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We consider the initial energy density in the transverse plane of a high energy nucleus–nucleus 
collision as a random field ρ(x), whose probability distribution P [ρ], the only ingredient of the present 
description, encodes all possible sources of fluctuations. We argue that it is a local Gaussian, with a 
short-range 2-point function, and that the fluctuations relevant for the calculation of the eccentricities 
that drive the anisotropic flow have small relative amplitudes. In fact, this 2-point function, together with 
the average density, contains all the information needed to calculate the eccentricities and their variances, 
and we derive general model independent expressions for these quantities. The short wavelength 
fluctuations are shown to play no role in these calculations, except for a renormalization of the short 
range part of the 2-point function. As an illustration, we compare to a commonly used model of 
independent sources, and recover the known results of this model.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The fluctuations of the initial energy density (to be denoted 
ρ(x) throughout this paper) in the transverse plane of a heavy 
ion collision play an essential role in the dynamics of these col-
lisions. They leave observable traces in particle distributions after 
the hydrodynamical evolution [1]. They are for instance respon-
sible for elliptic flow fluctuations [2,3] triangular flow [4–7] and 
higher harmonics [8,9], directed flow near midrapidity [9–12], and 
may also explain [13,14] observed transverse momentum fluctu-
ations [15–18]. Considerable experimental and theoretical efforts 
are presently devoted to pin down the details of these fluctuations 
[19–22] and their various correlations [5,23,24].

It is then a natural question to try and specify the nature of the 
information that one can extract from measurements of various 
features of anisotropic flows. The initial energy density fluctua-
tions are of several origins. The most prominent ones are usually 
attributed to the motion of individual nucleons in the nuclear 
wave-functions, and treated by Glauber Monte Carlo calculations 
[25–28]. In addition, there are sub-nucleonic fluctuations, that re-
flect the partonic structure of the colliding objects [29]. In most 
approaches, such sub-nucleonic fluctuations are added on top of 
the geometrical ones, using various “recipes” [30,31]. There is con-
siderable ambiguity in the whole procedure: sources, with vari-
ous locations [32], strengths [30], spatial extents, shapes, etc., are 
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added by hand to an already crude description of the nuclear 
wave-functions. It would certainly be desirable to use a descrip-
tion where all irrelevant details do not stand prominently.

We find it useful then to address the question from another an-
gle, with the goal of obtaining general, model independent, state-
ments about the fluctuations. To achieve this goal, we regard the 
energy density ρ(x) in the transverse plane as a random field, and 
try to characterize the underlying probability distribution, P [ρ] for 
finding a given ρ(x) in a particular event. This probability distri-
bution is the only ingredient of the description, and it encodes all 
sources of fluctuations, irrespective of their natures. We conjec-
ture that this distribution is a local Gaussian with a short-range 
2-point function. That is, we argue that the fluctuations of the 
density at different points in the transverse plane are essentially 
uncorrelated. Corrections are to be expected in regions where the 
nuclear density is low, and these corrections will be qualitatively 
discussed. Furthermore, we also argue that short wavelength fluc-
tuations are irrelevant for the calculations of the eccentricities that 
drive the anisotropic flows, except for a small renormalization of 
the short range 2-point function.

We start, in the next section, by deriving general expressions 
for the eccentricities and their variances, in terms of the average 
density and the 2-point function of the probability distribution. 
The calculation exploits the fact that the relevant fluctuations have 
a small amplitude, relative to the average density. We then provide 
a simple ansatz for the 2-point function, which is dominated by a 
short range contribution. We compare results obtained with this 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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ansatz with those obtained with a model of independent sources, 
and we recover known analytic formulas expressing the eccentric-
ities as products of geometrical factors by an overall measure of 
the strength of the fluctuations. We then discuss why the Gaussian 
distribution provides a simple, and presumably realistic, form for 
the probability distribution.

