Construction of Coreflectors

Kenji Nishida
Department of Mathematics, Hokkaido University, Sapporo, Japan
Communicated by P. M. Cohn

Received January 21, 1977

Introduction

Morita considered the construction of a reflector for the category of modules [6]. The purpose of this paper is to dualize some results of [6] and to construct the coreflectors for the category of modules.

The notions of V-dominant dimensions, for an injective module V, are introduced by 'Tachikawa [8] and are enlarged by Morita [5] for an arbitrary module V (cf. [3]). According to Morita [5], we say that a module X has V dominant dimension $\geqq n$, denoted V-dom. $\operatorname{dim} X \geqq n$, if there exists an exact sequence $0 \rightarrow X \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{n}$, where each X_{i} is isomorphic to a direct product of copies of V.

On the other hand, following Onodera [7], for modules U and Y, we say that Y has U-codominant dimension $\geqq n$, denoted U-cod. $\operatorname{dim} Y \geqq n$, if there exists an exact sequence $Y_{n} \rightarrow \cdots \rightarrow Y_{1} \rightarrow Y \rightarrow 0$, where each Y_{i} is isomorphic to a direct sum of copies of U.

Let A be a ring and. \mathscr{M}_{A} be the category of right A-modules. A full subcategory \mathscr{N} of \mathscr{M}_{A} is called a coreflective subcategory if there exists a functor $G: \mathscr{N} \rightarrow \mathscr{M}_{A}$ such that for every $X \in \mathscr{M}_{A}$ there exists a homomorphism $\pi(X): G(X) \rightarrow X$, and for every homomorphism $f: Y \rightarrow X$ with $Y \subseteq \mathcal{N}$ there exists a unique homomorphism $g: Y \rightarrow G(X)$ such that the following diagram is commutative

Then we call G a coreflector.

A reflective subcategory and a reflector are the dual of the above.
Let ${ }_{A} \mathscr{M}$ be the category of left A-modules and $V \in_{A} \mathscr{M}$. Let $\mathscr{D}(V)$ be the full subcategory of ${ }_{A} \mathscr{M}$ consisting of all left A-modules of V-dominant dimension $\geqq 2$. Then, under some conditions, Morita [6] showed that $\mathscr{D}(V)$ is a reflective subcategory with a suitable reflector. The class of modules, studied in [6], which give reflectors for $\mathscr{D}(V)$ includes, for example, injective modules and modules of type FI (see [5], for definition of a module of type FI).

Take $\mathcal{U} \in \mathscr{M}_{A}$. Let us denote by $\mathscr{C}(U)$ the full subcategory of \mathscr{M}_{A} consisting of all right A-modules of U-codominant dimension $\geqq 2$. Onodera [7] investigated properties of $\mathscr{C}(U)$ when U is projective and also studied the equivalences over $\mathscr{C}(U)$.

We set the assumption for U which is satisfied whenever U is projective or type FP (see [5], for definition of a module of type FP). Then, in Section 2 we show that $\mathscr{C}(U)$ is a coreflective subcategory with \tilde{F} its coreflector. Furthermore, we also construct coreflectors for modules of different type from the previous one in Section 5.

In Section 3 we investigate the conditions for $\tilde{F}=F$, where the definitions of \tilde{F} and F are seen in Section 1.

In [5] Morita constructed a module of type FI from a module of type FP by a suitable method. In Section 4 we construct a module V given in [6] from a module U given in Section 2 by the same way as in [5].

Throughout this paper all rings have an identity element and all modules are unital.

1. Preliminaries

Let A be a ring and U be a right A-module. Put $B=\operatorname{End}\left(U_{A}\right)$ and $C=\operatorname{End}\left({ }_{B} U\right)$. For any right A-module X we put;

$$
\begin{aligned}
& F(X)=\operatorname{Hom}_{A}(U, X) \otimes_{B} U_{A}, \\
& \lambda(X): F(X) \rightarrow X[f \otimes u \mapsto f u(f \in \operatorname{Hom}(U, X), u \in U)], \\
& \bar{F}(X)=\sum\{\operatorname{Im} \phi ; \phi \in \operatorname{Hom}(U, F(X)) \text { such that } \lambda(X) \phi=0\}, \\
& \tilde{F}(X)=F(X) / \tilde{F}(X), \\
& \eta(X): F(X) \rightarrow \tilde{F}(X) \text { a canonical projection, } \\
& \tilde{\lambda}(X): \tilde{F}(X) \rightarrow X \text { such that } \lambda(X)=\tilde{\lambda}(X) \eta(X) \text { (note that } \bar{F}(X) \subset \operatorname{Ker} \lambda(X)) \text {. }
\end{aligned}
$$

Let X, Y be right A-modules and $f: X \rightarrow Y$ be an A-homomorphism. Put $F(f)=\operatorname{Hom}\left(I_{U}, f\right) \otimes I_{U}: F(X) \rightarrow F(Y)$. Then the following diagram is commutative

Take any $x \in \bar{F}(X)$. Then we have $x=\phi u$ for some $u \in U$ and $\phi \in \operatorname{Hom}(U$, $F(X))$ such that $\lambda(X) \phi=0$. Put $\psi=F(f) \phi \in \operatorname{Hom}(U, F(X))$. Then we have $\lambda(Y) \psi=\lambda(Y) F(f) \phi=f \lambda(X) \phi=0 \quad$ and $\quad F(f) x=F(f) \phi u=\psi u$. Thus $F(f) x \in \bar{F}(Y)$. Therefore, there exists an A-homomorphism $\tilde{F}(f): \tilde{F}(X) \rightarrow \tilde{F}(Y)$ such that the diagram

$$
\begin{gathered}
F(X) \xrightarrow{F(f)} F(Y) \\
\eta(X) \downarrow \\
\tilde{F}(X) \xrightarrow{\tilde{F}(f)} \tilde{F}(Y) \downarrow \\
\tilde{F}(Y)
\end{gathered}
$$

is commutative. Hence we have:

Lemma 1.1. \tilde{F} is a covariant additive functor and $\tilde{\lambda}(X)$ is a natural homomorphism.

