

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On some applications of Ruscheweyh derivative

Khalida Inayat Noor^a, Muhammad Arif^{b,*}

- ^a Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
- ^b Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan

ARTICLE INFO

Article history: Received 14 June 2011 Accepted 24 October 2011

Keywords:
Bounded boundary rotation
Bounded radius rotation
Convolution
Ruscheweyh operator

ABSTRACT

In this paper, we discuss a subclass $\mathcal{V}_k(\beta, b, \delta)$ of analytic functions, which was introduced and discussed by Latha and Nanjunda Rao (1994) [3]. Some results such as inclusion relationship, coefficient inequality and radius of convexity for this class are proved. We also observe that this class is preserved under the Bernardi integral transform.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let A denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=0}^{\infty} a_n z^n, \tag{1.1}$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$. Also let $S^*(\beta)$ and $C(\beta)$ denote the well known classes of starlike and convex of order β respectively. For any two analytic functions f(z) and g(z) with

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, for $z \in E$,

the convolution (Hadamard product) is given by

$$(f \star g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$$
, for $z \in E$.

Let $f(z) \in A$. Denote by $D^{\delta}: A \to A$, the operator defined by

$$D^{\delta}f(z) = \frac{z}{(1-z)^{\delta+1}} * f(z) = z + \sum_{n=2}^{\infty} \varphi_n(\delta) a_n z^n, (\delta > -1)$$

with

$$\varphi_n(\delta) = \frac{(\delta+1)_{n-1}}{(n-1)!},\tag{1.2}$$

E-mail addresses: khalidanoor@hotmail.com (K.I. Noor), marifmaths@yahoo.com, marifmaths@awkum.edu.pk (M. Arif).

^{*} Corresponding author.

where $(\rho)_n$ is a Pochhammer symbol given as

$$(\rho)_n = \begin{cases} 1, n = 0, \\ \rho(\rho+1)(\rho+2)\cdots(\rho+n-1), & n \in \mathbb{N}. \end{cases}$$

It is obvious that $D^0f(z) = f(z)$, $D^1f(z) = zf'(z)$ and

$$D^n f(z) = \frac{z(z^{n-1} f(z))^{(n)}}{n!}, \quad \text{for all } \delta = n \in N_0 = \{0, 1, 2, \ldots\}.$$

The following identity can easily be established.

$$(\delta + 1)D^{\delta + 1}f(z) = \delta D^{\delta}f(z) + z(D^{\delta}f(z))'. \tag{1.3}$$

The operator $D^{\delta}f(z)$ is called the Ruscheweyh derivative of f(z), see [1].

Let $P_k(\beta)$ be the class of analytic functions p(z) defined in E satisfying the properties p(0) = 1 and

$$\int_0^{2\pi} \left| \frac{\operatorname{Rep}(z) - \beta}{1 - \beta} \right| d\theta \le k\pi, \tag{1.4}$$

where $z = re^{i\theta}$, k > 2 and $0 < \beta < 1$. When $\beta = 0$, we obtain the class P_k defined in [2] and for k = 2, $\beta = 0$, we have the class P of functions with positive real part. We can write (1.4) as

$$p(z) = \frac{1}{2} \int_0^{2\pi} \frac{1 + (1 - 2\beta)ze^{-i\theta}}{1 - ze^{-i\theta}} d\mu(\theta),$$

where $\mu(\theta)$ is a function with bounded variation on [0, 2π] such that

$$\int_0^{2\pi} d\mu(\theta) = 2\pi \text{ and } \int_0^{2\pi} |d\mu(\theta)| \le k\pi.$$

Also, for $p(z) \in P_k(\beta)$, we can write from (1.4)

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2(z), \quad z \in E,$$
(1.5)

where $p_1(z)$, $p_2(z) \in P(\beta)$, $P(\beta)$ is the class of functions with positive real part greater than β .

We now consider the following class.

Definition 1.1. A function $f(z) \in A$ of the form (1.1) is in the class $\mathcal{V}_k(\beta, b, \delta)$ if and only if

$$\left(1 - \frac{2}{b} + \frac{2}{b} \frac{D^{\delta+1} f(z)}{D^{\delta} f(z)}\right) \in P_k(\beta), \quad z \in E,$$

where $k \geq 2$, $\delta > -1$, $0 \leq \beta < 1$ and $b \in \mathbb{C} - \{0\} = \mathbb{C}^*$.

