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INTRODUCTION

Morita considered the construction of a reflector for the category of modules
[6]. The purpose of this paper is to dualize some results of [6] and to construct
the coreflectors for the category of modules.

The notions of V-dominant dimensions, for an injective module 1/, are
introduced by Tachikawa [8] and are enlarged by Morita [5] for an arbitrary
module ¥V (cf. [3]). According to Morita [5], we say that a module X has V/-
dominant dimension =z, denoted VV-dom. dim X = #, if there exists an exact
sequence 0 - X — X; — - — X, where each X is isomorphic to a direct
product of copies of V.

On the other hand, following Onodera [7], for modules U and Y, we say that
Y has U-codominant dimension =#, denoted U-cod.dim Y = #n, if there
exists an exact sequence Y, — .- — Y, — ¥ — 0, where each Y, is isomorphic
to a direct sum of copies of U.

Let 4 be a ring and .4, be the category of right 4-modules. A full subcategory
A of M, is called a coreflective subcategory if there exists a functor G: A~ — .4,
such that for every X € .#, there exists a homomorphism #(X): G(X) — X, and
for every homomorphism f: Y — X with Y .4 there exists a unique homo-
morphism g: ¥ > G(X) such that the following diagram is commutative

G(X)

K)i)

g X

e
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Y.

Then we call G a coreflector.
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A reflective subcategory and a reflector are the dual of the above.

Let .. be the category of left A-modules and V' e . Let (V) be the full
subcategory of .# consisting of all left A-modules of ¥-dominant dimension
=2. Then, under some conditions, Morita [6] showed that Z(V) is a reflective
subcategory with a suitable reflector. The class of modules, studied in [6], which
give reflectors for P(V) includes, for example, injective modules and modules
of type FI (see [3), for definition of a module of type FI).

Take U e 4, . Let us denote by €(U) the full subcategory of .#, consisting
of all right .4-modules of U-codominant dimepsion =2. Onodera [7] investigated
properties of ¥(U) when U is projective and also studied the equivalences over
€(U).

We set the assumption for U which is satisfied whenever U is projective or
type FP (sce [5], for definition of a module of type FP). Then, in Section 2
we show that €(U) is a coreflective subcategory with F its coreflector. Further-
more, we also construct coreflectors for modules of different type from the
previous one in Section 5.

In Section 3 we investigate the conditions for F' = F, where the definitions of
F and F are seen in Section 1.

In [5] Morita constructed a module of type FI from a module of type FP
by a suitable method. In Section 4 we construct a module 7 given in [6] from a
module U given in Section 2 by the same way as in [5].

Throughout this paper all rings have an identity element and all modules are
unital.

1. PRELIMINARIES

Let 4 be a ring and U be a right A-module. Put B = End(U,) and
C = End(3U). For any right 4-module X we put;
F(X) = Hom,(U, X) ®p Uy,
MX): F(X)— X[f @ ut—> fu(f € Hom(U, X), u € U)],
F(X) =73 {Im¢; ¢ € Hom(U, F(X)) such that A(X)¢ = O},
F(X) =F(X)/F(X),
7(X): F(X) - F(X) a canonical projection,
A(X): F(X)-> X such that A(X) = A(X) 7(X) (note that F(X) C Ker \(X)).
Let X, ¥ be right A-modules and f: X — ¥ be an 4-homomorphism. Put
F(f) = Hom(Iy, f) @Iy F(X)—F(Y). Then the following diagram is
commutative

F(X)—D B(y)

AX) l ) |
Y

x—27 v
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Take any x € F(X). Then we have x = ¢u for some u € U and ¢ € Hom(U,
F(X)) such that A(X)¢ = 0. Put  =F(f)é € Hom(U, F(X)). Then we have
MY)yp =XNY)F(f)¢ =fMX)$¢ =0 and F(f)x = F(f)du = u. Thus
F(f) x € F(Y). Therefore, there exists an 4-homomorphism F(f): F(X)— F(Y)
such that the diagram

FX)—22 | R(y)
7(X) l n(Y) l
Fx)—L s F(Y)

is commutative. Hence we have:

LemMa 1.1. F is a covariant additive functor and XX) is a natural homo-
morphism.

