
 Procedia Computer Science 46 (2015) 849 – 858

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)
doi: 10.1016/j.procs.2015.02.154

ScienceDirect

International Conference on Information and Communication Technologies (ICICT 2014)

Design Of Software Fault Prediction Model Using BR Technique

RohitMahajana,*, Sunil Kumar Guptab, Rajeev Kumar Bedic

aPTU,Golden College of Engineering & Technology,Gurdaspur- 143521, Punjab,INDIA

b-cPTU, Beant College of Engg & Technology, Gurdaspur - 143521, Punjab, INDIA

Abstract

During the previous years, the demand for producing the quality of software has been quickly increased. In this paper, Bayesian
Regularization (BR) technique has been used for finding the software faults before the testing process. This technique helps us to
reduce the cost of software testing which reduces the cost of the software project. The basic purpose of BR technique is to
minimizes a combination of squared errors and weights, and then determine the correct combination so as to produce an efficient
network.BR Technique algorithm based neural network tool is used for finding the results on the given public dataset. The
accuracy of BR algorithm based neural network has been compared with Levenberg-Marquardt(LM) algorithm and Back
Propagation (BPA) algorithm for finding the software defects. Our results signify that the software fault prediction model using
BR technique provide better accuracy than Levenberg-Marquardt (LM) algorithm and Back Propagation (BPA) algorithm.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014).

Keywords:Back Propagation (BPA) algorithm; Bayesian Regularization(BR)algorithml; Levenberg-Marquardt (LM)algorithm ; Neural network;
public dataset;

*

Rohit Mahajan. Tel.: +91- 9781159022
E-mail address:rohitcse006@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82410642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.154&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.154&domain=pdf

850 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

1. Introduction

Different Software metrics which are used to find the software faults before the process of testing are class level,
method-level metrics etc. Methods used for finding the software faults are machine learning, statistical method and
expert estimation 2. But machine learning method is best method for finding the software faults because all the work
is done by neural network based machine.Neural network is a machine learning approach and made up of number of
artificial neurons. Each neuron in Neural Network receives a number of inputs and produces only one output 2. The
concept of hidden layer is also used to train any neural network. BR technique minimizes a combination of squared
errors and weights, and then determines the correct combination so as to produce an efficient network.Bayesian
Regularization (BR) technique is machine learning technique. The BR technique has already been used in cost
estimation in the field of software Engineering but has never been explored in software fault prediction. The main
advantage of the BR technique is that it consumes less memory space and provides better accuracy than all the
previous techniques used in the software fault prediction model. When we train any neural network, we can measure
the performance and regression of the neural network. Training of the neural network stops when any of these
situations occurs:

• The maximum number of epochs is reached.
• The maximum amount of time is exceeded
Defects in system software lead to foremost difficulty in the software. A lot of software systems are sent to the

clients with unnecessary defects. Testing is one of the most important approaches for finding the defect prone parts
of the system. Software quality can be measured with various attributes like fault thickness, normalized rework,
reusability, portability and maintainability etc. 2. In this paper, we study the importance of Bayesian Regularization
(BR) technique and also give the comparison of Bayesian Regularization (BR) technique with Levenberg-Marquardt
(LM) and Back Propagation Algorithm (BPA) technique.

2. Review Of Literature

Norman E.Fenton5 describes that software metrics and statistical models have been developed to find the number
of defects in the software system and the majority of the prediction models use size and complexity metrics to find
faults.To find a single complexity metrics, a large complex multivibrate statistical model has been introduced. The
limitations are that by using size and complexity metrics, accessible models cannot find the faults successfully.