This class was introduced by Latha and Nanjunda Rao in [3]. It contains several well known classes of analytic and univalent functions studied earlier.

We note the following special cases.

- (i) $V_2(\beta, 1, 1) = C(\beta), V_2(\beta, 2, 0) = S^*(\beta),$ (ii) $V_k(\beta, 1, 1) = V_k(\beta), V_k(\beta, 2, 0) = R_k(\beta),$

where $V_k(\beta)$ and $R_k(\beta)$ denote the class of bounded boundary and bounded radius rotation of order β , for further advancement see [4-8].

2. Preliminary results

We need the following results to obtain our results.

Lemma 2.1 ([9]). Let $u = u_1 + iu_2$, $v = v_1 + iv_2$ and $\Psi(u, v)$ be a complex valued function satisfying the conditions:

- (i) $\Psi(u, v)$ is continuous in a domain $D \subset \mathbb{C}^2$.
- (ii) $(1,0) \in D$ and $\text{Re}\Psi(1,0) > 0$,
- (iii) $\text{Re}\Psi(iu_2, v_1) \leq 0$, whenever $(iu_2, v_1) \in D$ and $v_1 \leq -\frac{1}{2}(1+u_2^2)$.

If $h(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is a function that is analytic in E such that $(h(z), zh'(z)) \in D$ and $\text{Re}\Psi(h(z), zh'(z)) > 0$ hold for all $z \in E$, then Reh(z) > 0 in E.

Lemma 2.2 ([2]). Let $h(z) \in P_k$. Then, for |z| = r < 1, we have

$$\frac{1 - kr + r^2}{1 - r^2} \le \operatorname{Re}h(z) \le |h(z)| \le \frac{1 + kr + r^2}{1 - r^2}.$$

Lemma 2.3. Let $h(z) \in P_k$. Then, for |z| = r < 1, we have

$$|zh'(z)| \le \frac{r(k+4r+kr^2)\operatorname{Re}h(z)}{(1-r^2)(1+kr+r^2)}.$$

The result follows directly by using Lemma 2.2 and (1.5).

3. Main results

Theorem 3.1. Let $f(z) \in \mathcal{V}_k(\beta, b, \delta)$ with $b \in \mathbb{C}^*$, $0 \le \beta < 1$, $\delta > -1$. Then

$$|a_n| \le \frac{(\sigma)_{n-1}}{(n-1)!\varphi_n(\delta)}, \quad \text{for } n \ge 2,$$
(3.1)

where $\sigma = \frac{k|b|(1-\beta)(\delta+1)}{2}$ and $\varphi_n(\delta)$ is given by (1.2).

This result is sharp.

Proof. Set

$$1 - \frac{2}{b} + \frac{2}{b} \frac{D^{\delta+1} f(z)}{D^{\delta} f(z)} = p(z), \tag{3.2}$$

so that $p(z) \in P_k(\beta)$. Let $p(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$. Then (3.2) can be written as

$$2(D^{\delta+1}f(z)-D^{\delta}f(z))=bD^{\delta}f(z)\sum_{n=1}^{\infty}b_nz^n,$$

which implies that

$$\frac{2\varphi_n(\delta)(n-1)a_n}{(\delta+1)} = b(b_{n-1} + \varphi_2(\delta)a_2b_{n-2} + \dots + \varphi_{n-1}(\delta)a_{n-1}b_1).$$

Using the coefficient estimates $|b_n| \le k(1-\beta)$ for the class $P_k(\beta)$, we obtain

$$|a_n| \leq \frac{k|b|(1-\beta)(\delta+1)}{2(n-1)\varphi_n(\delta)}(1+\varphi_2(\delta)|a_2|+\cdots+\varphi_{n-1}(\delta)|a_{n-1}|).$$

