
PERGAMON

An I n l ~ l Journal

computers &
mathematics
with aplMledlons

Computers and Mathematics with Applications 39 (2000) 127-143
www.elsevier, nl/locate/camwa

B u i l d i n g a M o d e l of a Use fu l Tur ing M a c h i n e

J . A . P I O T R O W S K I
School of Computing and Information Technology

University of Western Sydney--Nepean
P.O. Box 10, Kingswood, NSW 2747, Australia

(Received January 1995; revised and accepted March 1999)

A b s t r a c t - - T h e principal ideas of a universal computer are gradually introduced into a functional
model of the Turing machine. The strict sequentiality of this model is confronted with parallelism
observed in real computers.

This paper follows up the presentation [1] and is complemented by [2,3]. © 1999 Elsevier Science
Ltd. All rights reserved.

Keywords- -Educa t ion , Turing machine, Functional programming, Models, Parallelism, Sequen-
tiality.

1. I N T R O D U C T I O N

Abstract machines, formal languages, and methods are well established in computer science,

but their importance is often questioned by students. A successful introduction of an abstract

machine, reported by Piotrowski in [3], caused considerable interest. Consequently, students
wanted to see how such a theoretical system could have become a 'blue-print ' of a computer.

This paper presents a conventional computer as the Turing machine. I t is a very simple model,

yet the set of instructions executed by this machine forms a core subset of any one-address

assembler. A machine, which was compared with a dataflow machine in [1], used roughly the

same language as the one presented here. However, the intention of this presentation is not

to implement an assembler of any kind, but to show the close relationship of computers used

nowadays with an original idea based on the concept of a recursive function.

A composition of functions is used extensively in this paper. The composition of Turing
machines, which is based on this notion, allows to define neatly a relatively complex real machine

as the Turing machine.

Names are carefully selected to play an explanatory role. They are introduced in a hierarchical

manner. These names may represent memory sections, such as registers, or other components
of a real computer. These names are introduced to indicate certain potential for parallel access

or parallel operation. The use of the composition of functions on the other hand, emphasizes
explicit sequentiality.

The presented model is a system of functions and, although the support of computer in the
process of defining these functions is formally unnecessary, it proved to be very helpful in validat-

0898-1221/1999/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. Typeset by AA4S-TEX
FII: S0898-01221(99)00319-3

128 J.A. PIOTROWSKI

ing the model 1. For this reason, the syntax of Miranda 2 is adhered to, as this particular system

has been used for the purpose of verification. Its language is very similar to a conventional math-
ematical notation, at least as it is used in this paper 3. The expected level of acquaintance with

Miranda is the same, as for example, in [1]. The more systematic introduction of the language

can be found in an introductory paper by Turner [4], for example.

This presentation is an outline of a lecture on a general purpose computer viewed as a formal

system. It has been prepared for an upper-division undergraduate subject on fundamentals

of computer systems, and is normally supported by the laboratory session similar to the ones

described in [1-3].

2. T U R I N G M A C H I N E S

2 .1 . D e f i n i t i o n s

The issue of automated computing and a problem of computability lead to the first concept of

an abstract machine. Turing [5] and Post [6] independently introduced a definition, known as a

Turing machine. It has an obvious interpretation and this makes it an often used reference point

in theoretical dissertations, as well as in popular publications.

The Turing machine M is a six-tuple

i = (S, 2,/f, s, B, Y),

where

S is a finite set, called a set of states;
s E S is called the initial state;

Y C_ S contains final states;
is a finite set of symbols, and is called the tape alphabet;

B E ~ is a special symbol called a blank;
~f : S x ~ --* S x ~ x {~-, --% ~}] is a partial function.

A particular Turing machine is interpreted in the context of a sequence of symbols 4 t E ~*, and

a general driver function
:D: S x ~*--* Y x E*,

which maps a pair (s, t) E S x ~*, called the initial configuration of the machine M, into a final

configuration of this machine. It is usually achieved by repeated application of the transition

function to a sequence of symbols on the tape.

A set of internal states S t of a machine M is a subset of S such that S ' N ({s) U Y) is empty.

Let M1 = (S1, ~1, ~fl, Sl, B1, Y1) and M2 = ($2, ~2, (~2, s2, B2, Y2) be two Turing machines.
For t E ~* such that D(s2,t) = (y2,T) and 7)(Sl,T) are both defined, we say that for this t the

composition of M1 and M2 is defined. This model consists of a number of lower level machines

joined by the composition operation. In all instances but one, the final state reached by the

lower level machine is not important 5. In the case of the machine represented by the function

decoding, the final state must be preserved, because it is used in the next stage as the initial

state of another machine.

All lower level machines have disjoint sets of internal states and use the same tape alphabet

E = ~1 = E~ and the same blank symbol B = B1 = B2.

1A set of definitions presented in this paper is available in electronic form at ht tp : / / w ~ . c i r . nepean, uws. edu.
au/ ' j erzy/papers/Turing/.
All files in this directory constitute an integral part of this article and they are protected by the same copyright
law.
2Miranda is a trademark of Research Software Ltd.
3All definitions in this article are given in Miranda, but they can be translated easily into Haskell, or its derivatives
such as Hugs or Gofer. A program mira2hs written by D. Howe can help in this work.
4It is often called the tape. Post calls it a symbol space, which "is to consist of a two way infinite sequence of
spaces or boxes" [6, p. 103], while Turing makes a direct reference to a paper tape [5, p. 231].
5Hence, the same name Done is used in all such situations.