Proof. The first statement is almost clear. We have fA(X) n(X) = fA(X) =

NY)F(f) = NY)n(Y)F(f) — XN(Y)F(f) 7(X). Since 7(X) is an epimorphism,
we have fA(X) = X(Y) F(f). Thus A(X) is a natural homomorphism.

ProposiTioN 1.2. If Yelly, then Y ®p U, €(U ).

Proof. Let B — @B — Y —0 be a free resolution of Y. Then we have
an exact sequence QU —> QU —~Y ®p U—0. Thus Y @z UeE(L ).

CoroLLary 1.3. F(X)eG(U,) for any X e M, .

PropositioN 1.4. U, — cod. dimF(X) = 1.

Proof. It is almost clear.
ProposITION 1.5. MNU#): Ur > F(U%), F(U"y >~ F(U"). If X >~ ®U, then
A(X) is an epimorphism.

Proof. These follow from definitions.

Let fe Hom(U”, X). Put o®(X)f=F(f) U™ Ur —F(X), 6"(X)f=
F(f) (U NU"Y: Ur — F(X). Then we have;

F=XX) on(X) f = XX) 6"(X)f,
F(X) f = n(X) o(X) f.

Hence we have:
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ProposiTION 1.6.

Hom(I

o™

NX)) o™(X) = I,

om(U”, X)

Hom([,,., \(X)) 6"(X) = I,

um’ om{U™X) *

Proof. 'Take feHom(U” X). Then we have Hom(l, (X)) o™(X)f =
AX) o"(X) f = NX)F(f) U™ T = fU) AU = f.
The latter 1s obtained similarly.

ProposiTiON 1.7. Let fe Hom(U", X), he Hom(U, U"). Then we have
a(X) (fh) = (e™(X) 1) h-

Proof. We have o%X)(fh) = F(fh) NU)™? = F(f) F(h) \U)* = F(f)
AU MU F(R) NU) = (a™(X) ) k.

2. COREFLECTOR F'

Let Ue, . Put B = End(U,), C = End(zgU), ¢: 4— C a canonical ring

homomorphism. Now we assume the following condition.
Condition (*). There exists a subring R of C such that
(@) 4(A)CRCC
(b) pUrz2 U &4 Rg
(c) Uy is projective.

Let U, be type FP or projective. If we put R = C or 4, then U, satisfies (*).

Lemma 2.1 (cf. [5, Lemma 3.1]). Let S, T be rings and ;Gr be an S-T-

bimodule. Assume that Gy is finitely generated quasi-projective. Put

P: My — M, P(X)=Homy(G, X), X e,

Q:My— M, QY)=Y R G, YeMy, and

IN'(X):QP(X)— X, X e My,

AY): Y —>POYY), Y € M, canonically.
Let U be a right T-module such that I'(U) is an isomorphism. Put M = P(U). Then
we have

P: €(Up) > € (M), Q: €¢(Ms) — €(Uy), and

OP =1 on 6(Uy), PQ = I on €(Mjy).

Proof. Since P and Q commute with direct sums and are right exact, the
first of the lemma is easily obtained.
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If X e%(Uy), then there exists an exact sequence Z, —> Z; — X — 0 with
each Z,~ @U. Thus we have the following commutative diagram

Z, Zy X 0
I(Zy) T ez T r(x) T
OP(Z;) — QP(Z,) —— QP(X) —— 0

with exact rows. Since each I'(Z)) is an isomorphism, I'(X) is an isomorphism.
If Y e%(Mj), then there exists an exact sequence YV, > Y; — Y — 0 with
each YV, >~ @M. ~ @ P(U) ~ P(DU) = P(X,) with X; >~ @U, we have the

following commutative diagram

P(X,) —— P(X)) Y 0

4(P(X,)) l A(P(X1)) l aY) l
POP(Xy) —— POP(X;) —— PO(Y)——0
P(r(X,)) l P(I'(X,)) i
P(X;) —— P(X,)

with exact rows. Since each P(I'(X,)) 4(P(X;)) and P(I'(X,)) are isomorphisms,
each A(P(X,)) is also an isomorphism. Hence 4(Y) is an isomorphism. This
completes the proof.

