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Abstract

We construct two-dimensional conformal field theories with aZN symmetry, based on the second solution of Fate
Zamolodchikov for the parafermionic chiral algebra. Primary operators are classified according to their transfo
properties under the dihedral group (ZN × Z2, whereZ2 stands for theZN charge conjugation), as singlets,�(N − 1)/2�
different doublets, and a disorder operator. In an assumed Coulomb gas scenario, the corresponding vertex ope
accommodated by the Kac table based on the weight lattice of the Lie algebraB(N−1)/2 whenN is odd, andDN/2 when
N is even. The unitary theories are representations of the cosetSOn(N)× SO2(N)/SOn+2(N), with n= 1,2, . . . . We suggest
that physically they realize the series of multicritical points in statistical systems having aZN symmetry.
 2004 Elsevier B.V.Open access under CC BY license.
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Conformal field theory (CFT) has been instr
mental in classifying the critical behavior of two
dimensional systems enjoying local scale invaria
[1]. The conformal symmetry is encoded in the stre
energy tensorT (z) which plays the rôle of the con
served current. Its mode operators generate the
rasoro algebra, involving the central chargec whose
value characterizes the corresponding CFT. There
ists a countably infinite set of valuesc = 1− 6/p(p+
1), withp = 3,4, . . . , for which the CFT is unitary and
minimal; by minimality is meant that all local field
are generated by a finite number of so-called prim
fields. The scaling dimensions of these fields can
inferred by looking for degenerate representation
the Virasoro algebra.

E-mail address:jacobsen@ipno.in2p3.fr (J.L. Jacobsen).
0370-2693 2004 Elsevier B.V.
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In a number of cases conformal invariance c
be married with other local symmetries. The mo
operator algebra of such extended CFTs is base
T (z) and on the chiral currents corresponding to
extra symmetries. It thus contains the Virasoro alge
as a sub-algebra. The primary fields are obtai
by demanding the degeneracy of its representati
Among the first examples of such theories was theW3
algebra [2]. Later work showed that, for each class
Lie algebra, one can construct an extended CFT
supplementingT (z) by an appropriate set of extr
bosonic and fermionic currents [3]. The correspond
chiral algebras are calledW -algebras and have bee
much studied in the mathematical physics literatur

While (unitary, minimal) CFTs based on the V
rasoro algebra havec < 1, the representations of e
tended CFTs allow forc > 1. Indeed, the need fo
c > 1 theories in string theory and statistical phys
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has served as a strong motivation for constructing s
theories since the mid-1980’s.

Further extended CFTs were discovered by
ting the chiral algebra represent the groupZN [4].
Since this requires semi-locality in the chiral alg
bra (exchanging the positions of two currents p
duces a complex phase), the corresponding theo
are known as parafermionic CFTs. Consistency
quirements lead to constraints on the dimensions∆k

of the parafermionic currentsΨ k(z). Thus, in the sim-
plest such theory one has∆k = ∆−k = k(N − k)/N

for k = 1,2, . . . , �N/2� (by �x� we denote the intege
part ofx).

This first parafermionic theory has found wide a
plications in condensed matter [5], statistical phys
[6], and string theory [7], because of its relation toZN ,
and because its unitary theories represent the c
SUN(2)/U(1). These parafermions also describe
critical behavior of an integrableZN symmetric lat-
tice model [8] and the antiferromagnetic phase tra
tion in the Potts model [6].

There are several reasons to search for genera
tions of the above parafermionic theory. First, this C
is somewhat poor in the sense thatc = 2− 6/(N + 2)
is fixed just by requiring associativity of the chiral a
gebra [4]. In particular, no infinite series of minim
models exists. On the other hand, it seems natura
suppose that theZN lattice models [8] should have a
infinite series of higher multicritical points, such as
the case for the Ising model [9].

In the appendix of Ref. [4], a second associat
solution of the parafermionic chiral algebra was giv
In this theory, the dimensions of the currentsΨ k(z) are

(1)∆k =∆−k = 2k(N − k)

N
,

andc is not fixed by associativity alone. This seco
parafermionic theory is therefore a good candid
for the supposed multicritical points described abo
An infinite series of minimal models for the ca
N = 3 was given in Ref. [10], and the first minim
model could indeed be identified with the tricriticalZ3
model.

