JOURNAL OF ALGEBRA 54, 316-328 (1978)

Construction of Coreflectors

Kenji Nishida

Department of Mathematics, Hokkaido University, Sapporo, Japan Communicated by P. M. Cohn Received January 21, 1977

INTRODUCTION

Morita considered the construction of a reflector for the category of modules [6]. The purpose of this paper is to dualize some results of [6] and to construct the coreflectors for the category of modules.

The notions of V-dominant dimensions, for an injective module V, are introduced by Tachikawa [8] and are enlarged by Morita [5] for an arbitrary module V (cf. [3]). According to Morita [5], we say that a module X has Vdominant dimension $\geq n$, denoted V-dom. dim $X \geq n$, if there exists an exact sequence $0 \rightarrow X \rightarrow X_1 \rightarrow \cdots \rightarrow X_n$, where each X_i is isomorphic to a direct product of copies of V.

On the other hand, following Onodera [7], for modules U and Y, we say that Y has U-codominant dimension $\geq n$, denoted U-cod. dim $Y \geq n$, if there exists an exact sequence $Y_n \rightarrow \cdots \rightarrow Y_1 \rightarrow Y \rightarrow 0$, where each Y_i is isomorphic to a direct sum of copies of U.

Let A be a ring and \mathcal{M}_A be the category of right A-modules. A full subcategory \mathcal{N} of \mathcal{M}_A is called a coreflective subcategory if there exists a functor $G: \mathcal{N} \to \mathcal{M}_A$ such that for every $X \in \mathcal{M}_A$ there exists a homomorphism $\pi(X): G(X) \to X$, and for every homomorphism $f: Y \to X$ with $Y \in \mathcal{N}$ there exists a unique homomorphism $g: Y \to G(X)$ such that the following diagram is commutative

Then we call G a coreflector.

A reflective subcategory and a reflector are the dual of the above.

Let ${}_{\mathcal{A}}\mathcal{M}$ be the category of left A-modules and $V \in {}_{\mathcal{A}}\mathcal{M}$. Let $\mathcal{D}(V)$ be the full subcategory of ${}_{\mathcal{A}}\mathcal{M}$ consisting of all left A-modules of V-dominant dimension ≥ 2 . Then, under some conditions, Morita [6] showed that $\mathcal{D}(V)$ is a reflective subcategory with a suitable reflector. The class of modules, studied in [6], which give reflectors for $\mathcal{D}(V)$ includes, for example, injective modules and modules of type FI (see [5], for definition of a module of type FI).

Take $U \in \mathcal{M}_A$. Let us denote by $\mathscr{C}(U)$ the full subcategory of \mathcal{M}_A consisting of all right A-modules of U-codominant dimension ≥ 2 . Onodera [7] investigated properties of $\mathscr{C}(U)$ when U is projective and also studied the equivalences over $\mathscr{C}(U)$.

We set the assumption for U which is satisfied whenever U is projective or type FP (see [5], for definition of a module of type FP). Then, in Section 2 we show that $\mathscr{C}(U)$ is a coreflective subcategory with \tilde{F} its coreflector. Furthermore, we also construct coreflectors for modules of different type from the previous one in Section 5.

In Section 3 we investigate the conditions for $\vec{F} = F$, where the definitions of \vec{F} and F are seen in Section 1.

In [5] Morita constructed a module of type FI from a module of type FP by a suitable method. In Section 4 we construct a module V given in [6] from a module U given in Section 2 by the same way as in [5].

Throughout this paper all rings have an identity element and all modules are unital.

1. PRELIMINARIES

Let A be a ring and U be a right A-module. Put $B = \text{End}(U_A)$ and $C = \text{End}(_BU)$. For any right A-module X we put;

$$\begin{split} F(X) &= \operatorname{Hom}_{\mathcal{A}}(U, X) \otimes_{\mathcal{B}} U_{\mathcal{A}}, \\ \lambda(X) &: F(X) \to X[f \otimes u \mapsto fu(f \in \operatorname{Hom}(U, X), u \in U)], \\ \overline{F}(X) &= \sum \{\operatorname{Im} \phi; \phi \in \operatorname{Hom}(U, F(X)) \text{ such that } \lambda(X) \phi = 0\}, \\ \widetilde{F}(X) &= F(X)/\overline{F}(X), \\ \eta(X) &: F(X) \to \widetilde{F}(X) \text{ a canonical projection,} \\ \widetilde{\lambda}(X) &: \widetilde{F}(X) \to X \text{ such that } \lambda(X) = \widetilde{\lambda}(X) \eta(X) \text{ (note that } \overline{F}(X) \subset \operatorname{Ker} \lambda(X)). \end{split}$$

Let X, Y be right A-modules and $f: X \to Y$ be an A-homomorphism. Put $F(f) = \text{Hom}(I_U, f) \otimes I_U: F(X) \to F(Y)$. Then the following diagram is commutative

Take any $x \in \overline{F}(X)$. Then we have $x = \phi u$ for some $u \in U$ and $\phi \in \text{Hom}(U, F(X))$ such that $\lambda(X)\phi = 0$. Put $\psi = F(f)\phi \in \text{Hom}(U, F(X))$. Then we have $\lambda(Y)\psi = \lambda(Y)F(f)\phi = f\lambda(X)\phi = 0$ and $F(f)x = F(f)\phi u = \psi u$. Thus $F(f)x \in \overline{F}(Y)$. Therefore, there exists an A-homomorphism $\widetilde{F}(f): \widetilde{F}(X) \to \widetilde{F}(Y)$ such that the diagram

is commutative. Hence we have:

LEMMA 1.1. \tilde{F} is a covariant additive functor and $\tilde{\lambda}(X)$ is a natural homomorphism.

