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Abstract

In this paper an infinite dimensional generalized Lagrange multipliers rule for convex optimization prob-
lems is presented and necessary and sufficient optimality conditions are given in order to guarantee the
strong duality. Furthermore, an application is presented, in particular the existence of Lagrange multipliers
associated to the bi-obstacle problem is obtained.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The convex optimization problem we are concerned with is the following.
Let X be a linear topological space, let Y be a real normed space ordered by a convex cone C

and let Z be a real normed space. Let S be a convex subset of X and let f :S → R be a given
functional and let g :S → Y be a given mapping and h :S → Z be an affine-linear mapping.
Setting

K = {
x ∈ S: g(x) ∈ −C, h(x) = θZ

}
, (1)

where θZ is the zero element in the space Z, we consider the optimization problem

“find x0 ∈ K such that f (x0) = min
x∈K

f (x)” (2)
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and, as usual, we call its Lagrange dual problem the problem

max
u∈C∗, v∈Z∗ inf

x∈S

{
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉}

(3)

where

C∗ = {
u ∈ Y ∗: 〈u,y〉 � 0, ∀y ∈ C

}
is the dual cone of C.

In papers [22,15,2], the authors give sufficient conditions in order to have that the strong
duality between a convex optimization problem in an infinite dimensional space and its Lagrange
dual problem is guaranteed, i.e., the extremal values of the two problems are equals.

It is worth remarking that these usual conditions use concepts of interior, core, intrinsic core
or strong quasi-relative interior which require the nonemptiness of the ordering cone which de-
fines the cone constraints in convex optimization and variational inequalities. Since many infinite
dimensional equilibrium problems have ordering cone empty, these usual conditions cannot be
used to guarantee the strong duality. This is the case of all optimization problems or variational
inequalities connected with network equilibrium problems, the obstacle problems, the elastic
plastic torsion problems (see [1,5–9,11–14,16,19,20,23]) which use positive cones of Lp(Ω) or
Sobolev spaces. Recently, in [9,8,10,18] the authors overcome this important difficulty by intro-
ducing a condition called Assumption S which ensures the strong duality.

Assumption S is the following. Firstly, we recall the concept of tangent cone.
Given a point x ∈ X and a subset C of X, the set

TC(x) =
{
h ∈ X: h = lim

n→∞λn(xn − x), λn ∈ R and λn > 0, ∀n ∈ N,

xn ∈ C, ∀n ∈ N and lim
n→∞xn = x

}
is called the tangent cone to C at x. Of course, if TC(x) 	= ∅, then x ∈ clC. If x ∈ clC and C is
convex, then we have

TC(x) = cl cone
(
C − {x}),

where

cone(C) = {λx: x ∈ C, λ ∈ R, λ � 0}
and cl denotes the closure.

Definition 1. Given three functions f , g, h and a set K as in (1), we say that Assumption S is
fulfilled at a point x0 ∈ K if and only if

TM̃(0, θY , θZ) ∩ ]−∞,0[ × {θY } × {θZ} = ∅, (4)

where

M̃ = {(
f (x) − f (x0) + α,g(x) + y,h(x)

)
: x ∈ S \ K, α � 0, y ∈ C

}
.
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A clear geometrical meaning of Assumption S is that the tangent cone to the subset M̃ of
R×Y ×Z at the point (0, θY , θZ) does not contain ]−∞,0[×{θY }×{θZ}. M̃ is a particular type
of conic extension of the image of the optimization problem (2) in the image space R × Y × Z.
From an analytic point of view the meaning of Assumption S is that f (xn) − f (x0) + αn, with
αn � 0 for all n ∈ N, positively converges to zero when xn does not belong to K but the limits
of the constraint sequences λn(g(xn) + yn) and λn(h(xn)) with yn ∈ C and λn > 0 for all n ∈ N,
vanish. Then Assumption S essentially required to show that a particular limit is nonnegative.
After all the calculus of a limit could not be an exorbitant price to pay considering the importance
to have a necessary and sufficient condition for the strong duality.

Now, we recall the main theorem on strong duality theory.