2. Expressions of fluctuation observables in terms of the 
two-point function

We characterize event classes by the impact parameter b. Even 
though not directly accessible experimentally, the impact param-
eter is well defined in a high energy collision. For simplicity, in 
most of this paper, we restrict ourselves to the case of central col-
lisions, i.e. b = 0, except for a remark on the general case at the 
end of this section. We write the energy density in a given event 
class as ρ(x) = 〈ρ(x)〉 + δρ(x), where 〈ρ(x)〉 is the average energy 
density and δρ(x) is referred to as the fluctuation. The probability 
that a given ρ(x) occurs in the event class considered is denoted 
by P [ρ].

The observables that we wish to calculate characterize the 
shape of the fluctuating density ρ(x), in terms of its moments, 
commonly referred to as eccentricities [10]. These are defined by

en ≡
∫
z

znρ(z). (1)

Note that en is a vector in the transverse plane (i.e., the plane 
transverse to the collision axis). In the right hand side of Eq. (1) we 
use the complex notation to represent vectors in the plane. That 
is, we allow for a slight abuse of notation and denote indifferently 
a vector r by its components x, y, or by the complex number z =
x + iy. Thus the density, denoted indifferently by ρ(r) or ρ(z), is 
a real function of x and y. Similarly, we use the short hand 

∫
z =∫

dxdy for the integration over the transverse plane.
The zeroth and first moments are special and require specific 

definitions:

e0 =
∫
z

|z|2ρ(z), e1 =
∫
z

z2 z̄ρ(z), (2)

with z̄ denoting the complex conjugate of z. The zeroth moment e0
is the mean squared radius of the density, while e1 is a measure of 
the dipole moment of the distribution [10]. The particular weight 
z2 z̄ in the integral defining e1, instead of the more natural one, 
z, is due to the fact that in a centered coordinate system, to be 
defined shortly, the dipole moment vanishes (Eq. (3) below).

By definition, we call “centered” a coordinate system where∫
z

zρ(z) = 0. (3)

It is only in such a system that the definitions (1) and (2) above 
are valid. In a fixed coordinate system, however, the fluctuating 
density would be centered around a random point z0, distinct form 
the origin,

z0 =
∫

z zρ(z)∫
z ρ(z)

, (4)

and the definitions above need to be modified accordingly:

e0 =
∫
z

|z − z0|2ρ(z), e1 =
∫
z

(z − z0)
2(z̄ − z̄0)ρ(z),

en =
∫

(z − z0)
nρ(z). (5)
z

Because z0 is a functional of ρ , Eq. (4), the averages of the ec-
centricities are in general difficult to evaluate. However, simple 
expressions can be obtained in the regime of small fluctuations, 
which is the case of practical interest. Indeed the calculation of the 
eccentricities en , with n small, involves only the lowest (small k) 
Fourier coefficients δρk of the fluctuation δρ(r) = ∫

k eik·r δρk [10]. 
This automatically eliminates the rare fluctuations where δρ(r) can 
be locally large (spikes). We return to this issue in the next section.

We then assume that, for the long wavelength fluctuations, 
δρ(z) � 〈ρ(z)〉, and choose the coordinate system such that 〈ρ(z)〉
is centered; in particular, at vanishing impact parameter, 〈ρ(z)〉
has azimuthal symmetry. The center of mass of ρ(z) is still given 
by Eq. (4) with ρ(z) in the numerator replaced by δρ(z): it fol-
lows therefore that z0 differs from the origin of the coordinate 
system by a small amount, of order δρ/〈ρ〉. A simple calculation 
then yields, to linear order in the fluctuation,

e0 =
∫
z

|z|2[〈ρ(z)
〉 + δρ(z)

]
, e1 =

∫
z

[
z2 z̄ − 2

〈
r2〉z]δρ(z),

en =
∫
z

znδρ(z), (6)

where we have set

〈
r2〉 ≡

∫
z |z|2〈ρ(z)〉∫

z〈ρ(z)〉 , (7)

and we have used symmetries of 〈ρ(z)〉 to eliminate some terms.
The anisotropic flow coefficients vn that are experimentally 

measured, are not directly related to the en ’s, but are rather pro-
portional to the dimensionless ratios [2,10] defined, in a centered 
system, by

