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infected human monocyte derived macrophages and a pro-inflammatory cytokine
response may be associated with patient survival during natural infection
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Rift Valley fever virus (RVFV) causes significant morbidity and mortality in humans and livestock throughout
Africa and theMiddle East. The clinical disease ranges frommild febrile illness, to hepatitis, retinitis, encephalitis
and fatal hemorrhagic fever. RVFVNSs protein has previously been shown to interfere in vitrowith the interferon
response, and RVFV lacking the NSs protein is attenuated in several animalmodels. Monocytes andmacrophages
are key players in the innate immune response via expression of various cytokines and chemokines. Here we
demonstrate that wild-type RVFV infection of human monocyte-derived macrophages leads to a productive
infection and inhibition of the innate immune response via decreased expression of IFN-α2, IFN-β and TNF-α.
Using a recombinant virus lacking the NSs protein, we show that this effect is mediated by the viral NSs protein.
Finally, analysis of RVF patient samples demonstrated an association between a pro-inflammatory cytokine
response and patient survival.
@cdc.gov (S.T. Nichol).
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Published by Elsevier Inc.
Background

Rift Valley fever virus (RVFV) is a mosquito-borne hemorrhagic
fever virus that causes high morbidity and mortality in humans and
livestock. It was first identified in 1931 in Kenya after isolation from
a sheep in the Rift Valley (Daubney et al., 1931). The virus has caused
disease throughout continental Africa, Madagascar, Yemen and Saudi
Arabia (Bird et al., 2009). Recent reports of mosquito vector capacity
in North America make this virus not only a scourge on the
developing world, but also a potential threat to the US (Turell et al.,
2010).

RVFV is a veterinary pathogen that infects cattle, goats, and sheep.
Up to 90% mortality has been reported in newborn animals and as
high as 30% in adult animals (Swanepoel and Coetzer, 1994). Consistent
with its high degree of pathogenicity in juvenile animals, RVFV is also
abortigenic; 40–100%of pregnant animalswill abort during an outbreak
leading to “abortion storms” (Daubney et al., 1931; Swanepoel and
Coetzer, 1994). Furthermore, livestock caretakers are exposed to virus
in the process of caring for sick and dying animals; both blood and am-
niotic fluid contain high quantities of virus.

The virus can be transmitted to humans by contact with infected
livestock or by the bite of an infected mosquito. Infected individuals
typically have a mild disease consisting of fever, malaise, and myalgia.
A small percentage of individuals will develop severe disease mani-
fested as hepatitis, encephalitis, retinitis or hemorrhagic fever, which
are the hallmarks of fulminant RVFV clinical disease. The overall case
fatality is estimated at 0.5–1%. However, in patients whose clinical
illness is sufficiently severe to bring them to the attention of medical
personnel, case fatality has been reported to be as high as 29%, as was
seen in the Kenya 2006–2007 outbreak (Centers for Disease Control
and P., 2007). Laboratory findings that are frequently present in RVFV
infected patients include leucopenia, thrombocytopenia, and elevated
liver transaminases, indicative of the hepatitis that is often associated
with infection.

RVFV is a member of the family Bunyaviridae. It is an enveloped
virus that has a negative stranded RNA genome consisting of three
fragments, aptly named S (small), M (medium), and L (large). The S
segment encodes two proteins, a nucleocapsid protein that coats the
viral genome in the virion, and a non-structural protein (NSs). The
M segment encodes two viral glycoproteins that are expressed on
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Fig. 1. RVFV productively infects monocyte derived human macrophages. MDM were
infected with WT or ΔNSs RVFV. Supernatants were collected at various times post infec-
tion. Supernatants were titered on Vero E6 cells. WT virus (black bars) grew to higher
titers than the ΔNSs virus (white bars) on cells from the same donor. Data are presented
as PFU/mL at 24 h post infection. 4 different donors are represented in the figure.
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the surface of the virion, and a nonstructural protein (NSm). The L
segment encodes the viral RNA polymerase that is responsible for
both transcription and replication of the virus (Fields et al., 2007).