In this Letter, we obtain the representation the
and the series of minimal models for the parafermi
(1) with N � 5. (Note thatN = 2 has fixedc = 1, and
thatN = 4 factorizes trivially as two superconform
CFTs.) The representation theory is rather rich, w
t

-

a number of sectors equal to the number of selfd
representations ofZN , plus a Z2 disorder sector
Moreover, these CFTs contain a Lie algebra struct
which was not significant forN = 3. Partial results for
oddN have already appeared [11]; here we comp
the solution and present it in a unified way forN odd
and even.

Let us first recall the fusion rules of the currents [
which read

Ψ k(z)Ψ k′
(z′)

= λ
k,k′
k+k′

(z− z′)∆k+∆k′−∆k+k′

{
Ψ k+k′

(z′)

+ (z− z′)
∆k+k′ +∆k −∆k′

2∆k+k′
∂Ψ k+k′

(z′)+ · · ·
}

for k + k′ 	= 0, and otherwise

Ψ k(z)Ψ−k(z′)

= 1

(z− z′)2∆k

{
1+ (z− z′)2 2∆k

c
T (z′)+ · · ·

}
.

Associativity fixes the structure constantsλk,k
′

k+k′ as
functions of a single free parameterv [4](
λ
k,k′
k+k′

)2
= �(k + k′ + 1)�(N − k + 1)�(N − k′ + 1)

�(k + 1)�(k′ + 1)�(N − k − k′ + 1)�(N + 1)

× �(k + k′ + v)�(N + v − k)�(N + v − k′)�(v)
�(N + v − k − k′)�(k + v)�(k′ + v)�(N + v)

,

and the central chargec of the Virasoro algebra

(2)c = (N − 1)

(
1− N(N − 2)

p(p + 2)

)
,

agrees with that of the coset [12]

(3)
SOn(N)× SO2(N)

SOn+2(N)
, n= 2v = 2+ p −N.

HereSOn(N) is the orthogonal group, with leveln for
its affine current algebra. Note that in the above theZN

chargesk and their sumsk+ k′ are defined moduloN .
The structure of the modules of physical operat

(representation fields) can be inferred by conside
first the module of the identity operator; see Fig.
The first descendent in eachZN charge sectorq 	= 0
is the currentΨ q ; the level corresponds to the co
formal dimensions∆k . More general singlet operato
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Fig. 1. Module of the identity operator forN = 5.

modules are obtained by replacingI at the summit by
Φ0 and filling the levels in a more general fashio
within each charge sector, the level spacing is one,
to the action of the Virasoro algebra. Finally, the str
ture of doublet modules{Φ±q } is obtained by taking
sub-modules.

The currents{Ψ k} can be decomposed into mo
operators, whose action on the representation fi
changes theZN charge:

(4)

Ψ k(z)Φq(0)=
∑
n

1

(z)
∆k−δqk+q+n

Ak

−δqk+q+n
Φq(0).

The gapδqk = 2(q2 − k2)/N mod 1 is the first level in
the module of the doubletq corresponding to theZN

charge sectork. As usual, primary fields are define
byAk

−δqk+q+n
Φq = 0 for n > 0.

The action of zero modes between the summit
doublet modules permit to define the eigenvalues{hq}:

(5)A
∓2q
0 Φ±q(0)= hqΦ

∓q(0).
Note that the representationsΦq are characterized b
both {hq} and the conformal dimension∆q , the latter
being just the eigenvalue of the usual Virasoro z
modeL0.

To get a number of distinct sectors equal to
number of representations ofZN one must in genera
consider doublet modules{Φ±q } with q ∈ Z/2. This
can be argued on general grounds of selfduality
or be worked out explicitly [13]. Henceforth we ado
a more natural notation by settingQ = 2q ∈ Z and
K = 2k ∈ 2Z. Note that although theK charges
are now defined mod 2N , in each module onlyN
distinct ZN charge sectors will be occupied. TheQ
charges of primary fields, however, are still defin
modN , in order to stay consistent with the number
representations ofZN . Thus, forN even, theQ=N/2
module is actually a singlet.
In summary, we have thus 2− (N mod 2) sin-
glet sectors and�(N − 1)/2� doublet sectors. In ad
dition, theZN charge conjugation is represented
a disorder operatorRa [10,11,14] with component
a = 1,2, . . . ,N . The non-Abelian monodromy ofRa

with respect toΨK leads to

(6)ΨK(z)Ra(0)=
∑
n

1

(z)∆K+n/2A
K
n/2Ra(0),

meaning that disorder modules have integer and h
integer levels.