For n = 2, $|a_2| \le \frac{k|b|(1-\beta)}{2}$

Therefore (3.1) holds for n = 2. Assume that (3.1) is true for n = m and consider

$$\begin{split} |a_{m+1}| &\leq \frac{k|b|(1-\beta)(\delta+1)}{2m\varphi_{m+1}(\delta)}(1+\varphi_2(\delta)|a_2|+\cdots+\varphi_{n-1}(\delta)|a_m|) \\ &\leq \frac{k|b|(1-\beta)(\delta+1)}{2m\varphi_{m+1}(\delta)} \left\{1+\frac{k|b|(1-\beta)(\delta+1)}{2!}\left(1+\frac{k|b|(1-\beta)(\delta+1)}{2}\right)\right. \\ &+\cdots+\frac{k|b|(1-\beta)(\delta+1)}{(m-1)!} \prod_{j=1}^{m-2} \left(1+\frac{k|b|(1-\beta)(\delta+1)}{2j}\right)\right\} \\ &= \frac{k|b|(1-\beta)(\delta+1)}{2m\varphi_{m+1}(\delta)} \prod_{j=1}^{m-1} \left(1+\frac{k|b|(1-\beta)(\delta+1)}{2j}\right) \\ &= \frac{(\sigma)_m}{(m)!\varphi_{m+1}(\delta)}. \end{split}$$

Therefore, the result is true for n = m + 1. Using mathematical induction, (3.1) holds true for all $n \ge 2$. This result is sharp for $\delta > -1$, $0 \le \beta < 1$, $b \in \mathbb{C}^*$ and $k \ge 2$ as can be seen from the functions $f_0(z)$ which are given as

$$1 - \frac{2}{b} + \frac{2}{b} \frac{D^{\delta+1} f_0(z)}{D^{\delta} f_0(z)} = (1 - \beta) \left[\left(\frac{k}{4} + \frac{1}{2} \right) \frac{1+z}{1-z} - \left(\frac{k}{4} - \frac{1}{2} \right) \frac{1-z}{1+z} \right] + \beta.$$

For different values of β , b, δ , we obtain the following corollaries [10]. \square

Corollary 3.2. *If* $f(z) \in V_k(\beta, 2, 0) = R_k(\beta)$, *then*

$$|a_n| \le \frac{(k(1-\beta))_{n-1}}{(n-1)!}, \quad \text{for } n \ge 2.$$

This result is sharp.

Corollary 3.3. If $f(z) \in \mathcal{V}_k(\beta, 1, 1) = V_k(\beta)$, then

$$|a_n| \le \frac{(k(1-\beta))_{n-1}}{n!}, \quad \text{for } n \ge 2.$$

This result is sharp

Theorem 3.4. For b > 0, $V_k(\alpha, b, \delta + 1) \subseteq V_k(\beta_1, b + 1, \delta)$, $z \in E$, where

$$\beta_1 = \frac{-\eta + \sqrt{\eta^2 + 4(\delta + 1)(b + 1 - (1 - b)(\delta - b + \delta b\alpha + 2b\alpha + 1))}}{2(\delta + 1)(b + 1)},\tag{3.3}$$

with $\eta = \eta(b, \alpha, \delta) = (1 - b(\delta\alpha + 2\alpha - \delta))$

Proof. Suppose $f(z) \in \mathcal{V}_k(\alpha, b, \delta)$ and set

$$p(z) = 1 - \frac{2}{b+1} + \frac{2}{b+1} \frac{D^{\delta+1} f(z)}{D^{\delta} f(z)},$$
(3.4)

where p(z) is analytic in E with p(0) = 1. Then simple computations, together with (1.3) and (3.4), yield

$$1 - \frac{2}{b} + \frac{2}{b} \frac{D^{\delta + 2} f(z)}{D^{\delta + 1} f(z)} = (1 - \mu_1) + \mu_1 \left[p(z) + \frac{\mu_2 z p'(z)}{p(z) + \mu_3} \right], \tag{3.5}$$

with $\mu_1 = \frac{\delta+1}{\delta+2} \frac{b+1}{b}$, $\mu_2 = \frac{2}{(\delta+1)(b+1)}$, $\mu_3 = \frac{2}{b+1} - 1$. Since $f(z) \in \mathcal{V}_k(\alpha, b, \delta)$, it follows that

$$\left\lceil (1 - \mu_1) + \mu_1 \left(p(z) + \frac{\mu_2 z p'(z)}{p(z) + \mu_3} \right) \right\rceil \in P_k(\alpha),$$

or, equivalently,

$$\left[\frac{(1 - \alpha - \mu_1)}{(1 - \alpha)} + \frac{\mu_1}{(1 - \alpha)} \left(p(z) + \frac{\mu_2 z p'(z)}{p(z) + \mu_3} \right) \right] \in P_k. \tag{3.6}$$