Proof. The first statement is almost clear. We have $f\tilde{\lambda}(X) \eta(X) = f\lambda(X) = \lambda(Y)F(f) = \tilde{\lambda}(Y)\eta(Y)F(f) = \tilde{\lambda}(Y)F(f)\eta(X)$. Since $\eta(X)$ is an epimorphism, we have $f\tilde{\lambda}(X) = \tilde{\lambda}(Y)\tilde{F}(f)$. Thus $\tilde{\lambda}(X)$ is a natural homomorphism.

PROPOSITION 1.2. If $Y \in \mathcal{M}_B$, then $Y \otimes_B U_A \in \mathscr{C}(U_A)$.

Proof. Let $\oplus B \to \oplus B \to Y \to 0$ be a free resolution of Y. Then we have an exact sequence $\oplus U \to \oplus U \to Y \otimes_B U \to 0$. Thus $Y \otimes_B U \in \mathscr{C}(U_A)$.

COROLLARY 1.3. $F(X) \in \mathscr{C}(U_A)$ for any $X \in \mathscr{M}_A$.

PROPOSITION 1.4. $U_A - \operatorname{cod.} \dim \overline{F}(X) \geq 1$.

Proof. It is almost clear.

PROPOSITION 1.5. $\lambda(U^n)$: $U^n \cong F(U^n)$, $\tilde{F}(U^n) \cong F(U^n)$. If $X \cong \bigoplus U$, then $\lambda(X)$ is an epimorphism.

Proof. These follow from definitions.

Let $f \in \text{Hom}(U^n, X)$. Put $\sigma^n(X)f = F(f)\lambda(U^n)^{-1}$: $U^n \to F(X)$, $\tilde{\sigma}^n(X)f = \tilde{F}(f)\eta(U^n)\lambda(U^n)^{-1}$: $U^n \to \tilde{F}(X)$. Then we have;

$$f = \lambda(X) \sigma^n(X) f = \tilde{\lambda}(X) \tilde{\sigma}^n(X) f,$$
 $ilde{\sigma}^n(X) f = \eta(X) \sigma^n(X) f.$

Hence we have:

PROPOSITION 1.6.

$$\begin{split} &\operatorname{Hom}(I_{U^n},\lambda(X))\,\sigma^n(X)=I_{\operatorname{Hom}(U^n,X)}\\ &\operatorname{Hom}(I_{U^n},\tilde{\lambda}(X))\,\tilde{\sigma}^n(X)=I_{\operatorname{Hom}(U^n,X)}\,. \end{split}$$

Proof. Take $f \in \text{Hom}(U^n, X)$. Then we have $\text{Hom}(I, \lambda(X)) \sigma^n(X) f =$ $\lambda(X) \sigma^n(X) f = \lambda(X) F(f) \lambda(U^n)^{-1} = f \lambda(U^n) \lambda(U^n)^{-1} = f.$

The latter is obtained similarly.

PROPOSITION 1.7. Let $f \in \text{Hom}(U^n, X)$, $h \in \text{Hom}(U, U^n)$. Then we have $\sigma^{1}(X)(fh) = (\sigma^{n}(X)f)h.$

Proof. We have $\sigma^{1}(X)(fh) = F(fh) \lambda(U)^{-1} = F(f) F(h) \lambda(U)^{-1} = F(f)$ $\lambda(U^n)^{-1}\,\lambda(U^n)\,F(h)\,\lambda(U)^{-1}=(\sigma^n(X)\,f)\,h.$

2. Coreflector \tilde{F}

Let $U \in \mathcal{M}_A$. Put $B = \operatorname{End}(U_A)$, $C = \operatorname{End}(_{\mathcal{B}}U)$, $\phi: A \to C$ a canonical ring homomorphism. Now we assume the following condition.

Condition (*). There exists a subring R of C such that

- (a) $\phi(A) \subset R \subset C$
- (b) $_{B}U_{R} \simeq _{B}U \otimes_{A} R_{R}$
- (c) U_R is projective.

Let U_A be type FP or projective. If we put R = C or A, then U_A satisfies (*).

LEMMA 2.1 (cf. [5, Lemma 3.1]). Let S, T be rings and ${}_{S}G_{T}$ be an S-Tbimodule. Assume that G_T is finitely generated quasi-projective. Put

$$P: \mathcal{M}_T \to \mathcal{M}_S, \ P(X) = \operatorname{Hom}_T(G, X), \ X \in \mathcal{M}_T,$$

$$Q: \mathcal{M}_S \to \mathcal{M}_T, \ Q(Y) = Y \otimes_S G, \ Y \in \mathcal{M}_S, \ and$$

$$\Gamma(X): QP(X) \to X, \ X \in \mathcal{M}_T,$$

$$\Delta(Y): Y \to PQ(Y), \ Y \in \mathcal{M}_S, \ canonically.$$

Let U be a right T-module such that $\Gamma(U)$ is an isomorphism. Put M = P(U). Then we have

$$P: \mathscr{C}(U_T) \to \mathscr{C}(M_S), Q: \mathscr{C}(M_S) \to \mathscr{C}(U_T), \text{ and } QP = I \text{ on } \mathscr{C}(U_T), PQ = I \text{ on } \mathscr{C}(M_S).$$

Proof. Since P and Q commute with direct sums and are right exact, the first of the lemma is easily obtained.

