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Abstract

While parametric solutions of the diophantine equation
∑s

i=1 x4
i

= ∑s
i=1 y4

i
are known for

any integral value ofs �2, the complete solution in integers is not known for any value ofs.

In this paper, we obtain the complete solution of this equation whens�13.
© 2004 Elsevier Inc. All rights reserved.
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Parametric solutions of the quartic diophantine equation

s∑
i=1

x4
i =

s∑
i=1

y4
i (1)

have been obtained whens = 2 [1, 3, p. 201, 4]as well as whens > 2 [2, p. 653–657].
The complete solution of (1) has, however, not been obtained for any value ofs. If
{Xi, i = 1, 2, . . . , s}, {Yi, i = 1, 2, . . . , s} is an integer solution of (1) such that
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the sets{X4
i } and {Y 4

i } are not disjoint, we may, by cancellation of common terms in
the two sets, reduce this solution of (1) to a solution of the equation

r∑
i=1

x4
i =

r∑
i=1

y4
i (2)

with r < s. A solution of (1) which cannot be so reduced will be considered as a non-
trivial solution of (1). Further, any integer solution{Xi, i = 1, 2, . . . , s}, {Yi, i =
1, 2, . . . , s} of (1) is called a primitive solution if gcd(X1, X2, . . . , Xs, Y1, Y2, . . . ,

Ys) = 1. In this paper, we obtain a non-trivial primitive parametric solution of (1) for
any arbitrarys�3, and we will show that this solution gives the complete non-trivial
primitive solution of (1) for any integers�13. We present this parametric solution
in two theorems, the first theorem gives the solution in terms of parameters satisfying
certain linear conditions while the second theorem gives the solution explicitly in terms
of arbitrary parameters.

Theorem 1. Whens�13, the complete non-trivial primitive integral solution of(1) is
given by

�xi = �1i{(�i + �i )u + �iv}, i = 1, 2, . . . , s,

�yi = �2i{(−�i + �i )u + �iv}, i = 1, 2, . . . , s,
(3)

where
(i) �i , i = 1, 2, . . . , s, are arbitrary integers, not all zero;

(ii) �i , i = 1, 2, . . . , s, are any integers satisfying the linear condition

s∑
i=1

�3
i �i = 0; (4)

(iii) �i , i = 1, 2, . . . , s, are any integers satisfying the linear condition

s∑
i=1

�2
i �i�i = 0; (5)

(iv) �1i and �2i , i = 1, 2, . . . , s, are either+1 or −1;
(v) if

∑s
i=1(�

2
i + �2

i )�i�i �= 0, then u = − ∑s
i=1(�

2
i + 3�2

i )�i�i and v = ∑s
i=1(�

2
i +

�2
i )�i�i; if

∑s
i=1(�

2
i +�2

i )�i�i = 0 and
∑s

i=1(�
2
i +3�2

i )�i�i �= 0 thenu = 1, v = 0;
if

∑s
i=1(�

2
i +�2

i )�i�i = 0 and
∑s

i=1(�
2
i +3�2

i )�i�i = 0 then u andv are arbitrary
integers;

(vi) and � is an integer so chosen thatgcd(x1, x2, . . . , xs, y1, y2, . . . , ys) = 1.
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Proof. To solve (1), we substitute

xi = (�i + �i )u + �iv, i = 1, 2, . . . , s,

yi = (−�i + �i )u + �iv, i = 1, 2, . . . , s,
(6)

in (1) which reduces, on simplification, to

u4 ∑s
i=1(�

2
i + �2

i )�i�i + u3v
∑s

i=1(�
2
i + 3�2

i )�i�i

+3u2v2 ∑s
i=1 �2

i �i�i + uv3 ∑s
i=1 �3

i �i = 0.
(7)

We now choose�i , i = 1, 2, . . . , s, as any integers satisfying the linear condition
(4), and thereafter, we choose�i , i = 1, 2, . . . , s, as any integers satisfying the linear
condition (5) when (7) reduces to the equation

u3

{
u

s∑
i=1

(�2
i + �2

i )�i�i + v

s∑
i=1

(�2
i + 3�2

i )�i�i

}
= 0. (8)

Now it is readily seen that with the values ofu andv given under the conditions stated
in the theorem, Eq. (8) is satisfied, and this leads to the primitive parametric solution
(3) of (1). This solution is non-trivial whens�3.