Define

$$\varphi(z) = \frac{1}{(1+\mu_3)} \frac{z}{(1-z)^{\mu_2}} + \frac{\mu_3}{(1+\mu_3)} \frac{z}{(1-z)^{\mu_2+1}},$$

and by using convolution techniques (see [11]) together with (1.5) we have

$$p(z) + \frac{\mu_2 z p'(z)}{p(z) + \mu_3} = \left(\frac{k}{4} + \frac{1}{2}\right) \left(p_1(z) + \frac{\mu_2 z p'_1(z)}{p_1(z) + \mu_3}\right) - \left(\frac{k}{4} - \frac{1}{2}\right) \left(p_2(z) + \frac{\mu_2 z p'_2(z)}{p_2(z) + \mu_3}\right).$$

By using (3.6), we see that

$$\left[\frac{(1-\alpha-\mu_1)}{(1-\alpha)} + \frac{\mu_1}{(1-\alpha)} \left(p_i(z) + \frac{\mu_2 z p_i'(z)}{p_i(z) + \mu_3}\right)\right] \in P, \quad z \in E, i = 1, 2.$$

We want to show that $p_i(z) \in P(\beta_1)$, where β_1 is given by (3.3).

$$p_i(z) = (1 - \beta_1)h_i(z) + \beta_1, \quad i = 1, 2.$$

Then, for $z \in E$

$$\left\lceil \frac{(1-\alpha-\mu_1)}{(1-\alpha)} + \frac{\mu_1}{(1-\alpha)} \left((1-\beta_1)h_i(z) + \beta_1 + \frac{\mu_2(1-\beta_1)zh_i'(z)}{(1-\beta_1)h_i(z) + \mu_3 + \beta_1} \right) \right\rceil \in P.$$

We now form the function $\Psi(u, v)$ by taking $u = h_i(z)$, $v = zh'_i(z)$ as

$$\Psi(u,v) = \frac{(1-\alpha-\mu_1)}{(1-\alpha)} + \frac{\mu_1}{(1-\alpha)} \left[(1-\beta_1)u + \beta_1 + \frac{\mu_2(1-\beta_1)v}{(1-\beta_1)u + \mu_3 + \beta_1} \right].$$

The first two conditions of Lemma 2.1 are clearly satisfied. We verify condition (iii) as.

$$\begin{aligned} \operatorname{Re}\Psi(iu_2, v_1) &= \frac{(1 - \alpha - \mu_1)}{(1 - \alpha)} + \frac{\mu_1}{(1 - \alpha)} \left[\beta_1 + \frac{\mu_2(1 - \beta_1)(\mu_3 + \beta)v_1}{(\mu_3 + \beta_1)^2 + (1 - \beta_1)^2 u_2^2} \right] \\ &\leq \frac{(1 - \alpha - \mu_1)}{(1 - \alpha)} + \frac{\mu_1}{(1 - \alpha)} \left[\beta_1 - \frac{\mu_2(1 - \beta_1)(\mu_3 + \beta_1)(1 + u_2^2)}{2\left[(\mu_3 + \beta_1)^2 + (1 - \beta_1)^2 u_2^2\right]} \right] \\ &= \frac{A + Bu_2^2}{C}, \end{aligned}$$

where

$$A = (\mu_3 + \beta_1) [2 (\mu_3 + \beta_1) (1 - \alpha - \mu_1 + \mu_1 \beta_1) - \mu_1 \mu_2 (1 - \beta_1)],$$

$$B = (1 - \beta_1) [2 (1 - \beta_1) (1 - \alpha - \mu_1 + \mu_1 \beta_1) - \mu_1 \mu_2 (\mu_3 + \beta_1)],$$

$$C = 2(1 - \alpha) [(\mu_3 + \beta_1)^2 + (1 - \beta_1)^2 u_2^2] > 0.$$

We notice that $\text{Re}\Psi(iu_2, v_1) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$, we obtain β_1 as defined by (3.3) and $B \leq 0$ gives us $0 < \beta_1 < 1$. This proves that $h_i(z) \in P$, i = 1, 2 and hence $p(z) \in P_k(\beta_1)$.

