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Abstract In higher plants, the PII protein is a nuclear-encoded
plastid protein that regulates the activity of a key enzyme of
arginine biosynthesis. We have previously observed that Arabid-
opsis PII mutants are more sensitive to nitrite toxicity. Using
intact chloroplasts isolated from Arabidopsis leaves and
15N-labelled nitrite we show that a light-dependent nitrite uptake
into chloroplasts is increased in PII knock-out mutants when
compared to the wild-type. This leads to a higher incorporation

of 15N into ammonium and amino acids in the mutant chloro-
plasts. However, the uptake differences do not depend on GS/
GOGAT activities. Our observations suggest that PII is involved
in the regulation of nitrite uptake into higher plant chloroplasts.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

PII is a highly conserved protein that plays a role in the sens-

ing of carbon/nitrogen (C/N) balance and energy status in bac-

teria, cyanobacteria and plants. It has been shown to be

involved in the regulation of inorganic nitrogen uptake and

assimilation in both bacteria and cyanobacteria. The PII pro-

tein interacts with various target proteins that include signal

transduction proteins, key metabolic enzymes and metabolite

transporters (see [1–3] for review). In cyanobacteria, NtrC, a

subunit of a nitrate/nitrite transporter is believed to be regu-

lated by PII [4]. In all known cases, PII – target protein inter-

actions depend on the Mg-ATP and 2-oxoglutarate (2-OG)

levels in the cell [1]. In photosynthetic cyanobacteria and

eubacteria, PII activity is also modified by phosphorylation

or uridylylation, respectively [5].

In higher plants, a single PII homolog (GLB1) has been iden-

tified in Arabidopsis, rice, tomato, castor bean, alfalfa, and

pine [6–8]. PII is a nuclear-encoded chloroplastic protein dis-

playing 50% identity to bacterial PII proteins. As in bacterial

systems, plant PII can bind 2-oxoglutarate in the presence of

Mg-ATP [9]. However, there is no evidence for PII phosphor-
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ylation albeit the conservation of the phosphorylated serine

residue found in Synechococcus PII [10]. To date, the only

PII target protein discovered in plants is conserved between

higher plants and cyanobacteria. This PII interacting protein

is the chloroplastic N-acetyl glutamate kinase (NAGK) that

is activated in vitro and shows a reduced retro-inhibition by

arginine when the NAGK-PII complex is formed [11,12]. In

the leaves of PII knock-out mutants grown under ammonium

nutrition conditions, arginine, ornithine and citrulline levels

were reduced by 50%, thus giving the first physiological

evidence of the activation of NAGK by PII in planta [11].