KENJI NISHIDA

If $X \in \mathscr{C}(U_T)$, then there exists an exact sequence $Z_2 \to Z_1 \to X \to 0$ with each $Z_i \cong \bigoplus U$. Thus we have the following commutative diagram

$$Z_{2} \longrightarrow Z_{1} \longrightarrow X \longrightarrow 0$$

$$\Gamma(Z_{2}) \uparrow \qquad \Gamma(Z_{1}) \uparrow \qquad \Gamma(X) \uparrow$$

$$QP(Z_{2}) \longrightarrow QP(Z_{1}) \longrightarrow QP(X) \longrightarrow 0$$

with exact rows. Since each $\Gamma(Z_i)$ is an isomorphism, $\Gamma(X)$ is an isomorphism.

If $Y \in \mathscr{C}(M_S)$, then there exists an exact sequence $Y_2 \to Y_1 \to Y \to 0$ with each $Y_i \cong \bigoplus M$. $\cong \bigoplus P(U) \cong P(\bigoplus U) = P(X_i)$ with $X_i \cong \bigoplus U$, we have the following commutative diagram

with exact rows. Since each $P(\Gamma(X_i)) \Delta(P(X_i))$ and $P(\Gamma(X_i))$ are isomorphisms, each $\Delta(P(X_i))$ is also an isomorphism. Hence $\Delta(Y)$ is an isomorphism. This completes the proof.

Now, if we put S = A, T = R, ${}_{S}G_{T} = {}_{A}R_{R}$ in Lemma 2.1, then we have:

LEMMA 2.2. If $X, X' \in \mathcal{C}(U_A), f \in \text{Hom}_A(X, X')$, then we have $X, X' \in \mathcal{C}(U_R)$ and f is an R-homomorphism.

PROPOSITION 2.3. $U_R - \operatorname{cod.} \dim \overline{F}(X) \ge 1$ for any $X \in \mathcal{M}_A$.

Proof. $F(X) \in \mathscr{C}(U_A)$ by Corollary 1.3. Since $U \in \mathscr{C}(U_A)$, each $g \in Hom_A(U, F(X))$ is an *R*-homomorphism by Lemma 2.2. Thus $\overline{F}(X)$ is an *R*-module. Hence $U_R - \operatorname{cod. dim} \overline{F}(X) \ge 1$ by Proposition 1.4.

LEMMA 2.4. $\tilde{F}(X) \in \mathscr{C}(U_R)$ for any $X \in \mathscr{M}_A$.

Proof. Consider the following diagram in \mathcal{M}_R

$$0 \longrightarrow \overline{F}(X) \longrightarrow F(X) \xrightarrow{\eta(X)} \widetilde{F}(X) \longrightarrow 0,$$

$$g \uparrow Z$$

where row and column are exact and $Z \cong \bigoplus U$. Let $K = \operatorname{Ker} \eta(X)g = g^{-1}(\overline{F}(X))$. We shall prove that U generates K. Take $x \in K$. Then $gx \in \overline{F}(X)$. By Proposition 2.3 there exist $h \in \operatorname{Hom}_R(U, F(X))$ and $u \in U$ such that hu = gx. Since U_R is projective, there exists $h' \in \operatorname{Hom}_R(U, Z)$ such that h = gh'. Thus $\operatorname{Im} h' \subset K$ and $x - h'u \in \operatorname{Ker} g$. There exist $h'' \in \operatorname{Hom}_R(U, \operatorname{Ker} g)$ and $u' \in U$ such that h'' = x - h'u. Therefore, U generates K. Hence $\widetilde{F}(X) \in \mathscr{C}(U_R)$.

In the following, we write $\sigma(X)$, $\tilde{\sigma}(X)$ instead of $\sigma^1(X)$, $\tilde{\sigma}^1(X)$, respectively.

LEMMA 2.5. $\tilde{\sigma}(X)$: Hom_A $(U, X) \cong$ Hom_A $(U, \tilde{F}(X))$, Hom $(I_U, \tilde{\lambda}(X))$: Hom_A $(U, \tilde{F}(X)) \cong$ Hom_A(U, X) for any $X \in \mathcal{M}_A$.

Proof. By Proposition 1.6 we need to show that $\tilde{\sigma}(X)$ is an epimorphism. Let $g \in \text{Hom}(U, \tilde{F}(X))$. Then g is an R-homomorphism by Lemma 2.2. Consider the following diagram

Since U_R is projective, there exists $h \in \text{Hom}(U, F(X))$ such that $g = \eta(X) h$. Put $f = \tilde{\lambda}(X) g$. We have $f = \lambda(X) h$. On the other hand, $\lambda(X) (h - \sigma(X) f) = 0$ by $f = \lambda(X) (\sigma(X) f)$. Thus $\eta(X) (h - \sigma(X) f) = 0$ by definition of $\eta(X)$. Therefore, we have $g = \eta(X) h = \eta(X) (\sigma(X) f) = \tilde{\sigma}(X) f$. Hence $\tilde{\sigma}(X)$ is an epimorphism.

LEMMA 2.6. If $X \in \mathcal{M}_A$, $Y \in \mathcal{C}(U_A)$, then there exists a natural isomorphism $\operatorname{Hom}(I_Y, \tilde{\lambda}(X))$: $\operatorname{Hom}_A(Y, \tilde{F}(X)) \cong \operatorname{Hom}_A(Y, X)$.