If we take b=1 and $\delta=0$, we obtain the following result [11]. \square

Corollary 3.5. Let $f(z) \in V_k(\alpha)$. Then $f(z) \in R_k(\beta_1)$, where

$$\beta_1 = \frac{1}{4} [-(1 - 2\alpha) + \sqrt{(1 - 2\alpha)^2 + 8}].$$

For $\alpha = 0$ and k = 2 in Corollary 3.5, we have the following well known result

$$V_2(0) = C \subseteq R_2\left(\frac{1}{2}\right) = S^*\left(\frac{1}{2}\right), \text{ for } z \in E.$$

For a function $f(z) \in A$, we consider the integral operator

$$F(z) = I_{\gamma}(f(z)) = \frac{(\gamma + 1)}{z^{\gamma}} \int_{0}^{z} t^{\gamma - 1} f(t) dt, \quad \gamma > -1.$$
(3.7)

The operator I_{γ} , when $\gamma \in \mathbb{N}$ was introduced by Bernardi [12]. In particular, the operator I_1 was studied earlier by Libera [13] and Livingston [14].

Theorem 3.6. Let $f(z) \in V_k(\alpha, b, \delta)$ and let F(z) be defined by (3.7). Then $F(z) \in V_k(\beta_2, b, \delta)$, where $0 < \beta_2 < 1, b > 0$ and

$$\beta_2 = \frac{1}{4} \left[-(2\mu_5 - 2\alpha + \mu_4) + \sqrt{(2\mu_5 - 2\alpha + \mu_4)^2 + 8(2\alpha\mu_5 + \mu_4)} \right]. \tag{3.8}$$

with $\mu_4 = 2$ and $\mu_5 = \frac{2(1+\gamma)}{(\delta+1)b} - 1$.

The proof follows by using the same technique as in Theorem 3.4.

Theorem 3.7. If f(z) is of the form (1.1) belongs to $V_k(\beta, b, \delta)$ and $F(z) = z + \sum_{n=2}^{\infty} b_n z^n$, where F(z) is the integral operator defined by (3.7), then

$$|b_n| \leq \frac{(\gamma+1)}{(\gamma+n)} \frac{(\sigma)_{n-1}}{(n-1)! \varphi_n(\delta)}, \quad \text{for } n \geq 2.$$

Proof. From (3.7), we obtain

$$1 + \gamma z + \sum_{n=2}^{\infty} (1 + \gamma) a_n z^n = \gamma z + \sum_{n=2}^{\infty} \gamma b_n z^n + z + \sum_{n=2}^{\infty} n b_n z^n,$$

and thus

$$(n+\gamma)b_n=(1+\gamma)a_n, n\geq 2.$$

From the above we have

$$|b_n| \leq \frac{(\gamma+1)}{(\gamma+n)}|a_n|, \quad n \geq 2.$$

Using the estimates from Theorem 3.1, we obtain the required result. \Box

Theorem 3.8. Let $f(z) \in \mathcal{V}_k(0, b, \delta)$, $\delta > -1$, b > 0, $k \ge 2$ and $a = \frac{b(\delta+1)}{2} > 0$. Then $D^{\delta}f(z)$ maps $|z| < r_0$ onto a convex domain, where r_0 is the least positive root of the equation

$$(4a^2 - 4a + 1)r^4 - (ka)r^3 - (k^2a^2 + 2)r^2 - (ka)r + 1 = 0. (3.9)$$

This result is sharp.

Proof. Since $f(z) \in \mathcal{V}_k(0, b, \delta)$ then

$$\frac{D^{\delta+1}f(z)}{D^{\delta}f(z)} = \frac{b(p(z)-1)+2}{2},\tag{3.10}$$

where $p(z) \in P_k(0)$. Using the identity (1.3), we have from (3.10)

$$\frac{z(D^{\delta}f(z))'}{D^{\delta}f(z)} = \frac{b(p(z)-1)(\delta+1)+2}{2}.$$
(3.11)

