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Abstract

We construct two-dimensional conformal field theories witZ @ symmetry, based on the second solution of Fateev—
Zamolodchikov for the parafermionic chiral algebra. Primary operators are classified according to their transformation
properties under the dihedral group x Z», whereZ» stands for theZy charge conjugation), as singlet§N — 1)/2]
different doublets, and a disorder operator. In an assumed Coulomb gas scenario, the corresponding vertex operators are
accommodated by the Kac table based on the weight lattice of the Lie al@ghray),» when N is odd, andDy 2 when
N is even. The unitary theories are representations of the 863&V) x SO (N)/SQ,2(N), withn =1, 2, .... We suggest
that physically they realize the series of multicritical points in statistical systems haviggsymmetry.

0 2004 Elsevier B.VOpen access under CC BY license.

Conformal field theory (CFT) has been instru- In a number of cases conformal invariance can
mental in classifying the critical behavior of two- be married with other local symmetries. The mode
dimensional systems enjoying local scale invariance operator algebra of such extended CFTs is based on
[1]. The conformal symmetry is encoded in the stress— T'(z) and on the chiral currents corresponding to the
energy tensofl' (z) which plays the réle of the con-  extra symmetries. It thus contains the Virasoro algebra
served current. Its mode operators generate the Vi- as a sub-algebra. The primary fields are obtained
rasoro algebra, involving the central chakgahose by demanding the degeneracy of its representations.
value characterizes the corresponding CFT. There ex- Among the first examples of such theories wasWhe
ists a countably infinite set of values=1—6/p(p + algebra [2]. Later work showed that, for each classical
1), with p =3, 4, ..., forwhichthe CFTisunitaryand Lie algebra, one can construct an extended CFT by
minimal; by minimality is meant that all local fields supplementingl'(z) by an appropriate set of extra
are generated by a finite number of so-called primary bosonic and fermionic currents [3]. The corresponding
fields. The scaling dimensions of these fields can be chiral algebras are calle?&-algebras and have been
inferred by looking for degenerate representations of much studied in the mathematical physics literature.
the Virasoro algebra. While (unitary, minimal) CFTs based on the Vi-

rasoro algebra have < 1, the representations of ex-
tended CFTs allow for > 1. Indeed, the need for
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has served as a strong motivation for constructing such a number of sectors equal to the number of selfdual
theories since the mid-1980’s. representations oy, plus a Z, disorder sector.
Further extended CFTs were discovered by let- Moreover, these CFTs contain a Lie algebra structure,
ting the chiral algebra represent the grodg [4]. which was not significant foN = 3. Partial results for
Since this requires semi-locality in the chiral alge- oddN have already appeared [11]; here we complete

bra (exchanging the positions of two currents pro- the solution and present it in a unified way ferodd
duces a complex phase), the corresponding theoriesand even.

are known as parafermionic CFTs. Consistency re-
quirements lead to constraints on the dimensidps
of the parafermionic currents® (z). Thus, in the sim-
plest such theory one hat, = A_y = k(N — k)/N
fork=1,2,...,|N/2] (by | x] we denote the integer
part ofx).

This first parafermionic theory has found wide ap-
plications in condensed matter [5], statistical physics
[6], and string theory [7], because of its relatioritg,

Let us first recall the fusion rules of the currents [4],

which read
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and because its unitary theories represent the coseffor x + £’ £ 0, and otherwise

SUx(2)/U (1). These parafermions also describe the
critical behavior of an integrablgy symmetric lat-
tice model [8] and the antiferromagnetic phase transi-
tion in the Potts model [6].
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There are several reasons to search for generaliza-

tions of the above parafermionic theory. First, this CFT
is somewhat poor in the sense that 2 — 6/(N + 2)

is fixed just by requiring associativity of the chiral al-
gebra [4]. In particular, no infinite series of minimal

models exists. On the other hand, it seems natural to

suppose that th& lattice models [8] should have an
infinite series of higher multicritical points, such as is
the case for the Ising model [9].