Proof. Since $Y \in \mathscr{C}(U_A)$, there exists an exact sequence $Y_2 \to Y_1 \to Y \to 0$, where each Y_i is a direct sum of copies of U. Then we have a commutative diagram with exact rows;

By Lemma 2.5 α_1 , α_2 are isomorphisms. Thus Hom $(I, \tilde{\lambda}(X))$ is an isomorphism.

THEOREM 2.7. Let U be a right A-module which satisfies (*). Then $\mathcal{C}(U_A)$ is a coreflective subcategory of \mathcal{M}_A and \tilde{F} is its coreflector.

Proof. Theorem follows from Lemma 2.6.

COROLLARY 2.8. $\lambda(X): \tilde{F}(X) \to X$ is an isomorphism if and only if $X \in \mathscr{C}(U_A)$.

Proof. If $\tilde{\lambda}(X)$ is an isomorphism, then $X \in \mathscr{C}(U_A)$ by Lemma 2.4. Conversely, if $X \in \mathscr{C}(U_A)$, then there exists $\psi \in \operatorname{Hom}(X, \tilde{F}(X))$ such that $\tilde{\lambda}(X) \psi = I_X$ by Lemma 2.6. We have $\tilde{\lambda}(X) = I_X \tilde{\lambda}(X) = \tilde{\lambda}(X) (\psi \tilde{\lambda}(X))$. Thus $I_{\tilde{F}(X)} = \psi \tilde{\lambda}(X)$ by Lemma 2.6. Hence $\tilde{\lambda}(X)$ is an isomorphism.

3. Conditions for $F = \tilde{F}$

For a right A-module U which satisfies (*), we easily get the following by Corollary 2.8.

PROPOSITION 3.1. Let $X \in \mathcal{M}_A$. Then we have $\lambda(X): X \simeq F(X) \Leftrightarrow X \in \mathcal{C}(U_A)$ and $\tilde{F}(X) = F(X)$.

Now, we consider some conditions for $\tilde{F}(X) = F(X)$. Let U, F, \tilde{F} , etc. be the same as in Section 1. U does not satisfy (*) unless specifically stated.

THEOREM 3.2. Consider the following conditions for $X \in \mathcal{M}_A$.

- (a) $\tilde{F}(X) = F(X)$.
- (b) $\operatorname{Hom}(I, \lambda(X)): \operatorname{Hom}_{A}(U, F(X)) \cong \operatorname{Hom}_{A}(U, X).$
- (c) $\lambda(\tilde{F}(X)): F(\tilde{F}(X)) \simeq \tilde{F}(X).$
- (d) $\lambda(F(X)): F(F(X)) \simeq F(X).$
- (e) $\lambda(F^{i}(X)): F^{i}(X) \simeq F^{i+1}(X)$ for some integer ≥ 1 .
- (f) $\lambda(F^i(X)): F^i(X) \cong F^{i+1}(X)$ for all integer ≥ 1 .

Then it holds that (a) \Leftrightarrow (b), (b) \Rightarrow (c), (b) \Rightarrow (d), and (d) \Leftrightarrow (e) \Leftrightarrow (f). Furthermore, if U_A satisfies (*), then all the conditions are equivalent.

Proof. (a) \Leftrightarrow (b). Assume $F(X) = \tilde{F}(X)$. Since $\bar{F}(X) = 0$, it holds that f = 0 whenever $\lambda(X) f = 0$ for any $f \in \text{Hom}(U, F(X))$. This means that $\text{Hom}(I, \lambda(X))$ is monic. Hence $\text{Hom}(I, \lambda(X))$ is an isomorphism by Proposition 1.6.

Conversely, consider an exact sequence $0 \to \text{Hom}(U, \overline{F}(X)) \to \text{Hom}(U, F(X))$ $\to^{\text{Hom}(I, n(X))} \text{Hom}(U, \overline{F}(X))$. Then $\text{Hom}(U, \overline{F}(X)) = 0$, since $\text{Hom}(I, \eta(X))$ is monic by (b) and $\text{Hom}(I, \lambda(X)) = \text{Hom}(I, \lambda(X)) \text{Hom}(I, \eta(X))$. Hence by Proposition 1.4 $\overline{F}(X) = 0$, i.e., $F(X) = \widetilde{F}(X)$.

- (b) \Rightarrow (c). By the above (b) implies (a). Hence (c) follows easily.
- (b) \Rightarrow (d), (d) \Rightarrow (f), (f) \Rightarrow (e) are almost clear.

(e) \Rightarrow (d). We assume that $F^{i+1}(X) \cong F^{i+2}(X)$ for some integer $i \ge 1$. Put $Y = F^i(X)$. Then $F(F(Y)) \cong F(Y)$. Thus $\overline{F}(Y) = 0$, i.e., $F(Y) = \overline{F}(Y)$. Since $Y \in \mathscr{C}(U_A)$, we have $Y \cong F(Y)$ by [7, Lemma 2]. Hence $F^i(X) \cong F^{i+1}(X)$. By repeating this process we finally obtain $F(F(X)) \cong F(X)$.

Now, we assume (*) for U_A .

(c) \Rightarrow (a). Consider the following diagram;

Since $\tilde{\lambda}(X) \eta(X) F(\tilde{\lambda}(X)) = \lambda(X) F(\tilde{\lambda}(X)) = \tilde{\lambda}(X) \lambda(\tilde{F}(X))$, we have $\eta(X) F(\tilde{\lambda}(X)) = \lambda(\tilde{F}(X))$ by Lemma 2.6. On the other hand, $F(\tilde{\lambda}(X))$ is an isomorphism by Lemma 2.5. Thus we have $(c) \Rightarrow (a)$.

