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1. Introduction

Let A denote the class of functions f (z) of the form

f@=z+) a7, (1.1)

n=2

which are analytic in the unit disc E = {z : |z| < 1}. Also let $*(8) and C(8) denote the well known classes of starlike and
convex of order S respectively. For any two analytic functions f (z) and g(z) with

[o¢] o0
f(z)=z+2anz” and g(z)=z+2bnz”, forz € E,
n=2

n=2

the convolution (Hadamard product) is given by
o0
Fx2)@)=z+ Zanbnz", forz € E.
n=2

Let f(z) € A. Denote by D® : A — A, the operator defined by

D@ = G +f@ =2+ ) @’ ¢ > )
n=2
with
G+ Dy
on(d) = o (1.2)
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where (p), is a Pochhammer symbol given as

_J1,n=0,
(P)n = p(p+D(p+2)---(p+n—1), neN.

It is obvious that D°f (z) = f(z), D'f (z) = zf'(z) and

n—1 (n)
an(Z) — Z(Z T{'(Z))

The following identity can easily be established.

(6 + 1DD*T'f (z) = 8D°f (2) + z(D’f (2)). (1.3)

The operator D*f (z) is called the Ruscheweyh derivative of f (z), see [1].
Let Py(B) be the class of analytic functions p(z) defined in E satisfying the properties p(0) = 1 and

fZ” Rep(z) — B
0 1-p

wherez = re’, k> 2and 0 < 8 < 1. When 8 = 0, we obtain the class P, defined in [2] and for k = 2, 8 = 0, we have the
class P of functions with positive real part. We can write (1.4) as

@) = 1/2” 14+ (1—2B)ze
Pl =5 0 1— ze—i¥

, forallé =neNy={0,1,2,...}.

do < krm, (1.4)

du(0),

where w1 (0) is a function with bounded variation on [0, 277 ] such that

2 2
/ du(@) = 2wrand / [du(@)| < k.
0 0

Also, for p(z) € Py(pB), we can write from (1.4)

_ k 1 k 1 £ 15
p(Z)—<Z+§)p1(2)—(2—5)pz(2), zZ €E, (1.5)

where p1(z), p2(z) € P(B), P(B) is the class of functions with positive real part greater than 8.
We now consider the following class.

Definition 1.1. A function f(z) € A of the form (1.1) is in the class Vi(8, b, ) if and only if

) 2 2D%f(2)
b b D¥f(2)
wherek >2,§ > —1,0< g8 < landb € C — {0} = C*.
This class was introduced by Latha and Nanjunda Rao in [3]. It contains several well known classes of analytic and

univalent functions studied earlier.
We note the following special cases.

(1) V2(B. 1, 1) = C(B), V2(B, 2,0) = S*(B),
(ii) Vi(B, 1, 1) = Vi(B), Vi(B, 2, 0) = Ri(B),

where V,(8) and Ry(B) denote the class of bounded boundary and bounded radius rotation of order 8, for further
advancement see [4-8].

) EPk(,B), Z €E,

2. Preliminary results
We need the following results to obtain our results.

Lemma 2.1 ([9]). Let u = uq + iuy, v = vy + ivy and ¥ (u, v) be a complex valued function satisfying the conditions:

(i) ¥ (u, v) is continuous in a domain D C C?,
(ii) (1,0) € Dand Re¥ (1, 0) > 0,
(iii) ReW (iuz, v1) < 0, whenever (iu, v) € Dand vy < —1 (1+u3).

If h(z) = 1+ 1z + ¢c2z% + - - - is a function that is analytic in E such that (h(z), zh'(z)) € D and Re¥ (h(z), zh'(z)) > 0 hold
forallz € E, then Reh(z) > 0inE.
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Lemma 2.2 ([2]). Let h(z) € Py. Then, for |z| =r < 1, we have
1—kr+r? 14+ kr +12
1oz < Reh(z) < |h(2)| < BT

Lemma 2.3. Let h(z) € Py. Then, for |z| =r < 1, we have

r(k 4+ 4r + kr?)Reh(z

2 (2)] < (k + 4r + kr*)Reh( ).

(1= +kr +12)
The result follows directly by using Lemma 2.2 and (1.5).

3. Main results

Theorem 3.1. Let f(z) € Vi(B,b,8) withbe C*, 0 < 8 <1, § > —1. Then

ol < — D forn> 2,
(n — 1)!pn(8)
where o = w and ¢,(8) is given by (1.2).

This result is sharp.
Proof. Set

2 2Df(2)
b b D¥(2)
so that p(z) € P(B).Letp(z) =1+ Z;’il b,z". Then (3.2) can be written as

= p(2),

2(D°*'f (z) — D*f (2)) = bD*f (2) anln,

n=1
which implies that
2¢q(8)(n — Day
G+1
Using the coefficient estimates |b,| < k(1 — B) for the class Py(8), we obtain

kb1 =B+ 1)
lan| < 2= Dn®) 1+ @2(8)laa] + - - + @a-1(8)|an-11).

