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The dynamics of a classical third-order Newton-type iterative method is studied when it
is applied to degrees two and three polynomials. The method is free of second derivatives
which is the main limitation of the classical third-order iterative schemes for systems.
Moreover, each iteration consists only in two steps of Newton’s method having the
same derivative. With these two properties the scheme becomes a real alternative to
the classical Newton method. Affine conjugacy class of the method when is applied to
a differentiable function is given. Chaotic dynamics have been investigated in several
examples. Applying the root-finding method to a family of degree three polynomials, we
have find a bifurcation diagram as those that appear in the bifurcation of the logistic map
in the interval.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let f : R → R be a Cr function (r � 1). One of the most classical problems in numerical analysis is the solution of
nonlinear equation f (x) = 0. To approximate the solution of these equations we can use iterative methods. An iterative
method starts from an initial guess x0, which is improved by means of an iteration, xn+1 = Φ(xn). Conditions are imposed
on x0 and on the function f to assure the convergence of the sequence {xn}n�0 to a solution x∗ of the equation f (x) = 0
and to analyze the order of convergence.

Newton’s iterative method, xn+1 = N f (xn) = xn − f (xn)
f ′(xn)

, and its variants are the most used and studied. We have that

roots of f are fixed points of N f , and since N ′
f (x) = f (x) f ′′(x)/( f ′(x))2 the simple roots, that is, roots of f that are no

critical points, are super-attracting fixed points of N f (x). This means that Newton’s method converges quadratically in
a neighborhood of a simple root of f . Note that when p is a polynomial, then its corresponding Newton’s iterative method
is a rational map (quotient of two polynomials without common factors) on the real line.

The classical third-order methods require more computational cost than other simpler methods, which makes them
disadvantageous to be used in general, only in some cases they should be considered [2,4–10]. However, in this paper we
are interested in a third-order method free of second derivatives which is the main limitation of the classical third-order
iterative schemes for systems. Moreover, each iteration consists in two steps of Newton’s method having the same derivative.
In particular, if we consider a system of equations only one LU decomposition is necessary in each iteration. With these
two properties the scheme can be considered a real alternative to the classical Newton method [1,3]. Our main interest
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in this paper is the study of the dynamics of the discrete dynamical system defined by this method. In particular, we are
interested to search chaos or sensitive dependence on initial conditions for this discrete dynamical system. In [12], Hurley and
Martin showed that the classical Newton’s iterative method exhibits chaos for a large class of functions (see also [11,14,16]).

The paper is organized as follows. In Section 2 we introduce the scheme and present the associated Scaling Theorem. The
Scaling Theorem allows up to suitable change of coordinates, to reduce the study of the dynamics of iterations of general
maps, to the study of specific families of iterations of simpler maps. The dynamics for polynomials of degree two, having
chaotic dynamics in some cases, are presented in Section 3. Finally, in Section 4 we study the dynamics for polynomials of
degree three. In this case, we find a bifurcation diagram as those that appear in the bifurcation of the logistic map in the
interval.

2. A third-order Newton-type iterative method

We are interested to analyze the dynamics of the following third-order iterative root-finding method [13,15,1,3]

⎧⎪⎪⎨
⎪⎪⎩

yn = xn − f (xn)

f ′(xn)
,

xn+1 = yn − f (yn)

f ′(xn)
.

(1)

This iterative root-finding method is defined by the following iterative function

M f (x) = N f (x) − f (N f (x))

f ′(x)
, (2)

where N f (x) = x − u f (x) and u f (x) = f (x)
f ′(x) . In other words, xn+1 = M f (xn).

It is easy to see that the roots of f are fixed points of M f . Recall that a root α is simple if f ′(α) �= 0. We have that
the simple roots of f are super-attracting fixed points of M f , that is, M ′

f (α) = 0. In fact, we also have that M ′′
f (α) = 0. If a

root β of f is not simple, then β is an attracting, but not super-attracting fixed point of M f , that is, 0 < |M ′
f (β)| < 1.

We note that, M f may have more fixed points than the roots of f . These fixed points are called extraneous fixed
points.