(d) \Rightarrow (c). Consider the following diagram;

$$0 \longrightarrow \overline{F}(X) \longrightarrow F(X) \longrightarrow F(X) \longrightarrow 0$$

$$\uparrow^{\lambda(\overline{F}(X))} \qquad \uparrow^{\lambda(F(X))} \qquad \uparrow^{\lambda(\overline{F}(X))}$$

$$F(\overline{F}(X)) \longrightarrow F(F(X)) \longrightarrow F(\overline{F}(X)) \longrightarrow 0.$$

The two rows are exact, since U_R is projective. $\lambda(\overline{F}(X))$ is an epimorphism by Proposition 2.3. Thus, by a diagram chase, if $\lambda(F(X))$ is an isomorphism, then $\lambda(\overline{F}(X))$ is, too. This completes the proof.

THEOREM 3.3. Assume (*) for U_A . Let X_A be a factor module of U^n for some integer $n \ge 1$. Then we have $\lambda(X): X \cong F(X)$ if and only if $X \in \mathscr{C}(U_A)$.

Proof. If $X \cong F(X)$, then clearly $X \in \mathcal{C}(U_A)$.

Conversely, we have an exact sequence $Z \to U^n \to X \to 0$ with $Z \cong \bigoplus U$. Since U_R is projective, we have the following commutative diagram with exact rows

By Proposition 1.5 $\lambda(Z)$ is an epimorphism and $\lambda(U^n)$ is an isomorphism. Hence $\lambda(X)$ is an isomorphism.

THEOREM 3.4. Assume (*) for U_A . If F(X) is isomorphic to a factor module of U^n for some integer $n \ge 1$, then $\tilde{F}(X) = F(X)$:

Proof. It is clear by Theorem 3.2 and 3.3.

PROPOSITION 3.5. Consider the following conditions for $X \in \mathcal{M}_A$.

- (a) There exists an epimorphism $g: U^n \to F(X)$ for some integer $n \ge 1$.
- (b) $\operatorname{Hom}_{A}(U, X)$ is a finitely generated B-module.

(c) There exist some integer $n \ge 1$ and an A-homomorphism $\psi: U^n \to X$ such that, for every $f \in \text{Hom}_A(U, X)$, there exists $h \in \text{Hom}_A(U, U^n)$ with $f = \psi h$.

Then $(c) \Leftrightarrow (b) \Rightarrow (a)$. Furthermore, if U_A satisfies (*), then $(a) \Rightarrow (c)$ holds.

Proof. (c) \Rightarrow (b) and (b) \Rightarrow (a) are almost clear.

(b) \Rightarrow (c). Let $f_1, ..., f_n$ be *B*-generators for Hom(U, X). Define $\psi: U^n \to X$ with $\psi(u_i) = \sum f_i u_i$. Take any $f \in \text{Hom}(U, X)$. Put $f = \sum f_i b_i$ $(b_i \in B)$. Define $h \in \text{Hom}(U, U^n)$ with $hu = (b_i u)$. Then we have $f = \psi h$.

(a) \Rightarrow (c). Put $\psi = \lambda(X) g$. We have $f = \lambda(X)(\sigma(X)f)$ for any $f \in \text{Hom}(U, X)$. By Lemma 2.2 $\sigma(X) f$ is an *R*-homomorphism. Thus there exists $h \in \text{Hom}(U, U^n)$ such that $\sigma(X) f = gh$, since U_R is projective. Hence $f = \lambda(X) gh = \psi h$.

COROLLARY 3.6. If U_A is projective, then all the conditions of Proposition 3.5 are equivalent to the following condition (d): There exists $f \in \text{Hom}_A(U^n, X)$ such that $\text{Im } \lambda(X) = \text{Im } f$.

Proof. (a) \Rightarrow (d). Put $f = \lambda(X)g: U^n \to X$. Then we have (d).

(d) \Rightarrow (c). Let $\psi \in \text{Hom}(U^n, X)$ with $\text{Im }\lambda(X) = \text{Im }\psi$. For any $f \in \text{Hom}(U, X)$, since $\text{Im } f \subset \text{Im }\lambda(X) = \text{Im }\psi$ and U_A is projective, there exists $h \in \text{Hom}(U, U^n)$ such that $f = \psi h$.

Remark 1. By the above, if U_A is projective, then the existence of $g: U^n \to X \to 0$ (exact) means the existence of $g': U^n \to F(X) \to 0$ (exact).

Remark 2. As for Theorem 3.3, Proposition 3.5, and Corollary 3.6, we can easily see from the proof that these statements hold whenever U_A is quasi-projective.

THEOREM 3.7. Let X be a right A-module which satisfies (c) of Proposition 3.5. Then $\lambda(X)$ is a monomorphism if and only if U_A generates Ker ψ , where $\psi: U^n \to X$ is one which is given in (c) of Proposition 3.5.

