TCT-577
Coronary Liposuction During Primary Percutaneous Coronary Intervention: Evidence by Near-Infrared Spectroscopy that Aspiration Reduces Lipid Core Size Prior to Stent Placement
David Erlinge1, Jan Harnek2, Isabel Goncalves3, Matthias Goertge4, James E. Muller5, Ryan D. Maddox6
1Land University, Lund, Sweden; 2Inst of Clin Sciences, Lund, Sweden, 3Land University, Lund, NA, 4Land University, Lund, WI, 5Infrareads, Inc., Burlington, MA, 6Frederik Meijer Heart & Vascular Institute, Spectrum Health, Ada, Michigan

Background: Intracoronary near-infrared spectroscopy (NIRS) in ST-segment elevation myocardial infarction (STEMI) has demonstrated substantial lipid in STEMI culprit plaques. Thrombus aspiration during PCI reduces distal embolization and improves reperfusion. This study was performed to examine if thrombectomy reduces the lipid in STEMI culprit plaques.

Methods: NIRS-IVUS imaging was performed in STEMI patients at two hospitals in the US and Sweden. After establishment of TIMI 3 flow with an undersized balloon, NIRS was performed, followed by aspiration thrombectomy, followed by repeated NIRS. The culprit lipid content was quantified before and after thrombectomy as the lipid core burden index (LCBI). Aspirates were examined with histology.

Results: In 13 STEMI patients (age 64 ± 10, 69% male), culprit lesions were characterized by high lipid content prior to aspiration thrombectomy (LCBI 456±145). Thrombectomy resulted in a 35% reduction in culprit lesion lipid content (LCBI pre 456±145 vs post 296±150, p<0.002). Histological analyzes of aspirates demonstrated thrombus plus lipid, calcium and macrophages, indicating that parts of atherosclerotic plaques had been aspirated.

Conclusions: Thrombectomy in STEMI aspirates both thrombus and parts of the culprit atherosclerotic plaque, thereby reducing material which may embolize during stenting. Reduction of lipid content before stenting might contribute to the beneficial effects of thrombectomy and be particularly useful if a large lipid core is present at the culprit site.

TCT-578
Vascular Responses at the Edges of the DESolve Novelimus-Eluting Biodesorbable Vascular Scaffold: Serial OCT Observations from the Pivotal, Prospective, Multicenter, DESolve NX Study
Daniel Chumie1, Stefan Verheyen2, Joachim Schofer3, Jose D. Costa Jr4, Sara Toyloy8, Alexandre Abizaid10, Ricardo A. Costa5, Andrea Abizaid6, John Yan7, Vinayak Bbhat8, Lynn Morrison9, Paulo, Sao Paulo, Brazil, 5Infraredx, Inc., Burlington, MA, 6Frederik Meijer Heart & Vascular Institute, Spectrum Health, Ada, Michigan

Background: Lumen loss and significant qualitative plaque changes, particularly increase in fibro-fatty tissue components, have been demonstrated at the edges of metallic DES. Polymeric biodesorbable scaffolds (BRS) have different biological behavior in comparison to metallic stents. In this study, we sought to investigate the vascular responses at the edges of the DESolve PLLA-based novelimus-eluting BRS.

Methods: The DESolve NX study enrolled 126 pts treated with the DESolve BRS. Serial follow-up invasive OCT was performed in 40 pts. Serial (baseline and 6 months) OCT images were available for 38 pts. Quantitative and qualitative changes in the 5-mm distal and proximal scaffold edges were examined by OCT at 0.6-mm interval.

Results: Overall, 37/38 (97.4%) distal and 34/38 (89.5%) proximal edges had suitable serial OCT images for analysis. No significant changes were observed in lumen areas at both distal (Δ lumen area: 0.32±0.814%; 95% CI: -2.44 to 2.56, p=0.671) and proximal (Δ lumen area: -3.03±1.122%; 95% CI: -7.21 to 1.50, p=0.085) edges up to 6 months. At baseline, lipid-rich plaques were seen in 17 (23.9%) of the total 71 analyzed edges (14/37 (5.6%) at distal and 13/34 (38.2%) at proximal edges), and were still evident at 6 months. However, significant reductions in the longitudinal (57±0.77 mm; 95% CI: -0.97 to -0.16, p<0.006) and circumferential (-20.8±18.01 degrees; 95% CI: -30.07 to -11.55, p=0.001) distribution of lipid plaques were observed from baseline to 6 months. Furthermore, a significant increase in mean fibrous cap (FC) (129.41±52.97 µm; 95% CI: 102.17 to 156.64, p<0.0001) and minimum FC (88.23±57.57 µm; 95% CI: 58.63 to 117.84, p=0.001) thicknesses were observed up to 6 months. No new lipid plaque developed over time.