We will now show that (3) gives the complete non-trivial primitive solution of (1)
when s�13. For this, we will show that there exist suitable integer values of the pa-
rameters�i , �i , �i , �1i , �2i , such that with these values of the parameters, the solution
(3) generates any arbitrary non-trivial primitive integer solution of (1).

Let xi = �i , i = 1, 2, . . . , s, yi = �i , i = 1, 2, . . . , s be an arbitrary non-trivial
primitive solution of (1) so that

s∑
i=1

�4
i =

s∑
i=1

�4
i . (9)

It follows from (9) that if we takeXi = �1i�i , Yi = �2i�i , where, for eachi, �1i , �2i

take the values+1 or −1, then

s∑
i=1

X4
i =

s∑
i=1

Y 4
i . (10)

At present we assume that with a suitable choice of values of�1i and �2i , there exist
integers�′

i , not all zero, such that

s∑
i=1

(X2
i − Y 2

i )�′2
i = 0, (11)
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s∑
i=1

(Xi − Yi)�
′3
i = 0 (12)

and we choose

�′
i = m(Xi − Yi), i = 1, 2, . . . , s,

�′
i = m(Xi + Yi − �′

i ), i = 1, 2, . . . , s,
(13)

wherem is an arbitrary non-zero integer. It is easily verified that the integers�′
i , �′

i , �′
i ,

i = 1, 2, . . . , s satisfy the conditions

s∑
i=1

�′3
i �′

i = 0, (14)

s∑
i=1

�′2
i �′

i�
′
i = 0. (15)

From (13) we get,

�′
i + �′

i + m�′
i = 2mXi, i = 1, 2, . . . , s,

−�′
i + �′

i + m�′
i = 2mYi, i = 1, 2, . . . , s,

(16)

so it follows from (10) that

s∑
i=1

(�′
i + �′

i + m�′
i )

4 −
s∑

i=1

(−�′
i + �′

i + m�′
i )

4 = 0 (17)

and, in view of the conditions (14) and (15), the relation (17) reduces to

s∑
i=1

(�′2
i + �′2

i )�′
i�

′
i = −m

s∑
i=1

(�′2
i + 3�′2

i )�′
i�

′
i = mk. (18)

As we have chosen�′
i , �′

i , �′
i , i = 1, 2, . . . , s so as to satisfy all the conditions

stipulated in the theorem, when we assign to the parameters�i , �i , �i , the values
�′

i , �′
i , �′

i , i = 1, 2, . . . , s respectively, (3) generates a solution of (1). There are now
two possibilities:

(i) if k �= 0, according to the solution in the theorem, we have to takeu = k, v = mk,

so that using the relations (16), we get from (3),

�xi = 2�1imkXi, i = 1, 2, . . . , s,

�yi = 2�2imkYi, i = 1, 2, . . . , s
(19)
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and taking� = 2mk, we finally get

xi = �i , i = 1, 2, . . . , s,

yi = �i , i = 1, 2, . . . , s.
(20)

(ii) if k = 0, thenu and v are arbitrary integers, hence we may takeu = 1, v = m,

and again using the relations (16), we get from (3),

�xi = 2�1imXi, i = 1, 2, . . . , s,

�yi = 2�2imYi, i = 1, 2, . . . , s,
(21)

so that on taking� = 2m, we finally get (20). Thus in both cases the assigned values
of the parameters generate any arbitrarily chosen non-trivial primitive solution of (1).

It only remains to prove the existence of the integers�′
i , not all zero, satisfying

the relations (11) and (12). We consider (11) and (12) as simultaneous equations in
the variables�′

i and note that since the sets{X4
i } and {Y 4

i } are disjoint, the integers
(X2

i − Y 2
i ), (Xi − Yi), i = 1, 2, . . . , s, are all non-zero. Moreover, in view of (10),

all of the integers(X2
i − Y 2

i ) cannot be of the same sign. It therefore follows from
a theorem of Wooley[5, p. 319] that the Eqs. (11) and (12) will have a non-trivial
solution in integers ifs�13 and these equations have a non-trivial real solution. We
accordingly takes�13 and we will prove the existence of a non-trivial real solution
of the simultaneous equations (11) and (12).