εn ≡
∫

z znρ(z)∫
z |z|nρ(z)

, ε1 =
∫

z z2 z̄ρ(z)∫
z |z|3ρ(z)

. (8)

It has been shown indeed that the relation vn ∝ εn , is well satis-
fied in ideal hydrodynamics [33–35], and even better so in viscous 
hydrodynamics [36]. Note that with the sign convention chosen in 
Eq. (8) (which differs from that in Ref. [10]) the response coeffi-
cients vn/εn are negative. Similarly, we define ε0 by dividing e0 by 
the total energy:

ε0 =
∫

z |z|2ρ(z)∫
z ρ(z)

. (9)

This (dimensionful) quantity represents the mean square radius of 
the distribution in an individual event. It is distinct from (7) which 
involves the average density.

Expanding the scaled moments (8), (9) in powers of the fluctu-
ation, we obtain, to leading order,

ε0 = 〈
r2〉 +

∫
z δρ(z)(|z|2 − 〈r2〉)∫

z〈ρ(z)〉 , (10)

and

εn =
∫

z zn δρ(z)∫
z |z|n〈ρ(z)〉 , ε1 =

∫
z[z2 z̄ − 2z〈r2〉] δρ(z)∫

z |z|3〈ρ(z)〉 . (11)

Note that, at this order, only ε0 contains a contribution unrelated 
to fluctuations, all eccentricities εn with n ≥ 1, being entirely due 
to fluctuations for central collisions (the numerators of Eq. (11) are 
proportional to δρ , the contributions of 〈ρ〉 being zero for symme-
try reasons).
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The situation is different at non-zero impact parameter. The 
calculations of the eccentricities for finite b are straightforward ex-
tensions of those just presented for b = 0, and lead to corrections 
to the formulas above. Just as an illustration, let us indicate the 
expressions of ε2 and ε3 at finite b and to leading order in the 
fluctuation:

ε2 = 〈z2〉
〈r2〉 +

∫
z[z2 − |z|2〈z2〉/〈r2〉] δρ(z)∫

z |z|2〈ρ(z)〉 ,
〈
z2〉 ≡

∫
z z2〈ρ(z)〉∫

z〈ρ(z)〉 ,

ε3 =
∫

z[z3 − 3〈z2〉z] δρ(z)∫
z |z|3〈ρ(z)〉 , (12)

where the averages are taken here for a non-vanishing impact pa-
rameter. Now, ε2 also contains a correction independent of the 
fluctuation, whose physical interpretation is clear: the contribution 
〈z2〉/〈r2〉 represents the usual average eccentricity related to the 
“almond” shape of the collision zone. The odd harmonics, on the 
other hand, such as ε3, remain entirely due to fluctuations.

We return now to the case b = 0. Since the eccentricities are 
linear in δρ , their variances can be easily determined in terms of 
the two-point function of the probability distribution, defined as

S(z1, z2) ≡ 〈
δρ(z1)δρ(z2)

〉 = 〈
ρ(z1)ρ(z2)

〉 − 〈
ρ(z1)

〉〈
ρ(z2)

〉
. (13)

Eq. (10) yields

〈
�ε2

0

〉 =
∫

z1z2
(|z1|2 − 〈r2〉)(|z2|2 − 〈r2〉)S(z1, z2)

(
∫

z〈ρ(z)〉)2
(14)

while the mean square (ms) eccentricities are given by

〈
�ε2

n

〉 = 〈εnε̄n〉 =
∫

z1 z2
zn

1 z̄n
2 S(z1, z2)

(
∫

z |z|n〈ρ(z)〉)2
,

〈
�ε2

1

〉 = 〈ε1ε̄1〉

=
∫

z1z2
(|z1|2 − 2〈r2〉)(|z2|2 − 2〈r2〉)z1 z̄2 S(z1, z2)

(
∫

z |z|3〈ρ(z)〉)2
. (15)

These formulas are general. They show that, in the regime of 
small fluctuations, the eccentricities and their variances are deter-
mined entirely by the average density and the two-point function 
of the probability distribution function P [ρ].