Conclusions: This study demonstrated that vascular healing after sirolimus-eluting stent implantation might be delayed in DM patients compared to non-DM patients.
eventually additional stent implantation in SB ostium) while leading to ischemic compromise. Nevertheless, there is little data using FD-OCT imaging to better understand the relationship between underlying plaque and acute stent-vehicle interactions in this setting. We aim to evaluate, by means frequency-domain optical coherence tomography (FD-OCT), the impact of main branch (MB) calcified plaques outside branch (SB) occlusion after MB stent implantation in coronary bifurcations.

Methods: We evaluated 78 patients with native de novo coronary bifurcation lesions with SB deserving wire protection (side-branch length greater than 50mm) who underwent MB FD-OCT before stent implantation. FD-OCT assessments were performed pre-PCI to evaluate the plaque type calcium and non-calcium (fibrous and lipid) of main branch. SB occlusion was defined as % diameter stenosis greater than 75% of SB ostium by angiogram after MB stent implantation.

Results: Occlusion of SB occurred in 43.6% while 18 patients required balloon angioplasty for SB occlusion. In multivariable analysis, true bifurcation (odds ratio [OR]: 3.70; 95% confidence interval [CI]: 1.13 to 12.58; p = 0.030) and calcified plaque determined by FD-OCT assessments (OR: 17.11; 95% CI: 4.97 to 58.96; p < 0.001) were independent predictors of SB occlusion after MB stent implantation.

Conclusions: Calcified plaque demonstrated by FD-OCT assessments as well as true bifurcations were identified as independent predictors of SB occlusion after MB stent implantation.

TCT-581
Optical coherence tomography during everolimus-eluting bioabsorbable vascular scaffold implantation in patients with acute coronary syndrome.

Manuel Pan1, Romero Miguel2, Ojeda Soledad3, Suárez De Loco Javier1, Mazaolos Francisco1, Jose Segura2, Medina Alfonso2, Suárez De Loco José1
1University of Cordoba, Cordoba, Spain, 2University of Cordoba, Cordoba, Spain, 3Hospital Reina Sofia. Universidad de Cordoba, Cordoba, Spain, 4University of Las Palmas, Las Palmas De Gran Canaria, Spain, 5University of Cordoba, Cordoba, Spain

Background: Everolimus-eluting bioabsorbable vascular scaffold (BVS) is a new promising therapeutic technology for the treatment of coronary heart disease. However, clinical experience with this device is still limited in patients with acute coronary syndrome and thrombus containing lesions. The purpose of this study is to analyze the usefulness of the optical coherence tomography (OCT) in the monitoring of these procedures.

Methods: From January 2012 to May 2013, 66 patients with acute coronary syndrome were treated by BVS implantation. After identification of the culprit lesion, a baseline intravascular ultrasound study (IVUS) was performed. Taking into consideration the IVUS information, direct stent deployment was carried out in 44 patients (67%). After the BVS implantation, an OCT catheter was advanced distal to the area of interest over a conventional coronary guide-wire. Several pullbacks were performed to obtain an optimal visualization of the treated segment.

Results: The mean age was 55±9 years, 25 (38%) patients had ST elevation and the remaining 41 had ACS without ST elevation. After treatment, the percentage of stenosis changed from 81±15% to 6±16%. According with the angiographic criteria, the procedure was successful in all 66 patients. However, immediately after the BVS deployment the OCT showed the following negative complications. 4) Proximal edge dissection (non-detected by angiography) 8 (12%). 5) Distal edge dissection (non-detected by angiography) 10 (15%). 6) Severe BVS under-expansion 4 (6%). 7) Main vessel BVS deformation after side branch dilation 4 (out of 10 treated bifurcation lesions). According with these findings the operator modified the procedural strategy in 36 patients (54%): 1) Post-dilation of the BVS with a new balloon in 28 (42%). 2) Kissing balloon or sequential dilation (side-main-side) in 4 bifurcation lesions. There were no in-hospital major complications.

Conclusions: Angiography has limitations in the assessment of the immediate results after BVS treatment of coronary lesions. However, OCT is an useful adjunctive tool during the monitoring of this procedure in patients with acute coronary syndromes.