Proof. Let $\psi(u_i) = \sum f_i u_i$ $(f \in \text{Hom}_A(U, X); 1 \leq i \leq n)$. Define $\phi: U^n \rightarrow F(X)$ with $\phi(u_i) = \sum f_i \otimes u_i$. Then $\psi = \lambda(X)\phi$. We shall prove Ker $\phi = \phi(X)$

{ $(u_1, ..., u_n)$; $u_i = \sum_k b_{ik}u'_k$ for some $u'_1, ..., u'_p \in U$, $b_{ik} \in B$ ($1 \le i \le n$; $1 \le k \le p$) such that $\sum_i f_i b_{ik} = 0$ for every k}. We write K instead of the right-hand side. If $(u_i) \in K$, then $\phi(u_i) = \sum f_i \otimes u_i = \sum f_i \otimes (\sum b_{ik}u'_k) = \sum (\sum f_i b_{ik}) \otimes u'_k = 0$. Thus $(u_i) \in \text{Ker } \phi$.

Conversely, since $\operatorname{Hom}(U, X) = \sum f_i B$, we have an exact sequence $0 \to \operatorname{Ker} \pi \to^v B^n \to^{\pi} \operatorname{Hom}(U, X) \to 0$. Then we have an exact sequence $\operatorname{Ker} \pi \otimes_B U \to^{v \otimes I} U^n \to^{\pi \otimes I} F(X) \to 0$, where $\pi \otimes I = \phi$. Thus if $(u_i) \in \operatorname{Ker} \phi$, then there exists $\sum_k ((b_{ik}) \otimes u'_k) \in \operatorname{Ker} \pi \otimes_B U$ such that $u_i = \sum_k b_{ik} u'_k$. Since $(b_{ik}) \in \operatorname{Ker} \pi$, we have $\sum_i f_i b_{ik} = 0$ for any k. Hence $(u_i) \in K$. Since ϕ is an epimorphism, $\lambda(X)$ is a monomorphism $\Leftrightarrow \operatorname{Ker} \phi = \operatorname{Ker} \psi \Leftrightarrow U$ generates $\operatorname{Ker} \psi$.

4. Construction of a Module V

The purpose of this section is to construct a left A-module V with assumption (**) (which is denoted by (*) in [6]) from a right A-module U with assumption (*).

Let V be a left A-module. Put $D = \text{End}(_AV)$, $C = \text{End}(V_D)$, and $\phi': A \to C$ a canonical ring homomorphism. We assume that V satisfies the following condition.

Condition (**). There exists a subring R of C such that

- (a) $\phi'(A) \subset R \subset C$,
- (b) $_{R}V_{D} \cong \operatorname{Hom}_{A}(_{A}R_{R}, _{A}V_{D}),$
- (c) $_{R}V$ is injective.

In this situation Morita [6] showed that $\mathscr{D}({}_{\mathcal{A}}V)$ is a reflective subcategory of ${}_{\mathcal{A}}\mathcal{M}$ with a suitable reflector.

Now, since $B = \text{End}(U_R)$ and U_R is projective, it holds that TU = U where T is a trace ideal of ${}_BU$, and ${}_BU \otimes_R \text{Hom}_B(U, X) \cong {}_BX$, canonically, for every $X \in \mathscr{G} = \{X \in {}_B\mathcal{M}; {}_BU \text{ generates } {}_BX\}$ (see [4, Lemma 2.2; Lemma 4; 9, Theorem 3.2]).

On the other hand, by (b) of (*) we have ${}_{B}U \otimes_{R} \operatorname{Hom}_{B}(U, X) \cong {}_{B}U \otimes_{A} R \otimes_{R} \operatorname{Hom}_{B}(U, X) \cong {}_{B}U \otimes_{A} \operatorname{Hom}_{B}(U, X)$. Thus ${}_{B}X \cong {}_{B}U \otimes_{A} \operatorname{Hom}_{B}(U, X)$ for every $X \in \mathscr{G}$.

In these circumstances, it is well known that $X \in \mathscr{G}$ if and only if TX = X. Let W' be an injective cogenerator for ${}_{B}\mathscr{M}$ such that ${}_{B}U \subset_{B} (W')^{n}$ for some integer $n \geq 1$. Take any $X \in \mathscr{G}$ and $f \in \operatorname{Hom}_{B}(X, W')$. Then $(X)f = (TX)f = T(X)f \subset TW'$. Hence, if we put W = TW', then $W \in \mathscr{G}$, W is an injective cogenerator for the category \mathscr{G} , and ${}_{B}U \subset {}_{B}W^{n}$ for some integer $n \geq 1$.

Put $_{A}V = \operatorname{Hom}_{B}(_{B}U_{A}, _{B}W)$ and $D = \operatorname{End}(_{B}W)$.

LEMMA 4.1. The notations are as above. It holds that $D = \text{End}(_AV), C = \text{End}(V_D)$, and $_AV$ satisfies (**) for the ring R in (*).

Proof. Since $_BW \in \mathscr{G}$, we have $\operatorname{End}_{(A}V) = \operatorname{Hom}_A(\operatorname{Hom}_{D}(_{B}U_A, _{B}W))$ $\operatorname{Hom}_{D}(_{B}U_A, _{B}W)) \cong \operatorname{Hom}_{B}(_{B}U \otimes_A \operatorname{Hom}_{B}(_{B}U_A, _{B}W), _{B}W) \cong \operatorname{Hom}_{B}(_{B}W, _{B}W)$ = D. Put $C' = \operatorname{End}(V_D)$. Let ϕ be as in (*) and ϕ' be a canonical ring homomorphism $A \to C'$. Define a ring homomorphism $\psi: C \to C'$ with $(\psi c) \ v = cv$ Since V is a C-D-bimodule, ψ is well-defined. If $u \in U$, $v \in V$, and $a \in A$, ther $u((\psi(\phi a)) \ v) = (ua) \ v = u((\phi' a) \ v)$. Thus $\psi \phi = \phi'$. Let $\psi c = 0$. Then, for any $u \in U$, $v \in V$, we have $0 = u(cv) = (uc) \ v$. Thus $uc \in \bigcap_{v \in V} \operatorname{Ker} v = 0$. Therefore c = 0. Hence ψ is a monomorphism. We regard C as a subring of C' through ψ Then $\phi(A) = \phi'(A) \subset R \subset C \subset C'$.