Consider the integers(X2
i −Y 2

i ), i = 1, 2, . . . , s. We have already noted that all of
them cannot be of the same sign, and in fact, there is no loss of generality in taking
at least two of the integers(X2

i − Y 2
i ) as negative (if this is not so, we may simply

interchange the sets{Xi} and {Yi}). Thus, by suitably renamingXi, i = 1, 2, . . . , s,

and Yi, i = 1, 2, . . . , s, if necessary, we can always take

X2
1 − Y 2

1 > 0, X2
2 − Y 2

2 < 0, and X2
3 − Y 2

3 < 0.

There are now two possibilities:

(i) at least one of the integers(X2
i − Y 2

i ), i = 4, 5, . . . , s, is positive;
(ii) all of the integers(X2

i − Y 2
i ), i = 4, 5, . . . , s, are negative.

When (i) holds, we take�′
1 = (−X2

2 + Y 2
2 )1/2t, �′

2 = (X2
1 − Y 2

1 )1/2t, and we easily
choose non-zero real values of�′

i , i = 3, 4, . . . , s, such that
∑s

i=3(X
2
i −Y 2

i )�′2
i = 0, so

that (11) holds for arbitraryt, and substituting in (12) the values of�′
i , i = 1, 2, . . . , s,

already chosen, we get an equation int. With a suitable choice of values of�1i and�2i ,

this equation can be readily solved fort to get a real solution. Thus we can obtain real
values of�′

i satisfying (11) and (12), and it follows from the aforementioned theorem
of Wooley that there exist integral values of�′

i , not all zero, such that (11) and (12)
are satisfied.

When (ii) holds, we take�′
1 = −(X2 − Y2)

1/3t, �′
2 = (X1 − Y1)

1/3t, and we easily
choose non-zero real values of�′

i , i = 3, 4, . . . , s, such that
∑s

i=3(Xi −Yi)�
3
i = 0 so
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that (12) holds for arbitraryt, and substituting in (11) the values of�′
i , i = 1, 2, . . . , s,

already chosen, we get the following equation int:

{
(X2

1 − Y 2
1 )(X2 − Y2)

2/3 + (X2
2 − Y 2

2 )(X1 − Y1)
2/3

}
t2

= − ∑s
i=3(X

2
i − Y 2

i )�′2
i ,

(22)

where the right-hand side is positive since(X2
i − Y 2

i ) < 0 for i = 3, 4, . . . , s. Now

(X2
1 − Y 2

1 )3(X2 − Y2)
2 + (X2

2 − Y 2
2 )3(X1 − Y1)

2

= (X1 − Y1)
2(X2 − Y2)

2�(X1, X2, Y1, Y2),
(23)

where

�(X1, X2, Y1, Y2) = X4
1 − Y 4

1 + X4
2 − Y 4

2 + 2X1Y1(X
2
1 − Y 2

1 )

+2X2Y2(X
2
2 − Y 2

2 ).
(24)

Now X4
1 − Y 4

1 + X4
2 − Y 4

2 = − ∑s
i=3(X

4
i − Y 4

i ) > 0, and so with a suitable choice
of values of �1i and �2i , we can easily ensure that�(X1, X2, Y1, Y2) > 0. It now
follows that the left-hand side of (23) is positive. We note that ifa andb are two real
numbers,a3 + b3 > 0 implies thata + b > 0. The coefficient oft2 in the left-hand
side of (22) is the sum of two real numbers, and since the sum of the cubes of these
real numbers has been shown to be positive, the coefficient oft2 is also positive, and
hence (22) can be solved fort to get a real solution. Thus we can obtain real values
of �′

i satisfying (11) and (12) and, as before, it follows from the theorem of Wooley
that there exist integral values of�′

i , not all zero, such that (11) and (12) are satisfied.
This completes the proof of Theorem 1.�

The solution of (1) given by Theorem 1 involves the parameters�i , i = 1, 2, . . . , s

and �i , i = 1, 2, . . . , s which must satisfy the conditions (4) and (5). We can obtain
the complete solution of (1) explicitly in terms of independent parameters by suitably
expressing�i , �i in terms of arbitrary parameters such that the conditions (4) and (5)
are satisfied. This complete parametric solution of (1) is given in the next theorem.