The NSs protein is especially interesting in that it is a filamentous
nuclear protein expressed by a virus that replicates and assembles in
the cytoplasm of infected cells (Yadani et al., 1999). Several investiga-
tors have evaluated the role of the NSs protein in altering the host
immune response. Initial studies utilized a naturally occurring variant
that has a deletion in the S segment such that the NSs protein is truncat-
ed, cytoplasmic and rapidly degraded (Muller et al., 1995; Vialat et al.,
2000). This variant, known as clone 13, was attenuated in wild type
(WT) mice but lethal in IFN α/β receptor deficient mice, and was a
potent inducer of Type 1 interferons, unlike the WT virus (Billecocq et
al., 2004; Bouloy et al., 2001; Vialat et al., 2000). Clone 13 has also
been shown to be immunogenic and protective in sheep (Dungu et al.,
2010). More recently, a reverse genetics system has become available
for RVFV, thereby facilitating studies of viral pathogenesis (Gerrard et
al., 2007; Habjan et al., 2008b; Ikegami et al., 2006). This system has
been used to generate viruses with full gene deletions in NSs or muta-
tions of specific regions of the gene. Viruses with whole gene deletions
have become live attenuated vaccine candidates since they provided
protection in theWistar–Furth ratmodel (Bird et al., 2008). This reverse
genetics system has proven to be a powerful tool in the study of NSs-
mediated pathogenesis.

At themolecular level, the NSs protein interacts with components of
the general transcription factor, TFIIH, leading to a generalized down-
regulation of host-cell transcription in infected cells (Le May et al.,
2004). In addition, specific interactions of NSs with transcription factors
YY1 and SAP30 lead to silencing of the IFN-β promoter in mouse fibro-
blasts (Le May et al., 2008). Via its SAP30 interacting domain, NSs also
interacts with pericentromeric chromosomal sequences and causes
chromosomal segregation defects in mouse fibroblasts and fetal sheep
kidney cells (Mansuroglu et al., 2010). NSs facilitates proteasomal-
mediated degradation of PKR, a protein that is important in sensing
the presence of dsRNA, shutting down protein synthesis and signaling
apoptosis in infected cells (Habjan et al., 2009; Ikegami et al., 2009).
The NSs protein has multiple functions in alteration of the innate
immune response: generalized and specific transcriptional down-
regulation of genes active in innate immunity and targeted degradation
of factors involved in the innate immune response. Given the varied
spectrum of clinical illness resulting from infection there is clearly a
dynamic interplay between the host's ability to mount an immune
response, and these protean viral effects which would seemingly dis-
arm the immune system and make the host vulnerable to disease.
Therefore, there is still much to understand about the molecular patho-
genesis of RVFV and its interplay with the host immune system.

Macrophages are antigen presenting cells that exist in both circu-
lating and resident populations throughout the body. Upon contact
with an antigen, they release cytokines to stimulate recruitment of
neutrophils and other immune cells, activate IFN based pathways as
part of the innate immune response, and signal T cells and B cells to
begin the transition from an innate to an adaptive immune response
(Paul, 2008).

Animal models and clinical specimens demonstrate positive immu-
nostaining for viral antigen in both the hepatocytes and the resident
macrophages of the liver, the Kupffer cells (Kamal, 2009; Shieh et al.,
2010; Smith et al., 2010). Circulating white blood cells have also been
reported to stain immunopositive in infected goats (Kamal, 2009), and
antigen positive dendritic cells have been reported in the spleen of
infected mice (Smith et al., 2010). Furthermore, there is microglia pro-
liferation and neuronophagia in the CNS in infected animals (Kamal,
2009). Since the liver and the CNS aremain sites for RVFVmediated dis-
ease, it is possible that infection of macrophages could represent an im-
portant early target and amechanism for viral spread. Given the known
function of the NSs protein in alteration of the innate immune response,
we hypothesize that a key component of RVFV pathogenesis is
modification of the initiation and/or functionality of the innate immune
response in macrophages. To test this hypothesis, we infected human
monocyte derivedmacrophages (MDM)withWT RVFV or recombinant
RVFV lacking the NSs gene (ΔNSs RVFV) and assessed replication, virus
production, cytopathic effects, and the expression of cytokines under
these conditions. Furthermore, data from these experiments, and
those done by others with different viral hemorrhagic fever viruses,
led us to hypothesize that a pattern of cytokine secretion in infected
individuals might be predictive of survival. This hypothesis was sup-
ported by analysis of the cytokine expression patterns in human
serum samples from the Saudi Arabian 2000–2001 RVFV outbreak.