Proof. The first statement is almost clear. We have $f \tilde{\lambda}(X) \eta(X)=f \lambda(X)=$ $\lambda(Y) F(f)=\tilde{\lambda}(Y) \eta(Y) F(f)=\tilde{\lambda}(Y) F(f) \eta(X)$. Since $\eta(X)$ is an epimorphism, we have $f \tilde{\lambda}(X)=\tilde{\lambda}(Y) \tilde{F}(f)$. Thus $\tilde{\lambda}(X)$ is a natural homomorphism.

Proposition 1.2. If $Y \in \mathscr{M}_{B}$, then $Y \otimes_{B} U_{A} \in \mathscr{C}\left(U_{A}\right)$.
Proof. Let $\oplus B \rightarrow \oplus B \rightarrow Y \rightarrow 0$ be a free resolution of Y. Then we have an exact sequence $\oplus U \rightarrow \oplus U \rightarrow Y \otimes_{B} U \rightarrow 0$. Thus $Y \otimes_{B} U \in \mathscr{C}\left(U_{A}\right)$.

Corollary 1.3. $F(X) \in \mathscr{C}\left(U_{A}\right)$ for any $X \in \mathscr{M}_{A}$.
Proposition 1.4. $\quad U_{A}-\operatorname{cod} . \operatorname{dim} \bar{F}(X) \geqq 1$.
Proof. It is almost clear.
PROPOSITION 1.5. $\lambda\left(U^{n}\right): U^{n} \cong F\left(U^{n}\right), \tilde{F}\left(U^{n}\right) \cong F\left(U^{n}\right)$. If $X \cong \oplus U$, then $\lambda(X)$ is an epimorphism.

Proof. These follow from definitions.
Let $f \in \operatorname{Hom}\left(U^{n}, X\right)$. Put $\sigma^{n}(X) f=F(f) \lambda\left(U^{n}\right)^{-\mathbf{1}}: U^{n} \rightarrow F(X), \quad \tilde{\sigma}^{n}(X) f=$ $\tilde{F}(f) \eta\left(U^{n}\right) \lambda\left(U^{n}\right)^{-1}: U^{n} \rightarrow \tilde{F}(X)$. Then we have;

$$
\begin{aligned}
f & =\lambda(X) \sigma^{n}(X) f=\tilde{\lambda}(X) \tilde{\sigma}^{n}(X) f, \\
\tilde{\sigma}^{n}(X) f & =\eta(X) \sigma^{n}(X) f .
\end{aligned}
$$

Hence we have:

Proposition 1.6.

$$
\begin{aligned}
& \operatorname{Hom}\left(I_{U^{n}}, \lambda(X)\right) \sigma^{n}(X)=I_{H o m\left(U^{n}, X\right)} \\
& \operatorname{Hom}\left(I_{U^{n}}, \tilde{\lambda}(X)\right) \tilde{\sigma}^{n}(X)=I_{H o \mathrm{~m}\left(U^{n}, X\right)}
\end{aligned}
$$

Proof. Take $f \in \operatorname{Hom}\left(U^{n}, X\right)$. Then we have $\operatorname{Hom}(I, \lambda(X)) \sigma^{n}(X) f=$ $\lambda(X) \sigma^{n}(X) f=\lambda(X) F(f) \lambda\left(U^{n}\right)^{-1}=f \lambda\left(U^{n}\right) \lambda\left(U^{n}\right)^{-1}=f$.

The latter is obtained similarly.
Proposition 1.7. Let $f \in \operatorname{Hom}\left(U^{n}, X\right), h \in \operatorname{Hom}\left(U, U^{n}\right)$. Then we have $\sigma^{1}(X)(f h)=\left(\sigma^{n}(X) f\right) h$.

Proof. We have $\sigma^{1}(X)(f h)=F(f h) \lambda(U)^{-1}=F(f) F(h) \lambda(U)^{-1}=F(f)$ $\lambda\left(U^{n}\right)^{-1} \lambda\left(U^{n}\right) F(h) \lambda(U)^{-1}=\left(\sigma^{n}(X) f\right) h$.

2. COREFLECTOR \tilde{F}

Let $U \in \mathscr{M}_{A}$. Put $B=\operatorname{End}\left(U_{A}\right), C=\operatorname{End}\left({ }_{B} U\right), \phi: A \rightarrow C$ a canonical ring homomorphism. Now we assume the following condition.

Condition (*). There exists a subring R of C such that
(a) $\phi(A) \subset R \subset C$
(b) ${ }_{B} U_{R} \cong{ }_{B} U \otimes \otimes_{A} R_{R}$
(c) U_{R} is projective.

Let U_{A} be type FP or projective. If we put $R=C$ or A, then U_{A} satisfies (${ }^{*}$).
Lemma 2.1 (cf. [5, Lemma 3.1]). Let S, T be rings and ${ }_{S} G_{T}$ be an S-Tbimodule. Assume that G_{T} is finitely generated quasi-projective. Put

$$
\begin{aligned}
& P: \mathscr{M}_{T} \rightarrow \mathscr{M}_{S}, P(X)=\operatorname{Hom}_{T}(G, X), X \in \mathscr{M}_{T} \\
& Q: \mathscr{M}_{S} \rightarrow \mathscr{M}_{T}, Q(Y)=Y \otimes_{S} G, Y \in \mathscr{M}_{S}, \text { and } \\
& \Gamma(X): Q P(X) \rightarrow X, X \in \mathscr{M}_{T} \\
& \Delta(Y): Y \rightarrow P Q(Y), Y \in \mathscr{M}_{S}, \text { canonically. }
\end{aligned}
$$

Let U be a right T-module such that $\Gamma(U)$ is an isomorphism. Put $M=P(U)$. Then we have

$$
\begin{aligned}
& P: \mathscr{C}\left(U_{T}\right) \rightarrow \mathscr{C}\left(M_{S}\right), Q: \mathscr{C}\left(M_{S}\right) \rightarrow \mathscr{C}\left(U_{T}\right), \text { and } \\
& Q P=I \text { on } \mathscr{C}\left(U_{T}\right), P Q=I \text { on } \mathscr{C}\left(M_{S}\right)
\end{aligned}
$$

Proof. Since P and Q commute with direct sums and are right exact, the first of the lemma is easily obtained.

