2] F. Afrati, C.H. Papadimitriou, The parallel complexity of simple logic programs, J. ACM 40 (4) (1993)

891±916.

[3] F. Bancilhon, D. Maier, Y. Sagiv, J.D. Ullman, Magic sets and other strange ways to implement logic

programs, Proceedings of the 1986 PODS, pp. 1±15.

[4] F. Bancilhon, D. Maier, Y. Sagiv, J.D. Ullman, Magic sets and other strange ways to implement logic

programs, J. ACM 40 (4) (1993) 891±916.

[5] F. Bancilhon, R. Ramakrishnan An amateur's introduction to recursive query processing strategies,

Proceedings 1986 SIGMOD, pp. 16±52.

[6] A. Chang, On the evaluation of queries containing derived relations in relational databases, in: H.

Gallaire, J. Minker, J.-M. Nicolas (Eds.), Advances in Database Theory, Plenum Press, New York,

1981, pp. 235±260.

[7] R.W. Floyd, Algorithm 97: Shortest path, C. ACM 5 (6) (1963) 345.

[8] S. Warshall, A theorem on Boolean matrices, J. ACM 9 (1) (1963) 11±12.

C. Papadimitriou, M. Sideri / J. Logic Programming 41 (1999) 129±137 137