Useful Turing Machine 129

2.2. M o d e P s A s s u m p t i o n s

A possibility of exper imenta t ion with models is usually appreciated by students. Hence, defini-

t ions are expressed in a functional language which allows them to evaluate functions individually.

The Turing machine is commonly interpreted as a device with a read/wr i te head able to move
along the t a p e , which is of unlimited length. At any given time, the machine is in a cer tain state,
which can change after the move. The tape is subdivided into cells, each capable of s toring a

symbol.

Apa r t f rom initial and final states, each machine often has some internal states. The following

lines in t roduce s tates as an algebraic da ta type s t a t e . Not all states are listed below 6. This is

only a sample.

s t a t e : : = Ahead [

Done [LD [ST [ADD [SUBT [INCR [HLT [JMP [JZ [

Eval [EO [El [EO0 [EOI [EIO [Ell [...

The first on this list is the state Ahead. It is the initial state of the lower-level machine which

moves the read /wr i te head to the last 'b i t ' of a current 'word' . The name of this machine is

ahead (this and similar machines will be described in Section 2.3).

The s ta te Done is the final state and is used by all machines with the exception of the machine

d e c o d i n g . This lat ter machine has the initial s tate Eval , internal s tates such as E0, El, E00, and

final s ta tes such as LD, ST, etc. The list of all final s tates is called f i n a l .

final :: [state]

final = [Done, LD, ST, ADD, SUBT, INCR, HLT, JMP, JZ]

The tape alphabet E is called a symbol 7. I t could have been limited to two dist inct symbols (like

Zero and One), with a Blank as the universal separator B. However, increasing the number of

symbols makes definitions easier to unders tand, and allows one to think in more abs t rac t terms.

The symbols used in experiments are as follows:

symbol ::= Zero I One [Blank l

ZERO [ONE [Zero [OnE [ZERo [ONe [

D [ACC i PC I MAR [IR [OP i MM

The symbols Zero, One, and their look-a]ikes, such as ZERO and ONE s, are not given any meaning

as yet, but a numerical interpretation is the most natural. On graphs, they are represented by

O, 1, 0', and I'
The remaining seven symbols help to define the architecture of the computer.

It is assumed the tape is unlimited in both directions and is represented by two lists and a

single symbol, which is called a window 9. The read/write head can see only one cell at a time,

and this ce l l i s called a window.

tape == (Iside_tape,

Iside_tape == [symbol]

window == symbol

rside_tape == [symbol]

window, rside_tape)

Having defined the s tate and the tape, one can define l° a c o n f i g u r a t i o n on which the driver

funct ion acts upon.

configuration ::= Config state tape

SA complete list can be found in Appendix 2.
7This is an example of the Miranda definition introducing a new type (likewise the definition of the s ta te) . The
symbol is a name of a user-defined, algebraic type whose elements belong to the following set { Zero, 0no, Blank,
ZERO, ONE, ZerO, OnE, ZERo, ONe, D, ACC, PC, MAR, IR, OP, MM }.
SThe latter ones play a role of place-markers.
9These definitions introduce new names for composite types known as type synonyms. They do not offer the same
protection as algebraic types.
1°The type constructor Config combines two types: s t a t e and tape into a new entity, and labels it as something
distinct from other objects. It is a more general use of the algebraic type definition.

130 J .A . PIOTROWSKI

There are three moves: Left, Right, and None,

move ::= Left I Right I None

which correspond to +-, -% and i, respectively, (Section 2.1).

When the head moves to the Right, for example, the first element n of a list rside_tape,

becomes visible in the window. The functions 12 hleft and hright take the tape as an argument

and return its new content as a result. They represent the head moving to the left and to the

r ight , respect ively.

hleft, hright :: tape -> tape

hleft ([] , c, rs) = ([], Blank, c:rs)

hleft (c':ls, c, rs) = (ls, c' , c:rs)

hright (is, c, []) = (c:Is, Blank, [])

hright (ls, c, c':rs) = (c:ls, c' , rs)

These funct ions l eng then the t a p e , if necessary filling the newly a p p e n d e d m e m o r y loca t ions

wi th the Blank .

A tomic ac t ions of t he machine are defined by the transi t ion func t ion t r . T h e y d e p e n d on the

symbo l ac tua l l y seen in t he window and also depend on the s t a t e . In t he process of execu t ion of

such act ions , the mach ine changes its s ta te , leaves a symbol in t he window, and moves the head.

T h e r e are m a n y t r ans i t i ons defined in the sequel, and all of t h e m are of the t y p e

tr :: state -> window -> (state, window, move)

T h e func t ion t r defines t rans i t ions , bu t we need the d r i v e r funct ion to p u t t h e m into sequences 13.