If $X \in \mathscr{C}\left(U_{T}\right)$, then there exists an exact sequence $Z_{2} \rightarrow Z_{1} \rightarrow X \rightarrow 0$ with each $Z_{i} \cong \oplus U$. Thus we have the following commutative diagram

with exact rows. Since each $\Gamma\left(Z_{i}\right)$ is an isomorphism, $\Gamma(X)$ is an isomorphism.
If $Y \in \mathscr{C}\left(M_{S}\right)$, then there exists an exact sequence $Y_{2} \rightarrow Y_{1} \rightarrow Y \rightarrow 0$ with each $Y_{i} \cong \oplus M . \cong \oplus P(U) \cong P(\oplus U)=P\left(X_{i}\right)$ with $X_{i} \cong \oplus U$, we have the following commutative diagram

with exact rows. Since each $P\left(\Gamma\left(X_{i}\right)\right) \Delta\left(P\left(X_{i}\right)\right)$ and $P\left(\Gamma\left(X_{i}\right)\right)$ are isomorphisms, each $\Delta\left(P\left(X_{i}\right)\right)$ is also an isomorphism. Hence $\Delta(Y)$ is an isomorphism. This completes the proof.

Now, if we put $S=A, T=R,{ }_{S} G_{T}={ }_{A} R_{R}$ in Lemma 2.1, then we have:
Lemma 2.2. If $X, X^{\prime} \in \mathscr{C}\left(U_{A}\right), f \in \operatorname{Hom}_{A}\left(X, X^{\prime}\right)$, then we have $X, X^{\prime} \in \mathscr{C}\left(U_{R}\right)$ and f is an R-homomorphism.

Proposition 2.3. $\quad U_{R}-\operatorname{cod} . \operatorname{dim} \bar{F}(X) \geqq 1$ for any $X \in \mathscr{M}_{A}$.
Proof. $F(X) \in \mathscr{C}\left(U_{A}\right)$ by Corollary 1.3. Since $U \in \mathscr{C}\left(U_{A}\right)$, each $g \in$ $\operatorname{Hom}_{A}(U, F(X)$) is an R-homomorphism by Lemma 2.2. Thus $\bar{F}(X)$ is an R-module. Hence $U_{R}-\operatorname{cod} . \operatorname{dim} \bar{F}(X) \geqslant 1$ by Proposition 1.4.

Lemma 2.4. $\tilde{F}(X) \in \mathscr{C}\left(U_{R}\right)$ for any $X \in \mathscr{M}_{A}$.
Proof. Consider the following diagram in \mathscr{M}_{R}

where row and column are exact and $Z \cong \oplus U$. Let $K=\operatorname{Ker} \eta(X) g=$ $g^{-1}(\bar{F}(X))$. We shall prove that U generates K. Take $x \in K$. Then $g x \in \bar{F}(X)$. By Proposition 2.3 there exist $h \in \operatorname{Hom}_{R}(U, F(X))$ and $u \in U$ such that $h u=g x$. Since U_{R} is projective, there exists $h^{\prime} \in \operatorname{Hom}_{R}(U, Z)$ such that $h=g h^{\prime}$. Thus $\operatorname{Im} h^{\prime} \subset K$ and $x-h^{\prime} u \in \operatorname{Ker} g$. There exist $h^{\prime \prime} \in \operatorname{Hom}_{R}(U, \operatorname{Ker} g)$ and $u^{\prime} \in U$ such that $h^{\prime \prime} u^{\prime}=x-h^{\prime} u$. Therefore, U generates K. Hence $\tilde{F}(X) \in \mathscr{C}\left(U_{R}\right)$.

In the following, we write $\sigma(X), \tilde{\sigma}(X)$ instead of $\sigma^{1}(X), \tilde{\sigma}^{1}(X)$, respectively.
Lemma 2.5. $\tilde{\sigma}(X): \operatorname{Hom}_{A}(U, X) \cong \operatorname{Hom}_{A}(U, \tilde{F}(X)), \quad \operatorname{Hom}\left(I_{U}, \tilde{\lambda}(X)\right):$ $\operatorname{Hom}_{A}(U, \tilde{F}(X)) \cong \operatorname{Hom}_{A}(U, X)$ for any $X \in \mathscr{M}_{A}$.

Proof. By Proposition 1.6 we need to show that $\tilde{\sigma}(X)$ is an epimorphism. Let $g \in \operatorname{Hom}(U, \tilde{F}(X))$. Then g is an R-homomorphism by Lemma 2.2. Consider the following diagram

Since U_{R} is projective, there exists $h \in \operatorname{Hom}(U, F(X))$ such that $g=\eta(X) h$. Put $f=\tilde{\lambda}(X) g$. We have $f=\lambda(X) h$. On the other hand, $\lambda(X)(h-\sigma(X) f)=0$ by $f=\lambda(X)(\sigma(X) f)$. Thus $\eta(X)(h-\sigma(X) f)=0$ by definition of $\eta(X)$. Therefore, we have $g=\eta(X) h=\eta(X)(\sigma(X) f)=\tilde{\sigma}(X) f$. Hence $\tilde{\sigma}(X)$ is an epimorphism.

Lemma 2.6. If $X \in \mathscr{M}_{A}, Y \in \mathscr{C}\left(U_{A}\right)$, then there exists a natural isomorphism $\operatorname{Hom}\left(I_{Y}, \tilde{\lambda}(X)\right): \operatorname{Hom}_{A}(Y, \tilde{F}(X)) \cong \operatorname{Hom}_{A}(Y, X)$.