Our main interest in this paper is the study of the dynamics of the discrete dynamical system defined M f . In particular,
we are interested to search chaos or sensitive dependence on initial conditions for this discrete dynamical system. In [12],
Hurley and Martin showed that the classical Newton’s iterative method N f (x) = x − u f (x), exhibits chaos for a large class
of functions. The key of this behavior is the existence of points x∗ where f ′(x∗) = 0 but f (x∗) �= 0. In this paper, we show
that chaos appears when the iterative method M f is applied to an one-parameter family of cubic polynomials. In fact, we
have a bifurcating diagram (period doubling bifurcation diagram) in the parameter space, similar to those that appear in the
parameter space for the logistic map qμ(x) = μx(1 − x).

When we apply the iterative method M f to a polynomial we may have some problems, since we obtain a rational map,
say M p(x) = P (x)/Q (x), where P and Q , are polynomials, which we may suppose without common factors. The difficulty
arises at those points where the evaluation of numerator is non-zero and the denominator is zero, such points correspond
to the poles of the iterative method. In order to study the dynamics of M f by means of graphical analysis we consider it as
a map M̃ f on [0,1[. For this, let G : R → ]0,1[ be given by G(x) = 1

π arctan(x) + 1
2 . This map is a homeomorphism from R

into ]0,1[. Define the maps M̃ f : ]0,1[ → ]0,1[ by M̃ f (x) = (G ◦ M f ◦ G−1)(x), where M f is the iterative root-finding method
introduced above for a map f : R → R. We may extend M̃ f to maps from [0,1] into itself. We use the same notation for
this extension. Note that the extended function has fixed points at x = 0 and at x = 1, and that theses fixed points are
repelling.

Now we have the following useful result.

Theorem 1 (The Scaling Theorem). Let f (x) be an analytic function, and let T (x) = αx + β , with α �= 0, be an affine map. Let
g(x) = ( f ◦ T )(x). Then T ◦ Mg ◦ T −1(x) = M f (x), that is, M f and Mg are affine conjugated by T .

Proof. We have

Mg
(
T −1(x)

) = T −1(x) − ug
(
T −1(x)

) − g(T −1(x) − ug(T −1(x)))

g′(T −1(x))
.

On the other hand, since g ◦ T −1(x) = f (x), and (g ◦ T −1)′(x) = 1
α g′(T −1(x)), then g′(T −1(x)) = α(g ◦ T −1)′(x) = α f ′(x),

and by an easy induction process it follows that g(k)(T −1(x)) = αk f (k)(x). Hence, ug(T −1(x)) = 1 u f (x).
α
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Substituting these quantities in Mg(T −1(x)) we obtain

T ◦ Mg ◦ T −1(x) = T
(
Mg

(
T −1(x)

))
= αMg

(
T −1(x)

) + β

= αT −1(x) − αug
(
T −1(x)

) − α
g(T −1(x) − ug(T −1(x)))

g′(T −1(x))
+ β

= x − u f (x) − g(T −1(x) − 1
α u f (x))

f ′(x)
.

Finally, by a comparison of Taylor series expansions of f and g , we obtain

g

(
T −1(x) − 1

α
u f (x)

)
= g

(
T −1(x)

) − g′(T −1(x)
) 1

α
u f (x) + · · ·

= f (x) − α f ′(x)
1

α
u f (x) + · · ·

= f
(
x − u f (x)

)
.

Therefore, T ◦ Mg ◦ T −1(x) = M f (x).
This ends the proof. �
The theorem remains valid for g(x) = c( f ◦ T )(x), where c is a non-zero constant.
The Scaling Theorem allows up to suitable change of coordinates, to reduce the study of the dynamics of iterations

M f , to the study of specific families of iterations of simpler maps. For example, each quadratic polynomial f (x) = ax2 +
bx + c, with a �= 0, which we may suppose that is monic, by an affine change of variables reduces to one of the following
polynomials f−(x) = x2 − 1, f0(x) = x2 or f+(x) = x2 + 1 if f (x) = 0 has two, one (double) or not real roots. Therefore, the
study of the dynamics of M f , when it is applied to a quadratic polynomial, reduces to the study of the dynamics of M fs ,
where s = +,0,−, up to an affine change of variables. As we indicated above, the study of the dynamics of the iterative
methods M f reduces to the study of the dynamics of the interval map M̃ fs . Similarly, any cubic polynomial reduces to
one of the simplest cubic polynomials f•(x) = x3, f+(x) = x3 + x, f−(x) = x3 − x or to a member of the one-parameter
family of cubic maps fγ (x) = x3 + γ x + 1. This is nothing but an appropriate rescaling that puts M f inside the conjugacy
class.