Th is func t ion recurs ively calls t he funct ion t r , redefines the t a p e , changes t he s t a t e , and ' s tops '

when the final s t a t e is reached.

driver :: configuration-> configuration

driver (Config s t) = (Config s t), if member final s

= driver (Config newS newT), otherwise

where (i, w, r) = t

(newS, neW, dir) = tr s w

newT' = (I, neW, r)

newT = hleft newT', if dir = Left

= hright newT', if dir = Right

= newT', if dir = None

The initial state is singled out in the definition of the Turing machine and it is its important,

defining c o m p o n e n t i4. T h e funct ion tm accepts the in i t ia l s t a t e as i ts first a rgumen t .

tm :: state -> configuration-> configuration

tm newS (Config s t) = driver (Config newS t)

This allows one to refer to it in a short way 15, and for example tm Dlim represents the Turing

machine starting from the initial state Dlim (see also the description in the following section). In

this way, the configurations and their changes are given a lesser significance as they are pushed

into a background .

1lit is defined as (hd r s i d e _ t a p e) , which reads: the head of the list r s ide_ tape .
i2Theee functions describe outcomes for different patterns of arguments. The first line introduces two names of
functions: h l e f t and b r i g h t , both of the same type t ape -> tape. The following line defines the new content
of the t a p e , when there was nothing to the left of the read/write head (an empty list []). The Blank is routinely
added for convenience, but it is not strictly necessary. Patterns can be used as arguments of functions and their
elements can occur in the right-hand expressions (¢ ' in the second line of the h l e f t) . Such definitions are often
shorter than equivalent guarded expressions.
13It corresponds to the function ~) from Section 2.1.
14 "One box is to be singled out and called the starting point." [6, p. 103].
15An idea of making a function to accept its arguments one at a time, or in other words, that it suffices to consider
only functions of one argument, was first suggested by Frege in 1893 [7] and independently by SchSnfinkel [8].
Curry and Feys [9] later exploited this restriction and introduced notation (f x y) to denote ((f x) y) which
replaced an older one: f (x, y). Thus, a function application is seen as a left associative operation.

U s e f u l T u r i n g M a c h i n e 131

2.3. E x a m p l e s

The transit ion function and a set of states play a central role in the definition of the Turing
machine. While the state determines a stage in processing, the transition function provides a
prescription for some 'action'. A hierarchy can be introduced by considering certain states to
be more important than others. Such states are made initial and together with accompanying

transit ion functions define building blocks, which can be connected by means of the composition

of machines to form a higher-level building block.
This section shows how lower-level machines are combined into a more complex one. The lower-

level machines are the rewind, the on, and the one which searches for a special symbol PC 16. They

are combined into a higher-level machine, called the pc. I ts purpose is to find a program counter

and mark it as being i n use.

The first machine moves the head to the left of the tape in search of a delimiter D (Figure la) .
This symbol marks the end of the working area on the tape. The initial s ta te of this machine is

called Dlim and its transition function is defined as follows:

tr Dlim s = (Done, D, Right), if s = D

= (Dlim, s, Left), otherwise

rewind = tm Dlim

rewind = t m Dl im o n = t m O n

(d) DID n ~ PC/PC L = o/o' s : p c = m a r k P c
| / | '

mar ---- m a r k M a r

o p --- m a r k O p

F i g u r e 1. S e t t i n g m a r k e r s .

The second machine seeks a particular identifier PC by moving the head to the right (see

Figure lb) .

The purpose of the third machine is to mark a sequence of symbols on the tape, as active. A
convention adopted in this paper tells one to change Zero into ZERO and One into ONE to mark a

particular section:

t r On Zero = (Done, ZERO, None)
t r On One = (D o n e , ONE , N o n e)

On the graph (c) in Figure 1, it is encoded as 0 / 0 ' and 1 / 1 ' .
Having these three machines, one can make their composition. Par t of the tape, which is

identified by the name PC, can be then marked as active by the following function:
pc = on . tm Pc . r ewind

A combined graph (d) in Figure 1 represents the outcome of the composition of these three
machines.

Other sections of the tape, identified by names such as ACC or MAR, for example, are activated
in the same way, hence, the function mark (see Figure 1) uses a parameter to represent initial
states of machines similar to the pc 17.

leA nore systematic description of delimiters in Section 4.1; see also Figure 1.
17The definitions of functions: pc, acc, op, Jr, and mar are in Appendix 2. Formally, it is a collection of machines,
which for convenience is represented by a single function with guarded expressions representing these machines.

132 J.A. PIOTROWSKI

Sometimes, processing depends on a final state in which the previously used machine stopped.
The machine decoding is an example of such a machine. It ends in the state which becomes the
initial state from which the machine execute starts. The transition function of the decoding is
presented graphically in Figure 2.

This machine starts in the initial state Eval (in a centre of this picture).
It is assumed that the read/write head is placed at a right-most symbol of the sequence repre-
senting an operation code of an instruction and that three symbols define this code. We assume
further that the first symbol is primed to indicate that this section of the tape is active.

decoding c --- (tm opCode.rewind) (Config opCode t)

where (Config opCode t) = tm Eval c

1/1~ 1/

® ,

o/o L

/ I ,,P 07o olo 11

oY I" LI o/ o,; o/ 1/1 I ' l l O/ O/

1/I L -[~ 1/1 L

Figure 2. Eval of op-code.

The decoding is evaluated in three stages. The first one (i.e., tm Eval) determines the opCode,

but also leaves the read/write head in a wrong position. Hence, the rewind is applied next, but
this machine ends normally in the state Done, and not in the state opCode. That is why the third
machine tm opCode is used to make the opCode visible again.