Results

Infection of macrophages with RVFV

CD14 positive MDM from 4 separate donors were used for these
experiments to control for donor-to-donor variability. Cells were
infected with either the WT or ΔNSs RVFV and supernatants were an-
alyzed at various times post-infection by plaque assay to quantitate
viral production. As indicated in Fig. 1, there was slight donor-to-
donor variability in the maximal titers at 24 h post infection (hpi);
however, WT virus grew to 0.5 to 1 log higher titers than the ΔNSs
virus for each donor. Virus was detected as early as 12 hpi for both
WT and ΔNSs viruses, indicating that the ΔNSs virus kinetics were
not delayed compared to the WT virus (data not shown). In contrast,
infection of Vero cells with WT or ΔNSs RVFV produces equivalent
titers (1.5×107 PFU/mL and 4.6×107 PFU/mL respectively). Interest-
ingly, by 48 hpi, there was 80–90% CPE with cell death in the MDM
infected with WT virus and little to none in the MDM infected with
the ΔNSs virus, and this effect could be seen as early as 12 hpi
(Fig. 2). It is also of note in this figure that ΔNSs infected cells have
an activated phenotype, being larger and having greater variability
in morphology than the mock infected cells. WT infected cells are
small and rounded up. By 72 hpi all WT infected cells were dead.

The RNA from WT or ΔNSs RVFV infected MDM from 3 of the
donors was analyzed by real time RT-PCR to assess viral replication.
Absolute Ct values were corrected by normalization to 18S RNA levels
for each sample. Both WT and ΔNSs viruses replicated with similar
kinetics; an increase in viral RNA was detected routinely by 12 hpi
(Fig. 3). The 1 hpi time point represents the amount of input virus.
It is noteworthy that although all experiments were performed with
an moi of 5, for the experiments done with donors A and B, there
appeared to be more viral RNA present at the 1 h time point for the
ΔNSs infected cells. Despite the fact that there was slightly more
input RNA, the WT virus still replicated to higher levels than the
ΔNSs virus by 24 hpi (Fig. 3). These data demonstrate that primary
human MDM are permissive for RVFV infection. Macrophages could
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Fig. 2.WTvirus causesmarked CPE in infected cellswhileΔNSs virus does not.MDMwere
mock-infected, or infected with WT, or ΔNSs RVFV. At 12 hpi cells were photographed
under white light using the 20× objective to demonstrate the CPE caused by WT virus.
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Fig. 3. ΔNSs RVFV replicates to lower levels than wild-type RVFV in MDM. MDM were
infected with WT or ΔNSs RVFV. RNA was purified from cells at various times post infec-
tion and analyzed by real time PCR.WT virus (black squares with solid lines) replicated to
higher levels than theΔNSs virus (white squareswith dotted lines) on cells from the same
donor. Data are presented as inverse Ct value at various times post infection. 3 different
donors are represented in thefigure. RNA from the 4th donorwas not available for testing.
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be an early and important in vivo target of infection. Given the known
role of the NSs protein in immune modulation, we hypothesized that
macrophages infected with the ΔNSs virus would exhibit a different
pattern of cytokine secretion than those infected with the WT virus.