Theorem 1. (See [10].) Assume that the functions f :S → R, g :S → Y are convex and that
h :S → Z is an affine-linear mapping. Assume that Assumption S is fulfilled at the optimal so-
lution x0 ∈ K to (2). Then also problem (3) is solvable and if u ∈ C∗, v ∈ Z∗ are the optimal
solutions to (3), we have 〈

u,g(x0)
〉 = 0

and the optimal values of the two problems coincide, namely

f (x0) = max
u∈C∗, v∈Z∗ inf

x∈S

{
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉}

.

Assumption S is also a necessary condition for the strong duality, in fact the following corol-
lary holds.

Corollary 1. If the strong duality between problems (2) and (3) holds, then Assumption S is
fulfilled.

Proof. See Corollary 3.1 of [3]. �
An important consequence of the strong duality is the usual relationship between a saddle

point of the so-called Lagrange functional

L(x,u, v) = f (x) + 〈
u,g(x)

〉 + 〈
v,h(x)

〉
, ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗,

and the solution to (2) and (3). In fact one has the following theorem.

Theorem 2. (See [8] and [9].) Let the assumptions of Theorem 1 be fulfilled. Then x0 ∈ K is an
optimal solution to problem (2) if and only if there exist u ∈ C∗ and v ∈ Z∗ such that (x0, u, v)

is a saddle point of the Lagrangean functional, namely

L(x0, u, v) � L(x0, u, v) � L(x, u, v), ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗

and, moreover, it results that 〈
u,g(x0)

〉 = 0.
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In Section 2 of this paper we investigate a generalized Lagrange multipliers rule for the op-
timization problem (2) and formulate a multiplier rule as necessary and sufficient optimality
conditions.

In details we will prove the following theorem.

Theorem 3. Let X be a linear topological space, let Y be a real normed space ordered by a
convex cone C and let Z be a real normed space. Let S be a convex subset of X and let f :S → R

be a given convex functional and let g :S → Y be a given convex mapping and h :S → Z be an
affine-linear mapping. Assume that f , g, h have a directional derivative at x0 ∈ K solution to
problem (2) in every direction x − x0 with arbitrary x ∈ S. Moreover assume that Assumption S
is fulfilled at the minimal point x0 ∈ K . Then there exist u ∈ C∗, v ∈ Z∗ such that

f ′(x0) + u
(
g′(x0)

) + v
(
h′(x0)

)
(x − x0) � 0, ∀x ∈ S (5)

and

u
(
g(x0)

) = 0. (6)

Vice versa, if (5) and (6) hold, then x0 is the minimal solution of problem (2) and Assumption S
is verified.

It is worth to compare Theorem 3 with well-known results presented in the literature, as,
for example, with Theorem 5.3 and Corollary 5.4 of [17] for the necessary conditions and with
Theorem 5.14 of [17] for the sufficient conditions. In fact, let us observe that our main result,
Theorem 3, generalize Theorem 5.3 of [17], with regard to the case when h is an affine-linear
mapping. Our assumptions are very general and the Kurcyusz–Robinson–Zowe regularity con-
dition (see [21] and [25]):(

g′(x0)

h′(x0)

)
cone

(
S − {x0}

) + cone

(
C + {g(x0)}

{θZ}
)

= Y × Z,

in our theorem, is replaced by Assumption S.
Finally, Section 3 is devoted to the application of Assumption S to the study of the bi-obstacle

problem.

2. Proof of Theorem 3

Let us start remarking that, in virtue of Theorems 1 and 2, there exist u ∈ C∗, v ∈ Z∗ solutions
to dual problem (3) and one has that 〈

u,g(x0)
〉 = 0

and

f (x0) = max∗ ∗ inf
{
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉}

.

u∈C ,v∈Z x∈S
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Moreover, setting

L(x,u, v) = f (x) + 〈
u,g(x)

〉 + 〈
v,h(x)

〉
, ∀x ∈ S,∀u ∈ C∗,∀v ∈ Z∗,

it results that (x0, u, v) is a saddle point of the Lagrangean functional, namely

L(x0, u, v) � L(x0, u, v) � L(x, u, v), ∀x ∈ S,∀u ∈ C∗,∀v ∈ Z∗. (7)

Let us consider now the right-hand side of (7), we get

f (x0) + 〈
u,g(x0)

〉 + 〈
v,h(x0)

〉
� f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉
, ∀x ∈ S.