3. Simple ansatz for the two-point function

At this point, it is instructive to consider a simple ansatz for the 
two-point function. This ansatz is motivated by considerations that 
will be discussed in the next section, as well as by the connection 
that it allows with simple models that have already been used to 
calculate the eccentricities. We assume that the two-point function 
is of the form

S(z1, z2) = A(z1)δ(z1 − z2) + B f (z1) f (z2), (16)

where δ(z1 − z2) = δ(x1 − x2)δ(y1 − y2), and the dependence of A
on z is through its dependence on 〈ρ(z)〉, in other words, A is 
a function of 〈ρ(z)〉. In Eq. (16), B is a constant and f some 
function, whose general determination is delayed till next sec-
tion. However, an important practical case, as we shall see later, 
is f (z) = 〈ρ(z)〉. In this case the term proportional to B in Eq. (16)
does not contribute to the variances (14) and (15). Inserting ansatz 
(16) into Eqs. (14) and (15) yields:

〈
�ε2

0

〉 =
∫

z A(z)(|z|2 − 〈r2〉)2

(
∫ 〈ρ(z)〉)2

,

z

〈ε1ε̄1〉 =
∫

z(|z|2 − 2〈r2〉)2|z|2 A(z)

(
∫

z〈ρ(z)|z|3〉)2
,

〈εnε̄n〉 =
∫

z |z|2n A(z)

(
∫

z〈ρ(z)|z|n〉)2
. (17)

The function A(z) is unknown at this stage. However, the suc-
cess of the model of independent sources, that we shall introduce 
shortly, suggests that a linear dependence on the average density 
may be a good approximation. For this particular choice, namely 
A(z) = A〈ρ(z)〉, with A constant, the formulas above simplify fur-
ther:

〈
�ε2

0

〉 = A∫
z〈ρ(z)〉

[〈
r4〉 − 〈

r2〉2],

〈ε1ε̄1〉 = A∫
z〈ρ(z)〉

〈r6〉 − 4〈r4〉〈r2〉 + 4〈r2〉3

〈r3〉2
,

〈εnε̄n〉 = A∫
z〈ρ(z)〉

〈r2n〉
〈rn〉2

. (18)

These formulas give the eccentricities as products of a “geometri-
cal” factor that depends on the specific observable, and a dimen-
sionless coefficient A/

∫
z〈ρ(z)〉, independent of the observable, that 

characterizes the magnitude of the local fluctuations of the en-
ergy density. At this point, it cannot be determined otherwise than 
by fitting the eccentricities to experimental data. However, further 
insight can be gained by considering the model of independent 
sources that we just alluded to.

This model can be viewed as a parametrization of the contin-
uous energy density ρ(z) is in terms of “sources” [2,33,37]. One 
writes, typically

ρ(z) = E0

Ns∑
i=1

δ(z − zi),

∫
z

ρ(z) = Ns E0, (19)

where zi denotes the random location of a source, Ns the number 
of sources, and E0 the energy of a source, taken here to be con-
stant for simplicity. If one considers a class of events with a given 
transverse energy, then Ns is also a constant. In this case, the fluc-
tuations are entirely due to the random positions of the sources 
in individual events. If the positions of these sources are uncorre-
lated, the 2-point function is proportional to that of independent 
particles in the plane. It reads

S(z1, z2) = E0
〈
ρ(z1)

〉
δ(z1 − z2) − 1

Ns

〈
ρ(z1)

〉〈
ρ(z2)

〉
. (20)

This is a particular case of Eq. (16), with A(z) = A〈ρ(z)〉, A = E0, 
and f (z) = 〈ρ(z)〉, B = 1/Ns . Note that the second term in Eq. (20)
ensures that fluctuations conserve the total number of sources, 
such that in particular 