Proof. Since $Y \in \mathscr{C}\left(U_{A}\right)$, there exists an exact sequence $Y_{2} \rightarrow Y_{1} \rightarrow Y \rightarrow 0$, where each Y_{i} is a direct sum of copies of U. Then we have a commutative diagram with exact rows;

By Lemma $2.5 \alpha_{1}, \alpha_{2}$ are isomorphisms. Thus $\operatorname{Hom}(I, \tilde{\lambda}(X))$ is an isomorphism.
Theorem 2.7. Let U be a right A-module which satisfies (*). Then $\mathscr{C}\left(U_{A}\right)$ is a coreflective subcategory of \mathscr{M}_{A} and \widetilde{F} is its coreflector.

Proof. Theorem follows from Lemma 2.6.

Corollary 2.8. $\tilde{\lambda}(X): \tilde{F}(X) \rightarrow X$ is an isomorphism if and only if $X \in \mathscr{C}\left(U_{A}\right)$.
Proof. If $\tilde{\lambda}(X)$ is an isomorphism, then $X \in \mathscr{C}\left(U_{A}\right)$ by Lemma 2.4.
Conversely, if $X \subset \mathscr{C}\left(U_{A}\right)$, then there exists $\psi \subset \operatorname{Hom}(X, \tilde{F}(X))$ such that $\tilde{\lambda}(X) \psi=I_{X}$ by Lemma 2.6. We have $\tilde{\lambda}(X)=I_{X} \tilde{\lambda}(X)=\tilde{\lambda}(X)(\psi \tilde{\lambda}(X))$. Thus $I_{\tilde{F}(X)}=\psi \tilde{\lambda}(X)$ by Lemma 2.6. Hence $\tilde{\lambda}(X)$ is an isomorphism.

3. CONDITIONS FOR $F=\tilde{F}$

For a right A-module U which satisfies $\left(^{*}\right)$, we easily get the following by Corollary 2.8 .

Proposition 3.1. Let $X \in \mathscr{M}_{A}$. Then we have $\lambda(X): X \cong F(X) \Leftrightarrow X \in \mathscr{C}\left(U_{A}\right)$ and $\tilde{F}(X)=F(X)$.

Now, we consider some conditions for $\tilde{F}(X)=F(X)$. Let U, F, \tilde{F}, etc. be the same as in Section 1. U does not satisfy $\left(^{*}\right)$ unless specifically stated.

Theorem 3.2. Consider the following conditions for $X \in \mathscr{M}_{A}$.
(a) $\tilde{F}(X)=F(X)$.
(b) $\operatorname{Hom}(I, \lambda(X)): \operatorname{Hom}_{A}(U, F(X)) \simeq \operatorname{Hom}_{A}(U, X)$.

(d) $\lambda(F(X)): F(F(X)) \cong F(X)$.
(e) $\quad \lambda\left(F^{i}(X)\right): F^{i}(X) \cong F^{i+1}(X)$ for some integer $\geqq 1$.
(f) $\quad \lambda\left(F^{i}(X)\right): F^{i}(X) \cong F^{i+1}(X)$ for all integer $\geqq 1$.

Then it holds that $(\mathrm{a}) \Leftrightarrow(\mathrm{b}),(\mathrm{b}) \Rightarrow(\mathrm{c}),(\mathrm{b}) \Rightarrow(\mathrm{d})$, and $(\mathrm{d}) \Leftrightarrow(\mathrm{e}) \Leftrightarrow$ (f). Furthermore, if U_{A} satisfies $\left({ }^{*}\right)$, then all the conditions are equivalent.

Proof. (a) \Leftrightarrow (b). Assume $F(X)=\tilde{F}(X)$. Since $\bar{F}(X)=0$, it holds that $f=0$ whenever $\lambda(X) f=0$ for any $f \in \operatorname{Hom}(U, F(X))$. This means that $\operatorname{Hom}(\mathrm{I}, \lambda(X))$ is monic. Hence $\operatorname{Hom}(I, \lambda(X))$ is an isomorphism by Proposition 1.6.

Conversely, consider an exact sequence $0 \rightarrow \operatorname{Hom}(U, \bar{F}(X)) \rightarrow \operatorname{Hom}(U, F(X))$ $\rightarrow \operatorname{Hom}(I, n(X)) \operatorname{Hom}(U, \tilde{F}(X))$. Then $\operatorname{Hom}(U, \bar{F}(X))=0$, since $\operatorname{Hom}(I, \eta(X))$ is monic by (b) and $\operatorname{Hom}(I, \lambda(X))=\operatorname{Hom}(I, \tilde{\lambda}(X)) \operatorname{Hom}(I, \eta(X))$. Hence by Proposition 1.4 $\tilde{F}(X)=0$, i.e., $F(X)=\tilde{F}(X)$.
(b) $\Rightarrow(c)$. By the above (b) implies (a). Hence (c) follows easily.
(b) \Rightarrow (d), (d) \Rightarrow (f), (f) \Rightarrow (e) are almost clear.
(e) \Rightarrow (d). We assume that $F^{i+1}(X) \cong F^{i+2}(X)$ for some integer $i \geqq 1$. Put $Y=F^{i}(X)$. Then $F(F(Y)) \cong F(Y)$. Thus $\bar{F}(Y)=0$, i.e., $F(Y)=\tilde{F}(Y)$. Since $Y \in \mathscr{C}\left(U_{A}\right)$, we have $Y \cong F(Y)$ by [7, Lemma 2]. Hence $F^{i}(X) \cong F^{i+1}(X)$. By repeating this process we finally obtain $F(F(X)) \cong F(X)$.