In the appendix of Ref. [4], a second associative
solution of the parafermionic chiral algebra was given.
In this theory, the dimensions of the currewt$(z) are

_2k(N = k)
- M

andc is not fixed by associativity alone. This second
parafermionic theory is therefore a good candidate
for the supposed multicritical points described above.
An infinite series of minimal models for the case
N = 3 was given in Ref. [10], and the first minimal
model could indeed be identified with the tricriticad
model.

In this Letter, we obtain the representation theory
and the series of minimal models for the parafermions
(1) with N > 5. (Note thatV = 2 has fixedc = 1, and
that N = 4 factorizes trivially as two superconformal
CFTs.) The representation theory is rather rich, with

A=Ay

Associativity fixes the structure constan?t%f,;, as
functions of a single free parametef4]
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and the central chargeof the Virasoro algebra

N(N =2)
=(N-Dl1-——|, 2
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agrees with that of the coset [12]
SQWN) xSOW) o2t p- N (@3)

SQ2(N)

HereSQ,(N) is the orthogonal group, with levelfor
its affine current algebra. Note that in the aboveZhe
chargeg and their sumg + &’ are defined modul®y .

The structure of the modules of physical operators
(representation fields) can be inferred by considering
first the module of the identity operator; see Fig. 1.
The first descendent in eaéhy charge sectog # 0
is the current&?; the level corresponds to the con-
formal dimensionsA,. More general singlet operator
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Fig. 1. Module of the identity operator fo¥ = 5.

modules are obtained by replacihgt the summit by

@0 and filling the levels in a more general fashion;
within each charge sector, the level spacing is one, due
to the action of the Virasoro algebra. Finally, the struc-
ture of doublet module§p*4} is obtained by taking
sub-modules.

The current§¥*} can be decomposed into mode
operators, whose action on the representation fields
changes th& y charge:

1 k q
VT RETRE

(4)

The gaps{ = 2(g2 — k?)/N mod 1 is the first level in
the module of the doublet corresponding to th& y
charge sectok. As usual, primary fields are defined
by A¥ , @4 =0forn>0.

gt

The action of zero modes between the summits in
doublet modules permit to define the eigenvaluegs:

AT F4(0) = by ®T(0). (5)

Note that the representatio@s are characterized by
both {4} and the conformal dimensian,, the latter
being just the eigenvalue of the usual Virasoro zero
modeLg.

To get a number of distinct sectors equal to the
number of representations @fy one must in general
consider doublet modulgsp*7} with ¢ € Z/2. This
can be argued on general grounds of selfduality [4]
or be worked out explicitly [13]. Henceforth we adopt
a more natural notation by settin@ = 29 € Z and
K = 2k € 27Z. Note that although thek charges
are now defined mod 2, in each module onlyV
distinct Zy charge sectors will be occupied. Tlie
charges of primary fields, however, are still defined
mod N, in order to stay consistent with the number of
representations o . Thus, forN even, thep = N/2
module is actually a singlet.

)l (0) =)

n
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In summary, we have thus 2 (N mod 2) sin-
glet sectors and(N — 1)/2] doublet sectors. In ad-
dition, the Zy charge conjugation is represented by
a disorder operator, [10,11,14] with components
a=12,...,N. The non-Abelian monodromy a&,
with respect taZ X leads to

1
vK()R,(0) = Z WA,{(/ZRLJ 0, (6)

meaning that disorder modules have integer and half-
integer levels.

