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1. I N T R O D U C T I O N  

Abstract  machines, formal languages, and methods are well established in computer  science, 

but  their importance is often questioned by students. A successful introduction of an abstract  

machine, reported by Piotrowski in [3], caused considerable interest. Consequently, students 
wanted to see how such a theoretical system could have become a 'blue-print '  of a computer.  

This paper  presents a conventional computer as the Turing machine. I t  is a very simple model, 

yet the set of instructions executed by this machine forms a core subset of any one-address 

assembler. A machine, which was compared with a dataflow machine in [1], used roughly the 

same language as the one presented here. However, the intention of this presentation is not 

to implement an assembler of any kind, but to show the close relationship of computers  used 

nowadays with an original idea based on the concept of a recursive function. 

A composition of functions is used extensively in this paper. The composition of Turing 
machines, which is based on this notion, allows to define neatly a relatively complex real machine 

as the Turing machine. 

Names are carefully selected to play an explanatory role. They are introduced in a hierarchical 

manner.  These names may represent memory sections, such as registers, or other components  
of a real computer.  These names are introduced to indicate certain potential  for parallel access 

or parallel operation. The  use of the composition of functions on the other hand, emphasizes 
explicit sequentiality. 

The  presented model is a system of functions and, although the support  of computer  in the 
process of defining these functions is formally unnecessary, it proved to be very helpful in validat- 
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ing the model 1. For this reason, the syntax of Miranda 2 is adhered to, as this particular system 

has been used for the purpose of verification. Its language is very similar to a conventional math- 
ematical notation, at least as it is used in this paper 3. The expected level of acquaintance with 

Miranda is the same, as for example, in [1]. The more systematic introduction of the language 

can be found in an introductory paper by Turner [4], for example. 

This presentation is an outline of a lecture on a general purpose computer viewed as a formal 

system. It has been prepared for an upper-division undergraduate subject on fundamentals 

of computer systems, and is normally supported by the laboratory session similar to the ones 

described in [1-3]. 

2. T U R I N G  M A C H I N E S  

2 .1 .  D e f i n i t i o n s  

The issue of automated computing and a problem of computability lead to the first concept of 

an abstract machine. Turing [5] and Post [6] independently introduced a definition, known as a 

Turing machine. It has an obvious interpretation and this makes it an often used reference point 

in theoretical dissertations, as well as in popular publications. 

The Turing machine M is a six-tuple 

i = (S, 2,/f,  s, B, Y), 

where 

S is a finite set, called a set of states; 
s E S is called the initial state; 

Y C_ S contains final states; 
is a finite set of symbols, and is called the tape alphabet; 

B E ~ is a special symbol called a blank; 
~f : S x ~ --* S x ~ x {~-, --% ~}] is a partial function. 

A particular Turing machine is interpreted in the context of a sequence of symbols 4 t E ~*, and 

a general driver function 
:D: S x ~*--* Y x E*, 

which maps a pair (s, t) E S x ~*, called the initial configuration of the machine M, into a final 

configuration of this machine. It is usually achieved by repeated application of the transition 

function to a sequence of symbols on the tape. 

A set of internal states S t of a machine M is a subset of S such that S '  N ({s) U Y) is empty. 

Let M1 = (S1, ~1, ~fl, Sl, B1, Y1) and M2 = ($2, ~2, (~2, s2, B2, Y2) be two Turing machines. 
For t E ~* such that  D(s2,t) = (y2,T) and 7)(Sl,T) are both defined, we say that  for this t the 

composition of M1 and M2 is defined. This model consists of a number of lower level machines 

joined by the composition operation. In all instances but one, the final state reached by the 

lower level machine is not important 5. In the case of the machine represented by the function 

decoding,  the final state must be preserved, because it is used in the next stage as the initial 

state of another machine. 

All lower level machines have disjoint sets of internal states and use the same tape alphabet 

E = ~1 = E~ and the same blank symbol B = B1 = B2. 

1A set of definitions presented in this paper is available in electronic form at ht tp  : / / w ~ .  c i r .  nepean, uws. edu. 
au/ ' j  erzy/papers/Turing/. 
All files in this directory constitute an integral part of this article and they are protected by the same copyright 
law. 
2Miranda is a trademark of Research Software Ltd. 
3All definitions in this article are given in Miranda, but they can be translated easily into Haskell, or its derivatives 
such as Hugs or Gofer. A program mira2hs written by D. Howe can help in this work. 
4It is often called the tape. Post calls it a symbol space, which "is to consist of a two way infinite sequence of 
spaces or boxes" [6, p. 103], while Turing makes a direct reference to a paper tape [5, p. 231]. 
5Hence, the same name Done is used in all such situations. 
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2.2.  M o d e P s  A s s u m p t i o n s  

A possibility of  exper imenta t ion with models is usually appreciated by students.  Hence, defini- 

t ions are expressed in a functional  language which allows them to evaluate functions individually. 

The  Turing machine is commonly  interpreted as a device with a read/wr i te  head able to  move 
along the  t a p e ,  which is of  unlimited length. At any given time, the machine is in a cer tain state,  
which can change after the move. The  tape  is subdivided into cells, each capable of  s toring a 

symbol.  