Now, if we put S = A4, T = R, Gy = 4Rz in Lemma 2.1, then we have:

Lemma 2.2. If X, X' e 4(U,),f e Hom (X, X'), then we have X, X' € €(Up)
and f is an R-homomorphism.

ProrposiTioN 2.3. Uz — cod. dim F(X) = 1 for any X € M, .

Proof. F(X)e¥(U,) by Corollary 1.3. Since Ue%(U,), each ge
Hom (U, F(X)) is an R-homomorphism by Lemma 2.2. Thus F(X) is an
R-module. Hence Uy — cod. dim F(X) > 1 by Proposition 1.4.

Lemva 2.4, F(X)e G(Ug) for any X e M, .
Proof. Consider the following diagram in .#;
0

n(X)

0 F(X) F(X)

d|

VA

F(X) 0,
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where row and column are exact and Zo~ QU. Let K =Kern(X)g =
g YF(X)). We shall prove that U generates K. Take x € K. Then gx e F(X). By
Proposition 2.3 there exist e Homg(U, F(X)) and # e U such that hu = gx.
Since Up is projective, there exists 2" € Homg(U, Z) such that 2 = gh’. Thus
Im 4 CK and x — h'uc Ker g. There exist £” € Homg(U, Kerg) and u' e U
such that 2”4’ = x — R'u. Therefore, U generates K. Hence F(X) € €(Uxg).

In the following, we write o(X), 6(X) instead of ¢'(X), 6'(X), respectively.
Lemma 2.5. 6(X): Hom (U, X) =~ Hom (U, F(X)), Hom(I,, ((X)):
Hom (U, F(X)) =~ Hom (U, X) for any X € M, .

Proof. By Proposition 1.6 we need to show that ¢(X) is an epimorphism.
Let g € Hom(U, F(X)). Then g is an R-homomorphism by Lemma 2.2. Con-
sider the following diagram

U

g

Fx) 0 (exact)

X(X)l
MX)

X.

F(X) 2X)

Since Upg is projective, there exists £ € Hom(U, F(X)) such that g = 4(X) k.
Put f = A(X) g. We have f = A(X) h. On the other hand, N(X) (k — o(X)f) =0
by f=MX)(a(X)f). Thus n(X)(h — o(X)f) =0 by definition of 5(X).
Therefore, we have g = 9(X) 2 = n(X) (o(X) f) = 6(X) f. Hence 6(X) is an
epimorphism.

Lemma 2.6. If Xedl,, Y cB(U,), then there exists a natural isomorphism
Hom(ly , A(X)): Hom (Y, F(X)) =~ Hom (¥, X).

Proof. Since Y e €(U ), there exists an exact sequence Y, — ¥, —» ¥ —0,
where each V; is a direct sum of copies of U. Then we have a commutative
diagram with exact rows;

0 —> Hom(Y, (X)) —> Hom(Y, , F(X)) ——> Hom(Y, , F(X))

Hom(I,5(X)) l o l o l

0— > Hom(Y, X) Hom(Y, , X) ——» Hom(Y,, X).

By Lemma 2.5 «; , o, are isomorphisms. Thus Hom(Z, A(X)) is an isomorphism.

‘Taeorem 2.7. Let U be a right A-module which satisfies (*). Then €(U,)
is a coreflective subcategory of M, and F is its coreflector.

481/54/2-3
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Proof. Theorem follows from Lemma 2.6.

CoRrOLLARY 2.8. A(X):F(X)— X is an isomorphism if and only if X € €(U.,).

Proof. If X(X) is an isomorphism, then X € €(U,) by Lemma 2.4.