We shall show that V satisfies (**). (a) is almost clear. $\operatorname{Hom}_{A}({}_{A}R_{R}, {}_{A}V_{D}) = \operatorname{Hom}_{A}({}_{A}R_{R}, {}_{A}\operatorname{Hom}_{B}({}_{B}U_{A}, {}_{B}W_{D})) \cong \operatorname{Hom}_{B}({}_{B}U \otimes_{A} R_{R}, {}_{B}W_{D}) \cong \operatorname{Hom}_{B}({}_{B}U_{R}, {}_{B}W_{D}) = {}_{R}V_{D}$. Hence (b) holds. For any $X \in {}_{R}\mathcal{M}$, we have $\operatorname{Hom}_{R}({}_{R}X, {}_{R}V) = \operatorname{Hom}_{R}({}_{R}X, \operatorname{Hom}_{B}({}_{B}U_{R}, {}_{B}W)) \cong \operatorname{Hom}_{B}({}_{B}U \otimes_{R} X, {}_{B}W)$. Since ${}_{B}U \otimes_{R} X \in \mathcal{G}_{A}$, ${}_{B}W$ is injective in \mathcal{G} , and U_{R} is flat, the functor $\operatorname{Hom}_{R}(-, {}_{R}V)$ is exact on ${}_{R}\mathcal{M}$. Hence ${}_{R}V$ is injective.

Since V is a C-D-bimodule, $D = \operatorname{End}_{C}V$. Thus $\operatorname{End}_{A}V) = \operatorname{End}_{R}V = \operatorname{End}_{C}V) = D$. Since ${}_{B}U \subset {}_{B}W^{n}$, there exists $v_{1}, ..., v_{n} \in V$ such that \cap Ker $v_{i} = 0$. Define $\alpha: {}_{C}C \to {}_{C}V^{n}$ with $c\alpha = (cv_{1}, ..., cv_{n})$. Then α is a C-monomorphism. Fix any $v \in V$. Define $\beta: {}_{R}C \to {}_{R}V$ with $c\beta = cv$. Then there exists $(d_{1}, ..., d_{n}) \in D^{n}$ such that $\alpha(d_{1}, ..., d_{n}) = \beta$, since ${}_{R}V$ is injective. Thus $v = \sum v_{i}d_{i}$. Therefore, $V_{D} = \sum v_{i}D$.

Define $\bar{\alpha}: {}_{C'}C' \to {}_{C'}V^n$ with $c'\bar{\alpha} = (c'v_1, ..., c'v_n)$. If $c'\bar{\alpha} = 0$, then c' = 0 by $V = \sum v_i D$. Thus $\bar{\alpha}$ is a monomorphism. Hence we can consider that $\bar{\alpha}$ is an extension of α to C'. We denote it also α . Then ${}_{C}C) \alpha \subset {}_{C}C') \alpha$. By the similar manner as in [5, proof of Theorem 2.3, (b)], we obtain the following;

$$(_{C}C') \alpha = \{(v'_{1},...,v'_{n}) \in V^{n}; (v'_{i})f = 0 \text{ for every} \\ f \in \operatorname{Hom}_{C}(V^{n}, V) \text{ such that } (C) \alpha f = 0\}.$$
 (#)

Since ${}_{B}W$ is a cogenerator in \mathscr{G} , we have an exact sequence $0 \to {}_{B}U \to {}^{\nu}{}_{B}W^{n} \to \prod_{c} {}_{B}W$, where $\gamma = (v_{1}, ..., v_{n})$. Then we have an exact sequence $0 \to {}_{C}C \to {}_{C}V^{n} \to \prod_{c} {}_{C}V$. Thus ${}_{C}V^{n}/({}_{C}C) \alpha$ is cogenerated by ${}_{C}V$. Hence by (#) it holds that (C) $\alpha = (C') \alpha$, i.e., C = C'.

COROLLARY 4.2. Let U be a right A-module of type FP. Then V is a left A-module of type FI and $\mathscr{C}(U_A) \cong \mathscr{M}_B$, and $\mathscr{D}({}_AV) \cong {}_B\mathscr{M}$.

Proof. Apply Lemma 2.1 to the case that S = B, T = C, ${}_{S}G_{T} = {}_{B}U_{C}$. Then $U_{T} = U_{C}$ and $M_{S} = B_{B}$. Therefore, $\mathcal{M}_{B} \cong \mathscr{C}(B_{B}) \cong \mathscr{C}(U_{C})$. Similarly, considering a bimodule ${}_{A}C_{C}$, we have $\mathscr{C}(U_{A}) \cong \mathscr{C}(U_{C})$. Hence $\mathcal{M}_{B} \cong \mathscr{C}(U_{A})$.

The other statements are obtained in [5, Theorem 4.1].