Logarithmic differentiation of (3.11) yields

$$\frac{(z(D^{\delta}f(z))')'}{(D^{\delta}f(z))'} = ap(z) - a + 1 + \frac{zp'(z)}{p(z) - 1 + \frac{1}{a}},$$

where $a = \frac{b(\delta+1)}{2}$. Then we have

$$\operatorname{Re}\left(1 + \frac{z(D^{\delta}f(z))''}{(D^{\delta}f(z))'}\right) \ge a\operatorname{Re}p(z) + (1 - a) - \frac{|zp'(z)|}{\left|p(z) - 1 + \frac{1}{a}\right|},$$

and hence, by using Lemmas 2.2 and 2.3,

$$\begin{split} \operatorname{Re}\left(1 + \frac{z(D^{\delta}f(z))''}{(D^{\delta}f(z))'}\right) & \geq \operatorname{Re}p(z) \left\{ a + \frac{(1-a)(1-r^2)}{r^2 + kr + 1} - \frac{r(kr^2 + 4r + k)a}{(r^2 + kr + 1)((2a-1)r^2 - kar + 1)} \right\} \\ & = \operatorname{Re}p(z) \left\{ \frac{(4a^2 - 4a + 1)r^4 - (ka)r^3 - (k^2a^2 + 2)r^2 - (ka)r + 1}{(r^2 + kr + 1)((2a-1)r^2 - kar + 1)} \right\} > 0, \end{split}$$

provided

$$T(r) = (4a^2 - 4a + 1)r^4 - (ka)r^3 - (k^2a^2 + 2)r^2 - (ka)r + 1 > 0.$$

We have T(0) = 1 > 0 and T(1) = -a(k+2)((k-2)a+2) < 0. Therefore $D^{\delta}f(z)$ maps $|z| < r_0$ onto a convex domain, where r_0 is the least positive root of the equation T(r) lying in (0, 1) and this gives (3.9).

For $D^{\delta} f_1(z)$ such that

$$\frac{D^{\delta+1}f_1(z)}{D^{\delta}f_1(z)} = \frac{b(p_k(z)-1)+2}{2},$$

where

$$p_k(z) = \left(\frac{k}{4} + \frac{1}{2}\right) \frac{1+z}{1-z} - \left(\frac{k}{4} - \frac{1}{2}\right) \frac{1-z}{1+z},$$

we have

$$\frac{(z(D^{\delta}f_1(z))')'}{(D^{\delta}f_1(z))'} = \frac{(4a^2 - 4a + 1)z^4 - (ka)z^3 - (k^2a^2 + 2)z^2 - (ka)z + 1}{(z^2 + kz + 1)((2a - 1)z^2 - kaz + 1)} = 0,$$

for $z = r_0$. Hence this radius r_0 is sharp. \square

References

- [1] S. Ruscheweyh, A new criteria for univalent function, Proc. Amer. Math. Soc. 49 (1) (1975) 109-115.
- [2] B. Pinchuk, Function with bounded boundary rotation, Israel J. Math. 10 (1971) 7–16.
- [3] S. Latha, S. Nanjunda Rao, Convex combinations of n analytic functions in generalized Ruscheweyh class, Int. J. Math. Educ. Sci. Technol. 25 (6) (1994) 791–795.
- [4] K.I. Noor, On some subclassess of fuctions with bounded boundary and bounded radius rotation, Panamer. Math. J. 6 (1996) 75–81.
- [5] K.I. Noor, On analytic functions related to certain family of integral operators, JIPAM. J. Inequal. Pure Appl. Math. 7 (2(26)) (2006).
- [6] M.A. Noor, K.I. Noor, E.A. Al-Said, On certain analytic functions with bounded radius rotation, Comput. Math. Appl. 61 (10) (2011) 2987–2993.
- [7] M. Arif, K.I. Noor, M. Raza, On a class of analytic functions related with generalized Bazilevic type functions, Comput. Math. Appl. 61 (2011) 2456–2462.
- [8] M. Arif, M. Raza, K.I. Noor, S.N. Malik, On strongly Bazilevic functions associated with generalized Robertson functions, Math. Comput. Modelling 54 (2011) 1608–1612.

- [9] S.S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc. 81 (1975) 79–81.
 [10] K.I. Noor, Higher order close-to-convex functions, Math. Japon. 37 (1) (1992) 1–8.
 [11] K.I. Noor, W. Haq, M. Arif, S. Mustafa, On bounded boundary and bounded radius rotations, J. Inequal. Appl. (2009) 12. Art. ID 813687.
 [12] S. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429–446.
 [13] R.J. Libera, Some Classes of Univalent Functions, Polygonal Publishing House, Washington, NJ, 1983.
 [14] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966) 352–357.