Now, we assume (${ }^{*}$) for U_{A}.
(c) \Rightarrow (a). Consider the following diagram;

Since $\tilde{\lambda}(X) \eta(X) F(\tilde{\lambda}(X))=\lambda(X) F(\tilde{\lambda}(X))=\tilde{\lambda}(X) \lambda(\tilde{F}(X))$, we have $\eta(X) F(\tilde{\lambda}(X))$ $=\lambda(\tilde{F}(X))$ by Lemma 2.6. On the other hand, $F(\tilde{\lambda}(X))$ is an isomorphism by Lemma 2.5. Thus we have (c) \Rightarrow (a).
(d) \Rightarrow (c). Consider the following diagram;

The two rows are exact, since U_{R} is projective. $\lambda(\bar{F}(X))$ is an epimorphism by Proposition 2.3. Thus, by a diagram chase, if $\lambda(F(X))$ is an isomorphism, then $\lambda(\tilde{F}(X))$ is, too. This completes the proof.

Theorem 3.3. Assume $\left(^{*}\right)$ for U_{A}. Let X_{A} be a factor module of U^{n} for some integer $n \geqq 1$. Then we have $\lambda(X): X \cong F(X)$ if and only if $X \in \mathscr{C}\left(U_{A}\right)$.

Proof. If $X \cong F(X)$, then clearly $X \in \mathscr{C}\left(U_{A}\right)$.
Conversely, we have an exact sequence $Z \rightarrow U^{n} \rightarrow X \rightarrow 0$ with $Z \cong \oplus U$. Since U_{R} is projective, we have the following commutative diagram with exact rows

By Proposition $1.5 \lambda(Z)$ is an epimorphism and $\lambda\left(U^{n}\right)$ is an isomorphism. Hence $\lambda(X)$ is an isomorphism.

Theorem 3.4. Assume (*) for U_{A}. If $F(X)$ is isomorphic to a factor module of U^{n} for some integer $n \geqq 1$, then $\tilde{F}(X)=F(X)$:

Proof. It is clear by Theorem 3.2 and 3.3.
Proposition 3.5. Consider the following conditions for $X \in \mathscr{M}_{A}$.
(a) There exists an epimorphism $g: U^{n} \rightarrow F(X)$ for some integer $n \geqq 1$.
(b) $\operatorname{Hom}_{A}(U, X)$ is a finitely generated B-module.
(c) There exist some integer $n \geqq 1$ and an A-homomorphism $\psi: U^{n} \rightarrow X$ such that, for every $f \in \operatorname{Hom}_{A}(U, X)$, there exists $h \in \operatorname{Hom}_{A}\left(U, U^{n}\right)$ with $f=\psi h$.

Then $(c) \Leftrightarrow(b) \Rightarrow(a)$. Furthermore, if U_{A} satisfies $\left({ }^{*}\right)$, then $(a) \Rightarrow(c)$ holds.
Proof. $\quad(c) \Rightarrow$ (b) and (b) \Rightarrow (a) are almost clear.
(b) $\Rightarrow(c)$. Let f_{1}, \ldots, f_{n} be B-generators for $\operatorname{Hom}(U, X)$. Define $\psi: U^{n} \rightarrow X$ with $\psi\left(u_{i}\right)=\sum f_{i} u_{i}$. Take any $f \in \operatorname{Hom}(U, X)$. Put $f=\sum f_{i} b_{i}\left(b_{i} \in B\right)$. Define $h \in \operatorname{Hom}\left(U, U^{n}\right)$ with $h u=\left(b_{i} u\right)$. Then we have $f=\psi h$.
(a) $\Rightarrow(c)$. Put $\psi=\lambda(X) g$. We have $f=\lambda(X)(\sigma(X) f)$ for any $f \in \operatorname{Hom}(U, X)$. By Lemma $2.2 \sigma(X) f$ is an R-homomorphism. Thus there exists $h \in \operatorname{Hom}\left(U, U^{n}\right)$ such that $\sigma(X) f=g h$, since U_{R} is projective. Hence $f=\lambda(X) g h=\psi h$.

Corollary 3.6. If U_{A} is projective, then all the conditions of Proposition 3.5 are equivalent to the following condition (d): There exists $f \in \operatorname{Hom}_{A}\left(U^{n}, X\right)$ such that $\operatorname{Im} \lambda(X)=\operatorname{Im} f$.

Proof. (a) \Rightarrow (d). Put $f=\lambda(X) g: U^{n} \rightarrow X$. Then we have (d).
(d) \rightarrow (c). Let $\psi \in \operatorname{Iom}\left(U^{n}, X\right)$ with $\operatorname{Im} \lambda(X)=\operatorname{Im} \psi$. For any $f \in \operatorname{Hom}(U$, $X)$, since $\operatorname{Im} f \subset \operatorname{Im} \lambda(X)=\operatorname{Im} \psi$ and U_{A} is projective, there exists $h \in \operatorname{Hom}(U$, U^{n}) such that $f=\psi h$.

Remark 1. By the above, if U_{A} is projective, then the existence of $g: U^{n} \rightarrow X \rightarrow 0$ (exact) means the existence of $g^{\prime}: U^{n} \rightarrow F(X) \rightarrow 0$ (exact).

Remark 2. As for 'I'heorem 3.3, Proposition 3.5, and Corollary 3.6, we can easily see from the proof that these statements hold whenever U_{A} is quasiprojective.

Theorem 3.7. Let X be a right A-module which satisfies (c) of Proposition 3.5. Then $\lambda(X)$ is a monomorphism if and only if U_{A} generates Ker ψ, where $\psi: U^{n} \rightarrow X$ is one which is given in (c) of Proposition 3.5.

Proof. Let $\psi\left(u_{i}\right)=\sum f_{i} u_{i}\left(f: \in \operatorname{Hom}_{A}(U, X) ; 1 \leqq i \leqq n\right)$. Define $\phi: U^{n} \rightarrow$ $F(X)$ with $\phi\left(u_{i}\right)=\sum f_{i} \otimes u_{i}$. Then $\psi=\lambda(X) \phi$. We shall prove $\operatorname{Ker} \phi=$
$\left\{\left(u_{1}, \ldots, u_{n}\right) ; u_{i}=\sum_{k} b_{i k} u_{k}^{\prime}\right.$ for some $u_{1}^{\prime}, \ldots, u_{p}^{\prime} \in U, b_{i k} \in B(1 \leqq i \leqq n ; 1 \leqq k \leqq$ p) such that $\sum_{i} f_{i} b_{i k}=0$ for every $\left.k\right\}$. We write K instead of the right-hand side. If $\left(u_{i}\right) \in K$, then $\phi\left(u_{i}\right)=\sum f_{i} \otimes u_{i}=\sum f_{i} \otimes\left(\sum b_{i k} u_{k}^{\prime}\right)=\sum\left(\sum f_{i} b_{i k}\right) \otimes u_{k}^{\prime}=0$. Thus $\left(u_{i}\right) \in \operatorname{Ker} \phi$.