AtcharaMahaweerawatetal.describes that software fault prediction technique is the superlative approach for
finding the software faults to enhance the quality and reliability of the software 10. They used Method level metrics.
The concept of neural networks is importantly used. Neural networks provide an important technique called Radial
Basis Function (RBF) 10.The main function of RBF is to find the faults in the software and provide better
accuracy.The object Oriented software systems are used for predicting the number of faults in the software 8,10.
Inheritance and Polymorphism are the important features of Object Oriented systems. For finding the software
faults, a large amount of data is required. Two important networks are used:-Multilayer Perceptron (MLP) is used
for ruling the defective modules whereas Radial Basis functions Network are used to classify the defects according
to a number of different types of faults 8.Xing et al. 16 describes the importance of Support Vector Machine (SVM)
model. This SVM model is used when only a little amount of data is obtainable. Data categorization is a significant
use of SVM technique. SVM provides better accuracy than other techniques for the prediction of quality of the
software but in public datasets, the performance of SVM is poor.

The early lifecycle metrics play significant role in the software project management 7. Early lifecycle metrics can
be used to identify faulty modules. Method level metrics are widely used for software fault prediction. The authors
used three NASA projects are: PC1, CM1 and JM1.After comparison of these different projects, they concluded that
the requirement metrics have significant role in for software fault prediction.In another paper4, the authors
illustratedthe potential of SVM for finding the defects in the software and compared the performance with different
machine learning models. The models developed by them with the help of SVM, provide better accuracy than the
other models. In the context of four NASA datasets, they calculate the ability of SVM in predicting defect-prone
software modules and contrast the performance of the software fault prediction against eight statistical and machine
learning models .Gondra et al.6 used Artificial Neural Networks (ANN’s) and Support Vector Machines (SVM’s) to
reduce the price and progress for the effectiveness of the software testing process. Data is taken from the public

851 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

dataset that is freely available from the Promise repository. Researchers use different software metrics like Lines of
Code (LOC), McCabe (1976), and Halstead (1977) metrics.

Jun Zheng17described that the software fault prediction model can be built with the help of threshold-moving
technique. The motive of the software developer is to develop the better quality software on time and inside the
financial plan. Software fault prediction model classifies the modules into two classes: faulty modules and non –
faulty modules. They discussed the use of different cost sensitive boosting algorithms for software fault prediction.
The accuracy of the cost sensitive boosting algorithms is quite good than the other algorithms.

R.Shatnawi13 states that the majority of the modules for finding the prediction performance are correct whereas
some modules are defective. They applied technique to find the number of faults in the particular module. This
technique is called Eclipse. This technique works well on real world objects called Object Oriented systems. In this
Object Oriented System, they used the existing defected data for eliminating the defective modules 13.

Singh et al. 14describes that Levenberg- Marquardt (LM) algorithm based neural network tool is used for
prediction of software defects at an early stage of SDLC. They used the class level metrics. The Defected data are
collected from the NASA promise repository. LM Algorithm is based upon machine learning approach The
accuracy of LM Algorithm based neural network is better than the Polynomial function -based neural network for
detection of software defects.

3. Proposed Methodology

In our proposed methodology, we used Ant 1.7 dataset 14 and this dataset consists of defected data which are
coming from the PROMISE (Predict or Models in Software Engineering) repository of empir ical software
engineering data 14. In this promise data repository, defected data is freely available and this type of dataset is called
public dataset. Our main objective is to find the accuracy of the proposed Neural Network (NN) classifier i.e
Bayesian Regularization (BR) technique and compare the accuracy of Bayesian Regularization (BR) technique with
Levenberg-Marquardt (LM) algorithm and Back propagation Algorithm (BPA) algorithm.

In this experiment, our defected data is divided into 2 parts: Training and Testing. 85% of data is used for
training and 15 % is used for testing. For the purpose of testing, 15% of the data is selected randomly using the
random number generator formula and the rest of the data is used for training purposes.

Random Generator formula
Arr = ceil (1+ (745-1).* rand (100, 1)) (1)
Total number of samples in a dataset is 745.650 samples are used for training purpose.100 samples are used for
testing purpose.