Apa r t  f rom initial and final states, each machine often has some internal states. The  following 

lines in t roduce s tates  as an algebraic da ta  type  s t a t e .  Not  all states are listed below 6. This  is 

only a sample. 

s t a t e  : : =  Ahead [ 

Done [ LD [ ST [ ADD [ SUBT [ INCR [ HLT [ JMP [ JZ [ 

Eval [ EO [ El [ EO0 [ EOI [ EIO [ Ell [ ... 

The first on this list is the state Ahead. It is the initial state of the lower-level machine which 

moves the  read /wr i te  head to the last 'b i t '  of a current  'word' .  The  name of this machine is 

ahead  (this and similar machines will be described in Section 2.3). 

The  s ta te  Done is the  final state and is used by all machines with the  exception of the  machine 

d e c o d i n g .  This  lat ter  machine has the initial s tate  Eval ,  internal s tates such as E0, El,  E00, and 

final s ta tes  such as LD, ST, etc. The  list of all final s tates is called f i n a l .  

final :: [state] 

final = [Done, LD, ST, ADD, SUBT, INCR, HLT, JMP, JZ] 

The  tape alphabet E is called a symbol  7. I t  could have been limited to two dist inct  symbols  (like 

Zero  and One), with a Blank  as the universal separator  B. However, increasing the  number  of 

symbols  makes definitions easier to  unders tand,  and allows one to think in more abs t rac t  terms.  

The  symbols  used in experiments  are as follows: 

symbol ::= Zero I One [ Blank l 

ZERO [ ONE [ Zero [ OnE [ ZERo [ ONe [ 

D [ ACC i PC I MAR [ IR [ OP i MM 

The symbols Zero, One, and their look-a]ikes, such as ZERO and ONE s, are not given any meaning 

as yet, but a numerical interpretation is the most natural. On graphs, they are represented by 

O, 1, 0', and I' 
The remaining seven symbols help to define the architecture of the computer. 

It is assumed the tape is unlimited in both directions and is represented by two lists and a 

single symbol, which is called a window 9. The read/write head can see only one cell at a time, 

and this ce l l i s  called a window. 

tape == ( Iside_tape, 

Iside_tape == [symbol] 

window == symbol 

rside_tape == [symbol] 

window, rside_tape ) 

Having defined the  s tate  and the tape,  one can define l° a c o n f i g u r a t i o n  on which the  driver 

funct ion acts  upon. 

configuration ::= Config state tape 

SA complete list can be found in Appendix 2. 
7This is an example of the Miranda definition introducing a new type (likewise the definition of the s ta te) .  The 
symbol is a name of a user-defined, algebraic type whose elements belong to the following set { Zero, 0no, Blank, 
ZERO, ONE, ZerO, OnE, ZERo, ONe, D, ACC, PC, MAR, IR, OP, MM }. 
SThe latter ones play a role of place-markers. 
9These definitions introduce new names for composite types known as type synonyms. They do not offer the same 
protection as algebraic types. 
1°The type constructor Config combines two types: s t a t e  and tape into a new entity, and labels it as something 
distinct from other objects. It is a more general use of the algebraic type definition. 
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There are three moves: Left, Right, and None, 

move ::= Left I Right I None 

which correspond to +-, -% and i, respectively, (Section 2.1). 

When the head moves to the Right, for example, the first element n of a list rside_tape, 

becomes visible in the window. The functions 12 hleft and hright take the tape as an argument 

and return its new content as a result. They represent the head moving to the left and to the 

r ight ,  respect ively.  

hleft, hright :: tape -> tape 

hleft ([] , c, rs) = ([], Blank, c:rs) 

hleft (c':ls, c, rs) = (ls, c' , c:rs) 

hright (is, c, [] ) = (c:Is, Blank, []) 

hright (ls, c, c':rs) = (c:ls, c' , rs) 

These  funct ions  l eng then  the  t a p e ,  if necessary  filling the  newly  a p p e n d e d  m e m o r y  loca t ions  

wi th  the  Blank .  

A tomic  ac t ions  of  t he  machine  are  defined by  the  transi t ion func t ion  t r .  T h e y  d e p e n d  on the  

symbo l  ac tua l l y  seen in t he  window and  also depend  on the  s t a t e .  In  t he  process  of  execu t ion  of 

such act ions ,  the  mach ine  changes its s ta te ,  leaves a symbol  in t he  window, and  moves the  head.  

T h e r e  are  m a n y  t r ans i t i ons  defined in the  sequel, and  all of  t h e m  are  of  the  t y p e  

tr :: state -> window -> ( state, window, move ) 

T h e  func t ion  t r  defines t rans i t ions ,  bu t  we need the  d r i v e r  funct ion to  p u t  t h e m  into sequences  13. 

Th is  func t ion  recurs ively  calls t he  funct ion t r ,  redefines the  t a p e ,  changes  t he  s t a t e ,  and  ' s tops '  

when  the  final s t a t e  is reached.  

driver :: configuration-> configuration 

driver (Config s t) = (Config s t), if member final s 

= driver (Config newS newT), otherwise 

where (i, w, r) = t 

(newS, neW, dir) = tr s w 

newT' = (I, neW, r) 

newT = hleft newT', if dir = Left 

= hright newT', if dir = Right 

= newT', if dir = None 

The initial state is singled out in the definition of the Turing machine and it is its important, 

defining c o m p o n e n t  i4. T h e  funct ion tm accepts  the  in i t ia l  s t a t e  as i ts  first a rgumen t .  

tm :: state -> configuration-> configuration 

tm newS (Config s t) = driver (Config newS t) 

This allows one to refer to it in a short way 15, and for example tm Dlim represents the Turing 

machine starting from the initial state Dlim (see also the description in the following section). In 

this way, the configurations and their changes are given a lesser significance as they are pushed 

into a background .  