Conversely, since $\operatorname{Hom}(U, X)=\sum f_{i} B$, we have an exact sequence $0 \rightarrow$ $\operatorname{Ker} \pi \rightarrow{ }^{v} B^{n} \rightarrow{ }^{\pi} \operatorname{Hom}(U, X) \rightarrow 0$. Then we have an exact sequence Ker $\pi \otimes_{B}$ $U \rightarrow v \otimes I \quad U^{n} \rightarrow{ }^{\pi \otimes I} F(X) \rightarrow 0$, where $\pi \otimes I=\phi$. Thus if $\left(u_{i}\right) \in \operatorname{Ker} \phi$, then there exists $\sum_{l c}\left(\left(b_{i k}\right) \otimes u_{k}^{\prime}\right) \in \operatorname{Ker} \pi \otimes_{B} U$ such that $u_{i}=\sum_{k} b_{i k} u_{c c}^{\prime}$. Since $\left(b_{i k}\right) \in$ Ker π, we have $\sum_{i} f_{i} b_{i k}=0$ for any k. Hence $\left(u_{i}\right) \in K$. Since ϕ is an epimorphism, $\lambda(X)$ is a monomorphism $\Leftrightarrow \operatorname{Ker} \phi=\operatorname{Ker} \psi \Leftrightarrow U$ generates $\operatorname{Ker} \psi$.

4. Construction of a Module V

The purpose of this section is to construct a left A-module V with assumption $\left({ }^{* *}\right)$ (which is denoted by $(*)$ in [6]) from a right A-module U with assumption (*).

Let V be a left A-module. Put $D=\operatorname{End}\left({ }_{A} V\right), C=\operatorname{End}\left(V_{D}\right)$, and $\phi^{\prime}: A \rightarrow C$ a canonical ring homomorphism. We assume that V satisfies the following condition.

Condition (**). Therc exists a subring R of C such that
(a) $\phi^{\prime}(A) \subset R \subset C$,
(b) ${ }_{R} V_{D} \cong \operatorname{Hom}_{A}\left({ }_{A} R_{R},{ }_{A} V_{D}\right)$,
(c) ${ }_{R} V$ is injective.

In this situation Morita [6] showed that $\mathscr{D}\left({ }_{A} V\right)$ is a reflective subcategory of ${ }_{A} \mathscr{M}$ with a suitable reflector.

Now, sincc $B=\operatorname{End}\left(U_{R}\right)$ and U_{R} is projective, it holds that $T U=U$ wherc T is a trace ideal of ${ }_{B} U$, and ${ }_{B} U \otimes_{R} \operatorname{Hom}_{B}(U, X) \cong{ }_{B} X$, canonically, for every $X \in \mathscr{G}=\left\{X \in{ }_{B} \mathscr{M} ;{ }_{B} U\right.$ generates $\left.{ }_{B} X\right\}$ (see [4, Lemma 2.2; Lemma 4; 9, Theorem 3.2]).

On the other hand, by (b) of (*) we have ${ }_{B} U \otimes_{R} \operatorname{Hom}_{B}(U, X) \cong{ }_{B} U \otimes_{A}$ $R \otimes_{R} \operatorname{Hom}_{B}(U, X) \cong{ }_{B} U \otimes_{A} \operatorname{Hom}_{B}(U, X)$. Thus ${ }_{B} X \cong{ }_{B} U \otimes_{A} \operatorname{Hom}_{B}(U, X)$ for every $X \in \mathscr{G}$.

In these circumstances, it is well known that $X \in \mathscr{G}$ if and only if $T X=X$. Let W^{\prime} be an injective cogenerator for ${ }_{B} \mathscr{M}$ such that ${ }_{B} U \subset_{B}\left(W^{\prime}\right)^{n}$ for some integer $n \geqq 1$. Take any $X \in \mathscr{G}$ and $f \in \operatorname{Hom}_{B}\left(X, W^{\prime}\right)$. Then $(X) f=(T X) f=$ $T(X) f \subset T W^{\prime}$. Hence, if we put $W=T W^{\prime}$, then $W \in \mathscr{G}, W$ is an injective cogenerator for the category \mathscr{G}, and ${ }_{B} U C_{B} W^{n}$ for some integer $n \geqq 1$.

Put ${ }_{A} V=\operatorname{Hom}_{B}\left({ }_{B} U_{A},{ }_{B} W\right)$ and $\left.D=\operatorname{End}_{{ }_{B}} W\right)$.

Lemma 4.1. The notations are as above. It holds that $D=\operatorname{End}\left({ }_{A} V\right), C=$ $\operatorname{End}\left(V_{D}\right)$, and ${ }_{A} V$ satisfies $\left({ }^{* *}\right)$ for the ring R in $\left({ }^{*}\right)$.