Cytokine secretion in RVFV infected MDM

MDM were mock-infected or infected with WT, ΔNSs, γ-WT or γ-
ΔNSs virus. Gamma-irradiated (designated by theGreek letter “γ”) con-
trol viruses were used to distinguish non-specific cytokine secretion
related to supernatant components, including inactivated virions,
from those that were a result of active viral infection. Supernantants
were collected at 0, 6, 12, 24 and 48hpi andwere analyzed for a selected
panel of cytokines. A 12-plex panel of analytes including RANTES, MIP-
1α, MIP-1β, IL-1RA, MCP-1, IP-10, IL-8, IFN-α2, TNF-α, IL-12, IL-1β, and
IL-6 were examined on the Luminex platform and IFN-β levels were
measured by ELISA. The most striking results were obtained for
IFN-α2 (A), IFN-β (B), and TNF-α (C) (Fig. 4). IFN-α2 is an interferon
alpha subtype that has potent antiviral activity in many different
responder cell types (Hilkens et al., 2003; Hiscott et al., 1984). IFN-β is
another Type 1 interferon that is known to inhibit viral replication
and induce apoptosis of virally infected cells (Paul, 2008). TNF-α is a
pro-inflammatory cytokine that plays a role in the activation of endo-
thelial gene expression, activation of neutrophils and is a mediator of
shock, sepsis, and vascular leakage (Paul, 2008). TNF-α, IFN-α2 and
IFN-β were secreted by human MDM that were infected with ΔNSs
virus but not by MDM that were infected with WT virus and only min-
imally by γ-irradiated viruses. In the ΔNSs virus infected MDM, expres-
sion of TNF-α was detectable as early as 6 hpi and IFN-α2 was
detectable as early as 12 hpi; only the 24 h data is shown. IFN-β levels
were only assessed at the 24 hpi time point.

The secretion of MCP-1, IP-10, RANTES, MIP-1α and MIP-1β did
not follow a clear pattern between or among the experimental treat-
ments with the exception that both the mock andWT infectedMDM's
always had very low to undetectable cytokine levels. The ΔNSs, γ-WT
or γ-ΔNSs infected cells demonstrated varied secretion patterns for
these 5 cytokines. This variability in cytokine secretion patterns is
likely due to the presence of viral RNA, viral protein, or other activat-
ing factors present in the supernatant of the virus preparation used in
the inoculum to infect the MDMs. Unlike the data presented earlier
for TNF-α, IFN-α2 and IFN-β, these cytokine patterns were not specif-
ic to cells infected with replicating virus. IL-8 and IL-1RAwere not sig-
nificantly elevated under any experimental condition except for
donor D and donor B respectively, highlighting the importance of
using multiple donors in experiments with primary cells (data not
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Fig. 4. IFN-α2, IFN-β and TNF-α are expressed by MDM upon infection with ΔNSs virus
but not WT RVFV virus. MDMwere mock-infected, or infected with WT, ΔNSs, γ-WT or
γ-ΔNSs RVFV. Supernatants were collected at various times post infection, and levels of
cytokines were measured. 4 different donors are represented in the figure (A–D). Data
for IFN-α2 (A), IFN-β (B) and TNF-α (C) at the 24 hpi time point are shown.
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shown). Finally, there was no IL-12, IL-1β or IL-6 expression detected
from any donor regardless of experimental condition.

Human serum cytokine analysis

After demonstrating that the macrophage is a susceptible cell type
and that the virus is able to alter the innate immune response in
Table 1
Laboratory characteristics of selected RVFV patients. The 26 patients for whom serum was
noted laboratory value was not necessarily always available for each patient so the number
spectively are noted next to the analyte. F=fatal (6 total), NF=non-fatal (20 total). WBC=
lanine aminotransferase, PT=prothrombin time, PTT=partial thromboplastin time, CI=co