1lit is defined as (hd r s i d e _ t a p e ) ,  which reads: the head of the list r s ide_ tape .  
i2Theee functions describe outcomes for different patterns of arguments. The first line introduces two names of 
functions: h l e f t  and b r i g h t ,  both of the same type t ape  -> tape.  The following line defines the new content 
of the  t a p e ,  when there was nothing to the left of the read/write head (an empty list [] ). The Blank is routinely 
added for convenience, but it is not strictly necessary. Patterns can be used as arguments of functions and their 
elements can occur in the right-hand expressions (¢ ' in the second line of the h l e f t ) .  Such definitions are often 
shorter than equivalent guarded expressions. 
13It corresponds to the function ~) from Section 2.1. 
14 "One box is to be singled out and called the starting point." [6, p. 103]. 
15An idea of making a function to accept its arguments one at a time, or in other words, that it suffices to consider 
only functions of one argument, was first suggested by Frege in 1893 [7] and independently by SchSnfinkel [8]. 
Curry and Feys [9] later exploited this restriction and introduced notation (f  x y) to denote ( ( f  x) y) which 
replaced an older one: f (x,  y). Thus, a function application is seen as a left associative operation. 
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2.3. E x a m p l e s  

The  transit ion function and a set of states play a central role in the definition of the Turing 
machine. While the state determines a stage in processing, the transition function provides a 
prescription for some 'action'.  A hierarchy can be introduced by considering certain states to 
be more important  than  others. Such states are made initial and together with accompanying 

transit ion functions define building blocks, which can be connected by means of the composition 

of machines to form a higher-level building block. 
This section shows how lower-level machines are combined into a more complex one. The lower- 

level machines are the rewind,  the on, and the one which searches for a special symbol PC 16. They  

are combined into a higher-level machine, called the pc. I ts  purpose is to find a program counter 

and mark  it as being i n  use.  

The first machine moves the head to the left of the tape in search of a delimiter D (Figure la) .  
This symbol marks the end of the working area on the tape. The initial s ta te  of this machine is 

called Dlim and its transition function is defined as follows: 

tr Dlim s = (Done, D, Right), if s = D 

= (Dlim, s, Left ), otherwise 

rewind = tm Dlim 

rewind = t m  Dl im  o n  = t m  O n  

(d)  DID n ~ PC/PC L = o/o'  s : p c  = m a r k  P c  
| / | '  

mar ---- m a r k  M a r  

o p  --- m a r k  O p  

F i g u r e  1. S e t t i n g  m a r k e r s .  

The second machine seeks a particular identifier PC by moving the head to the right (see 

Figure lb) .  

The purpose of the third machine is to mark a sequence of symbols on the tape,  as active. A 
convention adopted in this paper  tells one to change Zero into ZERO and One into ONE to mark  a 

particular section: 

t r  On Zero = (Done, ZERO, None) 
t r  On One = ( D o n e ,  ONE , N o n e )  

On the graph (c) in Figure 1, it is encoded as 0 / 0 '  and 1 / 1 ' .  
Having these three machines, one can make their composition. Par t  of the tape,  which is 

identified by the name PC, can be then marked as active by the following function: 
pc = on . tm Pc . r ewind  

A combined graph (d) in Figure 1 represents the outcome of the composition of these three 
machines. 

Other  sections of the tape,  identified by names such as ACC or MAR, for example, are activated 
in the same way, hence, the function mark (see Figure 1) uses a parameter  to represent initial 
states of machines similar to the pc 17. 

leA nore systematic description of delimiters in Section 4.1; see also Figure 1. 
17The definitions of functions: pc, acc, op, Jr, and mar are in Appendix 2. Formally, it is a collection of machines, 
which for convenience is represented by a single function with guarded expressions representing these machines. 
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Sometimes, processing depends on a final state in which the previously used machine stopped. 
The machine decoding is an example of such a machine. It ends in the state which becomes the 
initial state from which the machine execute starts. The transition function of the decoding is 
presented graphically in Figure 2. 

This machine starts in the initial state Eval (in a centre of this picture). 
It is assumed that the read/write head is placed at a right-most symbol of the sequence repre- 
senting an operation code of an instruction and that three symbols define this code. We assume 
further that the first symbol is primed to indicate that this section of the tape is active. 

decoding c --- (tm opCode.rewind) (Config opCode t) 

where (Config opCode t) = tm Eval c 

1/1~ 1/ 

® , 

o/o L 

/ I ,,P 07o olo 11 

oY I" LI o/ o,; o/ 1/1 I ' l l  O/ O/ 

1/I L -[ ~ 1/1 L 

Figure 2. Eval of op-code. 

The decoding is evaluated in three stages. The first one (i.e., tm Eval) determines the opCode, 

but also leaves the read/write head in a wrong position. Hence, the rewind is applied next, but 
this machine ends normally in the state Done, and not in the state opCode. That is why the third 
machine tm opCode is used to make the opCode visible again. 