Conversely, if X e@(U,), then there exists € Hom(X, F(X)) such that
XX) ¢ = Iy by Lemma 2.6. We have A(X) = I,A(X) = A(X) ($A(X)). Thus
It = YA(X) by Lemma 2.6. Hence A(X) is an isomorphism.

3. ConDITIONS FOR F = F

For a right A-module U which satisfies (*), we easily get the following by
Corollary 2.8.

ProrosrtioN 3.1. Let X e M, . Then we have \(X): X =~ F(X) <+ Xe¥(U,)
and F(X) = F(X).

Now, we consider some conditions for F(X) = F(X). Let U, F, F, etc. be the
same as in Section 1. U does not satisfy (*) unless specifically stated.

Tueorem 3.2. Consider the following conditions for X € M, .
(a) F(X)=FX).
(b) Hom(Z, \(X)): Hom (U, F(X)) =2 Hom (U, X).
(© AFX)):FF(X) = FX).
(d) AFCX): FR(X)) 22 F(X).
(e) A(FUX)): Fi(X) = F*YX) for some integer =1.
) MFUX)): F{X) >~ F+Y(X) for all integer =1.

Then it holds that (a) < (b), (b) = (c), (b) = (d), and (d) < (e) < (f). Further-
more, if U, satisfies (*), then all the conditions are equivalent.

Proof. (a) < (b). Assume F(X) =F(X). Since F(X)=0, it holds that
f = 0 whenever M(X)f =0 for any fe Hom(U, F(X)). This means that
Hom(I, A(X)) is monic. Hence Hom(Z, X(X)) is an isomorphism by Proposition
1.6.

Conversely, consider an exact sequence 0 — Hom(U, F(X)) — Hom(U, F(X))
—Hom(Ln(x) Hom(U, F(X)). Then Hom(U, F(X)) = 0, since Hom(Z, (X)) is
monic by (b) and Hom(l, (X)) = Hom(Z, A(X)) Hom(Z, 7(X)). Hence by
Proposition 1.4 F(X) = 0, i.e., F(X) = F(X).

(b) = (c). By the above (b) implies (a). Hence (c) follows easily.

(b) = (d), (d) = (), (f) = (¢) are almost clear.
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(¢) = (d). We assume that F©*X)~ F**(X) for some integer i = 1.
Put Y = F{X). Then F(F(Y)) == F(Y). Thus F(Y) = 0, i.e., F(Y) = F(Y).
Since Y € ¥(U ), we have Y o~ F(Y) by [7, Lemma 2]. Hence F{(X) o~ F**(X).
By repeating this process we finally obtain F(F(X)) >~ F(X).

Now, we assume (*) for U, .

(c) = (a). Consider the following diagram;

FX) -2 x

AMFGX) \Q A0

__ F(X).
FAXY))

F(F(X))

Since A(X)7(X) FQ(X)) = MX)FA(X)) = X(X) XF(X)), we have n(X) F(A(X))
= A(F(X)) by Lemma 2.6. On the other hand, F(A(X)) is an isomorphism by
Lemma 2.5. Thus we have (¢) = (a).

(d) = (¢). Consider the following diagram;

0 F(X) F(X) F(X) 0
T MF(X)) T AMEF(X)) T AF(X))
F(F(X)) F(F(X)) —— F(F(X)) ——— 0.

The two rows are exact, since Uy is projective. A(F(X)) is an epimorphism by
Proposition 2.3. Thus, by a diagram chase, if A(F(X)) is an isomorphism, then
MF(X)) is, too. This completes the proof.

THeoreM 3.3.  Assume (*) for U, . Let X, be a factor module of U™ for some
integer n = 1. Then we have N(X): X o~ F(X) if and only if X e (U ,).

Proof. If X ~ F(X), then clearly X e (U ,).
Conversely, we have an exact sequence Z — U" —> X — 0 with Z o~ QU.

Since Uy is projective, we have the following commutative diagram with exact
rows

Z Ur X —> 0
T NZ) T AU T AMX)
F(Z) F(U7) F(X)—— 0.