3.1 Public Dataset
 Public dataset is that dataset which are frequently situated in Promise repositories and they are distributed freely.
In this experiment, Ant-1.7 Public dataset is that dataset which comes from Promise repository
(http://promisedata.googlecode.com). Ant 1.7 dataset uses class level metrics.
Table 1.belowShow the different types of Inputs used in the Ant- 1.7 dataset

S.No Attributes / Inputs Explanation Suggested By

1. WMC Weighted methods per class Chidamber and Kemerer3
Chidamber and Kemerer3
Chidamber and Kemerer3
Chidamber and Kemerer3
Chidamber and Kemerer3
Chidamber and Kemerer3

2. DIT Depth of Inheritance Tree

3. NOC Number of Child ren

4. CBO Coupling between object classes
5. RFC Response for a Class
6. LCOM Lack of cohesion in methods

7. LCOM3 Lack of cohesion in methods Henderson-Sellers12

8. NPM Number of Public Methods Bainsy and Davis 1

Bainsy and Davis 1

Bainsy and Davis 1

9. DAM Data Access Metric

10. MOA Measure of Aggregation

852 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

Bainsy and Davis 1

Bainsy and Davis 1

11. MFA Measure of Functional Abstraction

12. CAM Cohesion Among Methods of Class

13. IC Inheritance Coupling Tang et al. 15
Tang et al. 15

Tang et al. 15

14. CBM Coupling Between Methods

15. AMC Average Method Complexity

16. Ca Afferent couplings Martin 9
Martin 9 17. Ce Efferent couplings

18. CC Cyclomat ic complexity

McCabe 11

McCabe 11
McCabe 11

19. Max(CC) The greatest value of CC

20. Avg(CC) The arithmetic mean of the CC

4. Implementation of proposed technique

4.1 Creation of GUI
 (GUI) is developed with the help of Matrix Laboratory (MATLAB R2011a).For the construction of GUI,

Inputs are taken from the above table and the parameters are taken from class level metrics. Parameters are taken
from Chidamber and Kemerer (CK) metrics, Henderson-Sellers , Bainsy and Davis, Tang et al., Martin and
McCabe Metrics. In this study, software fault Prediction Model is developed using Bayesian Regularization (BR)
algorithm.
4.2 Assembling the Data

 Record for classification problems consists of textual/ non-numeric data. But with textual data, the training
of Neural Network is not possible. Therefore, we need a translator that can convert non-numeric data into numeric
form. Different translation techniques are available for training of neural network. But unary encoding is the best
technique for converting non-numeric data into numeric form and to train the neural network also.
4.3 Constructing the Neural Network classifier

 To train the neural network using BR technique, we can use function trainbr. This function is a network
training function that updates the weight and bias values according to Levenberg-Marquardt (LM) optimization.
Twister seed is used to avoid the randomness. The concept of hidden layer is also used. In this study, three hidden
layer (13, 13, 13) feed forward network is created with 13 neurons in every hidden layers. After that, our neural
network is ready to be trained.
4.4 Testing the BR classifier

 Our next step is to test our trained neural network with different testing samples. First of all, training of
neural network is required and after that we can find the predicted output with100 testing samples.

853 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

Fig.1.Train ing of neural network

From the above figure, Bayesian Regularization based neural network is trained in which 1 input layer, 3 hidden
layers and 1 output layer are used. BR algorithm has a maximum number of epochs i.e. is 100. BR Algorithm may
be halt, when the maximum number of epochs crosses the limit of 100.

854 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

Fig.2. performance of BR neural network

In Figure2, the performance plot shows the value of the performance function versus the iteration number. The
best training performance is 47.9843 at epoch 100.Dotted line shows that the performance is best and straight line
shows the training performance. From the above figure, it has been observed that the training performance meets at
the 100 epoch which provide the best training function. The function ‘trainbr‘ is used to plot the training
performance. Performance is measured in terms of sum squared error (sse). Sum squared error is a performance
function. It measures the performance according to the sum of squared errors. Performance of sum squared error is
calculated by the following formula:
Per = sse (net, t, y, ew) ; (2)
Where, net stands for neuralnetwork, t stands for Matrix or cell array of target vectors,y stands for Matrix or cell
array of output vectors,ew stands for error weights.