3. REPEATED COMPUTATIONS

An approach based on incremental improvements is well known in mathematics as converging
sequences were used in definitions of new numbers as early as in the 17 th century [10,11]. A
solution can sometimes be found in a predetermined number of steps, but often only some measure
of progress can be defined. Then, providing the processing steps converge, one can interrupt
iterations when the progress is sufficient.

This approach is presented graphically in Figure 3. It contains a block called COMPUTE,
which represents an elementary step of processing, and two other blocks: ANY PROGRESS and
BACK UP. They represent testing of the progress of processing. There are two large sections on
the tape: work space and back-up. They are placed next to each other. The first of the two is
used by an individual processing step. It contains all the data required by this step, as well as
the results produced. The section back-up contains the same kind of information, but pertaining
to a previous step. The task of the block ANY PROGRESS is principally to check whether the
two sections are identical. If they are not the same, the block BACK-UP copies the work space
onto the back-up area.

Useful Turing Machine 133

General layout

of the tape

* COMPUTE

‘_1

initial and final

head position

BACK

UP

ANY
4

PROGRESS

Figure 3. Scheme of iterative computing.

This fairly general scheme ensures that the machine bigcycle step performs the processing

step iteratively and stops in obviously nonpromising situations. This modest exit condition does

not guarantee that the Done state (or any other final state) is reached, for the COMPUTE block

(represented by the machine step) may be ill-defined or looping may involve more than one

processing step.

bigCycle : : (configuration

configuration

bigcycle step c = newC,

= bigcycle

-> configuration) ->

-> configuration

if newS=Done

step newC, otherwise

where newC = (anyProgress.step) c

(Config news newT) = newC

anyprogress = tm AP

In the following example, the sample1 represents the tape content which is used by the machine

bigcycle (rewind.pc). It is assumed that, before and after checking if anyProgress occurred,

the read/write head observes the first symbol of the work space. Hence, the presence of the

rewind after the pc. It is further assumed that the tape must have the same ‘structure’18 in both

its parts, i.e., back-up and work space.

Finally, due to the definition8 of the hlef t and the hright, the area to the left of the read/write

head should be interpreted in reverse order.

sample1 = ([D,PC,Zero,Zero,ACC,Zero,Zero,Zero,Dl,

Zero,COne,One,ACC,Zero,One,PC,Dl)

Miranda bigCycle (rewind.pc) (Config undef samplel)

Config Done(CD,PC,ONE,Zero,ACC,One,One,Zero,Dl,Zero,COne,One,ACC,Zero,ONE,PC,D])

Alternatively, one can use the function shConf ig which shows the results in a format which

resembles the tape better.

Miranda (shConf ig.bigCycle (rewind.pc) > (Conf ig undef samplel)

Done . . .D,Zero,One,One,ACC,Zero,ONE,PC,D,Zero,One,One,ACC,Zero,ONE,PC,D...
_A....

An application of the function bigcycle not only turns the pc on, but also copies the work

space, unlike a direct application of the step (rewind. PC>.

‘sThe structure of the memory is defined by special symbols, such as PC or ACC. They must occur in the same
order in both sections of the tape. Moreover, lengths of ‘binary’ sequences in between special symbols are fixed
and are expected to be the same in both areas (see Section 4.1 for a complete description).

134 J.A. PIOTROWSKI

Miranda (rewind.pc) (Config tmdef sample1)

Conf ig Done ([D, PC, Zero, Zero, hCC, Zero, Zero, Zero, D], Zero,

[One, One,ACC, Zero, ONE, PC,D])

An equivalent and faster functional description of the iterative processing delegates the task

of comparing and copying of the tape content to a lower level of string operations, which are

serviced by a language translator:

cycle c = c, if t = newT

= cycle newC, otherwise

where newC = compute c

(Config s t) = c

(Config newS newT) = newC

With either arrangement of repetitions, the next problem is to design the compute function which

would resemble typical actions of a computer. This involves decisions concerning a structure of
memory and a selection of elementary operations implemented directly by separate machines.

Work space layout pc I B

head position ~
after pc

MM'MM O
mm = on.ahead.(tm Mm).rewind
argument = (tin Nw).mm.mar

]

Figure 4. Setting a marker in memory.

R

BIB

)
R

1/0

)

I.®

0'/0 L ~ (p)

N

0'/0'

1'/1'
~r

4. T H E S T R U C T U R E OF M E M O R Y

4.1 . N a m e s a n d I n d e x i n g

The tape represents memory in this model and it is assumed that it is word oriented and its
structure is fixed. The tape is a homogeneous container of memory cells with strictly sequential
access, but it becomes a set of words due to labelling of sections of the tape.

The model assumes a specific layout of the work space. It is shown in Figure 4. Words in the
tape are separated by Blanks (denoted by B). Generally, registers are towards the left-end of the
tape, while an addressable memory is to the right of the special 'empty' word containing only
the marker MM.

Registers have individual labels, which are the rightmost symbols of respective words. The
remaining part of the memory has a common name ~ and its words are identified by addresses.
These addresses are generated whenever words in memory are referred to. This difference in

Useful Turing Machine 135

characteristics influences the search algorithm, which becomes slower (compare the function pc
from Section 2.3 and the function argument in Figure 4).