Forn = 2, |ay| < Kbla=p)
Therefore (3.1) holzds forn = 2.
Assume that (3.1) is true for n = m and consider
k|b|(1—B)(8 + 1)

am1] < 1+ @2dlaz| + - - + ¢n-1(8)aml|)
2mem11(8)

= b(bp—1 + @2(8)azby—2 + - - - + @a_1(8)an—_1b1).

< klp|(1-p)(+ 1) {] n kb|(1 =B+ 1D (1 n kb1 =B+ 1)

2mep41(8) 2!
kIb|(1— B)(S + 1) m—2< kIbl(1— B)(8 + 1)>
1
(m—1)! ]H * 2j

2m@p41(8) 2j

(@)m
(m)!pm11(8) ’

m—1
_ kibja =P+ 1 1—[ (1 n kib|(1 — /?)(8 + 1))

j=1

Therefore, the result is true for n = m + 1. Using mathematical induction, (3.1) holds true for all n > 2.

2

(3.1)

This result is sharp for6 > —1,0 < 8 < 1, b € C* and k > 2 as can be seen from the functions fy(z) which are given as

1—z

5+1 _
1_2_|_2Df0(2)=(1_’3)|:<§+1>1+Z_<k_1)1 Z:|+5'

b b D¥fy(2) 2 4 2)1+z
For different values of §, b, §, we obtain the following corollaries [10]. O
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Corollary 3.2. If f(z) € Vi(B, 2,0) = R(B), then
(k(1 = B))n-1

lan| < ERCEE T forn > 2.

This result is sharp.
Corollary 3.3. If f(z) € Vk(B, 1, 1) = Vi(B), then
_ k(1= B

n!

|an]

This result is sharp.

, forn>2.

Theorem 3.4. For b > 0, Vi(a,b,5 +1) C Vi(B1,b+ 1,6),z € E, where

-+ +4@6+ 1)(b+1— (1 —b)(8 — b + Sba + 2bar + 1))
B 20+ Db+ ’
withn = n(b, «, 8) = (1 — b(8a + 2 — 8)).

Proof. Suppose f(z) € Vi(«, b, §) and set

B

2 2 DMlf(2)
b+1 b+1 D¥(z)’
where p(z) is analytic in E with p(0) = 1. Then simple computations, together with (1.3) and (3.4), yield

p2)=1-

2 2D%2f(z) W22zp' (2)
1= 24 22 22 () o | o) + 222
b T b D) (1= 1) + g |:P( ) @) +M3:|
with pq = gi—;b#, Uy = m, 3 = 52 — 1.Since f(2) € Vi(a, b, 8), it follows that
W2zp'(2)
[(1 — 1) + M <p(2)+ 222 ) e,
p(2) + 13

or, equivalently,

(1—a—pu1) 1 H2zp' (2)
L2222 ) 1 ey
[ o (- <p(z)+p<z>+u3>}e ’

z 4 U3 z
(4 u3) 1=2)%2 (14 p3) (1 —z)r2t’
and by using convolution techniques (see [11]) together with (1.5) we have

'@ (k1 a2’ (2) )_ (5 ~ 1)( 122D (2) )
p@) +us (4 * 2) (pl(z) T i@+ s 2) POt )
By using (3.6), we see that

(1—a—pu) H1 M22p;(2) .
[ (1—05) +(l—a)<pi(z)+pi(z)+,ug>:|ep’ zeE,i=1,2.

We want to show that p;(z) € P (81), where B is given by (3.3).
Let

pi(2) =1 - BDhi@) + 1, i=1,2.
Then, forz € E
[(1—a—m) M1 w2 (1 — B1)zhi(z) )] cp
(1-a) (1-a) (1= BDhi@) + pus + B '
We now form the function ¥ (u, v) by taking u = h;(z), v = zhj(z) as
ma(1— Bv ]
(I—Bu+us+p1]°

@) =

p(2) +

<(1 — Bohi@) + f1 +

I
L T +(1_a)[<1—ﬁl>u+ﬁ1+

4729

(3.4)

(3.5)
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The first two conditions of Lemma 2.1 are clearly satisfied. We verify condition (iii) as.
. 1— +
Rew (itty, vy) = n |:'31 n pa( ,fl)(l/d ,3)1;1 zi|
(1-w (1-0w (13 + B> + (1= B1)°uy

c (d-a—py) M1 B — pa(1— B (s + B (1 + u3)

B (1—a) 2[(u3 + B2+ (1 — Br)?u]
A+ Buj
c

I D

where

A= (u3+ B1)[2(us+ B1) (1 —a — wr + w1f) — wip(1 — Bl
B=(1-8)20O -0 —a—pur+ u1p) — pipa(us + Bl
C=2(1-a)l(ps+ B>+ (1 —B)’u5] > 0.