Fig.3. inputs to neural network

855 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

In Fig 3, there are 20 inputs and only one output and three buttons (Train N.N, Predict and Exit button). The
function of Train Neural network button is used to train the neural network using training data from the Ant 1.7
dataset. The function of predict button is to calculate the desired output of different testing samples. Exit button is
used to close the GUI.

Fig.4. p rediction of output

In Fig.4, for 20 input values, only one output is calculated. In the same manner, other outputs are predicted using
tested data.

856 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

5. Results and Comparison

Our proposed Software fault prediction model is implemented in MATLAB 2011. The predicted output of BPA,
LM and BR techniques are given below in table 2:
Table2. Predicted Output

S.No Recor
d No

Desired
Output

Predicted
Output
using BPA

Predict
ed
Output
using
LM

Predicted
Output
using
BR

S.N
o

Record
No

Desi
red
Out
put

Predicted
Output
using BPA

Predicted
Output
using LM

Predicte
d
Output
using
BR

1 608 0.0609 -0.18 0.1077 51 207 0.1325 0.59 -0.0048
2 675 0.1221 -0.19 -1.9767 52 507 0.0465 -0.01 0.1138
3 96 -0.1824 0.0 1 0.1098 53 331 0.1134 0.03 -0.079
4 681 0.0759 0.02 0.0551 54 122 0.1821 0.04 -0.2524
5 472 0.1943 -0.03 0.0533 55 90 0.0639 -0.02 0.0845
6 74 0.2227 -0.02 -0.1966 56 372 0.0859 -7.22 0.6419
7 209 0.0484 0.01 0.1432 57 716 0.1948 -0.65 0.0102
8 408 0.061 -0.02 0.0773 58 255 0.2374 3.92 0.01
9 64 2.6196 1.52 4.9669 59 437 0.8988 0.05 0.5961
10 719 0.2248 0 0.1168 60 168 1.2915 10.42 1.8918
11 119 0.2364 -0.01 0.0842 61 560 2.6501 0.79 -7.2142
12 724 0.0407 -0.06 0.0735 62 191 0.0164 -0.22 -0.0635
13 714 -0.0119 0.01 0.0808 63 378 0.1419 0.02 0.5942
14 363 0.0461 0 0.1103 64 522 0.7388 -0.54 2.0016
15 597 0.5935 1.93 -6.4653 65 664 0.2390 -0.01 -0.1004
16 107 -1.0851 14.77 -8.4357 66 5 0.1868 -0.01 -0.2468
17 315 0.2739 -1.48 0.0220 67 409 0.0647 -0.22 0.1563
18 683 0.5499 -0.25 0.048 68 105 -0.0849 -0.13 0.2117
19 591 0.0417 0.06 0.0488 69 113 -0.2124 -0.03 -0.4047
20 715 0.0504 0.01 0.0321 70 193 2.3536 1.99 6.2149
21 489 0.3433 0.05 0.5315 71 627 0.2125 -0.03 0.4856
22 28 0.9461 -0.41 -0.7174 72 110 0.0985 0.12 -0.0014
23 633 0.2525 0.03 0.5637 73 607 0.1489 -0.01 -0.1212
24 696 0.0484 0.01 0.1432 74 183 0.0871 2.22 0.1496
25 506 0.2732 -0.52 -0.0719 75 693 0.967 2.93 0.4142
26 565 0.0611 -0.03 -0.4186 76 262 -0.0138 9.5 -0.0958
27 554 0.1075 4.94 0.6226 77 148 0.2206 0.14 0.3305
28 293 -0.2974 3.43 -5.2029 78 188 0.1041 0.02 0.0245
29 558 -0.1437 -0.01 0.2459 79 460 1.3298 2.77 1.3246
30 129 0.1365 0 -0.0463 80 354 0.7091 -0.75 2.9705
31 527 0.1078 0.02 -0.0367 81 263 0.1261 0 -0.115
32 25 0.035 0.02 0.2319 82 620 0.5496 0.24 0.4236
33 208 1.4125 -4.62 9.6417 83 300 0.3154 0.01 -0.3171
34 36 0.1592 -0.24 0.1079 84 410 0.1137 -0.01 0.1025
35 395 -0.0432 -0.04 1.6488 85 684 0.1141 0.01 0.1257
36 614 0.0488 0.01 0.1469 86 214 6.7042 -0.01 0.5376
37 518 0.2655 -6.35 0.2403 87 180 0.0168 0.07 0.0545
38 237 0.2234 0.06 -0.6041 88 562 0.2528 -0.02 2.0592
39 708 0.2957 1.21 0.7068 89 93 0.0769 0.03 0.0156
40 27 0.1562 -0.02 -0.1931 90 424 0.3896 -7.79 -0.0950
41 328 -0.1902 -0.02 0.1149 91 58 0.7364 -2.47 -0.0950
42 285 0.0793 0 0.4 92 42 0.514 0.06 0.1179
43 571 0.8971 2.37 0.3802 93 396 0.0603 -0.13 0.1014
44 593 10.6657 14.82 11.4321 94 581 0.1013 -0.03 0.0338
45 141 1.0461 5.84 2.2118 95 312 7.5987 -0.56 6.0763
46 366 0.2917 -0.01 -1.8301 96 98 1.0343 6.37 1.0083
47 333 1.2594 0.76 0.3203 97 425 0.0435 -0.69 -0.0465
48 482 -0.0628 -0.02 0.1639 98 351 0.1991 0.02 -0.0429
49 529 1.6884 0.08 2.1614 99 10 0.5371 -0.02 -0.1406
50 563 0.4032 -0.02 0.7564 100 252 0.1489 2.21 0.1804
 Tot