3. REPEATED COMPUTATIONS 

An approach based on incremental improvements is well known in mathematics as converging 
sequences were used in definitions of new numbers as early as in the 17 th century [10,11]. A 
solution can sometimes be found in a predetermined number of steps, but often only some measure 
of progress can be defined. Then, providing the processing steps converge, one can interrupt 
iterations when the progress is sufficient. 

This approach is presented graphically in Figure 3. It contains a block called COMPUTE, 
which represents an elementary step of processing, and two other blocks: ANY PROGRESS and 
BACK UP. They represent testing of the progress of processing. There are two large sections on 
the tape: work space and back-up. They are placed next to each other. The first of the two is 
used by an individual processing step. It contains all the data required by this step, as well as 
the results produced. The section back-up contains the same kind of information, but pertaining 
to a previous step. The task of the block ANY PROGRESS is principally to check whether the 
two sections are identical. If they are not the same, the block BACK-UP copies the work space 
onto the back-up area. 
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General layout 

of the tape 

* COMPUTE 

‘_1 

initial and final 

head position 

BACK 

UP 

ANY 
4 

PROGRESS 

Figure 3. Scheme of iterative computing. 

This fairly general scheme ensures that the machine bigcycle step performs the processing 

step iteratively and stops in obviously nonpromising situations. This modest exit condition does 

not guarantee that the Done state (or any other final state) is reached, for the COMPUTE block 

(represented by the machine step) may be ill-defined or looping may involve more than one 

processing step. 

bigCycle : : (configuration 

configuration 

bigcycle step c = newC, 

= bigcycle 

-> configuration) -> 

-> configuration 

if newS=Done 

step newC, otherwise 

where newC = (anyProgress.step) c 

(Config news newT) = newC 

anyprogress = tm AP 

In the following example, the sample1 represents the tape content which is used by the machine 

bigcycle (rewind.pc). It is assumed that, before and after checking if anyProgress occurred, 

the read/write head observes the first symbol of the work space. Hence, the presence of the 

rewind after the pc. It is further assumed that the tape must have the same ‘structure’18 in both 

its parts, i.e., back-up and work space. 

Finally, due to the definition8 of the hlef t and the hright, the area to the left of the read/write 

head should be interpreted in reverse order. 

sample1 = ([D,PC,Zero,Zero,ACC,Zero,Zero,Zero,Dl, 

Zero,COne,One,ACC,Zero,One,PC,Dl) 

Miranda bigCycle (rewind.pc) (Config undef samplel) 

Config Done(CD,PC,ONE,Zero,ACC,One,One,Zero,Dl,Zero,COne,One,ACC,Zero,ONE,PC,D]) 

Alternatively, one can use the function shConf ig which shows the results in a format which 

resembles the tape better. 

Miranda (shConf ig.bigCycle (rewind.pc) > (Conf ig undef samplel) 

Done . . .D,Zero,One,One,ACC,Zero,ONE,PC,D,Zero,One,One,ACC,Zero,ONE,PC,D... 
_A.... 

An application of the function bigcycle not only turns the pc on, but also copies the work 

space, unlike a direct application of the step (rewind. PC>. 

‘sThe structure of the memory is defined by special symbols, such as PC or ACC. They must occur in the same 
order in both sections of the tape. Moreover, lengths of ‘binary’ sequences in between special symbols are fixed 
and are expected to be the same in both areas (see Section 4.1 for a complete description). 
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Miranda (rewind.pc) (Config tmdef sample1) 

Conf ig Done ( [D, PC, Zero, Zero, hCC, Zero, Zero, Zero, D], Zero, 

[One, One,ACC, Zero, ONE, PC,D] ) 

An equivalent and faster functional description of the iterative processing delegates the task 

of comparing and copying of the tape content to a lower level of string operations, which are 

serviced by a language translator: 

cycle c = c, if t = newT 

= cycle newC, otherwise 

where newC = compute c 

(Config s t) = c 

(Config newS newT) = newC 

With either arrangement of repetitions, the next problem is to design the compute function which 

would resemble typical actions of a computer. This involves decisions concerning a structure of 
memory and a selection of elementary operations implemented directly by separate machines. 

Work space layout pc  I B 

head position ~ 
after pc 

MM'MM  O 
mm = on.ahead.(tm Mm).rewind 
argument = (tin Nw).mm.mar 

] 

Figure 4. Setting a marker in memory. 
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4. T H E  S T R U C T U R E  OF M E M O R Y  

4.1 .  N a m e s  a n d  I n d e x i n g  

The tape represents memory in this model and it is assumed that  it is word oriented and its 
structure is fixed. The tape is a homogeneous container of memory cells with strictly sequential 
access, but  it becomes a set of words due to labelling of sections of the tape. 

The model assumes a specific layout of the work space. It is shown in Figure 4. Words in the 
tape are separated by Blanks (denoted by B). Generally, registers are towards the left-end of the 
tape, while an addressable memory is to the right of the special 'empty'  word containing only 
the marker MM. 

Registers have individual labels, which are the rightmost symbols of respective words. The 
remaining part  of the memory has a common name ~ and its words are identified by addresses. 
These addresses are generated whenever words in memory are referred to. This difference in 
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characteristics influences the search algorithm, which becomes slower (compare the function pc 
from Section 2.3 and the function argument in Figure 4). 

There are five registers in this computer. 
The instruction register ( i r )  keeps the instruction which is actually executed; two other regis- 

ters are associated with it: 

• op which holds operation code of the instruction, and 
• the memory address register (mar) for an address of an operand. 