By Proposition 1.5 A(Z) is an epimorphism and A(U?) is an isomorphism. Hence
A(X) is an isomorphism.
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THEOREM 3.4.  Assume (*) for U, . If F(X) is isomorphic to a factor module
of U™ for some integer n = 1, then F(X) = F(X):

Proof. It is clear by Theorem 3.2 and 3.3.

PropositioN 3.5. Consider the following conditions for X € 4, .

(a) There exists an epimorphism g: Ur — F(X) for some integer n = 1.
(b) Hom,(U, X) is a finitely generated B-module.

() There exist some integer n = 1 and an A-homomorphism : Ur — X
such that, for every f e Hom (U, X), there exists h € Hom (U, U") with f = yh.

Then (c) <= (b) = (a). Furthermore, if U 4 satisfies (*), then (a) = (c) holds.
Proof. (c) = (b) and (b) = (a) are almost clear.

(b) = (c). Let f;,..., f, be B-generators for Hom(U, X). Define : Ur - X
with (u;) = 3 fau; . Take any f e Hom(U, X). Put f = Y f,b, (b; € B). Define
k€ Hom(U, U") with hu = (bu). Then we have f = k.

(a) = (c). Put ¢ = NX)g. We have f = MX)(o(X)f) for any
feHom(U, X). By Lemma 2.2 o(X)f is an R-homomorphism. Thus there
exists k€ Hom(U, U") such that o(X) f = gh, since Uy is projective. Hence
F=AX)gh = ¢h.

CoroLLARY 3.6. If U, is projective, then all the conditions of Proposition 3.5
are equivalent to the following condition (d): There exists f € Hom (U™, X) such
that Im A(X) = Im .

Proof. (a) = (d). Put f=AX)g: U» - X. Then we have (d).

(d) = (). Let e Hom(U", X) with Im A(X) = Im 4. For any f € Hom(U,
X), since Im f CIm X X) = Im ¢ and U, is projective, there exists # € Hom(U,
U™) such that f = Jh.

Remark 1. By the above, if U, is projective, then the existence of
£: U"— X — 0 (exact) means the existence of g': U" — F(X) — 0 (exact).

Remark 2. As for Theorem 3.3, Proposition 3.5, and Corollary 3.6, we can
easily see from the proof that these statements hold whenever U, is quasi-
projective.

Tueorem 3.7. Let X be a right A-module which satisfies (c) of Proposition 3.5.
Then M X) is a monomorphism if and only if U , generates Ker o, where - Ur — X
1s one which is given in (c) of Proposition 3.5.

Proof. Let y(u;) =3 fau; (f-€ Hom (U, X); 1 =i < n). Define ¢: U —
F(X) with ¢(u;) =3 f, ®u;. Then = MX)é. We shall prove Ker¢ =
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{(uy seees ); 8 = X3 by, for some u; ..., u, e U by e B S i<n 1 Sk <
p) such that 3°; by, == 0 for every k}. We write K instead of the right-hand side.
If (u) e K, thend(u)) = L f; Qus = 3 f; @ (X batp) = X (X fib) ® . = 0.
Thus (u;) € Ker ¢.

Conversely, since Hom(U, X) =3 f;B, we have an exact sequence 0—
Ker 7 —* B* -7 Hom(U, X)—> 0. Then we have an exact sequence Ker 7 Q)3
U —® Un »>7®IF(X)— 0, where 7 ® I = ¢. Thus if (4,) € Ker ¢, then there
exists 3 ((b) ® uy,) € Ker w ®p U such that u; ==Y by, . Since (by) €
Ker m, we have 3, f;5,, = O for any k. Hence (u,) € K. Since ¢ is an epimorphism,
A(X) is a monomorphism < Ker ¢ = Ker 4 < U generates Ker .

4., CONSTRUCTION OF A MobuLE V

The purpose of this section is to construct a left 4-module V" with assump-
tion (**) (which is denoted by (*) in [6]) from a right 4-module U with assump-
tion (*).

Let V be a left A-module. Put D = End(,V), C = End(V}), and ¢: 4 — C
a canonical ring homomorphism. We assume that V7 satisfies the following
condition.