Taking into account that 〈u,g(x0)〉 = 0 and h(x0) = 0, we obtain

f (x) + 〈
u,g(x)

〉 + 〈
v,h(x)

〉
� f (x0), ∀x ∈ S.

So we have that x0 is a minimal point of functional f (x) + 〈u,g(x)〉 + 〈v,h(x)〉 in S.
In virtue of well-known theorems (see for example Theorem 3.8 of [17]), since the functional

f (x) + 〈u,g(x)〉 + 〈v,h(x)〉 has directional derivative at x0 in every direction x − x0 with arbi-
trary x ∈ S, one has the thesis(

f ′(x0) + 〈
u,g′(x0)

〉 + 〈
v,h′(x0)

〉)
(x − x0) � 0, ∀x ∈ S.

Vice versa, let us assume that (5) and (6) hold. The functional f (x)+〈u,g(x)〉+ 〈v,h(x)〉, in
virtue of assumptions on f , g, h, u, v, is convex. In fact, f (x) is a convex functional and v(h(x))

is affine because v is linear and h is an affine-linear mapping. Moreover g is a convex mapping
with respect to the ordering cone C, namely ∀x, y ∈ S, ∀λ,μ ∈ R one has

g(λx + μy) − (
λg(x) + μg(y)

) ∈ −C.

Since u ∈ C∗, we get

u
(
g(λx + μy) − (

λg(x) + μg(y)
))

� 0.

Hence, it follows that u(g(x)) is convex, because

u
(
g(λx + μy)

)
� u

(
λg(x) + μg(y)

) = λu
(
g(x)

) + μu
(
g(y)

)
.

In virtue of Theorem 3.8, case b, of [17], we have that x0 is the minimal point of the functional
f (x) + 〈u,g(x)〉 + 〈v,h(x)〉, namely:

f (x0) + 〈
u,g(x0)

〉 + 〈
v,h(x0)

〉 = min
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

.

In particular, from (6), for every x ∈ K , we get

f (x0) � f (x) + 〈
u,g(x)

〉 + 〈
v,h(x)

〉
� f (x), (8)

since 〈u,g(x)〉 � 0 and h(x) = 0 for all x ∈ K .
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Now, let us show that the strong duality and Assumption S hold true. In fact, from (8), one has

f (x0) � inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

. (9)

Furthermore, for all u ∈ C∗ and v ∈ Z∗ and taking into account that 〈u,g(x0)〉 � 0, we get

inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

� f (x0) + 〈
u,g(x0)

〉 + 〈
v,h(x0)

〉
� f (x0)

� inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

.

Then

sup
u∈C∗, v∈Z∗

inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

� f (x0) � inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

� sup
u∈C∗, v∈Z∗

inf
x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

,

namely

max
u∈C∗, v∈Z∗ inf

x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉) = inf

x∈S

(
f (x) + 〈

u,g(x)
〉 + 〈

v,h(x)
〉)

= f (x0) + 〈
u,g(x0)

〉 + 〈
v,h(x0)

〉
= f (x0) = min

x∈S
f (x).

So, the strong duality holds and in virtue of Corollary 1 also Assumption S is fulfilled. �
Corollary 2. If S = X, then

f ′(x0) + u
(
g′(x0)

) + v
(
h′(x0)

)
(h) = 0, ∀h ∈ X. (10)

Furthermore, if f and g are Gateaux differentiable on X, then we also get from (10) that

f ′(x0) + u
(
g′(x0)

) + v
(
h′(x0)

) = 0.