al
Average 0.54 0.6296 0.6043 0.5808

857 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

From the above table, It has been established that the result of the predicted output of BR, LM and BPA is
calculated by using testing data from the Ant 1.7 dataset. Desired output is that output which is given in the Ant 1.7
dataset. As a result, the average of actual outputs is 0.54 and average Predicted O/P using BPA, average
Predicted O/P using LM and average Predicted O/P using BR is 0.6296, 0.6043 and 0.5808 respectively.
General formula, for finding the percentage error and percentage accuracy of BR Algorithm, LM algorithm and
BPA algorithm are given below:
Percentage Error = | average predicted outputs – average actual outputs | / average actualoutputs *100
(i)Accuracy of BPA Algorithm:
Percentage Error = |0.6296- 0.54| / 0.54 * 100 = 16.59%
 Percentage Accuracy = 100 – 16.59 % = 83.41% (3)
(ii) Accuracy of LM algorithm:
Percentage Error = |0.6043- 0.54| / 0.54 * 100 = 11.91%
 Percentage Accuracy = 100 – 11.91 %= 88.09% (4)
(iii)Accuracy of BR Algorithm:
Percentage Error = |0.5808- 0.54| / 0.54 * 100 = 7.56%
Percentage Accuracy = 00 – 7.56 % = 92.44% (5)
From the above calculations, it has been found that Back propagation (BPA) Algorithm based neural network for
finding the software defects before testing provides the accuracy 83.41%. Levenberg-Marquardt (LM) algorithm
based neural network for predicting the software defects before testing provides the accuracy 88.09% and Bayesian
Regularization (BR) algorithm based neural network for finding the software defects before testing providethe
accuracy 92.44%. So it has been observed that designing of software fault prediction model using Bayesian
Regularization technique provides the highest accuracy than all the previous techniques.