There are five registers in this computer.
The instruction register (i r) keeps the instruction which is actually executed; two other regis-

ters are associated with it:

• op which holds operation code of the instruction, and
• the memory address register (mar) for an address of an operand.

Their shorter length and location on both sides of the i r is essential for the way the op-code and
the argument are extracted from the instruction (see functions def0p and de fh rg in Section 4.2).

The two remaining registers are necessary to perform other phases of a computer's operation:
fetch the instruction and execute it. The accumulator (or acc) is designed to store temporarily
the left argument of an operation and its result. The program counter (or pc) holds the address
of the currently executed instruction.

The above registers and their functions constitute the main assumptions of a computer, which
is known as a stored program, sequential, and one-address machine.

The model assumes further, that a word must be marked to take part in the computer's activity.
The register is marked by the function mark (see Figure 1) and the memory cell is marked by the
function argument, which leaves the same kind of marking. However, before the cell in memory
is marked, its address must be placed in the memory address register as the function argument
uses this register as a counter. After completion, operations routinely clear all markings in the
words involved.

4.2. T rans fe r s w i t h i n M e m o r y

Transfers from one place of the tape to another are performed between marked locations. The
nature of the tape implies two possible transfers: the l e f t _ t r a n s f e r , and the r i g h t _ t r a n s f e r .

The graph of the r i g h t _ t r a n s f e r is shown in Figure 5 and the similar graph of the l e f t _ t r a n s -
f e r can be prepared by students as an exercise.

The first applications of transfers are in the load and the s t o r e functions, which are charac-
teristic for the one-address machine. They represent transfers to and from a default register--the
accumulator.

load = rewind.left_transfer.acc

store = rewind.right_transfer.acc

However, since commands are stored in the same memory as other data items, a f e t c h func-
tion can be defined to place the instruction in the instruction register. To accomplish this, the
content of the pc must be r i g h t _ t r a n s f e r r e d to mar (which is to the right of the pc); next the
corresponding word in the memory is marked by the argument and finally l e f t _ t r a n s f e r r e d to
the i r .

fetch = rewind.left_transfer, it. argument.

rewind, r ight_transf er. pc. mar

The above are regular transfers as they involve words of standard length. However, when either
the source-word or the destination-word is shorter, the following rewriting rules apply:

• rewriting stops, when there is
- no more data items to transfer or, there is
- no room for data, whichever comes first;

• rewriting begins from
- the leftmost data item for the l e f t _ t r a n s f e r
- the rightmost data item for the r i g h t _ t r a n s f e r .

These rules are useful when the content of i r is to be parted into the op-code and the argument.
The extraction of the op-code is done by the def0p function and the argument of the instruction

136 J.A. PIOTROWSKI

word to be tran sferred !

l
initial head

posit ion

o'/o" R

R

R
o/o'/

1/1' R,

BIB o ' /0

I ' / I

L

D'/1 L

I ' /1

0/0 '

l / l '

f L
0'/o

L

BIB

right_transfer = tm Rtr

Figure 5. Word transfer to the right.

is defined by the defArg function. These functions exploit the fact that the two destination
registers are of appropriate length.

defOp ffi op.rewind.lef~_transfer.op.ir

defArg = rewind.right_transfer, it.mar

5. E L E M E N T A R Y O P E R A T I O N S

Addition is usually implemented by a separate component. Designing a Turing machine Add,
which adds two marked sequences of equal length, is an independent and relatively easy problem.
We assume, it replaces the left sequence by a result. Now, if the accumulator is marked, it may
be used as a default operand/destination in a standard one-address instruction which implements
addition.

add = tm Add

adder ffi add.acc

The algorithm of arithmetic negation, described by the function a t_negate , is based on two's
complement notation of numbers.

at_negate ffi increment.on.lg_negate

ig_negate ffi ahead. (tin Lneg)

increment ffi ahead. (tm Incr)

Useful Turing Machine 137

The function decrement could be defined by a separate graph, but the definition below is more
convincing, although perhaps more complex than one would expect.

decrement = at_negate, on. increment, on. ar_negate

To perform subtraction, the second operand must be arithmetically negated by an ax..uegate,
before it is sent to the adder 19.

subtr = at_negate, acc. adder, ar~negate, acc

olo o7o'
1/1 1'11'

I1o
I ' /0

o/l,t/o
o ' l l , l ' lO

8

ahead = tm Ahead

oll,O'llBiB R. I": 0

increment = ahead.(tm Incr)

BIB R I~

OlO
0'/0

~ 1 ~ B / B a ~ ~ 070 a ~~l~

R -kL) Y

1/o
ifz = tm Ifz

Ig_negate = ahead.(tm Lneg)

Figure 6. Conditional skip and other operations.

The conditional instruction is implemented by the I fz graph, which is surprisingly simple (see
Figure 6). The accumulator and the pc must be marked to enable a test for zero, possibly followed
by the increment operation on the pc.

ifz = tm Ifz

6. T H E I N S T R U C T I O N - - S T E P S O F E X E C U T I O N

The block COMPUTE (see Section 3) is represented by the function compute. It puts elemen-
tary actions of a computer into sequence which is normally performed in a .fetch-execute cycle for
each instruction.

compute ffi rewind, execute, decoding, defOp, defArg, update_pc, fet ch

19A direct translation of the above: subtr = a d d e r , on. ar_negate would leave not only the correct result in
acc, but also the second argument in a negated form.