Because of the connection with the coset (3) we
shall suppose that the Kac table is based on the weight
lattice of the Lie algebra, for N = 2r 4+ 1 odd, and
D, for N = 2r even. The conformal dimensions of
the primary operators are then assumed to take the
Coulomb gas form

A5 =47+ B=(B—do)*—a5+B. ©)
- —(1l+n 1+n -
ﬁZZ( 2 aa++ 2 aa)wa’ (8)
a=1
L (et o)
:%Zwa, 9)

a=1

where {®,} are the fundamental weights of the Lie
algebra._The position on the weight lattice is given
by B = ﬁ(nl,nz,...,nn)(n’l,n’z,...,n,’l)1 where {nq} (respec—
tively {n/}) are the Dynkin labels on the; (respec-
tively «_) side. The parametess,, «_ are defined as

o P2 [P
TV T2 TV p+2

The constanB in Eq. (7) is theboundary termwhich
takes, in general, different values for the different
sectors of the theory. We have already defined these
sectors; it remains to work out the corresponding
values of B, and to assign the proper sector label to
each of the vectors.

The unitary theories correspond e Z, in
Eq. (3). For a givem, the physical domain of the Kac
table is delimited as follows:

(10)

() <p+1  Z({na})<p-1, (11)



V.S. Dotsenko et al. / Physics Letters B 584 (2004) 186—191

where we have defined for future convenience
r—2
Z({na}) =n1+2) na+(
a=2
+n;,

and n,n, € Zy. This can be argued by invoking
“ghosts” (reflections of primary submodule operators)
situated outside the physical domain [11]. In correla-
tion functions the ghosts decouple from physical oper-
ators.

We now define, for any: € Z, the elementary
cell as the physical domain correspondingrte= 0
(whencer = 0). From Eq. (11) only the_ side is non-
trivial, so in the following we refer to the/, indices

(14 (N mod 2))n,_1

only. We then assume that to each sector corresponds
exactly one independent operator in the elementary

cell. These operators afendamentain the sense that

189

Fig. 2. The Weyl reflection technique illustrated fgr= 5.

physical domain (11) put in correspondence the oper-

their modules are degenerate at the first possible levels.ators outside the physical domain with the degenerate

Moreover, we assume that; = O for all operators
in the elementary cell whema = 0. This fixes the
available values oB, up to an overall normalization
of {&g}.

We now need to

(1) fix the normalization oB;

(2) identify which operators inside the elementary
cell are independent (and find the symmetry link-
ing dependent operators); and

combinations of descendent fields inside the modules
of physical operators (i.e., operators positioned within

the physical domain). The exact correspondence is fur-
nished by thesimple reflections;, = s, which act on

the weight lattice as the generators of the Weyl group:

SaB,...»0n,..np) = B, )@y n)) —
(12)

Here{e,}, witha=1,2,...,r, are the simple roots of

the given Lie algebra. In the case of unitary theories,

(3) assign the correct sector label to each independentihere js an extra simple reflection based on the affine

operator.

To this end we have used two different techniques.
First, we have explicitly constructed the modules

of several fundamental operators, by direct degeneracy
calculations [11,13]. Each operator was required to be

r-fold degenerate. For any, we have been able to
computeA; and {h} for two distinct doublets@*1
and ®*2 in the Q notation) and the disorder opera-
tor R. This approach settles point (1) above, and pro-
vides valuable partial answers to points (2) and (3).

The calculations also reveal at which levels degener-
acy has to be imposed (see below). Moreover, they
strongly corroborate the assumed Coulomb gas formu-

lae.

Second, we have used the technique of Weyl re-

flections. In a way analogous to the BRST structure
of the (Virasoro algebra based) minimal models [15],
the reflections in the hyperplanes which border the

simple rootz, . ;.