We notice that Re¥ (iu,, v1) < Oifand onlyifA < 0and B < 0. From A < 0, we obtain 8 as defined by (3.3)and B < 0
gives us 0 < B; < 1. This proves that h;(z) € P,i = 1, 2 and hence p(z) € Px(S1).
If we take b = 1and § = 0, we obtain the following result [11]. O

Corollary 3.5. Let f(z) € Vi(«). Then f(z) € Ry(B1), where
B1 = %[—(1 —2a) + /(1 —2a)? + 8].

For « = 0 and k = 2 in Corollary 3.5, we have the following well known result

1 e
V2(0) =CCRy 3 =S 5 forz € E.

For a function f (z) € A, we consider the integral operator

-l V4
F@) =1,((2) = (V%)/ o (Ode, y > —1. (3.7)
0

The operator I, when y € Nwas introduced by Bernardi [12]. In particular, the operator I; was studied earlier by Libera [13]
and Livingston [14].

Theorem 3.6. Let f(z) € Vi(«, b, §) and let F(z) be defined by (3.7). Then F(z) € V¢(B3, b, §), where0 < 8, < 1,b > 0 and

1
Br= 4 1—Qus — 20+ pa) + V@us — 2a + pua)? + 8(2aus + pa)l. (3.8)

with us = 2 and pus = 2(;1:1))/3 -1

The proof follows by using the same technique as in Theorem 3.4.

Theorem 3.7. If f(z) is of the form (1.1) belongs to Vi(B, b, §) and F(z) =z + Z;’iz b,z", where F (z) is the integral operator
defined by (3.7), then

y+1 (0
(y +n) (n— D!y (8)’

|by| < forn > 2.

Proof. From (3.7), we obtain

o0 oo o0
14+yz+ Z(l + )" = yz + Zybnz" +z4 annz",

n=2 n=2 n=2
and thus
m+y)bp =04+ y)a,,n> 2.
From the above we have
y+1
(y +mn
Using the estimates from Theorem 3.1, we obtain the required result. O

|bn| <

lan|, n=>2.
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Theorem 3.8. Let f(z) € V(0,b,68),6 > —1,b > 0,k > 2anda = @ > 0. Then D’f (z) maps |z| < ro onto a convex
domain, where ry is the least positive root of the equation

(4a® — 4a + DHr* — (ka)r®* — (K*a® + 2)r* — (ka)r +1 = 0. (3.9)
This result is sharp.
Proof. Since f(z) € Vi(0, b, §) then

D@ _ b(p@) —1)+2

- , (3.10)
D’f (z) 2
where p(z) € P,(0). Using the identity (1.3), we have from (3.10)
S ’ _
z2(Df@)" _ br@) 1)(8+1)+2' (3.11)
D3f () 2
Logarithmic differentiation of (3.11) yields
z(D°f (2))") 2p'(2)
R e —a+14+——
Dfay PO T
where a = 22 Then we have
2(D’f (2))" ) |20’ (2)
Re|14+ ——— R 1—-¢q) — —— 78
e( oy ) RO T T
and hence, by using Lemmas 2.2 and 2.3,
2(D°f 2))" A-a(1-r) r(kr2 + 4r + k)a
Re (1 T Do)y ) Z Rep(2) {a T T k1 Pkt D(@a— D2 —kar + 1)}

(4> — 4a + Dr* — (ka)r® — (Ka* + 2)r* — (ka)r 4 1
Rep(2) ~ 0
(% 4+ kr + 1)((2a — 1r? — kar + 1)
provided
T(r) = (4d® — 4a + Dr* — (ka)r® — (K*a* + 2)r* — (ka)r +1 > 0.

Wehave T(0) = 1 > 0and T(1) = —a(k + 2)((k — 2)a + 2) < 0. Therefore D’f (z) maps |z| < 1, onto a convex domain,
where ry is the least positive root of the equation T (r) lying in (0, 1) and this gives (3.9).
For D’f; (z) such that

Dfi(2)  b(pe(2) — 1) +2

Dfi) 2 ’
where
k 1\1+z (k 1\1-z
) = <z+5> i (z* 5) 157
we have
E(D’fi@)) _ (4a® —da+ 2" — k)2’ — (Ka +2)22 — (kajz +1 _
(D*f1 (2)) (2 +kz+1)(Q2a—1)z2 —kaz + 1) ’

for z = ry. Hence this radius rg is sharp. O
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