138 J.A. PIOTROWSKI

6.1. Command Selection

The model assumes that the instruction is addressed by a program counter which is routinely

incremented by one. It implies contiguous placement of instructions in memory and that every

instruction is stored in one cell.

update_pc = rewind.increment.pc

6.2. D e c o d i n g

Decoding means that the sequence from ±r is divided by the functions defOp and d e f h r g
(Section 4.2) into the op-code and the argument. The latter can be used by the function argument
(Figure 4) after it is transferred to the mar, but the op-code must be deciphered by the function
decoding (Section 2.3).

6 . 3 . E x e c u t i o n o f C o m m a n d s

Once the action prescribed by the op-code is decided, the command is executed by the function
execu te . It defines the meaning of all commands available in the model.

e x e c u t e c = (load .a rgument)
= (s t o r e . a r g u m e n t)
= (adder .a rgument)
= (subtr.argument)

ffi (increment.argument)

= (decrement.pc)

= (left_transfer.pc.mar)

c if cd=LD

c if cd=ST

c if cdfADD

c if cd=SUBT

c if cd=INCR

c if cdfHLT

c, if cdffiJMP

= (i f z . a c c . p c) c, i f cd=JZ
w h e r e (C o n f i g c d t) = c

It is assumed that the first argument of operations: ADD, and SUBT, is available in the accumulator,
the second argument is defined by the function argument (Figure 4), and that the result is left
in the accumulator.

The command INCR increments the value defined by the argument while the remaining three
control commands redefine the content of the pc.

The HLT command reverses the effect of the update_pc, which is performed routinely in every
execution cycle. The unconditional jump JMP explicitly specifies the value in the pc, i.e., the
address of the next instruction. The JZ tests the value in the accumulator and the content of the

pc is additionally incremented, if a nonzero value is found.

7. EXPERIMENTATION

There is a scope for students' experimentation with the model. One may start by simply
evaluating given functions. The next, relatively easy, exercise is to extend the definition of the
t r function to include cases of the L t r and the I f z 2°. The case of Add is more complex, but it
is still in the category of moderate difficulty.

Later, after gaining some confidence, students can add new instructions, such as shift, rotate,
compare, etc. A bit more ambitious project would involve changes in the computer 's architecture
such as inclusion of new registers, or even two-address instructions.

8. C O N C L U S I O N S

Recursive functions serve well as statements defining the process of computing. A concise style
of the functional approach together with an effective use of abstraction enabled to create a simple
and clear model of a computer.

2°Additional lines, which define these cases, can be contained in a separate file, which may be inserted into the
previously used version of the t r . It is convenient when the students' solutions are to be verified.

Useful Turing Machine 139

Parallelism in processing has been mentioned a number of times as an issue recurring at various

levels in computing. It begins with an idea of 'cutting' the tape into pieces and referring to them

as indivisible entities--words.
Although the model generally assumes that one instruction is executed at a time, the complexity
of instructions is unspecified and allows local parallelism. It means that by introducing names for
registers, for example, we become indifferent as to how individual bits are transferred (sequentially
or in parallel), or in the case of the adder, we simply assume that once it has been defined, it
leaves the correct result somewhere. Thus, introducing names opens the way for parallel actions,
although such actions can be translated into strictly sequential and much slower sequences of
operations.

A P P E N D I X 1

There are three files available: body.m, types.m, and transitions.m All definitions introduced
in this text are there. The t r has omitted cases of the Lt r , I f z , and Add, which are suggested
as exercises.

This appendix begins with the sample of the memory layout 21 (sample2) and is followed by its
modified content after the execution of the command LD 8, then after the ADD 9 and the HLT.
This output has been produced by the complete model i.e., with the missing cases defined.

The output formatting functions used to produce the following results are included at the end
of this appendix.

> sample2
> =([Blank] ,D, [Blank,
> Zero, Zero, Zero ,Zero ,Zero ,One ,Zero ,ACC,Blank,
> Zero, Zero, Zero, Zero,PC ,Blank,
> Zero, Zero, Zero, OP ,Blank,

> Zero, Zero, Zero, Zero, Zero, Zero, Zero, IR , Blank,
> Zero, Zero, One , One ,MAR, Blank,
> MM ,Blank,

> Zero, Zero, Zero, One , Zero, Zero, Zero, Blank,
> Zero,One, Zero, One, Zero,Zero,One, Blank,
> One ,Zero,Zero, One ,Zero,Zero,Zero,Blank,
> One ,Zero One , One ,Zero,Zero,Zero,Blank,
> Zero,One One , One ,Zero,Zero,Zero,Blank,
> One ,Zero Zero, One ,Zero,Zero,Zero,Blank,
> One ,Zero One , Zero,Zero,Zero,Zero,Blank,
> One ,One Zero, Zero,Zero,Zero,Zero,Blank,
> One ,One One , Zero,Zero,Zero,Zero,Blank,
> Zero,Zero Zero, One, Zero,Zero,One, Blank,
> Zero, One Zero, Zero,Zero,Zero,Zero,Blank])
Miranda (sh_tape.compute) (Config under sample2)
([D ,Blank] ,Blank,
[One, One, One, Zero,Zero,Zero,Zero,ACC,Blank,
Zero, Zero, Zero, One, PC, Blank,
Zero, Zero, Zero, OP,Blank,
Zero,Zero,Zero,One, Zero,Zero,Zero, IR,Blank,
Zero, Zero, Zero, Zero, MAR, Blank,

MM,Blank,
Zero, Zero, Zero, One, Zero, Zero, Zero, Blank,
Zero, One, Zero ,One, Zero, Zero, One, Blank,
One, Zero, Zero, One, Zero, Zero, Zero, Blank,
One, Zero,One, One, Zero,Zero,Zero,Blank,

21The special symbol D occurs only once as only work area is used in these experiments.