∫
z1 z2

S(z1, z2) = 0. This feature will be elab-
orated upon at the end of the next section. Here we simply notice 
that it affects only moderately the local fluctuations. To see that, 
let us assume for simplicity that the average density is constant 
on the transverse plane, and consider a small area σ � Σ , where 
Σ is the total area of the collision zone. From Eq. (20) one then 
easily deduces

〈
δρ2〉 = E0

σ
〈ρ〉

(
1 − σ

Σ

)
, (21)

where 〈ρ〉 = E0Ns/Σ . The last term in this expression, which orig-
inates from the second term in Eq. (20), is indeed negligible if 
σ � Σ . In this case, one recovers, for the number of sources in the 
area σ , Nσ = ρσ/E0, the variance characteristic of Poisson statis-
tics, 〈δN2

σ 〉 = 〈Nσ 〉. By increasing σ , one probes fluctuations of Nσ
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over regions that are comparable to the total transverse area of the 
collision zone, that is, one looks at long wavelength density fluc-
tuations. The distribution of Nσ becomes then a Gaussian, with 
a width ∝ √〈Nσ 〉. The relative fluctuations are then small, with √〈δρ2

σ 〉/〈ρσ 〉2 = 1/〈Nσ 〉 � 1, which confirms the validity of the 
expansion used in Section 2, based on the relative smallness of the 
amplitude of the long wavelength fluctuations.

More generally, we may characterize the strength of the fluctu-
ations by the following ratio
∫

z1z2
A(z1)δ(z1 − z2)

(
∫

z〈ρ(z)〉)2
= E0∫

z〈ρ(z)〉 = 1

Ns
, (22)

where, in the right hand side, we have used the 2-point function 
(20) of the source model. Thus, in this model, the dimensionless 
parameter that characterizes the magnitude of the fluctuations is 
the total number of sources: This is natural since, in this model, 
the fluctuations of the density are entirely determined by those 
of the locations of the sources. By substituting 1/Ns for the fac-
tor A/ 

∫
z〈ρ(z)〉 in Eqs. (18), one recovers the expressions derived 

in Refs. [38,37] (see also [39]). Note the ratio in Eq. (22), since it 
involves integrals over the transverse plane, provides a global char-
acterization of the fluctuations. The numerator in Eq. (22) is the 
integral of the short range part of the correlation function S(z1, z2)

in Eq. (20). This is obviously equal to the integral of the second 
term, since, as already noticed, 

∫
z1 z2

S(z1, z2) = 0.
The source model is much inspired by the participant picture 

of the nucleus–nucleus collisions, and the empirical proportional-
ity between the transverse energy and the number of participants 
Npart [25]. Indeed, a comparison of the model with the Glauber 
Monte Carlo calculations reveals that the number of sources is of 
the order of that of the number of participants Npart (roughly one 
half [37]). However, in the present context, the proper interpre-
tation of this model is that of a parametrization of a continuous 
field, the fluctuating density ρ(z). In particular, there is a priori no 
reason to correlate rigidly the positions of the sources to those of 
the participants: in the model discussed above, these sources are 
located randomly in the collision area.

It should be emphasized that A(z) need not be a simple lin-
ear function of 〈ρ(z)〉, as we have assumed in the second part of 
this section (and as it emerges naturally in the model of indepen-
dent sources). In fact we have evidence that in nucleus–nucleus 
collisions, deviations from this simple behavior occur near the 
surface where the average density is small. For instance, Glauber 
Monte Carlo calculations suggest a specific type of correlations, 
that we dubbed twin correlations, which lead to a renormaliza-
tion of the short range part of the two-point function [40]. For the 
sake of illustration, we take these into account by assuming that 
〈ρ(r)〉 = ρ is uniform within a disk of unit radius, such that 〈r2n〉 =
R2n/(n + 1) (with r = |z|), and that A picks up an extra contribu-
tion near the surface, that is, we set A(r) = ρ(1 + αδ(r/R − 1)), 
with α a small parameter. Then, a simple calculation reveals that 
the variances 〈|ε1|2〉, 〈|ε2|2〉, 〈|ε3|2〉 are corrected respectively by 
the factors 1, 1 + 3α, 1 + 4α. The same ordering between ε2 and 
ε3 is observed in Monte-Carlo Glauber calculations [40].