Proof. Since ${ }_{B} W \in \mathscr{G}$, we have $\operatorname{End}\left({ }_{A} V\right)=\operatorname{Hom}_{A}\left(\operatorname{Hom}_{D}\left({ }_{B} U_{A},{ }_{B} W\right)\right.$ $\left.\operatorname{Hom}_{D}\left({ }_{B} U_{A},{ }_{B} W\right)\right) \cong \operatorname{Hom}_{B}\left({ }_{B} U \otimes_{A} \operatorname{Hom}_{B}\left({ }_{B} U_{A},{ }_{B} W\right),{ }_{B} W\right) \cong \operatorname{Hom}_{B}\left({ }_{B} W,{ }_{B} W\right.$ $=D$. Put $C^{\prime}=\operatorname{End}\left(V_{D}\right)$. Let ϕ be as in $\left(^{*}\right)$ and ϕ^{\prime} be a canonical ring homomorphism $A \rightarrow C^{\prime}$. Define a ring homomorphism $\psi: C \rightarrow C^{\prime}$ with $(\psi c) v=c v$ Since V is a C - D-bimodule, ψ is well-defined. If $u \in U, v \in V$, and $a \in A$, ther $u((\psi(\phi a)) v)=(u a) v=u\left(\left(\phi^{\prime} a\right) v\right)$. Thus $\psi \phi=\phi^{\prime}$. Let $\psi c=0$. Then, for any $u \in U, v \in V$, we have $0=u(c v)=(u c) v$. Thus $u c \in \bigcap_{v \in V} \operatorname{Ker} v=0$. Therefore $c=0$. Hence ψ is a monomorphism. We regard C as a subring of C^{\prime} through ψ Then $\phi(A)=\phi^{\prime}(A) \subset R \subset C \subset C^{\prime}$.

We shall show that V satisfies $\left({ }^{* *}\right)$. (a) is almost clear. $\operatorname{Hom}_{A}\left({ }_{A} R_{R},{ }_{A} V_{D}\right)=$ $\operatorname{Hom}_{A}\left({ }_{A} R_{R},{ }_{A} \operatorname{Hom}_{B}\left({ }_{B} U_{A},{ }_{B} W_{D}\right)\right) \cong \operatorname{Hom}_{B}\left({ }_{B} U \otimes_{A} R_{R},{ }_{B} W_{D}\right) \cong \operatorname{Hom}_{B}\left({ }_{B} U_{R}:\right.$ $\left.{ }_{B} W_{D}\right)={ }_{R} V_{D}$. Hence (b) holds. For any $X \in{ }_{R^{2}} \mathscr{M}$, we have $\operatorname{Hom}_{R}\left({ }_{R} X,{ }_{R} V\right)=$ $\operatorname{Hom}_{R}\left({ }_{R} X, \operatorname{Hom}_{B}\left({ }_{B} U_{R},{ }_{B} W\right)\right) \cong \operatorname{Hom}_{B}\left({ }_{B} U \otimes_{R} X,{ }_{B} W\right)$. Since ${ }_{B} U \otimes_{R} X \in \mathscr{G}:$ ${ }_{B} W$ is injective in \mathscr{G}, and U_{R} is flat, the functor $\operatorname{Hom}_{R}\left(-{ }_{R} V\right)$ is exact on ${ }_{R^{\mathscr{M}}} \mathscr{M}$. Hence ${ }_{R} V$ is injective.

Since V is a C - D-bimodule, $D=\operatorname{End}\left({ }_{C} V\right)$. Thus $\operatorname{End}\left({ }_{A} V\right)=\operatorname{End}\left({ }_{R} V\right)=$ $\operatorname{End}\left({ }_{C} V\right)=D$. Since ${ }_{B} U C{ }_{B} W^{n}$, there exists $v_{1}, \ldots, v_{n} \in V$ such that \cap Ker v_{1} $=0$. Define $\alpha:{ }_{c} C \rightarrow{ }_{C} V^{n}$ with $c \alpha=\left(c v_{1}, \ldots, c v_{n}\right)$. Then α is a C-monomorphism. Fix any $v \in V$. Define $\beta:{ }_{R} C \rightarrow{ }_{R} V$ with $c \beta=c v$. Then there exists $\left(d_{1}, \ldots, d_{n}\right) \in D^{n}$ such that $\alpha\left(d_{1}, \ldots, d_{n}\right)=\beta$, since ${ }_{R} V$ is injective. Thus $v=$ $\sum v_{i} d_{i}$. Therefore, $V_{D}=\sum v_{i} D$.

Define $\bar{\alpha}: c^{\prime} C^{\prime} \rightarrow c^{\prime} V^{n}$ with $c^{\prime} \bar{\alpha}=\left(c^{\prime} v_{1}, \ldots, c^{\prime} v_{n}\right)$. If $c^{\prime} \bar{\alpha}=0$, then $c^{\prime}=0$ by $V=\sum v_{i} D$. Thus $\bar{\alpha}$ is a monomorphism. Hence we can consider that $\bar{\alpha}$ is an extension of α to C^{\prime}. We denote it also α. Then $\left({ }_{c} C\right) \alpha C\left({ }_{c} C^{\prime}\right) \alpha$. By the similar manner as in [5, proof of Theorem 2.3, (b)], we obtain the following;

$$
\begin{align*}
\left({ }_{C} C^{\prime}\right) \alpha= & \left\{\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right) \in V^{n} ;\left(v_{i}^{\prime}\right) f=0\right. \text { for every } \\
& \left.f \in \operatorname{Hom}_{C}\left(V^{n}, V\right) \text { such that }(C) \alpha f=0\right\} .
\end{align*}
$$

Since ${ }_{B} W$ is a cogenerator in \mathscr{G}, we have an exact sequence $0 \rightarrow{ }_{B} U \rightarrow{ }_{B} W^{n} \rightarrow$ $\Pi_{B} W$, where $\gamma=\left(v_{1}, \ldots, v_{n}\right)$. Then we have an exact sequence $0 \rightarrow{ }_{c} C \rightarrow$ ${ }_{c} V^{n} \rightarrow \Pi{ }_{c} V$. Thus ${ }_{c} V^{n} /\left({ }_{c} C\right) \alpha$ is cogenerated by ${ }_{c} V$. Hence by (\#) it holds that $(C) \alpha=\left(C^{\prime}\right) \alpha$, i.e., $C=C^{\prime}$.

Corollary 4.2. Let U be a right A-module of type FP. Then V is a left A-module of type FI and $\mathscr{C}\left(U_{A}\right) \cong \mathscr{M}_{B}$, and $\mathscr{D}\left({ }_{A} V\right) \cong{ }_{B} \mathscr{M}$.