The identification of new PII targets in plants is essential to

understand the role of this protein and the use of PII mutants

should be useful to decipher PII function. Indeed, Arabidopsis

PII mutants appeared to be more sensitive to NO�2 toxicity, as

judged by the mortality of in vitro grown seedlings [13]. Inter-

estingly, this observation suggests that PII might be involved

in the regulation of NO�2 metabolism. This function could be

reminiscent of the role of PII in cyanobacteria where it has

been shown to regulate a nitrate/nitrite transporter [4]. In

higher plants, NO�2 is synthesised in the cytosol by reduction

of NO�3 by nitrate reductase (NR). NO�2 is then translocated

to the chloroplast to be further reduced into ammonium by

the nitrite reductase. It is noteworthy that NO�2 does not accu-

mulate in plant tissues. This could be partly due to the regula-

tion of NR activity by chloroplastic redox poise and the

oxaloacetate/malate shuttle that would deliver reductant for

NR activity. In addition, an inhibition of NR activity by phos-

phorylation and subsequent binding of 14-3-3 proteins occurs

in the dark, thus avoiding NO�2 accumulation in the dark when

NADH could be limiting [14]. However, the occurrence of a

highly efficient transport system across the chloroplast enve-

lope to avoid NO�2 toxicity is conceivable. However, the

molecular mechanism of NO�2 uptake into chloroplasts is lar-

gely unknown in higher plants. It is possible that NO�2 is

transported across the plastid membrane by permeation of

the nitrous acid [15] versus a NO�2 channel or a NO�2 trans-

porter [16,17]. However the uptake of NO�2 into intact pea

chloroplasts shows saturable kinetics thus supporting the pres-

ence of a NO�2 transport system [16,17]. In Chlamydomonas,

Nar1-1 encodes a chloroplast membrane protein involved in

high affinity NO�2 transport [18,19]. It is a member of the

formate/nitrite transporter family [19], however no orthologs

have been hitherto identified in the Arabidopsis genome. Re-

cently, a NO�2 transporter has been identified in higher plants

[20]. It is a member of the proton-dependent oligopeptide trans-

porter family but it displays little homology with the NO�2
transporters described in cyanobacteria and Chlamydomonas.
blished by Elsevier B.V. All rights reserved.
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In this study we have tested the hypothesis that PII has a

role in the regulation of NO�2 uptake into higher plant chloro-

plasts, reminiscent of its role in cyanobacterial NO�2 uptake

[4]. Using intact chloroplasts isolated from Arabidopsis leaves

and 15N-labelled nitrite we show that a light-dependent NO�2
uptake into chloroplasts is increased in PII knock-out mutants

when compared to the wild-type.
2. Materials and methods

2.1. Plants and growth conditions
PIIV1 and PIIS2 mutant lines of Arabidopsis Wassilewskija ecotype

(WS) and Colombia ecotype (Col) have been described previously and
contain undetectable amounts of the PII protein [13]. Wild-type plants
and PII mutants were grown on sterilised compost and watered daily
with a complete nutrient solution containing 10 mM NO�3 and 2 mM
NHþ4 [21]. Plants were grown in a growth chamber at 60% relative
humidity, a light intensity of 150 lmol m�2 s1 and a day–night regime
of 8 h at 22 �C and 16 h at 20 �C, respectively. The total rosette of
6 week-old plants was used for intact chloroplast isolation. Plants were
maintained in darkness during 24 h before being harvested in order to
reduce chloroplastic starch levels.
2.2. Chloroplast purification
Chloroplasts were obtained from 40 g Arabidopsis leaves of wild-

type and PII mutant plants. Leaves were washed in distilled water at
4 �C for 20 min and then ground in a blender for 2 s in a 20 mM Tri-
cine KOH (pH 8) homogenization buffer maintained at 4 �C and con-
taining 450 mM sorbitol, 10 mM EDTA, 10 mM NaHCO3 and 0.1%
BSA (100 ml/10 g of leaves). The homegates were immediately filtered
through several layers of gauze and centrifuged at 700 · g for 5 min at
4 �C. The pellets were resuspended in 3 ml buffer (RB) containing
20 mM Tricine KOH (pH 7.6), 300 mM sorbitol, 2.5 mM EDTA
and 5 mM MgCl2. The resulting solution was transferred to the top
of a 40% percoll solution in RB (30 ml total volume) and then centri-
fuged for 3 min at 2500 · g using a swing out centrifuge bucket at 4 �C.
Intact chloroplasts were pelleted while broken chloroplasts and other
membrane debris remained at the top of the percoll solution. The chlo-
roplast suspensions were diluted (3-fold) in RB and centrifuged for
4 min at 5180 · g at 4 �C and the pellets were resuspended in 1–2 ml
of RB. The chlorophyll (Chl) content of the chloroplast suspension
was calculated from the absorption at 652 nm after extraction of an ali-
quot (5 ll) in 80% acetone [22]. The chloroplast suspensions were
stored at 4 �C in the dark until their use for NO�2 uptake measure-
ments.