140 J.A. PIOTROWSKI

Zero,0ne, One, One, Zero,Zero,Zero,Blank,
One, Zero,Zero,0ne, Zero,Zero,Zero,Blank,
0ne, Zero,0ne, Zero,Zero,Zero,Zero,Blank,
0ne, 0ne, Zero,Zero,Zero,Zero,Zero,Blank,
One, One, One, Zero,Zero,Zero,Zero,Blank,
Zero,Zero,Zero,0ne, Zero,Zero,0ne, Blank,
Zero,0ne, Zero,Zero,Zero,Zero,Zero,Blank])

Miranda (sh_tape.cycle) (Config undef sample2)
([D ,Blank] ,Blank,
[One, One, One, One, Zero,Zero,One, ACC,Blank,
Zero,Zero,One, One, PC,Blank,

One, Zero,One, OP,Blank,
One, Zero,One, One, Zero,Zero,Zero, IR,Blank,
One, Zero,Zero,Zero, MAR,Blank,

MM,Blank,
Zero,Zero,Zero,One, Zero,Zero,Zero,Blank,
Zero,One, Zero,One, Zero,Zero,One, Blank,
One, Zero,Zero,One, Zero,Zero,Zero,Blank,
One, Zero,One, One, Zero,Zero,Zero,Blank,
Zero,One, One, One, Zero,Zero,Zero,Blank,
One, Zero,Zero,One, Zero,Zero,Zero,Blank,
One, Zero,One, Zero,Zero,Zero,Zero,Blank,
One, One, Zero,Zero,Zero,Zero,Zero,Blank,

One, One, One, Zero,Zero,Zero,One, Blank,
Zero,Zero,Zero,One, Zero,Zero,One, Blank,
Zero,One, Zero,Zero,Zero,Zero,Zero,Blank])

OUTPUT FORMATTING FUNCTIONS

> sh_tape :: configuration -> [char]
> sh_tape (Config s (left, w, right))
> = "("++xsht left++","++show w++",\n"++
> xsht right++")kn"
> xsht ts = "["++(concat.(map sht)) (init is)++
> show (last ts) ++ "]" #ts > I
> = show is, otherwise
> sht s
> = show s ++ ",\n ", s=Blank
> = show s ++ ",", s=Zero s=ZERO
> s=ACC s=D
> = show s ++ ", ", s=0ne s=0NE
> = (rjustify 3 (show s)) ++ ",", s=IR
> = (rjustify 18 (show s)) ++ ",", s=PC s=MAR
> = (rjustify 23 (show s)) ++ ",", s=OP
> = (rjustify 38 (show s)) ++ ",", s=MM
> shConfig :: configuration -> string
> shConfig (Config s t)
> = 1justify ljust (show s)++shTape 1just t++"kn"
> where ljust = 10
> shTape :: num -> tape -> string
> shTape lj (left, w, right)
> = iSide++window++"...kn"++spaces (#1Side+lj)++
> rep (#window) ,7 if rL=O
> = iSide++window++","++show (last right)++
> "...\n"++spaces (#1Side+lj)++
> rep (#window) ,7, if rL=l

Useful Turing Machine 141

> = ISide++window++","++shT (init right)++

> show (last right)++"...\n"++
> spaces (#ISide+lj)++rep (#window) ,7

> otherwise
> where iSide = "..."++shT (reverse left)
> rL = #right
> window = show w

> shT :: [symbol] -> string
> shT = concat.map ((++",").show)

A P P E N D I X 2

The following type declarations are used by the model. They are available in the file types.m,
which constitutes an integral part of this paper.

> string---- [char]

> symbol ::= Zero I One I Blank I
> ZERO I ONE I Zero I OnE I

> ZERo I ONe I
> D I ACC I PC I MAR I IR I OP I MM
> state ::= Ahead I

> Done I LD I ST I ADD I SUBT I INCR
> HLT I JMP I JZ I

> Eva1 1
> EO I E1 1 EO0 I E01 1 EIO I Ell I
> Incr I Lneg I
> Ifz i Ifz_1 1 Ifz_2 1 Ifz_3 1 Ifz_4 1

> Add I AO i AI I AO0 1 AIO i

> DO0 1 DO1 I DIO I DI1 1

> SO00 1 S001 1 S010 1 S011 1
> SIO0 1 $101 I $110 1 $111 1

> CarryO I Carryl I RO0 I ROI I

> RiO I Rll I
> Add_cle~up I Add_back I

> Dlim I On I Acc I Pc I Mar I Ir I Op I
> Mm I MmO I
> Ktr I Rtr_l I Rtr_2 i Rgr_3 I Ktr_4 1