TCT-582
Association Of Coronary And Carotid Artery Plaque Composition By Intravascular Ultrasound Virtual Histology With Stent Restenosis And Plaque Progression

Dace Sondore1, Karlis Strenge2, Karlis Trusiniskis2, Inga Nastute2, Sanda Jegere2, Andrejs Ergis1
1Pauls Stradins Clinical University Hospital, Riga, Latvia

Background: Atherosclerosis is a systemic inflammatory disease involving multiple arterial beds. Despite differences in the carotid and coronary vasculature, both vascular distributions are believed to share common pathway in disease progression. It is not known whether the atherosclerotic plaque composition is associated with stent restenosis and atherosclerosis progression.

Methods: In Latvian Center of Cardiology patients for previous indications underwent coronary and carotid angiography. Patients with concomitant coronary and carotid artery disease defined as ≥50% stenosis were included in single-center, prospective study. All patients were scheduled for carotid and/or coronary artery stenting and prior to intervention IVUS-VH (Eagle Eye; Volcano Therapeutics Inc; CA, USA) imaging of coronary and carotid plaque were done. Angiography and IVUS-VH follow-up was scheduled after 10 month.

Results: 100 consecutive patients (60% men), mean age 69±8±4 years, were enrolled. 79.0% of patients (n=78) underwent carotid stenting and 36.0% (n=36) had PCI. For 75 patients angiographic and IVUS-VH follow-up was done (mean 489 days, 95% CI 507.0–631.8). Carotid restenosis rate was 1.8% (=1.1). 3 of 17 patients (17.6%) had plaque progression and consequent carotid stenting. Carotid restenosis rate was 25.8% (8 of 31 patients). We found no difference in untreated carotid plaque tissue composition by IVUS-VH at baseline between progressive (n=3) and nonprogressive (n=14) carotid plaques (fibrotic tissue 56.7±8.4% vs 57.3±7.4%, p=0.898, fibrolipid 15.0±7.5% vs 18.7±9.3%, p=0.531, necrotic core 5.7±3.5% vs 5.8±4.0%, p=0.959, necrotic core 22.3±12.9% vs 18.4±9.7%, p=0.548). Similarly, no association with IVUS-VH characteristics of culprit lesion at baseline was found between coronary restenosis (n=8) and no-restenosis (n=23) group.

Conclusions: Atherosclerotic plaque tissue characteristics by IVUS-VH were not associated with carotid plaque progression and frequency of restenosis in coronary arteries in these series. Restenosis rate in carotid arteries is low in comparison with coronary arteries regardless of the stenosis morphological differences.

TCT-583
The Extent of Lipid-Rich Plaque Assessed by Near-Infrared Spectroscopy May Predict DES Failure: A COLOR Registry Analysis

Tomotaka Dohi1, Gora Weiz2, Eric R. Powers3, Daniel H. Steinberg3, James Goldstein4, Priti R. Shah5, James E. Muller6, Gary S. Mintz7, Gregg Stone8, Aikiko Muheara9
1Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, 2Columbia University, New York, United States, 3Medical University of South Carolina, Charleston, SC, 4 beacon hospital, Royal Oak, United States, 5InfrareDs, Inc, Burlington, MA, 6Infraredx, Inc., Burlington, MA, 7Cardiovascular Research Foundation, Washington, DC, 8Columbia University Medical Center and the Cardiovascular Research Foundation, New York, United States, 9Cardiovascular Research Foundation and Columbia University Medical Center, New York, United States

Background: The COLOR Registry is a prospective, multicenter observational study of real-world pts undergoing percutaneous coronary intervention who also had intracoronary imaging using near infrared spectroscopy (NIRS).

Methods: We investigated the relationship between the extent of lipid rich plaque (LRP) assessed by pre-intervention NIRS at the time of drug-eluting stent (DES) implantation and subsequent DES failure (restenosis or thrombosis). Raw spectroscopic information was transformed into a probability of LRP; pixels with a probability of LRP >0.6 were divided by all viable pixels to generate the lipid-core burden index (LCBI). Case-control matching was performed with respect to age, gender, diabetes, baseline symptoms, stent type, stent length, and time to event.

Results: Eleven pts who developed DES failure [10 restenosis (1 proximal edge, 9 in-stent) and 1 subacute stent thrombosis] at a median of 363 days (range 8-598 days) post-implantation and NIRS study were compared to 27 matched cases without stent failure. Baseline characteristics were well-matched between the groups (Table). Although stent length and final diameter stenosis were similar in both groups, stented segment LCBI was significantly greater in the stent failure group than in the control group with no different in the adjacent reference segments. Importantly, DES failure was not seen in the setting of a maxLCBI4mm <100.

TCT Abstracts/POSTER/Intravascular Imaging and PCI