4. The probability distribution

The simplest, least biased, picture for the fluctuations of the 
energy density in the transverse plane is that of independent fluc-
tuations, with a probability distribution of the form

P [δρ] ∝ exp

{
−1

2

∫
δρ(z1)K (z1, z2)δρ(z2)

}
. (23)
z1,z2
In this expression, the exponent may be seen as the analog of a 
Landau–Ginsburg free energy [41]. The kernel K (z1, z2), which de-
pends on the average local density, is the functional inverse of the 
two-point function S(z1, z2):
∫
z

K (z1, z)S(z, z2) = δ(z1 − z2),
〈
δρ(z1)δρ(z2)

〉 = S(z1, z2),

(24)

and, as we shall argue soon, for all practical purposes, K (z1, z2) ∝
δ(z1 −z2), and therefore also S(z1, z2) ∝ δ(z1 −z2). The distribution 
(23) is then a local functional of δρ(z), describing uncorrelated 
fluctuations.

Aside from the fact that there is little evidence for deviations 
from this simple ansatz, there are microscopic arguments suggest-
ing that energy density fluctuations are correlated only over short 
distances: At high energy, the processes dominating energy density 
production are semi-hard processes, and these take place locally, 
depositing energy over regions of sub-nucleonic sizes. In the Color 
Glass picture, for instance, the typical transverse size is of the or-
der of the inverse of the saturation momentum Q s [29]. This is 
also the distance over which fluctuations are correlated [42]. Cor-
relations at the nucleon scale, inherited from the positions of the 
nucleons in each nuclei, are presumably not important: if one ob-
serves two fluctuations within a sub-nucleonic distance, it is likely 
that they originate from two nucleons that are separated longitu-
dinally, and are therefore uncorrelated.1

There is however another, perhaps stronger, argument in favor 
of the ansatz (23), with a short range kernel: short wavelength 
fluctuations are mostly irrelevant in the calculation of the eccen-
tricities. In the extreme coarse-graining that is involved in such 
calculations, where only the smallest Fourier modes are retained, 
all what the short wavelength fluctuations do is renormalize the 
coefficient of the delta function contribution in S(z1, z2), that is, 
the function A(z) in Eq. (16). Since this is an important point, let 
us illustrate it by an elementary calculation. Let us return to the 
calculation of the eccentricities performed in the previous sections, 
and smear the delta function δ(z1 − z2) by a smooth, normalized, 
function h(z1 − z1) peaked at small values of |z1 − z2| (typically a 
Gaussian of width σ = 0.4 fm [14,33]). That is, let us set

S(z1, z2) = A(z)h(s), z ≡ z1 + z2

2
, s ≡ z1 − z2, (25)

and consider the calculation of 〈|εn|2〉. After performing the ap-
propriate expansion that exploits the fact that in the integration 
|s| � |z|, we get

∫
z1z2

zn
1 z̄n

2 S(z1, z2) = mn

[
1 − mn−1

mn

n2

4

∫
s

|s|2h(s)

]
≡ m′

n, (26)

where mn ≡ ∫
z A(z)|z|2n is the value of the integral when h(s) =

δ(s). The finite range of h induces corrections that, for small n (in 
practice n ≤ 6), are small, of order [∫s |s|2h(s)]/Σ , with Σ the area 
of the collision zone. Furthermore, these corrections can be ab-
sorbed in a renormalization of the function A(z), A(z) −→ A′(z), 
with the nth moment of A′(z) equal to m′

n in Eq. (26) above. Thus 
the result is completely insensitive to the smearing of the short 
range 2-point function, provided the range of this smearing stays 

1 This argument has to be corrected as we move towards the surface of the col-
lision zone, where the density is low, and twin correlations develop [40]. Recall, 
however, that these correlation simply renormalize the strength of the short range 
part of the correlation function (see the discussion at the end of Section 3).
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small enough. These considerations also indicate that the measure-
ments of the eccentricities cannot yield direct information on the 
“granularity” of the initial energy density [29,43,44], nor on the 
direct microscopic mechanisms responsible for the fluctuations: 
the eccentricities are sensitive only to the overall strength of the 
fluctuations, not to the details of what happens at short distance 
scales.