Analyte F, NF Mean fatal CI

Platelets 5, 18 36 17–55
WBC 5, 17 11.6 4.8–18.4
Hgb 5, 18 10 5.8–14.2
AST 5, 19 16,926 5082–28,770
ALT 5, 19 7000 4046–9954
PT 4, 6 39.9 29.8–50.0
PTT 4, 6 66.9 47.3–86.5

a Goldman: Cecil Medicine 23rd ed. (Cecil et al., 2008).
macrophages, it followed that we might expect a perturbation of the
cytokine response in severely infected individuals. We hypothesized
that a suppression of the pro-inflammatory innate immune response
by WT RVFV could play a role in viral pathogenesis. In order to test
this hypothesis, we utilized human serum samples from the RVFV out-
break that occurred in Saudi Arabia in 2000–2001. The clinical and epi-
demiological data from his outbreak have been published (Madani et
al., 2003). We were able to identify 26 samples from 26 different
patients forwhich therewas sufficient sample and forwhich the clinical
outcome was known. Of the 26 cases, 6 were fatal and 20 were non-
fatal. All patientswere hospitalized and exhibited fever and gastrointes-
tinal symptoms (nausea, vomiting or diarrhea), 7 had jaundice, 3 had
bleeding manifestations, 7 had CNS disturbances and none had vision
changes. The samples were collected at the time of presentation and
were from 1 to 14 days post onset of symptoms. There were 20 male
and 6 female patients ranging in age from 17 to 90 years with an aver-
age age of 52 years. Key mean laboratory values in these patients are
presented in Table 1. The patients all demonstrated clinical and labora-
tory findings typical for severe RVFV disease. The fatal cases had signif-
icantly more thrombocytopenia, coagulopathy and transaminase
elevation, as has been previously reported (Madani et al., 2003).

Patient serum samples were analyzed in duplicate using a large
multiplex assay to determine the concentration of 39 different cyto-
kines: EGF, Eotaxin, FGF-2, Flt-3 ligand, Fractalkine, G-CSF, GM-CSF,
GRO, IFN-α2, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-
17, IL-1RA, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IP-
10, MCP-1, MCP-3, MDC (CCL22), MIP-1α, MIP-1β, TGF-α, TNF-α,
TNF-β, VEGF, sCD40L, and sIL-2Rα. There were no detectable levels
of TNF-α or IFN-α2 in the samples from fatal or non-fatal cases. Howev-
er there were 5 cytokines that demonstrated a statistically significant
difference (pb0.05) between fatal and non-fatal cases by a two-sample
T test (Fig. 5). Two pro-inflammatory cytokines, sCD40L (a mediator of
B cell activation) and GRO (a mediator of neutrophil activation), were
elevated in non-fatal cases as compared to fatal cases.

IL-1RA is the receptor antagonist for IL-1, a potent pro-inflammatory
pyrogen, so therefore IL-1RA has immunosuppressive properties. IL-
1RA binds to the IL-1 receptor with high affinity and prevents receptor
dimerization and downstream signaling (Paul, 2008). IL-1RA levels in
fatal cases were a log higher than IL-1α levels. Additionally, IL-1RA
levels were significantly higher in fatal vs non-fatal cases, leading to
an overall immunosuppressive effect in fatal cases.

Finally, IL-10, a cytokine that is well known to be suppressive to the
cell-mediated immune response, was elevated in fatal vs. non-fatal
cases. In summary, a pro-inflammatory cytokine responsewas associat-
ed with increased survival while actively or passively suppressed cyto-
kine response was associated with increased risk of fatality.

Discussion

Our studies have demonstrated that MDM are permissive for RVFV
infection and that infection with WT virus leads to CPE and cell death.
available for cytokine analysis had the laboratory findings indicated in the table. The
of samples that were used in calculating the mean for the fatal and non-fatal cases re-
white blood cell count, Hbg=hemoglobin, AST=aspartate aminotransferase, ALT=a-
nfidence interval.