Because of the connection with the coset (3)
shall suppose that the Kac table is based on the we
lattice of the Lie algebraBr for N = 2r + 1 odd, and
Dr for N = 2r even. The conformal dimensions
the primary operators are then assumed to take
Coulomb gas form

(7)∆ �β =∆
(0)
�β +B = ( �β − �α0)

2 − �α2
0 +B,

(8)�β =
r∑

a=1

(
1+ na

2
α+ + 1+ n′

a

2
α−
)

�ωa,

(9)�α0 = (α+ + α−)
2

r∑
a=1

�ωa,

where { �ωa} are the fundamental weights of the L
algebra. The position on the weight lattice is giv
by �β = �β(n1,n2,...,nn)(n

′
1,n

′
2,...,n

′
n)

, where {na} (respec-
tively {n′

a}) are the Dynkin labels on theα+ (respec-
tively α−) side. The parametersα+, α− are defined as

(10)α+ =
√
p + 2

2
, α− = −

√
p

p+ 2
.

The constantB in Eq. (7) is theboundary term, which
takes, in general, different values for the differe
sectors of the theory. We have already defined th
sectors; it remains to work out the correspond
values ofB, and to assign the proper sector label
each of the vectors�β.

The unitary theories correspond ton ∈ Z+ in
Eq. (3). For a givenn, the physical domain of the Ka
table is delimited as follows:

(11)Σ
({n′

a}
)
� p + 1, Σ

({na})� p − 1,
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where we have defined for future convenience

Σ
({na})= n1 + 2

r−2∑
a=2

na + (
1+ (N mod 2)

)
nr−1

+ nr ,

and n′
a, na ∈ Z+. This can be argued by invokin

“ghosts” (reflections of primary submodule operato
situated outside the physical domain [11]. In corre
tion functions the ghosts decouple from physical op
ators.

We now define, for anyn ∈ Z+, the elementary
cell as the physical domain corresponding ton = 0
(whencec = 0). From Eq. (11) only theα− side is non-
trivial, so in the following we refer to then′

a indices
only. We then assume that to each sector corresp
exactly one independent operator in the elemen
cell. These operators arefundamentalin the sense tha
their modules are degenerate at the first possible le

Moreover, we assume that∆ �β = 0 for all operators
in the elementary cell whenc = 0. This fixes the
available values ofB, up to an overall normalizatio
of { �ωa}.

We now need to

(1) fix the normalization ofB;
(2) identify which operators inside the elementa

cell are independent (and find the symmetry lin
ing dependent operators); and

(3) assign the correct sector label to each indepen
operator.

To this end we have used two different techniques.
First, we have explicitly constructed the modu

of several fundamental operators, by direct degene
calculations [11,13]. Each operator was required to
r-fold degenerate. For anyN , we have been able t
compute∆ �β and{hq} for two distinct doublets (Φ±1

andΦ±2 in theQ notation) and the disorder oper
tor R. This approach settles point (1) above, and p
vides valuable partial answers to points (2) and
The calculations also reveal at which levels dege
acy has to be imposed (see below). Moreover, t
strongly corroborate the assumed Coulomb gas for
lae.

Second, we have used the technique of Weyl
flections. In a way analogous to the BRST struct
of the (Virasoro algebra based) minimal models [1
the reflections in the hyperplanes which border
.

t

Fig. 2. The Weyl reflection technique illustrated forN = 5.

physical domain (11) put in correspondence the op
ators outside the physical domain with the degene
combinations of descendent fields inside the mod
of physical operators (i.e., operators positioned wit
the physical domain). The exact correspondence is
nished by thesimple reflectionss�ea ≡ sa which act on
the weight lattice as the generators of the Weyl gro

(12)

sa �β(1,...,1)(n′
1,...,n

′
r )

= �β(1,...,1)(n′
1,...,n

′
r )

− n′
aα−�ea.

Here{�ea}, with a = 1,2, . . . , r, are the simple roots o
the given Lie algebra. In the case of unitary theor
there is an extra simple reflection based on the af
simple root�er+1.

Since a given simple reflection connects a gh
operator and a degenerate (or singular) state in
the module of a physical operator, the difference
conformal dimensions of the ghost operator and
corresponding physical operator should be compat
with the levels available in the module, as given byδ

q
k .

For the difference of dimensions one obtains, fr
Eq. (7),

(13)∆ �β −∆sa �β =∆
(0)
�β −∆

(0)
sa �β +B �β −Bsa �β.