Their shorter length and location on both sides of the i r  is essential for the way the op-code and 
the argument are extracted from the instruction (see functions def0p and de fh rg  in Section 4.2). 

The two remaining registers are necessary to perform other phases of a computer's operation: 
fetch the instruction and execute it. The accumulator (or acc) is designed to store temporarily 
the left argument of an operation and its result. The program counter (or pc) holds the address 
of the currently executed instruction. 

The above registers and their functions constitute the main assumptions of a computer, which 
is known as a stored program, sequential, and one-address machine. 

The model assumes further, that  a word must be marked to take part in the computer's activity. 
The register is marked by the function mark (see Figure 1) and the memory cell is marked by the 
function argument, which leaves the same kind of marking. However, before the cell in memory 
is marked, its address must be placed in the memory address register as the function argument 
uses this register as a counter. After completion, operations routinely clear all markings in the 
words involved. 

4.2. T rans fe r s  w i t h i n  M e m o r y  

Transfers from one place of the tape to another are performed between marked locations. The 
nature of the tape implies two possible transfers: the l e f t _ t r a n s f e r ,  and the r i g h t _ t r a n s f e r .  

The graph of the r i g h t _ t r a n s f e r  is shown in Figure 5 and the similar graph of the l e f t _ t r a n s -  
f e r  can be prepared by students as an exercise. 

The first applications of transfers are in the load  and the s t o r e  functions, which are charac- 
teristic for the one-address machine. They represent transfers to and from a default register--the 
accumulator. 

load = rewind.left_transfer.acc 

store = rewind.right_transfer.acc 

However, since commands are stored in the same memory as other data  items, a f e t c h  func- 
tion can be defined to place the instruction in the instruction register. To accomplish this, the 
content of the pc must be r i g h t _ t r a n s f e r r e d  to mar (which is to the right of the pc); next the 
corresponding word in the memory is marked by the argument and finally l e f t _ t r a n s f e r r e d  to 
the i r .  

fetch = rewind.left_transfer, it. argument. 

rewind, r ight_transf er. pc. mar 

The above are regular transfers as they involve words of standard length. However, when either 
the source-word or the destination-word is shorter, the following rewriting rules apply: 

• rewriting stops, when there is 
- no more data  items to transfer or, there is 
- no room for data, whichever comes first; 

• rewriting begins from 
- the leftmost data  item for the l e f t _ t r a n s f e r  
- the rightmost data item for the r i g h t _ t r a n s f e r .  

These rules are useful when the content of i r  is to be parted into the op-code and the argument. 
The extraction of the op-code is done by the def0p function and the argument of the instruction 
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word to be tran sferred ! 

l 
initial head 

posit ion 

o'/o" R 

R 

R 
o/o'/ 

1/1' R, 

BIB o ' /0  

I ' / I  

L 

D'/1 L 

I ' /1 

0/0 '  

l / l '  

f L 
0'/o 

L 

BIB 

right_transfer = tm Rtr 

Figure 5. Word transfer to the right. 

is defined by the defArg function. These functions exploit the fact that  the two destination 
registers are of appropriate length. 

defOp ffi op.rewind.lef~_transfer.op.ir 

defArg = rewind.right_transfer, it.mar 

5. E L E M E N T A R Y  O P E R A T I O N S  

Addition is usually implemented by a separate component. Designing a Turing machine Add, 
which adds two marked sequences of equal length, is an independent and relatively easy problem. 
We assume, it replaces the left sequence by a result. Now, if the accumulator is marked, it may 
be used as a default operand/destination in a standard one-address instruction which implements 
addition. 

add = tm Add 

adder ffi add.acc 

The algorithm of arithmetic negation, described by the function a t_negate ,  is based on two's 
complement notation of numbers. 

at_negate ffi increment.on.lg_negate 

ig_negate ffi ahead. (tin Lneg) 

increment ffi ahead. (tm Incr) 
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The function decrement could be defined by a separate graph, but the definition below is more 
convincing, although perhaps more complex than one would expect. 

decrement = at_negate, on. increment, on. ar_negate 

To perform subtraction, the second operand must be arithmetically negated by an ax..uegate, 
before it is sent to the adder 19. 

subtr = at_negate, acc. adder, ar~negate, acc 

olo  o7o' 
1/1 1'11' 

I1o 
I ' /0 

o/l,t/o 
o ' l l , l ' lO  

8 

ahead = tm Ahead 

oll,O'llBiB R. I": 0 

increment = ahead.(tm Incr) 

BIB R I~ 

OlO 
0'/0 

~ 1 ~  B / B  a ~ ~  070 a ~~l~ 

R -kL) Y 

1/o 
ifz = tm Ifz 

Ig_negate = ahead.(tm Lneg) 

Figure 6. Conditional skip and other operations. 