Chloroplast intactness was determined by measuring the light-
dependent oxygen production of �intact� and osmotically broken chlo-
roplasts using an O2 electrode and ferricyanide (as an electron accep-
tor) [23]. The intactness was estimated by the ratio [(A � B)/A · 100]
where A is the ferricyanide-dependent O2 evolution measured after
the osmotic shock and B the O2 evolution measured before the osmotic
shock.
2.3. NO�2 uptake by isolated chloroplasts
NO�2 uptake by chloroplasts was measured in a ‘‘plexiglass cell’’

(maximum volume of 3 ml), with gentle agitation, at 20 �C and either
a light intensity of 50 lmol m�2 s�1 or in darkness. The chlorophyll
concentration of the chloroplast suspension in the ‘‘cell’’ was adjusted
to 0.1 mg ml�1 in 2 ml of RB. Chloroplasts in the measuring cell were
either illuminated 5 min before adding 15NO2Na (light treatment) or
maintained in the darkness (dark treatment). The final concentration
of 15NO2Na was 0.25 mM (98% 15N enrichment) for the uptake studies
or 0.1–2.5 mM for the determination of kinetic parameters as indicated
in the text. Aliquots (300 ll) of the chloroplast suspension were
collected at the times indicated in the text (from 0 to 30 min) and
immediately centrifuged. The supernatant was stored at �20 �C until
the measurement of nitrite. The pellets were rinsed in 300 ll of RB
and centrifuged. The rinsed pellets were stored at �80 �C for 15N total
enrichment analysis. The inhibitor studies were carried out using
3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (50 lM), methio-
nine sulfoximine (MSO, 1 mM) and azaserine (1 mM). They were
added 5 min before 15NO2Na addition. WS and PII mutant chloro-
plasts were measured simultaneously for each experiment. For the
studies of the effect of the addition of NH4 (1 mM) and aKG
(1 mM), these metabolites were added 5 min before 15NO2 addition
(as described in [24]).

2.4. NO2 measurement
NO2 was measured colorimetrically at 540 nm using N-

(1-Naphtyl) ethylene diamine dichlorhydrate as in [25].
2.5. 15N labelling measurements
For the determination of total 15N content, the pellets were dried at

70 �C for 48 h, weighed, and analyzed using a continuous-flow isotope
ratio mass spectrometer coupled to a carbon/nitrogen elemental ana-
lyzer (model ANCA-MS, PDZ Europa, Crewe, UK), as described in
[26]. For the 15N labelling of NH4 and amino acids in the pelleted chlo-
roplasts, the amino acid extracts from (SSA extracts) were filtered and
analysed as described in [27,28].
2.6. Transcriptome analyses
The transcriptome analyses were performed with CATMA arrays

containing 24576 Gene Specific Tags from Arabidopsis thaliana as de-
scribed in [11]. Two biological repetitions of the same experiment were
performed and used for the calculations. The results of the microarray
data analysis are shown as the ratio of the intensities for each gene in
the two genotypes analysed (after the recalculation from the initial
data expressed as a log2 ratio provided by the CATMA analysis).
3. Results

3.1. NO�2 uptake into isolated chloroplasts is increased in PII

mutants

Previous studies suggested PII to have a role in nitrite

metabolism or transport due to the increased NO�2 sensitivity

observed in PII mutant seedlings grown in vitro on NO�2 as

the sole nitrogen source [13]. Since, cyanobacterial PII has

been shown to modulate the activity of a NO�3 =NO�2 trans-

porter [4], it was decided to investigate NO�2 uptake into

chloroplasts isolated from rosette leaves of PII mutants and

wild-type plants. The yield of the isolated intact chloroplasts

was verified by ferricyanide-dependant O2 production mea-

sured using an oxygen electrode before (isolated chloroplasts)

and after (broken chloroplasts) an osmotic shock. The intact-

ness of the chloroplasts isolated from Arabidopsis rosette

leaves was found to be between 50% and 80% for the wild-type

ecotypes (WS and Col) and the PII mutant lines (PIIV1 and

PIIS2) (data not shown). Broken chloroplasts did not exhibit

any light-dependent nitrite uptake, and the measured transport

rates appeared to be correlated with the degree of chloroplast

intactness (data not shown).