Condition (**). There exists a subring R of C such that
(a) ¢'(A)CRCC,
(b) &Vp=¢ Hom,(,Rg, ,Vp),

(c) RV is injective.

In this situation Morita [6] showed that Z(,V) is a reflective subcategory of
44 with a suitable reflector.

Now, since B = End(Upg) and Uy, is projective, it holds that TU = U where
T is a trace ideal of U, and zU @ Homg(U, X) =< zX, canonically, for every
Xe G = {Xegd;pU generates pX} (see [4, Lemma 2.2; Lemma 4; 9, Theo-
rem 3.2]).

On the other hand, by (b) of (*) we have U ®p Homp(U, X) ~ U ®,
R @r Homp(U, X) =~ 3U @, Homp(U, X). Thus zX >~ U ®, Homp(U, X)
for every X € 4.

In these circumstances, it is well known that X € ¢ if and only if 7X = X.
Let W’ be an injective cogenerator for p# such that U Cy (W')" for some
integer n = 1. Take any X € 4 and f € Homg(X, W’). Then (X)f = (TX) f =
T(X)fC TW'. Hence, if we put W= TW’, then We ¥, W is an injective
cogenerator for the category ¥, and zU C zW™ for some integer n = 1.

Put ,V = Homp(U, , 3W) and D = End(sW).
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Lemma 4.1, The notations are as above. It holds that D = End(,V),C =
End(Vp), and ,V satisfies (**) for the ring R in (*).

Proof. Since zWe ¥, we have End(,V) = Hom,(Homy(zU,, sW)
Homp(pU, , 3W)) o~ Homp(zU ®,4 Homp(rU 4, zW), gW) =~ Homp(zW, ;W
= D. Put C’ = End(Vp). Let ¢ be as in (*) and ¢’ be a canonical ring homo-
morphism 4 — C’. Define a ring homomorphism ¢: C — C’ with () v = cv
Since V is a C-D-bimodule, 4 is well-defined. If u e U, ve V, and a € 4, ther
u((f(da)) v) = (ua) v = u((¢'a) v). Thus Y =¢’". Let hc = 0. Then, for any
ue U, ve V, we have 0 = u(cv) = (uc) v. Thus uc € (e Ker v = 0. Therefore
¢ = 0. Hence ¢ is a monomorphism. We regard C as a subring of C’ through
Then ¢(4) =¢'(A)CRCCCC.

We shall show that 7 satisfies (**). (a) is almost clear. Hom (R, ,Vp) =
Hom ,(,Rg , JHomp(zU, , sWp)) =~ Homp(zU @, Rr, sWp) = Hompy(sUg,
sWp) = gVp . Hence (b) holds. For any X € p#, we have Hompg(pX, gV} =
Homz(zX, Homp(3Ug , sW)) >~ Homp(pU Rr X, sW). Since pU Rr X e %,
W is injective in &, and Uy is flat, the functor Hompg(—, g¥) is exact on g
Hence V is injective.

Since V' is a C-D-bimodule, D = End(.V). Thus End(,}V) = End(p}) =
End(.V) = D. Since gU C zW™, there exists v; ,..., v, € ¥ such that N Ker v,
= 0. Define o: C— V" with co = (cvy ..., ¢v,,). Then « is a C-monomor-
phism. Fix any ve V. Define B: gC— gV with ¢8 = cv. Then there exists
(dy ».-., d,) € D* such that «(d, ,...,d,) = B, since gV is injective. Thus v =
> vd; . Therefore, I, = v;D.

Define &: oC’ — V" with ¢'a = (¢'vy ..., ¢'v,). If ¢'a =0, then ¢’ =0 by
V =3 v;D. Thus @ is 2 monomorphism. Hence we can consider that & is an
extension of « to C’'. We denote it also a. Then (C) « C (¢C’) a. By the similat
manner as in [5, proof of Theorem 2.3, (b)], we obtain the following;

(cC") o = {(91 yoery ¥n) € V™ (v7) f = O for every

(#)
feHomg(V™", V)such that (C) of = 0}.