The conditional instruction is implemented by the I fz  graph, which is surprisingly simple (see 
Figure 6). The accumulator and the pc must be marked to enable a test for zero, possibly followed 
by the increment operation on the pc. 

ifz = tm Ifz 

6. T H E  I N S T R U C T I O N - - S T E P S  O F  E X E C U T I O N  

The block COMPUTE (see Section 3) is represented by the function compute. It puts elemen- 
tary actions of a computer into sequence which is normally performed in a .fetch-execute cycle for 
each instruction. 

compute ffi rewind, execute, decoding, defOp, defArg, update_pc, fet ch 

19A direct translation of the above: subtr = a d d e r ,  on.  ar_negate would leave not only the correct result in 
acc, but also the second argument in a negated form. 
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6.1. Command Selection 

The model assumes that the instruction is addressed by a program counter which is routinely 

incremented by one. It implies contiguous placement of instructions in memory and that every 

instruction is stored in one cell. 

update_pc = rewind.increment.pc 

6.2. D e c o d i n g  

Decoding means that  the sequence from ±r is divided by the functions defOp and d e f h r g  
(Section 4.2) into the op-code and the argument. The latter can be used by the function argument 
(Figure 4) after it is transferred to the mar, but the op-code must be deciphered by the function 
decoding  (Section 2.3). 

6 . 3 .  E x e c u t i o n  o f  C o m m a n d s  

Once the action prescribed by the op-code is decided, the command is executed by the function 
execu te .  It defines the meaning of all commands available in the model. 

e x e c u t e  c = ( load .a rgument )  
= ( s t o r e . a r g u m e n t )  
= ( adder .a rgument )  
= ( subtr.argument) 

ffi ( increment.argument) 

= ( decrement.pc) 

= (left_transfer.pc.mar) 

c if cd=LD 

c if cd=ST 

c if cdfADD 

c if cd=SUBT 

c if cd=INCR 

c if cdfHLT 

c, if cdffiJMP 

= ( i f z . a c c . p c )  c,  i f  cd=JZ 
w h e r e  ( C o n f i g  c d  t )  = c 

It is assumed that  the first argument of operations: ADD, and SUBT, is available in the accumulator, 
the second argument is defined by the function argument (Figure 4), and that  the result is left 
in the accumulator. 

The command INCR increments the value defined by the argument while the remaining three 
control commands redefine the content of the pc. 

The HLT command reverses the effect of the update_pc, which is performed routinely in every 
execution cycle. The unconditional jump JMP explicitly specifies the value in the pc, i.e., the 
address of the next instruction. The JZ tests the value in the accumulator and the content of the 

pc is additionally incremented, if a nonzero value is found. 

7. EXPERIMENTATION 

There is a scope for students'  experimentation with the model. One may start  by simply 
evaluating given functions. The next, relatively easy, exercise is to extend the definition of the 
t r  function to include cases of the L t r  and the I f z  2°. The case of Add is more complex, but  it 
is still in the category of moderate difficulty. 

Later, after gaining some confidence, students can add new instructions, such as shift, rotate, 
compare, etc. A bit more ambitious project would involve changes in the computer 's architecture 
such as inclusion of new registers, or even two-address instructions. 

8. C O N C L U S I O N S  

Recursive functions serve well as statements defining the process of computing. A concise style 
of the functional approach together with an effective use of abstraction enabled to create a simple 
and clear model of a computer. 

2°Additional lines, which define these cases, can be contained in a separate file, which may be inserted into the 
previously used version of the t r .  It is convenient when the students' solutions are to be verified. 
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Parallelism in processing has been mentioned a number of times as an issue recurring at various 

levels in computing. It begins with an idea of 'cutting' the tape into pieces and referring to them 

as indivisible entities--words. 
Although the model generally assumes that  one instruction is executed at a time, the complexity 
of instructions is unspecified and allows local parallelism. It means that  by introducing names for 
registers, for example, we become indifferent as to how individual bits are transferred (sequentially 
or in parallel), or in the case of the adder, we simply assume that  once it has been defined, it 
leaves the correct result somewhere. Thus, introducing names opens the way for parallel actions, 
although such actions can be translated into strictly sequential and much slower sequences of 
operations. 

A P P E N D I X  1 

There are three files available: body.m, types.m, and transitions.m All definitions introduced 
in this text  are there. The t r  has omitted cases of the Lt r ,  I f z ,  and Add, which are suggested 
as exercises. 

This appendix begins with the sample of the memory layout 21 (sample2) and is followed by its 
modified content after the execution of the command LD 8, then after the ADD 9 and the HLT. 
This output  has been produced by the complete model i.e., with the missing cases defined. 

The output  formatting functions used to produce the following results are included at the end 
of this appendix. 

> sample2 
> =([Blank] ,D, [Blank, 
> Zero, Zero, Zero ,Zero ,Zero ,One ,Zero ,ACC,Blank, 
> Zero, Zero, Zero, Zero,PC ,Blank, 
> Zero, Zero, Zero, OP ,Blank, 

> Zero, Zero, Zero, Zero, Zero, Zero, Zero, IR , Blank, 
> Zero, Zero, One , One ,MAR, Blank, 
> MM ,Blank, 