We now return to our ansatz for the 2-point function and com-
ment on the second term in Eq. (16). This term reflects generically 
the long range correlations that originate from global constraints, 
such as for instance energy conservation, or recentering. Such con-
straints can be expressed generically in the form∫
z

δρ(z)φ(z) = 0. (27)

Choosing for instance φ(z) = 1 enforces 
∫

z δρ(z) = 0 in each event 
(which corresponds to a selection of events with a given E T ), 
φ(z) = z enforces the centering of the fluctuations,2

∫
z zδρ(z) = 0, 

etc. Implementing such linear constraints on the probability dis-
tribution can be easily done by using the standard techniques of 
generating functionals and Lagrange multipliers. The resulting dis-
tribution is still a Gaussian, but the two-point function takes now 
the form

〈
δρ(z1)δρ(z2)

〉

= A(z1, z2) − [∫z2
A(z1, z2)φ(z2)][

∫
z1

φ(z1)A(z1, z2)]∫
z1 z2

φ(z1)A(z1, z2)φ(z2)
, (28)

where A(z1, z2) denotes here the inverse of K (z1, z2), i.e., the 
two-point function without the constraint. This equation is in-
deed of the form (16), with f (z) ∝ ∫

z′ A(z, z′)φ(z′). For the con-
straint on ET where φ(z) = 1, and the choice A(z) = E0〈ρ(z)〉, 
with 

∫
z〈ρ(z)〉 = E0Ns , we recover Eq. (20) of the main text.

Finally, is worth emphasizing that a Gaussian distribution for 
the local fluctuations of the energy density does not preclude the 
existence of high-order cumulants for observables such as eccen-
tricities, which would naturally explain the non-zero v3{4} ob-
served in Pb–Pb collisions [5] and the non-zero v2{4} in p–Pb 
collisions [46,47] (vn{4} denotes as usual the fourth order cumu-
lant of the flow coefficient vn). In Section 2, we have expanded 
eccentricities to leading order in the density fluctuations. Within 
this approximation, eccentricity fluctuations are Gaussian, which 
implies in particular that eccentricity cumulants of order 4 and 
higher vanish for central collisions [45]. Beyond this linear approx-
imation, non-Gaussian behaviors may appear [39,48,49], even if 
the underlying density fluctuations are Gaussian. A careful study 
of higher cumulants would reveal whether there exist non-trivial
effects beyond those just mentioned, and would provide a more 
stringent test of the conjecture that the initial density fluctuations 
are Gaussian.

5. Summary

In summary, we have presented the first steps for a field theo-
retical description of the initial fluctuations of the energy density 
in the transverse plane of a high energy nucleus–nucleus collision. 
This description, free of irrelevant, model dependent details, rests 

2 Note however that the procedure of modifying the probability distribution in 
order to deal only with centered density fluctuations is not equivalent to that used 
in Section 2 where we shift explicitly the observables by the center of mass z0 of 
the fluctuation, and retain all fluctuations in the calculation. The latter procedure is 
the correct one to use in the present context.
entirely on the probability distribution for the random field ρ(x). 
We have presented arguments that suggest that this distribution 
is essentially a Gaussian with a short range 2-point function. We 
have obtained general expressions for the eccentricities that drive 
the anisotropic flows in terms of this 2-point function. We have 
shown that short wavelength fluctuations play no role in this cal-
culation aside from renormalizing slightly the short range 2-point 
function. If, as we have argued, the basic correlations in the trans-
verse plane occur at the sub-nucleonic level, with no other scale 
playing a major role all the way to the nuclear scale, the present 
description would hold for systems of all sizes, i.e., from AA to pA, 
till, why not, to large multiplicity pp.
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