Since zW is a cogenerator in %, we have an exact sequence 0 — gU —¥ g7 —>
T1 W, where y = (v, ,..., v,,). Then we have an exact sequence 0 — .C —
V=TI V. Thus V™)(.C) « is cogenerated by V. Hence by (#) it holds
that (C)a = (C') o, ie., C = C".

CoRrOLLARY 4.2. Let U be a right A-module of type FP. Then V is a left
A-module of type FI and €(U,) == My, and D(,V) =2 g M.

Proof. Apply Lemma 2.1 to the case that S =B, T = C, (G = gU,.
Then Uy = U, and Mg = By . Therefore, #p o €(Bg) == €(U,). Similarly,
considering a bimodule ,C., we have ¥(U,) =~ ¥ (U.). Hence My =~ €(U,).

The other statements are obtained in [5, Theorem 4.1].
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5. ON 2-QUASI-PROJECTIVE MODULES

If we closely examine the proofs of the statements in Sections 2 and 3, we
can easily show that the condition (*) may be replaced by one that U, is X -
projective for any module X such that X is generated by U. Such a module is
nothing but a 3 -quasi-projective module originated by Fuller [1]. Thus,
following [1], we call a module U ¥ -quasi-projective if @U is quasi-projective
for any direct sum of copies of U.

Hence by the above we have:

TuroreM 5.1. If U is a Y -quasi-projective right A-module, then €(U ) is a
coreflective subcategory of M, and F is its coreflector.

Exampie 1. Let U be a finitely generated quasi-projective right 4-module.
Then by [2, Corollary 3.2] U is ¥ -quasi-projective.

On the other hand, take any X €.#, and let ®B — @B — Hom(U, X)— 0
be a free resolution of Hom 4(U, X)z . Then we have the following commutative
diagram

@B @B Hom(U, Hom(U, X) ® U) —> 0
oy l ay l Hom(I,A(X)) l
@B ® B Hom(U, X) 0

with exact rows. Since «; and o, are isomorphisms, Hom(Z, (X)) is also an
isomorphism. Thus by Theorem 3.2 we have F = F,
Hence we have:

THEOREM 5.2. Let U, be a finitely generated quasi-projective module. Then
C(U,) is a coreflective subcategory of M, and F = F is its coreflector.

Furthermore, by Lemma 2.1 we obtain the following.

THEOREM 5.3 [7, Theorem 3]. If U, is a finitely generated quasi-projective
module, then Mg ~ €(U ).

Proof. Put S =B, T=A4, Gy = 3U,, and Uy = U, in Lemma 2.1.
Then Mg = Bg. Hence it holds that (U ,) ~ ¥ (Bg) =~ ;.

Exampre 2. Let U be a right A-module which is projective as an A/r ,(U)-
module, where 7,(U) = {a € A; Ua = 0}. Then by [2, Proposition 2.1] U is
I'T U-projective for any direct product of copies of U. Thus U is @U-pro-
jective for any direct sum of copies of U, i.e., U is ¥ -quasi-projective.

Let zW be an injective cogenerator for z# such that zU C zW* for some
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integer n = 1. Put ,V = Homg(gU, zW) and 1,(V) = {a e 4; aV = 0}. Then
we can easily show that (V) = r (U). Thus it holds that V is injective as an
Al1,(V)-module by the similar way as in the proof of Lemma 4.1. Hence by
[1, Theorem 1.2] ,V is []-quasi-injective in the sense of Fuller [1].

Now, all the statements in [6, Sections 2 and 3] are correct whenever we
replace the assumption (*) in [6, Section 2] with one that ¥ is [TV -injective for
any direct product of copies of V.

Thus, since ¥ is []V-injective for any direct product of copies of V by the
previous paragraph, we obtain the following theorem.

THEOREM 5.4. Let U be a right A-module which is projective as an Afr ((U)-
module and V be as above. Then €(U ) is a coreflective subcategory of M, with F
as its coreflector and D(, V') is a reflective subcategory of . with D as its reflector,
where D is one given in [6].
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