> Zero, Zero, Zero, One , Zero, Zero, Zero, Blank, 
> Zero,One, Zero, One, Zero,Zero,One, Blank, 
> One ,Zero,Zero, One ,Zero,Zero,Zero,Blank, 
> One ,Zero One , One ,Zero,Zero,Zero,Blank, 
> Zero,One One , One ,Zero,Zero,Zero,Blank, 
> One ,Zero Zero, One ,Zero,Zero,Zero,Blank, 
> One ,Zero One , Zero,Zero,Zero,Zero,Blank, 
> One ,One Zero, Zero,Zero,Zero,Zero,Blank, 
> One ,One One , Zero,Zero,Zero,Zero,Blank, 
> Zero,Zero Zero, One, Zero,Zero,One, Blank, 
> Zero, One Zero, Zero,Zero,Zero,Zero,Blank] ) 
Miranda (sh_tape.compute) (Config under sample2) 
( [D ,Blank] ,Blank, 
[One, One, One, Zero,Zero,Zero,Zero,ACC,Blank, 
Zero, Zero, Zero, One, PC, Blank, 
Zero, Zero, Zero, OP,Blank, 
Zero,Zero,Zero,One, Zero,Zero,Zero, IR,Blank, 
Zero, Zero, Zero, Zero, MAR, Blank, 

MM,Blank, 
Zero, Zero, Zero, One, Zero, Zero, Zero, Blank, 
Zero, One, Zero ,One, Zero, Zero, One, Blank, 
One, Zero, Zero, One, Zero, Zero, Zero, Blank, 
One, Zero,One, One, Zero,Zero,Zero,Blank, 

21The special symbol D occurs only once as only work area is used in these experiments. 
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Zero,0ne, One, One, Zero,Zero,Zero,Blank, 
One, Zero,Zero,0ne, Zero,Zero,Zero,Blank, 
0ne, Zero,0ne, Zero,Zero,Zero,Zero,Blank, 
0ne, 0ne, Zero,Zero,Zero,Zero,Zero,Blank, 
One, One, One, Zero,Zero,Zero,Zero,Blank, 
Zero,Zero,Zero,0ne, Zero,Zero,0ne, Blank, 
Zero,0ne, Zero,Zero,Zero,Zero,Zero,Blank]) 

Miranda (sh_tape.cycle) (Config undef sample2) 
( [D ,Blank] ,Blank, 
[One, One, One, One, Zero,Zero,One, ACC,Blank, 
Zero,Zero,One, One, PC,Blank, 

One, Zero,One, OP,Blank, 
One, Zero,One, One, Zero,Zero,Zero, IR,Blank, 
One, Zero,Zero,Zero, MAR,Blank, 

MM,Blank, 
Zero,Zero,Zero,One, Zero,Zero,Zero,Blank, 
Zero,One, Zero,One, Zero,Zero,One, Blank, 
One, Zero,Zero,One, Zero,Zero,Zero,Blank, 
One, Zero,One, One, Zero,Zero,Zero,Blank, 
Zero,One, One, One, Zero,Zero,Zero,Blank, 
One, Zero,Zero,One, Zero,Zero,Zero,Blank, 
One, Zero,One, Zero,Zero,Zero,Zero,Blank, 
One, One, Zero,Zero,Zero,Zero,Zero,Blank, 

One, One, One, Zero,Zero,Zero,One, Blank, 
Zero,Zero,Zero,One, Zero,Zero,One, Blank, 
Zero,One, Zero,Zero,Zero,Zero,Zero,Blank]) 

OUTPUT FORMATTING FUNCTIONS 

> sh_tape :: configuration -> [char] 
> sh_tape (Config s (left, w, right)) 
> = "("++xsht left++","++show w++",\n"++ 
> xsht right++")kn" 
> xsht ts = "["++(concat.(map sht)) (init is)++ 
> show (last ts) ++ "]" #ts > I 
> = show is, otherwise 
> sht s 
> = show s ++ ",\n ", s=Blank 
> = show s ++ ",", s=Zero s=ZERO 
> s=ACC s=D 
> = show s ++ ", ", s=0ne s=0NE 
> = (rjustify 3 (show s)) ++ ",", s=IR 
> = (rjustify 18 (show s)) ++ ",", s=PC s=MAR 
> = (rjustify 23 (show s)) ++ ",", s=OP 
> = (rjustify 38 (show s)) ++ ",", s=MM 
> shConfig :: configuration -> string 
> shConfig (Config s t) 
> = 1justify ljust (show s)++shTape 1just t++"kn" 
> where ljust = 10 
> shTape :: num -> tape -> string 
> shTape lj (left, w, right) 
> = iSide++window++"...kn"++spaces (#1Side+lj)++ 
> rep (#window) ,7 if rL=O 
> = iSide++window++","++show (last right)++ 
> "...\n"++spaces (#1Side+lj)++ 
> rep (#window) ,7, if rL=l 
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> = ISide++window++","++shT (init right)++ 

> show (last right)++"...\n"++ 
> spaces (#ISide+lj)++rep (#window) ,7 

> otherwise 
> where iSide = "..."++shT (reverse left) 
> rL = #right 
> window = show w 

> shT :: [symbol] -> string 
> shT = concat.map ((++",").show) 

A P P E N D I X  2 

The following type declarations are used by the model. They are available in the file types.m, 
which constitutes an integral part of this paper. 