5. On Σ -quasi-projective Modules

If we closely examine the proofs of the statements in Sections 2 and 3, we can easily show that the condition (*) may be replaced by one that U_A is X_A -projective for any module X such that X is generated by U. Such a module is nothing but a Σ -quasi-projective module originated by Fuller [1]. Thus, following [1], we call a module $U \Sigma$ -quasi-projective if $\oplus U$ is quasi-projective for any direct sum of copies of U.

Hence by the above we have:

THEOREM 5.1. If U is a Σ -quasi-projective right A-module, then $\mathcal{C}(U_A)$ is a coreflective subcategory of \mathcal{M}_A and \tilde{F} is its coreflector.

EXAMPLE 1. Let U be a finitely generated quasi-projective right A-module. Then by [2, Corollary 3.2] U is Σ -quasi-projective.

On the other hand, take any $X \in \mathcal{M}_A$ and let $\oplus B \to \oplus B \to \operatorname{Hom}(U, X) \to 0$ be a free resolution of $\operatorname{Hom}_A(U, X)_B$. Then we have the following commutative diagram

$$\begin{array}{c} \oplus B \longrightarrow \oplus B \longrightarrow \operatorname{Hom}(U, \operatorname{Hom}(U, X) \otimes U) \longrightarrow 0 \\ \\ & \alpha_1 \downarrow \qquad \qquad \alpha_2 \downarrow \qquad \qquad \operatorname{Hom}(I, \lambda(X)) \downarrow \\ \\ \oplus B \longrightarrow \oplus B \longrightarrow \operatorname{Hom}(U, X) \longrightarrow 0 \end{array}$$

with exact rows. Since α_1 and α_2 are isomorphisms, $\text{Hom}(I, \lambda(X))$ is also an isomorphism. Thus by Theorem 3.2 we have $F = \tilde{F}$.

Hence we have:

THEOREM 5.2. Let U_A be a finitely generated quasi-projective module. Then $\mathscr{C}(U_A)$ is a coreflective subcategory of \mathscr{M}_A and $F = \tilde{F}$ is its coreflector.

Furthermore, by Lemma 2.1 we obtain the following.

THEOREM 5.3 [7, Theorem 3]. If U_A is a finitely generated quasi-projective module, then $\mathcal{M}_B \cong \mathscr{C}(U_A)$.

Proof. Put S = B, T = A, ${}_{S}G_{T} = {}_{B}U_{A}$, and $U_{T} = U_{A}$ in Lemma 2.1. Then $M_{S} = B_{B}$. Hence it holds that $\mathscr{C}(U_{A}) \simeq \mathscr{C}(B_{B}) \simeq \mathscr{M}_{B}$.

EXAMPLE 2. Let U be a right A-module which is projective as an $A/r_A(U)$ module, where $r_A(U) = \{a \in A; Ua = 0\}$. Then by [2, Proposition 2.1] U is $\prod U$ -projective for any direct product of copies of U. Thus U is $\bigoplus U$ -projective for any direct sum of copies of U, i.e., U is \sum -quasi-projective.

Let $_{B}W$ be an injective cogenerator for $_{B}M$ such that $_{B}U \subset _{B}W^{n}$ for some

KENJI NISHIDA

integer $n \ge 1$. Put $_{A}V = \operatorname{Hom}_{B}(_{B}U, _{B}W)$ and $l_{A}(V) = \{a \in A; aV = 0\}$. Then we can easily show that $l_{A}(V) = r_{A}(U)$. Thus it holds that V is injective as an $A/l_{A}(V)$ -module by the similar way as in the proof of Lemma 4.1. Hence by [1, Theorem 1.2] $_{A}V$ is \prod -quasi-injective in the sense of Fuller [1].

Now, all the statements in [6, Sections 2 and 3] are correct whenever we replace the assumption (*) in [6, Section 2] with one that V is $\prod V$ -injective for any direct product of copies of V.

Thus, since V is $\prod V$ -injective for any direct product of copies of V by the previous paragraph, we obtain the following theorem.

THEOREM 5.4. Let U be a right A-module which is projective as an $A/r_A(U)$ module and V be as above. Then $\mathcal{C}(U_A)$ is a coreflective subcategory of \mathcal{M}_A with \tilde{F} as its coreflector and $\mathcal{D}(_AV)$ is a reflective subcategory of $_A\mathcal{M}$ with \tilde{D} as its reflector, where \tilde{D} is one given in [6].

ACKNOWLEDGMENT

The author expresses his hearty thanks to Professor T. Onodera for his many suggestions and encouragement.

References

- 1. K. R. FULLER, On direct representations of quasi-injectives and quasi-projectives, Arch. Math. 20 (1969), 495-502.
- K. R. FULLER AND D. A. HILL, On quasi-projective modules via relative projectivity, Arch. Math. 21 (1970), 369-373.
- 3. T. KATO, Rings of U-dominant dimension ≥ 1, Tôhoku Math. J. 21 (1969), 321-327.
- 4. T. KATO, Duality between colocalization and localization, to appear.
- 5. K. MORITA, Localizations in categories of modules. I., Math. Z. 114 (1970), 121-144.
- K. MORITA, Localizations in categories of modules IV, Sci. Rep. Tokyo Kyoiku Daigaku A 13 (1976), 153-164.
- 7. T. ONODERA, Codominant dimensions and Morita equivalences, Hokkaido Math. J., to appear.
- 8. H. TACHIKAWA, On splitting of module categories, Math. Z. 111 (1969), 145-150.
- 9. B. ZIMMERMANN, Endomorphism ring of self-generators, Pacific J. Math. 61 (1975), 587-602.