Since a given simple reflection connects a ghost
operator and a degenerate (or singular) state inside
the module of a physical operator, the difference of
conformal dimensions of the ghost operator and the
corresponding physical operator should be compatible
with the levels available in the module, as givemﬁy
For the difference of dimensions one obtains, from

Ea. (7),

Aj—A, 5= A 1+ B;—B

©
A,s saﬁ i (13)

saB’

Given the position, sector label and boundary term
of some operator, the reflection technique allows,
in general, to provide the same information for all
operators in the Weyl orbit of that operator; see Fig. 2.
Ignoring some sporadic non-regular possibilities for
large N, it allows for a unique identification of the
operators in the elementary cell.
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We can now summarize our results. The physical [13]. Once sector labels have been assigned to the
domain of the unitary theory (3) has tile symmetry operators of the elementary cell, the assignment of the
rest of the{n, = 1} operators is obtained by repeatedly

/ /
ny— p+2-2({ng}). n1— p = Z({na}). reflecting the elementary cell in all its faces, filling
_ - (14) progressively in this way the whole lattice.
For evenN there is an additionat, symmetry: Note that these reflections (technically, they are
nW_on, Hpg <> 11y, (15) shifted Weyl reflections) have no bearing on the

structure of modules of primary operators. Their only
With p = N — 2 these are also the symmetries significance is with respect to the sector assignment.
of the elementary cell. The assignment of sector Such reflections also appearin a general analysis of the

labels (singlets?, doubletD? or disorderr) to its distribution of boundary terms in coset-based CFTs
independent operators (writing only the indices) [16,17]. Since there are degeneracies in the boundary
is: terms (17) for evernV, our method is more complete

than Refs. [16,17], and suggests that the shifted Weyl

—_7—¢0 — po@ . o
Pat..an=1=5" ?a1..2..0)=D reflections can actually be used to distribute the sector

(16) labels over the weight lattice.
for 0=1,2,....r —2 (only n’Q = 2). Further, for Algebraically, the sector assignment reads as fol-
N =2r +1 odd: lows.
Definex, =n, fora=1,2,...,r — 2. ForN odd

P, 20=D"" ®q,..13=D", we further setx,_1 = fi,_1 andx, = ii,/2; and for
Pa..12=R; N even we sett,_1 =7, andx, = (ii,_1 — 71,)/2.

If x, is non-integer, we have a disorder operakor
and forN = 2r even: Otherwise, the doublet charge associated with the
D122 = DL ®q._31="5, POSItioNB ;. n,)(n,....n;) 1S given by

(15(1’””2’1) = R. r r
The boundary terms for the singlet/doublet operator €¥1:¥2: -+ Xr) = > [(;xb> mod 21|' (18)

of chargeQ =0, 1, ..., r, and for the disorder opera- a=1

tor, read for allv Alternatively, choose an orthonormal basis such
that: o, = (1,...,1,0,...,0) (with a 1's) for a =

B(g) = Q(l\;{iNZQ) Bp = TlfS{Nle an 1,2,....,r — 2, and o, = (1/2,...,1/2). Further,
wr—1=(1,...,1,0) for N odd, andw,_1 = (1/2, ...,

It remains to assign sector labels &l the sites 1/2,-1/2) for N even. Lety, be the coordinates of
of the weight lattice. It can be argued that the result [E(l ..... NG 2a0]/a— with respect to this basis
should only depend ofy, = |n, — | [11]; it suffices  (hypercubic lattice). The® =25 _, (v, mod 1)for
therefore to treat the caspr, = 1}. As already bothN = 2r andN = 2r + 1.
discussed, the reflection method determines the ghost The CET that we have constructed is based on the
environment of the fundamental operators, cf. Fig. 2. same weight lattices as tH& B, and W D, theories
This can also be applied to operators identified via [3]. The crucial difference is that the coset (3) has got
the symmetries (14), (15) of the elementary cell. another “shift” (2 instead of 1), and this makes the
Finally, the labels of elementary cell operators and elementary cell bigger, cf. Eq. (11). This makes room
the surrounding ghosts are spread over the lattice by for more sectors than in th& theories (¥ D, has one

using fusions with the singlet = 0) operators. As  sector, and¥ B, two sectors, for any).
in Ref. [11] we assume that the principal channel

amplitudes are non-vanishing in all fusions of singlets
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