Given the position, sector label and boundary te
of some operator, the reflection technique allo
in general, to provide the same information for
operators in the Weyl orbit of that operator; see Fig
Ignoring some sporadic non-regular possibilities
largeN , it allows for a unique identification of th
operators in the elementary cell.
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We can now summarize our results. The phys
domain of the unitary theory (3) has theZ2 symmetry

(14)
n′

1 → p + 2−Σ
({n′

a}
)
, n1 → p −Σ

({na}).
For evenN there is an additionalZ2 symmetry:

(15)n′
r−1 ↔ n′

r , nr−1 ↔ nr .

With p = N − 2 these are also the symmetri
of the elementary cell. The assignment of sec
labels (singletSQ, doubletDQ or disorderR) to its
independent operators (writing only theα− indices)
is:

(16)
Φ(1,1,...,1,1) = I = S0, Φ(1,1,...,2,...,1,1) =DQ

for Q = 1,2, . . . , r − 2 (only n′
Q = 2). Further, for

N = 2r + 1 odd:

Φ(1,...,2,1) =Dr−1, Φ(1,...,1,3) =Dr,

Φ(1,...,1,2) =R;
and forN = 2r even:

Φ(1,...,2,2) =Dr−1, Φ(1,...,3,1) = Sr ,

Φ(1,...,2,1) =R.

The boundary terms for the singlet/doublet opera
of chargeQ = 0,1, . . . , r, and for the disorder opera
tor, read for allN

(17)B(Q) = Q(N − 2Q)

4N
, BR = 1

16

⌊
N − 1

2

⌋
.

It remains to assign sector labels toall the sites
of the weight lattice. It can be argued that the res
should only depend oñna ≡ |na − n′

a | [11]; it suffices
therefore to treat the case{na = 1}. As already
discussed, the reflection method determines the g
environment of the fundamental operators, cf. Fig
This can also be applied to operators identified
the symmetries (14), (15) of the elementary c
Finally, the labels of elementary cell operators a
the surrounding ghosts are spread over the lattice
using fusions with the singlet (Q = 0) operators. As
in Ref. [11] we assume that the principal chan
amplitudes are non-vanishing in all fusions of singl
with other operators.

This method assigns sector labels to all{na = 1}
operators. The end result can be stated quite sim
t

[13]. Once sector labels have been assigned to
operators of the elementary cell, the assignment of
rest of the{na = 1} operators is obtained by repeated
reflecting the elementary cell in all its faces, fillin
progressively in this way the whole lattice.

Note that these reflections (technically, they
shifted Weyl reflections) have no bearing on t
structure of modules of primary operators. Their o
significance is with respect to the sector assignm
Such reflections also appear in a general analysis o
distribution of boundary terms in coset-based CF
[16,17]. Since there are degeneracies in the boun
terms (17) for evenN , our method is more comple
than Refs. [16,17], and suggests that the shifted W
reflections can actually be used to distribute the se
labels over the weight lattice.

Algebraically, the sector assignment reads as
lows.

Definexa = ña for a = 1,2, . . . , r − 2. ForN odd
we further setxr−1 = ñr−1 and xr = ñr /2; and for
N even we setxr−1 = ñr and xr = (ñr−1 − ñr )/2.
If xr is non-integer, we have a disorder operatorR.
Otherwise, the doublet chargeQ associated with the
position �β(n1,...,nr )(n

′
1,...,n

′
r )

is given by

(18)Q(x1, x2, . . . , xr)=
r∑

a=1

[(
r∑

b=a
xb

)
mod 2

]
.

Alternatively, choose an orthonormal basis su
that: �ωa = (1, . . . ,1,0, . . . ,0) (with a 1’s) for a =
1,2, . . . , r − 2, and �ωr = (1/2, . . . ,1/2). Further,
�ωr−1 = (1, . . . ,1,0) for N odd, and�ωr−1 = (1/2, . . . ,
1/2,−1/2) for N even. Letya be the coordinates o
[ �β(1,...,1)(n′

1,...,n
′
r )

− 2�α0]/α− with respect to this basi

(hypercubic lattice). ThenQ= 2
∑r

a=1(ya mod 1)for
bothN = 2r andN = 2r + 1.

The CFT that we have constructed is based on
same weight lattices as theWBr andWDr theories
[3]. The crucial difference is that the coset (3) has
another “shift” (2 instead of 1), and this makes t
elementary cell bigger, cf. Eq. (11). This makes ro
for more sectors than in theW theories (WDr has one
sector, andWBr two sectors, for anyr).
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