Proof. Apply Lemma 2.1 to the case that $S=B, T=C,{ }_{s} G_{T}={ }_{B} U_{C}$. Then $U_{T}=U_{C}$ and $M_{S}=B_{B}$. Therefore, $\mathscr{M}_{B} \cong \mathscr{C}\left(B_{B}\right) \cong \mathscr{C}\left(U_{C}\right)$. Similarly, considering a bimodule ${ }_{A} C_{C}$, we have $\mathscr{C}\left(U_{A}\right) \cong \mathscr{C}\left(U_{C}\right)$. Hence $\mathscr{M}_{B} \cong \mathscr{C}\left(U_{A}\right)$.

The other statements are obtained in [5, Theorem 4.1].

5. On Σ-Quasi-projective Modules

If we closely examine the proofs of the statements in Sections 2 and 3, we can easily show that the condition (*) may be replaced by one that U_{A} is $X_{A^{-}}$ projective for any module X such that X is generated by U. Such a module is nothing but a \sum-quasi-projective module originated by Fuller [1]. Thus, following [1], we call a module $U \sum$-quasi-projective if $\oplus U$ is quasi-projective for any direct sum of copies of U.

Hence by the above we have:

Theorem 5.1. If U is a \sum-quasi-projective right A-module, then $\mathscr{C}\left(U_{A}\right)$ is a coreflective subcategory of \mathscr{M}_{A} and \tilde{F} is its coreflector.

Example 1. Let U be a finitely generated quasi-projective right A-module. Then by [2, Corollary 3.2] U is \sum-quasi-projective.

On the other hand, take any $X \in \mathscr{M}_{A}$ and let $\oplus B \rightarrow \oplus B \rightarrow \operatorname{Hom}(U, X) \rightarrow 0$ be a free resolution of $\operatorname{Hom}_{A}(U, X)_{B}$. Then we have the following commutative diagram

with exact rows. Since α_{1} and α_{2} are isomorphisms, $\operatorname{Hom}(I, \lambda(X))$ is also an isomorphism. Thus by Theorem 3.2 we have $F=\tilde{F}$.

Hence we have:

Theorem 5.2. Let U_{A} be a finitely generated quasi-projective module. Then $\mathscr{E}\left(U_{A}\right)$ is a coreflective subcategory of \mathscr{M}_{A} and $F=\tilde{F}$ is its coreflector.

Furthermore, by Lemma 2.1 we obtain the following.
Theorem 5.3 [7, Theorem 3]. If U_{A} is a finitely generated quasi-projective module, then $\mathscr{M}_{B} \cong \mathscr{C}\left(U_{A}\right)$.

Proof. Put $S=B, T=A,{ }_{S} G_{T}={ }_{B} U_{A}$, and $U_{T}=U_{A}$ in Lemma 2.1. Then $M_{S}=B_{B}$. Hence it holds that $\mathscr{C}\left(U_{A}\right) \cong \mathscr{C}\left(B_{B}\right) \cong \mathscr{M}_{B}$.

Example 2. Let U be a right A-module which is projective as an $A / r_{A}(U)$ module, where $r_{A}(U)=\{a \in A ; U a=0\}$. Then by [2, Proposition 2.1] U is ΠU-projective for any direct product of copies of U. Thus U is ΘU-projective for any direct sum of copies of U, i.e., U is \sum-quasi-projective.

Let ${ }_{B} W$ be an injective cogenerator for ${ }_{B} \mathscr{M}$ such that ${ }_{B} U C_{B} W^{n}$ for some
integer $n \geqq 1$. Put ${ }_{A} V=\operatorname{Hom}_{B}\left({ }_{B} U,{ }_{B} W\right)$ and $l_{A}(V)=\{a \in A ; a V=0\}$. Then we can easily show that $l_{A}(V)=r_{A}(U)$. Thus it holds that V is injective as an $A / l_{A}(V)$-module by the similar way as in the proof of Lemma 4.1. Hence by [1, Theorem 1.2] ${ }_{A} V$ is Π-quasi-injective in the sense of Fuller [1].

Now, all the statements in [6, Sections 2 and 3] are correct whenever we replace the assumption $\left(^{*}\right)$ in $[6$, Section 2] with one that V is ΠV-injective for any direct product of copies of V.

Thus, since V is ΠV-injective for any direct product of copies of V by the previous paragraph, we obtain the following theorem.

Theorem 5.4. Let U be a right A-module which is projective as an $A / r_{A}(U)$ module and V be as above. Then $\mathscr{C}\left(U_{A}\right)$ is a coreflective subcategory of \mathscr{M}_{A} with \tilde{F} as its coreflector and $\left.\mathscr{D}_{A} V\right)$ is a reflective subcategory of $A_{A} \mathscr{M}$ with \tilde{D} as its reflector, where \tilde{D} is one given in [6].

Acknowledgment

The author expresses his hearty thanks to Professor T. Onodera for his many suggestions and encouragement.

References

1. K. R. Fuller, On direct representations of quasi-injectives and quasi-projectives, Arch. Math. 20 (1969), 495-502.
2. K. R. Fuller and D. A. Hill, On quasi-projective modules via relative projectivity, Arch. Math. 21 (1970), 369-373.
3. T. Kato, Rings of U-dominant dimension $\geqq 1$, Tôhoku Math. J. 21 (1969), 321-327.
4. T. Kato, Duality between colocalization and localization, to appear.
5. K. Morita, Localizations in categories of modules. I., Math. Z. 114 (1970), 121-144.
6. K. Morita, Localizations in categories of modules IV, Sci. Rep. Tokyo Kyoiku Daigaku A 13 (1976), 153-164.
7. T. Onodera, Codominant dimensions and Morita equivalences, Hokkaido Math. J., to appear.
8. H. Tachikawa, On splitting of module categories, Math. Z. 111 (1969), 145-150.
9. B. Zimmermann, Endomorphism ring of self-generators, Pacific J. Math. 61 (1975), 587-602.