Mean non-fatal CI nl rangea

110 81–139 150–300×103/μL
8.8 3–14.6 4.5–11×103 cell/μL
10.5 9.1–11.9 12–17 g/dL
1101 −75–2277 10–30 U/L
732 319–1145 7–40 U/L
17.0 15.6–18.4 11–16 s
41.9 30.7–56.1 25–35 s
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Fig. 5. A pro-inflammatory response is associatedwith survival in human serum samples from the Saudi 2000–2001 outbreak. Serum samples frompatientswith known clinical outcome
were analyzed in duplicate for various cytokines. The 5 cytokines that demonstrated statistical significance between fatal and non-fatal cases are shown. Two pro-inflammatory cytokines
were elevated in non-fatal cases (white bars) and two immunosuppressive cytokines were elevated in fatal cases (black bars). The pro-inflammatory cytokine IL-1α is shown separately.
Confidence interval is indicated by error bars and p values are noted.
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Furthermore, we have studied the role of the NSs protein and deter-
mined that NSs deficient viruses do not replicate as well as WT
RVFV in MDM. Since these two viruses replicate to equivalent levels
in Vero cells, which are unable to produce interferon (Desmyter et
al., 1968; Emeny and Morgan, 1979), it may be the case that the IFN
response that is stimulated in ΔNSs RVFV infected MDM's is responsi-
ble for the decrease in viral titers and the lack of CPE during infection
with this virus.

Macrophages may play a role in the pathogenesis of WT RVFV. An
infected macrophage would be unable to signal a pro-inflammatory re-
sponse secondary to the inhibitory effects of the NSs protein. In addi-
tion, the intracellular anti-viral mechanisms would be rendered
inactive because of NSs mediated inhibition of expression of type I
IFN's and virally mediated degradation of PKR. These many effects of
theNSs protein could usurp a sentinel cell and convert it into a virus fac-
tory. The macrophage might also act as vehicle to transmit the virus to
its target organs, the liver and the CNS. There is clearly precedence in
the literature for viruses using the monocyte/macrophage to gain
entry to the CNS in the case of Hepatitis C virus, Junin virus, Dengue
virus, and HIV (Gras and Kaul, 2010; Koenig et al., 1986; Medeot et al.,
1995; Miagostovich et al., 1997; Wilkinson et al., 2009). Further studies
will need to be done to fully define the role of the macrophage in RVFV
in vivo pathogenesis.

Our studies have demonstrated NSs-mediated inhibition of TNF-α,
IFN-α2, and IFN-β expression in RVFV infected MDM's. It was noted
that several cytokines were activated by infection with gamma irradi-
ated viruses. This non-specific activation (i.e., did not require viral
gene expression or replication) could be secondary to the presence
of viral RNA and/or protein in these inoculates or could represent
activation by factors that were carried over in the supernatants dur-
ing virus preparation. It is well known that surrogates for viral RNA
such as poly I-C can activate a cytokine response in exposed cells, so
these results were not surprising. However, it was quite striking
that all of the non-specific activations were significantly diminished
by the presence of the NSs protein in cells infected with WT virus.
The NSs protein led to a striking, generalized down-regulation of all
of the studied cytokines.

IFN-α2, IFN-β and TNF-α were elevated only in cells that were
productively infected with ΔNSs virus. Expression of these cytokines
required active viral transcription and/or replication. The RIG-I-like
RNA helicases, RIG-I and MDA-5, are cytoplasmic viral RNA detector
molecules that recognize ssRNA containing a 5′ triphosphate and
dsRNA respectively (Paul, 2008). In one study, RIG-I recognized the
5′ triphosphate of a transfected RVFV genome and this led to down-
stream activation of the IFN-β promoter (Habjan et al., 2008a) This
intracellular molecular sensor would be activated during ΔNSs infec-
tion of macrophages and initiate the signaling cascade that leads to
IRF and NFκB activation and Type 1 IFN and TNF-α transcription
respectively. Our findings are consistent with previously published
results that demonstrate the importance of the NSs protein in inhibi-
tion of Type 1 IFN's in RVFV infected cells and animals. However, the
finding of TNF-α inhibition by NSs is novel, and would be expected
given our knowledge of the signaling mechanisms involved during
viral infections.