Theorem 2. Whens�13, the complete non-trivial primitive integral solution of(1) is
given by

�xi = �1i{(�i + �i )u + �iv}, i = 1, 2, . . . , s,

�yi = �2i{(−�i + �i )u + �iv}, i = 1, 2, . . . , s,
(25)

where
(i) �i , i = 1, 2, . . . , s, are arbitrary integers such that�s �= 0;
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(ii) �i , �i are defined as follows:

�i = �3
s	i
, i = 1, 2, . . . , s − 1,

�s = −

∑s−1

i=1 �3
i 	i ,

�i = �i

∑s−1
i=1 �3

i 	i , i = 1, 2, . . . , s − 1,

�s = �s

∑s−1
i=1 �2

i 	i�i ,

(26)

where	i , i = 1, 2, . . . , s − 1, and 
 are arbitrary non-zero integers, and �i , i =
1, 2, . . . , s − 1, are arbitrary integers;

(iii) �1i and �2i , i = 1, 2, . . . , s, are either+1 or −1;
(iv) if

∑s
i=1(�

2
i + �2

i )�i�i �= 0, then u = − ∑s
i=1(�

2
i + 3�2

i )�i�i and v = ∑s
i=1(�

2
i +

�2
i )�i�i; if

∑s
i=1(�

2
i +�2

i )�i�i = 0 and
∑s

i=1(�
2
i +3�2

i )�i�i �= 0 thenu = 1, v = 0;
if

∑s
i=1(�

2
i +�2

i )�i�i = 0 and
∑s

i=1(�
2
i +3�2

i )�i�i = 0 then u andv are arbitrary
integers;

(v) and � is an integer so chosen thatgcd(x1, x2, . . . , xs, y1, y2, . . . , ys) = 1.

Proof. It is easily verified that�i , �i , �i as defined in this theorem satisfy the con-
ditions stipulated in Theorem 1, and hence the solution stated in Theorem 2 follows
immediately from the solution obtained in Theorem 1.

We will make use of the proof of Theorem 1 to establish that (25) gives the
complete non-trivial primitive solution of (1). Let xi = �i , i = 1, 2, . . . , s, yi =
�i , i = 1, 2, . . . , s be an arbitrary non-trivial primitive solution of (1) so that (9)
holds and we defineXi, Yi as before. We choose integers�′

i , not all zero, such that
(11) and (12) are satisfied. There is no loss of generality in assuming that�′

s �= 0. We
now choose

	′
i = Xi − Yi, i = 1, 2, . . . , s − 1,

�′
i = Xi + Yi − �′

i , i = 1, 2, . . . , s − 1,


′ = −(Xs − Ys),

(27)

and we denote by�′
i , �′

i , i = 1, 2, . . . , s the values of�i and�i given by (26) when
the parameters�i , 	i , �i , 
 are assigned the values�′

i , 	′
i , �′

i , 
′, respectively. Noting

that
∑s−1

i=1 �′3
i (Xi − Yi) = −�′3

s (Xs − Ys), we get

�′
i = −�′3

s (Xs − Ys)(Xi − Yi), i = 1, 2, . . . , s. (28)

Similarly,

�′
i = −�′3

s (Xs − Ys)(Xi + Yi − �′
i ), i = 1, 2, . . . , s − 1 (29)
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and

�s = �′
s

∑s−1
i=1 �′2

i 	′
i�

′
i

= �′
s

∑s−1
i=1 �′2

i (Xi − Yi)(Xi + Yi − �′
i )

(30)

and, in view of the relations (11) and (12), we get

�s = −�′3
s (Xs − Ys)(Xs + Ys − �′

s). (31)

From (28), (29) and (31), we get

�′
i = m(Xi − Yi), i = 1, 2, . . . , s,

�′
i = m(Xi + Yi − �′

i ), i = 1, 2, . . . , s,
(32)

wherem = −�′3
s (Xs−Ys) �= 0. These values of�′

i and�′
i are exactly the same as chosen

in (13) with a non-zero integral value ofm and it follows, as in the proof of Theorem
1, that our choice of parameters generates the arbitrarily chosen non-trivial primitive
solution of (1). This shows that the solution (25) indeed generates the complete solution
of Eq. (1).

Finally we note that since (1) is a homogeneous equation, any rational solution of
(1) leads, on clearing denominators, to a solution in integers. It follows that, in either
of the solutions given by Theorem 1 or Theorem 2, if we take� to be an arbitrary
rational parameter, we get the complete solution of Eq. (1) in rational numbers when
s�13. �
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