3. Quadratic polynomials

Let f (x) be a quadratic polynomial. By an affine change of variables the polynomial f reduces to one of the following
polynomials f−(x) = x2 − 1, f0(x) = x2 or f+(x) = x2 + 1 if f has two, one (double) or not real roots. Therefore, the study
the dynamics of M f , reduces to the study of the dynamics of M fs , where s = +,0,−, up to an affine change of variables.
As we indicated, the study of the dynamics of the iterative method M f reduces to the study of the dynamics of the interval
map M̃ f .

3.1. Case f0(x) = x2

In this case M f0(x) = 3
8 x. This function is a linear contraction. Therefore, its dynamics is trivial, the unique fixed point is

x = 0, which is a global attractor, but not super-attracting.

3.2. Case f−(x) = x2 − 1

For f−(x) = x2 − 1, we have that M f− (x) = 3x4+6x−1
8x3 . Now, the fixed points of M1, f− are x1,2 = ±1 (the roots of f−)

which are super-attracting, and x3,4 = ± 1
5

√
5, which are extraneous fixed points. Since M ′

f− (x) = 3
8

x4−2x2+1
x4 , we have

M ′
f− (± 1

5

√
5 ) = 6, thus the two extraneous fixed points of M f− are repelling. Note that M f− (x) has a vertical asymptote

at x = 0.
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Let I = [p1, p2] be the interval determined by the repelling fixed points p1 = G(x3) and p2 = G(x4) of M̃ f− . The following
picture shows the restriction of M̃ f− to the interval I .

It is clear that M̃ f− restricted to the interval I have an invariant Cantor set Λ− of zero Lebesgue measure of non-escaping
points, that is, Λ− is the set of points whose orbits remain in the interval I under iteration by M̃ f− , in other words, these
points are not attracted to one of the super-attracting fixed points of M̃ f− .

From the analysis of above we have that the orbit of any point x ∈ [0,1] − (Λ− ∪ {p1, p2}) is attracted to one of the
super-attracting fixed points of M̃ f− . Consequently, the orbit of any point in R − (G−1(Λ−) ∪ {x3, x4}) is attracted to one of
the fixed points of M f− .

3.3. Case f+(x) = x2 + 1

In this case, the equation f+ has not real roots, thus M f+ (x) has not real fixed points and its dynamics is chaotic.
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4. Cubic polynomials

We now consider cubic polynomials f : R → R. By an affine change of coordinates τ (x) = αx + β , polynomial f reduces
to one of the simplest polynomials f•(x) = x3, f+(x) = x3 + x, f−(x) = x3 − x or to a member of the one-parameter family
of cubic polynomials fγ (x) = x3 + γ x + 1. Therefore, we analyze the dynamics of these simpler cubic polynomials, in the
last case depending on the parameter γ .

4.1. Case f•(x) = x3

For f•(x) = x3, we have M f•(x) = 46
81 x, which is a linear contraction. Therefore it is dynamically trivial, since x = 0 is the

unique fixed point, which is a global attractor, but not super-attractor.

4.2. Case f+(x) = x3 + x

In this case, f+ has only one real root at x = 0.
We have

M f+(x) = 2x5(23x4 + 18x2 + 3)

(3x2 + 1)2
.

Since f ′+(x) = 3x2 + 1 > 0 for all x, it follows that f+ has no critical points, hence M f+ (x) is a global homeomorphism
form R into itself.

Also we can see that there are not extraneous fixed points. In this case the dynamics of M f+ (x) is trivial, since the
unique fixed point is x = 0 which is a global super-attracting fixed point.

4.3. Case f−(x) = x3 − x

In this case M f− is given by

M f−(x) = 46x9 − 36x7 + 6x5

(3x2 − 1)4
.