3. Application to the bi-obstacle problem

Let Ω ⊂ R
n be an open bounded domain, either convex or with C1,1 boundary. Let us consider

the linear elliptic operator of second order

Lu = −
n∑

i,j=1

∂

∂xj

(
aij

∂

∂xj

)
+

n∑
i=1

bi

∂u

∂xi

+ cu (11)

with associated bilinear form on H 1
0 (Ω) × H 1

0 (Ω) given by

a(u, v) =
∫ (

n∑
i,j=1

aij

∂u

∂xj

∂v

∂xi

+
n∑

i=1

bi

∂u

∂xi

v + cuv

)
dx (12)
Ω
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where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i,j=1

aij (x)ξiξj � a|ξ |2 a.e. on Ω, ∀ξ ∈ R
n,

a > 0, aij ∈ C1(Ω), bi ∈ L∞(Ω),

c > 0 such large that a(u,u) � α‖u‖2
H 1

0 (Ω)
, α > 0, ∀u ∈ H 1

0 (Ω).

Let ψ(x),ψ∗(x) ∈ H 1(Ω), ψ(x) � ψ∗(x) a.e. in Ω , ψ(x) � 0 � ψ∗(x) a.e. on ∂Ω and consider
the set K = {u ∈ L2(Ω): ψ � u � ψ∗ a.e. in Ω}.

Then the following result holds true (see [4, Corollaire I.1] and [24]).

Theorem 4. Assume that Lψ and Lψ∗ are measures with (Lψ − f )+ and (Lψ∗ − f )− ∈
Lp(Ω), p � 2. Then, for every f ∈ Lp(Ω) there exists u ∈ K ∩ W 2,p(Ω) ∩ H 1

0 (Ω) unique
solution to the variational inequality∫

Ω

Lu(v − u)dx �
∫
Ω

f (v − u)dx, ∀v ∈ K

such that

‖u‖W 2,p(Ω) � c
(‖f ‖Lp + ∥∥(Lψ − f )+

∥∥
Lp + ∥∥(

Lψ∗ − f
)−∥∥

Lp

)
.

Now, in this section, we would like to apply the infinite dimensional Lagrange multiplier rule
of the previous section to the variational inequality∫

Ω

(Lu − f )(v − u)dx � 0, ∀v ∈ K (13)

where

K = {
u ∈ L2(Ω): ψ � u � ψ∗ a.e. in Ω

}
.

Firstly, let us show that Assumption S is verified. To this aim let us rewrite variational inequal-
ity (13) as an optimization problem. Setting

f (v) =
∫
Ω

(Lu − f )(v − u)dx, ∀v ∈ K

we get

f (v) � 0, ∀v ∈ K

and u is a minimal point of the problem

minf (v) = f (u) = 0. (14)

v∈K
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We can show the following lemma.

Lemma 1. Let u ∈ K be a solution to variational inequality (13). Let us set

Ω+ = {
x ∈ Ω: u(x) = ψ(x)

}
,

Ω0 = {
x ∈ Ω: ψ(x) < u(x) < ψ∗(x)

}
,

Ω− = {
x ∈ Ω: u(x) = ψ∗(x)

}
.

Then one has

Lu − f � 0 a.e. in Ω+,

Lu − f = 0 a.e. in Ω0,

Lu − f � 0 a.e. in Ω−.

Proof. Let us observe that we have

f (v) =
∫
Ω

(Lu − f )(v − u)dx

=
∫

Ω+

(Lu − f )(v − ψ)dx +
∫
Ω0

(Lu − f )(v − u)dx

+
∫

Ω−

(Lu − f )
(
v − ψ∗)dx � 0, ∀v ∈ K.

Let us assume as test function:

v

⎧⎨⎩= w in Ω+: ψ < w < ψ∗, ∀w ∈ L2(Ω+),

= u in Ω0,

= ψ∗ in Ω−,

then

f (w) =
∫

Ω+

(Lu − f )(w − ψ)dx � 0, ∀ψ < w < ψ∗. (15)

Since w − ψ > 0 in Ω+ then Lu − f � 0 a.e. in Ω+. In fact, if, by contradiction, there exists a
subset E of Ω+ with m(E) > 0 such that

Lu − f < 0 in E,

choosing

w

{= ψ in Ω+/E,

= s in E: ψ < s < ψ∗
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we get

f (s) =
∫
E

(Lu − f )(s − ψ)dx < 0

that contradicts (15). Hence

Lu − f � 0 a.e. in Ω+.