Previous studies of other hemorrhagic fever viruses such as Ebola
virus and CCHF virus have demonstrated release of pro-inflammatory
cytokines in in vitro cell culture and in animalmodels and have reported
an association between a pro-inflammatory response and increased
fatality, when examining clinical specimens (Connolly-Andersen et al.,
2009; Ergonul et al., 2006; Gupta et al., 2001; Hutchinson and Rollin,
2007; Papa et al., 2006; Stroher et al., 2001; Villinger et al., 1999). In
contrast, Lassa virus appears to down-regulate the immune response;
macrophages and dendritic cells are not activated by infection nor do
they produce inflammatory cytokines when infected (Baize et al.,
2004; Lukashevich et al., 1999). Additionally, activation of dendritic
cells or macrophages by poly I-C, LPS or IFN-α prior to infection led to
down-regulation of Lassa virus replication (Baize et al., 2006) and we
have seen similar results with RVFV (data not shown). In animal studies
done in cynomolgus macaques, survival from Lassa virus infection was
associated with lower viral loads, faster antibody response, activation
of an early type I IFN response, high activatedmonocyte counts and cir-
culating activated T cells (Baize et al., 2009). In clinical samples from
Lassa virus infected patients it has been reported that there are lower
levels of the pro-inflammatory cytokines IL-8 and IP-10 in fatal cases
(Mahanty et al., 2001). Taken together these data support the idea
that a critical part of the pathogenesis of Lassa virus is preventing the
activation of the immune response. It would follow that survival rates
are higher in individuals who can activate this response despite virally
mediated inhibition. The data that we have presented here using sam-
ples from human RVFV cases demonstrated a similar phenomenon,
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where survival is associated with a robust pro-inflammatory cytokine
response.

Our data demonstrating an association between pro-inflammatory
cytokines and human survival during RVFV infection is limited by the
fact that we only have data for 6 fatal cases. Unfortunately, these types
of samples are very difficult to obtain. However, it is striking that we
found statistical significance given that our samples were obtained
from 1 to 14 days post onset of symptoms. There was no significant dif-
ference between the time of presentation of the fatal vs nonfatal cases,
(mean of 4.8 days vs 3.75 days; p=0.41) lending even more credence
to our data. All of our cases clearly represented severe disease since
they came to the attention of medical personnel and exhibited derange-
ment in their laboratory parameters. We suspect that if we were able to
obtain data frommild cases and compare them to severe cases, the cyto-
kine effects that we have seen would be even more pronounced.

Elucidating the factors that determinewhy some patients are able to
mount a pro-inflammatory response and survive while others do not
remains an area for future study. Genetic heterogeneity as the basis of
differential susceptibility to RVFV infection has been well established
in the rat and mouse model (Anderson et al., 1987; Anderson et al.,
1991; do Valle et al., 2010; Peters and Slone, 1982; Ritter et al., 2000).
Variable expression of interferon regulated genes were demonstrated
recently inmouse embryo fibroblasts (MEFs) from BALB/cByJ mice ver-
sus the more susceptible MBT/Pas mouse (do Valle et al., 2010). In this
study, the authors also report increased expression of Ifnb1 and Ifna4
transcripts upon infection of MEF's with a ΔNSs virus as compared to
aWT virus. Theywere examining RNA at very early time points in infec-
tion (b9 h) and this might explain why they were able to see some
expression of Ifn transcripts in cells infected with WT virus. The
known heterogeneity of response to infection with RVFV in humans
and animals is consistent with the heterogeneity of response that we
saw amongst our four donors. One might predict that donor B, the
donorwith the highest cytokine levels in our study,would have a better
outcome upon infection with RVFV than the other donors.