 Fig.5.comparison of the Accuracy of BR with BPA and LM

6. Conclusion and Future Scope

For predicting the software defects before the process of testing, it is required to have a superior prediction
system.Our proposed model uses Object Oriented metrics to predict the faults during design phase. Bayesian
Regularization (BR) algorithm is proved to be the best algorithm as compared to the other algorithms like
Levenberg-Marquardt (LM) algorithm and Back propagation (BPA) algorithm. With the help of neural network
technique and Bayesian Regularization (BR) algorithm, the accuracy of our proposed system is better than Back
propagation (BPA) algorithm and Levenberg-Marquardt (LM) algorithm. Neural Network is based upon machine
learning approach. As a result, it is found that machine learning models are importantly used and provide superior
results. In future, some other training algorithms may be tried to raise the accuracy level for finding the software
faults at an early stage of software development life cycle. By using class level metrics, more studies can be
conducted on fault prediction models.

7. References

858 Rohit Mahajan et al. / Procedia Computer Science 46 (2015) 849 – 858

1.Bansiya, J., & Davis, C. G. A hierarchical model for object-oriented design quality assessment.IEEE Transactions on software Engineering ,

Vol. 28 (1), 2002; 4-17.
2 .Catal, C., &Diri, B. A systematic review of software fault prediction studies. J. Expert Systems with Applications, Vol. 36 (4), 2009; 7346-

7354.
3 .Chidamber, S. R. &Kemerer, C. F. A metrics suite for object oriented design. IEEE transaction on software engineering, Vol. 20(6), 1994;

476-493.
4 .Elish, K. O., &Elish, M. O. Predict ing defect-prone software modules using support vector machines. Journal of Systems and Software,

ACM, Vol. 81(5), 2008; 649-660.
5 . Fenton, N. E., & Neil, M., A crit ique of software defect prediction models. IEEE Transactions on software Engineering , Vol. 25(5); 675-

689.
6 .Gondra, I. Applying machine learn ing to software fault-proneness prediction.ACM Journal of Systems and Software, Vol. 81(2), 2008; 186-

195.
7 .Jiang, Y., Cukic, B., &Menzies, T. Fault predict ion using early lifecycle data.Published in 18th IEEE international symposium on software

reliability, 2007; 237-246.
8 .Mahaweerawat, A., Sophatsathit, P., Lursinsap, C., &Musilek, P. Fau lt prediction in object -oriented software using neural network

techniques. Advanced Virtual and Intelligent Computing Center (AVIC), Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand, 2004; 1-8.

9 .Martin, R. OO design quality metrics -An analysis of dependencies.Workshop on Pragmatic and Theoretical Directions in Object -Oriented
Software Metrics, 1994; 1-8.

10 .Mahaweerawat A., Sophasathit P., Lursinsap, C. Software fault p rediction using fuzzy clustering and radial basis function net work .In
proceedings of International conference on intelligent technologies, 2002;304-313.

11 . McCabe, T. J. A complexity measure.IEEE Transactions on softwareEngg, Vol. 2(4), 1976; 308-320.
12 . Sellers, B. H. Object-Oriented Metrics.Measures of Complexity.Prentice Hall, 1996.
13 . Shatnawi, R. Improving software fau lt-prediction for imbalanced data.IEEE Proceedings of International Conference on Innovations

in Information Technology, 2012; 54-59.
14 . Singh, M., &Salaria, D.S. Software Defect Pred iction Tool based on Neural Network. International Journal of Computer

Applications, Vol. 70(22),2013; 22-27.
15 .Tang, M. H., Kao, M. H., & Chen, M. H.An empirical study on object-oriented metrics.IEEE Engineering; 2005.
16 . Xing, F., Guo, P., &Lyu, M. R.A novel method for early software quality prediction based on support vector machine.16th IEEE

international symposium on Software Reliability, Vol. 37(6), 4537-4543.
17 . Zheng, J. Cost-sensitive boosting neural networks for software defect pred iction.J. Expert Systems with Applications: An international

Journal, ACM dig ital Library, proceedings of s ixth International symposium on Software Metrics, 1999; 242-249.