NO�2 uptake into isolated chloroplasts was estimated by

measuring the disappearance of NO�2 from the incubation

medium or by 15N (N total) labelling in the chloroplast pellets

after different dark or light treatments. There was a good cor-

relation between the two methods as seen in Fig. 1. Therefore,

for further analyses it was decided to measure NO�2 uptake by

the disappearance of NO�2 in the chloroplast incubation med-

ium. The effect of NO�2 concentration on the observed light-

dependent NO�2 uptake was measured between 0.1 and

2.5 mM 15NO2Na. Uptake was saturated above 0.5 mM
15NO2Na for both the wild-type and PII mutant genotypes

(Fig. 2) and a Km of approximately 200 lM NO�2 was ob-

tained in agreement with previous observations [16,20].
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Fig. 1. Correlation between the two methods used to estimate NO�2
uptake into intact Arabidopsis chloroplasts. Uptake was measured
either by the increase in 15N labelling (total N) of the chloroplast
pellets or by the disappearance of NO�2 from the incubation medium
after either 5 (open symbol), 15 (grey symbol) or 30 min (closed
symbol) in the light (n) or in the dark (r).
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Fig. 2. Kinetics of 15NO2Na uptake in the light as a function of
15NO2Na concentration in the incubation medium for WS (dotted line)
and the PIIV1 mutant (continuous line).
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Fig. 3. (A) Kinetics of 15NO2Na uptake in the light (full bars) and in
the dark (lined bars) into chloroplasts isolated from WS (dark bar) and
from the PIIV1 mutant (grey bar) as a function of the time of
incubation. The values are means of four independent replicates. (B)
15N Labelling of NHþ4 and free soluble amino acids pools in isolated
chloroplasts after 30 min of incubation in 15NO2Na from WS (dark
bar) and from the PIIV1 mutant (grey bar). (C) Effect of inhibitors
(50 lM DCMU, or 1 mM azaserine, or 1 mM MSO) on the light-
dependent 15NO2Na uptake into chloroplasts isolated from WS (dark
bar) and the PIIV1 mutant (grey bar) after a 30 min incubation.
Results are given as a percentage of the WS uptake in the absence of
inhibitor.The concentration of 15NO2Na was 0.2 mM for all experi-
ments (A, B and C).
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Taking these observations into account, all further measure-

ments of NO�2 uptake into the chloroplasts isolated from the

rosette leaves of wild-type (WS and Col) and PII mutant lines

(PIIV1 and PIIS2) lines were performed using 0.2 mM
15NO2Na. Under our experimental conditions, NO�2 uptake in-

creased linearly during the investigated time course (between

5 min and 30 min) and required light, although a low and sta-

ble NO�2 uptake was measured in the dark for both genotypes

(Fig. 3A). Interestingly, a statistically significant and reproduc-

ible 30–40% increase in NO�2 uptake was seen for intact chlo-

roplasts of the PIIV1 mutant compared to WS in the light

(Fig. 3A). No differences were observed in the dark between

the two genotypes. As stated above, no NO�2 uptake was

detectable in the light using broken chloroplasts (by a 5 min

osmotic shock) before the uptake measurements (data not

shown). Similar trends were found when the PIIS2 and Col

lines were analysed (data not shown).
In order to assess that 15NO�2 was assimilated after being up

taken into the chloroplast, 15N labelling was analysed in the

NHþ4 and in the amino acids present in the chloroplast pellets

after 30 min of 15NO�2 incubation in the light. Interestingly, the

% 15N labelling was higher in both the NHþ4 and the total free

amino acids of the PII mutant chloroplasts compared to the

wild-type (Fig. 3B).