> string---- [char] 

> symbol ::= Zero I One I Blank I 
> ZERO I ONE I Zero I OnE I 

> ZERo I ONe I 
> D I ACC I PC I MAR I IR I OP I MM 
> state ::= Ahead I 

> Done I LD I ST I ADD I SUBT I INCR 
> HLT I JMP I JZ I 

> Eva1 1 
> EO I E1 1 EO0 I E01 1 EIO I Ell I 
> Incr I Lneg I 
> Ifz i Ifz_1 1 Ifz_2 1 Ifz_3 1 Ifz_4 1 

> Add I AO i AI I AO0 1 AIO i 

> DO0 1 DO1 I DIO I DI1 1 

> SO00 1 S001 1 S010 1 S011 1 
> SIO0 1 $101 I $110 1 $111 1 

> CarryO I Carryl I RO0 I ROI I 

> RiO I Rll I 
> Add_cle~up I Add_back I 

> Dlim I On I Acc I Pc I Mar I Ir I Op I 
> Mm I MmO I 
> Ktr I Rtr_l I Rtr_2 i Rgr_3 I Ktr_4 1 

> Rtr_5 1 Rtr_6 1 Rtr_7 1 
> Ltr i I.tr_l i ,.tr_2 1 L t r _ 3  [ L t r _ 4  [ 
> Ltr_5 1 Ltr_6 I Ltr_7 1 Ltr_8 1 

> Ltr_9 I Ltr_lO ) Ltr_ll I 
> Nw I Nw_I I Nw_2 I Nw_3 I Nw_4 1 
> Nw_5 I Nw_6 1 Nw_7 I Nw_8 I Nw_9 
> AP I hPl I AP2 I AP3 I hP4 [ hP5 
> AP6 1 AP7 1 AP8 I AP9 1 
> APlO I APt1 I API2 I API3 1 
> AP_2 1 AP_3 I AP_4 I AP_5 I AP_8 
> AP_9 1 AP_IO i AP_II I 

> BU I BUI I BU2 I BU3 I BU4 I BU5 I 
> BU6 I BU7 I 
> BU_2 1 BU_3 I BU_4 I BU_5 ) 
> ShLI ShLl I SHI [ SHII I SHI2 1 
> SHL I SHLO I SHLI I SHL2 
> move ::= Left I Right i None 
> tape == ( 1side_tape, window, rside_tape ) 
> iside_tape == [symbol] 
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> window =ffi symbol 

> rside_tape == [symbol] 

> configuration ::= Config state tape 

The following definitions constitute the model. They are available in the file body.m. This file 
is also an integral part  of this paper. 

> final :: [state] 

> final = [Done,LD,ST,ADD,SUBT,INCR,HLT,JMP,JZ] 

> hleft, hright :: tape -> tape 

> hleft ([] , c, rs) = ([], Blank, c:rs) 

> hleft (c':is, c, re) = (is, c' , c:rs) 

> hright (is, c, [] ) = (c:Is, Blank, []) 

> bright (is, c, c':rs) = (c:is, c' , re) 

> driver :: configuration -> configuration 

> driver (Config s t) 

> = (Config s t), if member final s 

> = driver (Config newS newT), otherwise 

> where (i, w, r) = t 

> (newS, neW, dir) = tr s w 

> newT' = (i, neW, r) 

> newt = hleft newT', if dir = Left 

> = bright newT', if dir = Right 

> = newT', if dir = None 

> tm :: state -> configuration -> configuration 

> tm newS (Config s t) = driver (Config newS t) 

> decoding c 

> = (tm opCode.rewind) (Config opCode t) 

> where (Config opCode t) = tm Eval c 

> bigCycle :: (configuration -> configuration) -> 

> configuration -> configuration 

> bigCycle step c = newC, if newS=Done 

> = bigCycle step newC, otherwise 

> where 

> newC = (anyProgress.step) c 

> (Config newS newT) = newC 

> anyProgress ffi tm AP 

> cycle c ffi c, if t = newt 

> = cycle newC, otherwise 

> where newC ffi compute c 

> (Config s t) = c 

> (Config news newT) = newC 

> load = rewind.left_transfer.acc 

> store = rewind.right_transfer.acc 

> fetch = rewind.left_transfer.ir.argument. 

> rewind.right_transfer.pc.mar 

> defOp = op.rewind.left_transfer.op.ir 

> defArg = rewind.right_transfer.ir.mar 

> add = tm Add 

> adder = add.acc 

> ar_negate = increment.on.lg_negate 

> ig_negate = ahead.(tm Lneg) 

> increment = ahead.(tm Incr) 

> decrement = ar_negate.on.increment.on.ar_negate 

> subtr = ar_negate.acc.adder.ar_uegate.acc 

> ifz = tm Ifz 
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> compute = rewind.execute.decoding.defOp.defArg. 

> update_pc.fetch 

> update_pc = rewind.increment.pc 

> execute c = ( load.argument) c if 

> = ( store.argument) c if 

> = ( adder.argument) c if 

> = ( subtr.argument) c if 

> = ( increment.argument) c if 

> = ( decrement.pc) c if 

> = (left_transfer.pc.mar) c if 

> = ( i f z . a c c . p c )  c ,  if 

> w h e r e  ( C o n f i g  cd  t )  = c 

SECTIONS IN MEMORY AND BASIC OPERATIONS 

> [rewind, ahead, on] = map tm [Dlim, Ahead, 0n] 

> mark :: state -> configuration -> configuration 

> mark s = on.tm s.rewind 

>[acc, pc, op, ir, mar] 

> = map mark [Acc, Pc, 0p, Ir, Mar] 

> mm = on.ahead.tm Mm.rewind 

> argument = tm Nw.mm.mar 

> left_transfer = tm Ltr 

> right_transfer = tm Rtr 

cd=LD 

cd=ST 

cd=ADD 

cd=SUBT 

cd=INCR 

cd=HLT 

cd=JMP 

cd=JZ 
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