In the same way we can show other cases. �
Now we prove the following lemma.

Lemma 2. Problem (14) verifies Assumption S at the minimal point u ∈ K .

Proof. In our case, we have

X = S = L2(Ω), Y = L2(Ω) × L2(Ω),

the dual cone of the ordering cone C of Y is C∗ = {(α,β) ∈ L2(Ω) × L2(Ω): α � 0, β � 0
a.e. in Ω} and g(v) = (g1(v), g2(v)) = (ψ − v, v − ψ∗). Of course in our case C = C∗. Further-
more

M̃ = {(
f (v) + α,ψ − v + y1, v − ψ∗ + y2

)
: v ∈ L2(Ω) \ K, α � 0, y = (y1, y2) ∈ C

}
and

TM̃(0, θL2(Ω), θL2(Ω))

=
{
y: y = lim

n→+∞λn

[(
f (vn) + αn,ψ − vn + y1n, vn − ψ∗ + y2n

) − (0, θL2(Ω), θL2(Ω))
]
,

with λn > 0, lim
n→+∞

(
f (vn) + αn

) = 0, lim
n→+∞λn(ψ − vn + y1n) = θL2(Ω),

lim
n→+∞λn

(
vn − ψ∗ + y2n

) = θL2(Ω), lim
n→+∞(ψ − vn + y1n) = θL2(Ω),

lim
n→+∞

(
vn − ψ∗ + y2n

) = θL2(Ω), vn ∈ L2(Ω) \ K, αn � 0, yn = (y1n, y2n) ∈ C
}
.

In order to achieve Assumption S, we must show that, if we have

(l, θL2(Ω), θL2(Ω))

=
(

lim
n→+∞λn

(
f (vn) + αn

)
, lim

n→+∞λn(ψ − vn + y1n), lim
n→+∞λn

(
vn − ψ∗ + y2n

))
belongs to T ˜(0, θL2(Ω), θL2(Ω)), then l must be nonnegative.
M
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It results

l = lim
n→+∞λn

(
f (vn) + αn

) = lim
n→+∞λn

[∫
Ω

(Lu − f )(vn − u)dx + αn

]

= lim
n→+∞λn

[ ∫
Ω+

(Lu − f )(vn − ψ)dx +
∫
Ω0

(Lu − f )(vn − u)dx

+
∫

Ω−

(Lu − f )
(
vn − ψ∗)dx + αn

]

= lim
n→+∞λn

[ ∫
Ω+

(Lu − f )(vn − ψ − y1n) dx +
∫

Ω+

(Lu − f )y1n dx

+
∫

Ω−

(Lu − f )
(
vn − ψ∗ + y2n

)
dx +

∫
Ω−

(Lu − f )(−y2n) dx + αn

]
.

Taking into account that

lim
n→+∞

∫
Ω+

(Lu − f )λn(vn − ψ − y1n) dx = 0,

lim
n→+∞

∫
Ω−

(Lu − f )λn

(
vn − ψ∗ + y2n

)
dx = 0

and

(Lu − f )λny1n � 0 in Ω+, (Lu − f )λn(−y2n) � 0 in Ω−,

and αn � 0, it follows that l � 0. Hence Assumption S holds. �
Since the other assumptions, required by Theorem 3 and Corollary 2, are fulfilled, then there

exists (λ,μ) ∈ C∗ such that:

(i)
∫
Ω

λ(ψ − u)dx = 0 ⇔ λ(ψ − u) = 0 a.e. in Ω

and ∫
Ω

μ
(
u − ψ∗)dx = 0 ⇔ μ

(
u − ψ∗) = 0 a.e. in Ω,

(ii) (Lu − f ) − λ + μ = 0 a.e. in Ω.
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In particular, we can obtain explicitly the values of Lagrangean multipliers λ and μ. In fact,
when λ > 0 one has u = ψ , μ = 0 and λ = Lψ − f . Whereas, when μ > 0 one has u = ψ∗,
λ = 0 and μ = −(Lψ∗ − f ).
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