In reality, it is most likely that a combination of genetic and environ-
mental factors are responsible for disease outcome. While we cannot
rule out a specific genetic predisposition to fatal disease in a small pro-
portion of the population, it ismore likely that a person's immune status
at the time of infection (e.g. concurrent infections, nutritional status,
stress level, etc.) is responsible for the lack of response that leads to a
fatal outcome. Wewould predict that early and vigorous medical inter-
vention, possibly targeting specific virulence factors, such as NSs, could
significantly improve disease outcomes by maximizing the response
potential of any given human genotype to viral infection.
Materials and methods

Virus and cells

All work with live virus was performed under BSL-4 conditions in a
positive pressure suit. RVFV ZH501 (Bird et al., 2007b) or RVFV ΔNSs
(Bird et al., 2008) were propagated in Vero E6 cells by infecting at an
MOI of 0.1. Supernatants were collected 3 or 4 days post infection, clar-
ified by centrifugation, aliquoted, and stored at−80 °C.

Peripheral blood mononuclear cell pheresis products were
obtained from healthy human donors at Emory Hospital. Pheresis
products were diluted 1:1 with PBS (without calcium or magnesium),
layered onto Histopaque (Sigma) or Ficoll-Paque (GE Healthcare),
and mononuclear cells were purified per the manufacturer's instruc-
tions. After purification, cells were washed several times in PBS and
resuspended in MACS buffer (Miltenyl Biotech). Magnetically coupled
CD14 antibodies (Miltenyl Biotech) were used to selectively purify
the CD14 positive cells per the manufacturer's instructions. CD14 pos-
itive cells were stored at −80 °C in freezing medium (90% FBS, 10%
DMSO) until use.
Infections

CD14 positive cells were seeded onto 24 well plates in complete
media (RPMI with 5% FBS, 100 U/mL of penicillin, 100 μg/mL of strepto-
mycin, and 2 mM L-glutamine), and allowed tomature to macrophages
by 5 days of adherence in culture. Cells were re-fed with fresh media
every 2 days. Cells were then infected at an MOI of 5 with either
ZH501, ΔNSs, gamma irradiated viruses (γ-ZH501 or γ-ΔNSs) that
were inactivated by irradiation with 5×106 rads, or mock infected
with conditionedmedia. After allowing 1 h for adsorption, the inoculum
was removed, cells were washed 3× with PBS, and then re-fed with
completemedia. At defined times post infection, supernatantswere col-
lected, centrifuged to pellet any debris, and stored at−80 °C for future
analysis. Cells were lysed in NA lysis buffer (ABI) for RNA purification
and stored at −80 °C until purification was performed.

Plaque assays

Vero E6 cells were plated onto 6 well plates at a density of 70%. The
following day, supernatants were diluted serially in complete media
and 200 μl of each dilution was placed per well in duplicate. Inocula
were allowed to adsorb for 1 h with rocking every 15 min to prevent
drying. Each well was then overlaid with 3 mL of overlay media (0.6%
Seakem ME agarose, 1× EMEM, 10% FBS, 100 U/mL of penicillin,
100 μg/mL of streptomycin, and 2 mM L-glutamine) and incubated at
37 °C. After 3 days, cells were fixed in 10% formalin, agarose was
removed and monolayers were stained with crystal violet and washed
in PBS. Plaques were counted on a white light trans-illuminator.

Real time PCR

RNA was purified from cells that had been lysed in NA lysis buffer
(ABI) according to the manufacturer's instructions. Ten microliters of
total RNA was used for an 18S assay (ABI) that allowed for normaliza-
tion between samples. Twenty microliters of RNA was used in a RVFV
assay that has been previously described (Bird et al., 2007a). Reactions
were performed on an ABI 7500 real time PCR machine.

Cytokine assays

MDM-culture supernatants were gamma irradiated (5×106 rads)
to inactivate infectious materials prior to cytokine analysis. Cytokine
assays were performed in duplicate according to the manufacturer's
instructions (Millipore-MilliplexMAP Kit) and analyzed on a Luminex
200 IS platform.

ELISA

The IFN-β ELISAwas performed on the same supernatants thatwere
used in the Luminex assays and according to manufacturer's instruc-
tions (Invitrogen).
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