> Rtr_5 1 Rtr_6 1 Rtr_7 1
> Ltr i I.tr_l i ,.tr_2 1 L t r _ 3 [L t r _ 4 [
> Ltr_5 1 Ltr_6 I Ltr_7 1 Ltr_8 1

> Ltr_9 I Ltr_lO) Ltr_ll I
> Nw I Nw_I I Nw_2 I Nw_3 I Nw_4 1
> Nw_5 I Nw_6 1 Nw_7 I Nw_8 I Nw_9
> AP I hPl I AP2 I AP3 I hP4 [hP5
> AP6 1 AP7 1 AP8 I AP9 1
> APlO I APt1 I API2 I API3 1
> AP_2 1 AP_3 I AP_4 I AP_5 I AP_8
> AP_9 1 AP_IO i AP_II I

> BU I BUI I BU2 I BU3 I BU4 I BU5 I
> BU6 I BU7 I
> BU_2 1 BU_3 I BU_4 I BU_5)
> ShLI ShLl I SHI [SHII I SHI2 1
> SHL I SHLO I SHLI I SHL2
> move ::= Left I Right i None
> tape == (1side_tape, window, rside_tape)
> iside_tape == [symbol]

142 J.A. PIOTROWSKI

> window =ffi symbol

> rside_tape == [symbol]

> configuration ::= Config state tape

The following definitions constitute the model. They are available in the file body.m. This file
is also an integral part of this paper.

> final :: [state]

> final = [Done,LD,ST,ADD,SUBT,INCR,HLT,JMP,JZ]

> hleft, hright :: tape -> tape

> hleft ([] , c, rs) = ([], Blank, c:rs)

> hleft (c':is, c, re) = (is, c' , c:rs)

> hright (is, c, []) = (c:Is, Blank, [])

> bright (is, c, c':rs) = (c:is, c' , re)

> driver :: configuration -> configuration

> driver (Config s t)

> = (Config s t), if member final s

> = driver (Config newS newT), otherwise

> where (i, w, r) = t

> (newS, neW, dir) = tr s w

> newT' = (i, neW, r)

> newt = hleft newT', if dir = Left

> = bright newT', if dir = Right

> = newT', if dir = None

> tm :: state -> configuration -> configuration

> tm newS (Config s t) = driver (Config newS t)

> decoding c

> = (tm opCode.rewind) (Config opCode t)

> where (Config opCode t) = tm Eval c

> bigCycle :: (configuration -> configuration) ->

> configuration -> configuration

> bigCycle step c = newC, if newS=Done

> = bigCycle step newC, otherwise

> where

> newC = (anyProgress.step) c

> (Config newS newT) = newC

> anyProgress ffi tm AP

> cycle c ffi c, if t = newt

> = cycle newC, otherwise

> where newC ffi compute c

> (Config s t) = c

> (Config news newT) = newC

> load = rewind.left_transfer.acc

> store = rewind.right_transfer.acc

> fetch = rewind.left_transfer.ir.argument.

> rewind.right_transfer.pc.mar

> defOp = op.rewind.left_transfer.op.ir

> defArg = rewind.right_transfer.ir.mar

> add = tm Add

> adder = add.acc

> ar_negate = increment.on.lg_negate

> ig_negate = ahead.(tm Lneg)

> increment = ahead.(tm Incr)

> decrement = ar_negate.on.increment.on.ar_negate

> subtr = ar_negate.acc.adder.ar_uegate.acc

> ifz = tm Ifz

Useful Turing Machine 143

> compute = rewind.execute.decoding.defOp.defArg.

> update_pc.fetch

> update_pc = rewind.increment.pc

> execute c = (load.argument) c if

> = (store.argument) c if

> = (adder.argument) c if

> = (subtr.argument) c if

> = (increment.argument) c if

> = (decrement.pc) c if

> = (left_transfer.pc.mar) c if

> = (i f z . a c c . p c) c , if

> w h e r e (C o n f i g cd t) = c

SECTIONS IN MEMORY AND BASIC OPERATIONS

> [rewind, ahead, on] = map tm [Dlim, Ahead, 0n]

> mark :: state -> configuration -> configuration

> mark s = on.tm s.rewind

>[acc, pc, op, ir, mar]

> = map mark [Acc, Pc, 0p, Ir, Mar]

> mm = on.ahead.tm Mm.rewind

> argument = tm Nw.mm.mar

> left_transfer = tm Ltr

> right_transfer = tm Rtr

cd=LD

cd=ST

cd=ADD

cd=SUBT

cd=INCR

cd=HLT

cd=JMP

cd=JZ

R E F E R E N C E S

1. J.A. Piotrowski, Sequential and data flow models of processing, Computers Math. Applic. 27 (1), 81-96
(1994).

2. J.A. Piotrowski, A functional model of a simplified sequential machine, Information Processing Letters 35
(3), 161-166 (1990).

3. J.A. Piotrowski, Playing with abstract machines, Computers f~ Education 17 (3), 181-193 (1991).
4. D. Turner, An overview of Miranda, ACM SIGPLAN Notices 21 (12), 158-166 (1986).
5. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London

Math. Soc. 2 (42), 230-265 (1936).
6. E.L. Post, Finite combinatory processes--Formulation I, J. Symbolic Logic 1, 103-105 (1936).