Table 1
Expression analyses of At1g68570 in the PIIV1 mutant

Function Sequence ID Experiment 1 Experiment 2

Ratio PIIV1/WS P-value Ratio PIIV1/WS P-value

PII protein AT4G01900 0.17 ± 0.006 0 0.235 ± 0.034 0
POT family protein (NO�2 transporter) AT1G68570 1.075 ± 0.123 1 1.108 ± 0.025 1

Two biological repetitions of one experiment of CATMA microarrays were used to compare the expression of the NO�2 transporter between the PII
mutant and wild-type plants. The differential expression ratios are given and the P-value after the Bonferroni correction was used to determine which
genes were statistically differentially expressed. A P-value of 0 indicates that the difference in gene expression was statistically significant (P < 106).
P-value of 1 indicates that the difference in gene expression is not statistically significant.
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3.2. NO�2 uptake into isolated chloroplasts was not modified in

the presence of inhibitors of photosynthesis and nitrogen

metabolism

In order to better understand the observed NO�2 uptake into

isolated chloroplasts, the effect of some specific inhibitors

was investigated. The addition of DCMU (an inhibitor of

photosynthetic photosystem II electron transfer) significantly

reduced the light-dependent NO�2 uptake in both wild-type

and PII mutant chloroplasts (Fig. 3C). Indeed, DCMU led

to uptake values equivalent to dark-treated chloroplasts. In or-

der to assess whether the higher NO�2 uptake was related to

NO�2 assimilation by the isolated chloroplasts of the PII mu-

tants, the effect of N assimilation inhibitors on light-dependent

nitrite uptake was studied. The addition of MSO, or azaserine

(inhibitors of glutamine synthetase and ferredoxin-dependent

glutamate synthase, respectively) did not significantly reduce

the difference in nitrite uptake between the PII mutant and

WS chloroplasts (Fig. 3C).

The effects of NHþ4 and a-ketoglutarate (aKG) addition on

NO�2 uptake were also studied since NHþ4 has been described

as an inhibitor of NO�3 and NO�2 uptake in Synechocystis

and Synechococcus [29,30]. In cyanobacteria, the inhibitory ef-

fect of NHþ4 on NO�2 uptake is mediated via the PII protein

that interacts and inhibits the NO�3 = NO�2 transporter under

low aKG conditions. However, in agreement with the previous

observations of [16] no effect of NHþ4 and aKG was observed

on the light-dependent NO�2 uptake by Arabidopsis chloro-

plasts and this was the case for both the wild-type and PII mu-

tant genotypes (data not shown).

3.3. The expression of a high affinity NO�2 transporter is not

affected in PII mutants

Recently, the Arabidopsis gene At1g68570 has been shown to

encode a chloroplastic nitrite transporter [20]. To examine if

the observed increase in nitrite uptake in the PII mutants could

be due to an increased level of this transporter, At1g68570

expression was analysed. The transcriptomic analyses of the

PIIV1 mutant compared to the WS control indicated that

the expression of the nitrite transporter was not altered in

the mutant (Table 1). These observations were obtained from

plants grown under different N-regimes as described in [11].

An unaltered At1g68570 expression in PII mutant rosette

leaves was confirmed by RT-PCR (data not shown).
4. Discussion

Since its discovery in plants in 1998 [6], the only PII function

identified to date is the regulation of NAGK activity; a func-

tion that has been conserved between higher plants and cyano-
bacteria. However, the plant PII protein probably undertakes

further functions as is the case for the different PII proteins

found in eubacteria and cynaobacteria. To date all known bac-

terial PII partners have no orthologs in the sequenced higher

plant genomes (except for NAGK). Interestingly, we had al-

ready observed an increased sensitivity to NO�2 toxicity of Ara-

bidopsis PII mutant seedlings when grown in vitro [13]. This

could be an indication of a role for PII in NO�2 metabolism

and/or perhaps NO�2 uptake, a function already described

for PII in cyanobacteria [29,30]. However, there is no homol-

ogy between the cyanobacterial ABC-type NO�2 = NO�3 trans-

porter and the recently identified Arabidopsis chloroplastic

NO�2 transporter [20] and no orthologs of the Chlamydomonas

NO�2 transporter (NAR1 family) have been found so far in

higher plants [19].

In this work, we have characterised a light-dependent NO�2
uptake into isolated chloroplasts from wild-type and PII mu-

tant rosette leaves. The kinetic parameters of the observed

NO�2 uptake are similar to previously published data [16]

and they are in agreement with the characteristics of the

above-mentioned high affinity NO�2 transporter [20]. The

NO�2 uptake was observed using external NO�2 concentrations

that are compatible with estimated cytosolic levels according

to [31]. Interestingly, a 30–40% higher NO�2 uptake into PII

mutant chloroplasts was found when compared to wild-type

chloroplasts (Fig. 3A). Our observations could explain the in-

creased NO�2 sensitivity of the PII mutants that was correlated

to higher NO�2 contents in the plantlets grown in vitro on NO�2
as the only nitrogen source [13]. The accumulation of NO�2 was

observed in the PII mutants only when exogenously supplied

with NO�2 . Such drastic conditions do not normally occur

although NO�2 accumulation has been observed in anoxic

roots where NR is fully active but where Nir activity is

impaired [14]. Since NO�2 uptake into isolated chloroplasts

appears to be more active in the absence of PII and considering

that in vitro measured nitrite reductase activity was not af-

fected in the PII mutants [13], an accumulation of chloroplastic

NO�2 could explain the higher toxicity of NO�2 .

Interestingly, chloroplastic NO�2 was light-dependent and

required PSII electron transfer since both DCMU and a

dark treatment led to a severely reduced NO�2 uptake. No

differences were observed between the PII mutants and their

controls under dark or DCMU/light conditions, indicating

that PII was not involved in NO�2 uptake in the dark.

Therefore, PII appears to be required to fine-tune chloroplas-

tic NO�2 uptake with respect to the metabolic and/or ener-

getic status of the chloroplasts in the light. The entry of

NO�2 into the chloroplasts should be tightly regulated in or-

der to not exceed the reduction capacity of the chloroplasts

in higher plants. It is noteworthy to underline that NO�2 up-
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take into Chlamydomas chloroplasts appears to be regulated

only under certain conditions, i.e. limiting nitrogen and car-

bon supply [32].

The NO�2 entering the chloroplasts seemed to be partially

assimilated since 15N labelling was measured in both NHþ4 and

amino acids present in the pelleted chloroplasts (Fig. 3B). More-

over, NO�2 assimilation seemed to vary in the same way as the

NO�2 uptake since the 15N labelling was higher in the PII mutant.

Conversely, chloroplastic NO�2 uptake appeared to be indepen-

dent on its assimilation by the GS/GOGAT pathway under our

experimental conditions since inhibitors such as MSO and aza-

serine had no effect on nitrite uptake in both genotypes.

Taken together, our observations suggest PII is involved in

the down regulation of NO�2 uptake into Arabidopsis rosette

leaf chloroplasts in the light. This function is reminiscent of

the role of PII in cyanobacteria where it has been shown to

regulate a nitrate/nitrite transporter. However, the exact PII

partner involved in NO�2 uptake regulation remains to be iden-

tified. The only chloroplastic high affinity NO�2 transporter

identified to date in Arabidopsis (At1g68570) is a candidate

since its kinetic characteristics are in agreement with the obser-

vations obtained with the isolated chloroplasts. Since the tran-

script level of this chloroplastic nitrite transporter was not

changed in the PII mutant, this suggests that chloroplastic

NO�2 uptake could be post-transcriptionally regulated by PII.

However, a molecular interaction between PII and the NO�2
transporter awaits validation.
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