The fixed points of M f− are x1 = −1, x0 = 0, x2 = 1 (the roots of f ) which are super-attracting, and the extraneous
fixed points x3 ≈ −0.7941044878, x4 ≈ −0.4759631495, x5 ≈ −0.4472135955, x6 ≈ 0.4472125955, x7 ≈ 0.4759631455 and
x8 ≈ 0.7941044878. Evaluating M ′

f− (x) at the points x j for j = 3, . . . ,8 we find that |M ′
f− (x j)| > 1. Therefore, the extra-

neous fixed points of M f− are repelling. Now M f− (x) has asymptotes at the points a1 = −
√

3
3 and a2 =

√
3

3 , and we have
lima→a±

1
M f− (x) = +∞ and lima→a±

2
M f− (x) = −∞.

In this case, the dynamics of M f− is trivial.

4.4. Case fγ (x) = x3 + γ x + 1

For the sake of simplicity in the notation, we denote Mγ for M fγ . Now, we have

Mγ (x) = 46x9 + 36γ x7 − 42x6 + 6γ 2x5 − 45γ x4 − 6x3 − 12γ 2x2 − γ 3 + 1

(3x2 + γ )4
.

We analyze the dynamics of the family of rational iterative root-finding methods Mγ depending on the parameter γ .
Now, we have

M ′
γ (x) = 6x(23x9 + 51γ x7 + 33γ 2x5 + 42x6 + 48γ x4 + 5γ 3x3 + 6γ 2x2 + 15x3 − 3γ x − 4)

(3x2 + γ )5

and

M ′′
γ (x) = −12

(
213γ x6 − 57γ 2x4 − 66γ x3 + 3γ 2x + 189x8 + 135x5 − 54x2

+ 38γ x9 − 6γ 2x7 − 54γ 3x5 − 10γ 4x3 − 9γ 3x2 + 2γ
)
/
(
3x2 + γ

)6
.

For γ �= 0, let mγ = Mγ (0) = 1−γ 3

γ 4 . We have that x = 0 is a critical point with mγ its corresponding critical value of Mγ ,

which is a local maximum of Mγ for γ > 0, since M ′′
γ (0) = − 24

5 .

γ
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If the parameter γ > 0 decreases to zero, then the local maximum mγ is negative and increases. It is easy to see that
there exists a parameter value γsn ≈ 1.00768, such that for each γ > γsn , the iterative map Mγ has a unique fixed point,
xsa,γ , corresponding to the unique real root of fγ . Also we see that the iterates of any point of R under Mγ converge to
xsa,γ , and therefore its dynamics is trivial in this case. Note that the function γ �→ xsa,γ is decreasing when γ decreases
to zero. The next picture shows a generic graph of Mγ for γ > γsn . This configuration is the same for all parameters
γ > γsn .

For all parameter value γ = γsn , appears other fixed point of Mγ . This new fixed point, denoted by xsn,γ , is a saddle-
node fixed point, that is, M ′

γ (xsn) = 1. Thus at the parameter γ = γsn the iterative map Mγ has two fixed points, one
super-attracting and one saddle-node. The super-attracting one, xsa,γ , corresponds to the unique root of fγ and the saddle-
node xsn,γ is an extraneous fixed point. See the next picture.

Let psn,γ = G(xsn,γ ) and qsn,γ = G(−xsn,γ ). Define the interval J sn,γ = [psn,γ ,qsn,γ ]. Then, the restriction of M̃γsn,γ to the

interval J sn,γ , has a unique fixed point at psn,γ and M̃ ′
γsn,γ

(psn,γ ) = 1. We have the following picture.
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Let Isn,γ = G−1( J sn,γ ). We have that, for all x ∈ R − ⋃
n�0 M−n

γ (Isn,γ ), the iterates under Mγ converge to the super-
attracting fixed point xsa,γ .

If we continue to decreasing the values of γ , then saddle-node fixed point xsn bifurcates into two fixed points, one
repelling and one attracting, we denote by xr,γ the repelling one and by xa,γ the attracting one.

Let pr,γ = G(xr,γ ), qr,γ = G(−xr,γ ) and pa,γ = G(xa,γ ). Then the interval Jγ = [pr,γ ,qr,γ ] contains the attracting fixed
point pa,γ and M̃γ| Jγ

has a repelling fixed point at pr,γ and attracting fixed point at pa,γ .
For γ = 1, the critical point mγ of Mγ becomes a fixed point, in fact a super-attracting fixed point. Thus, for γ < 1, but

near 1, the attracting fixed point xa,γ is such that M ′
γ (xa,γ ) < 0, with |M ′

γ (xa,γ )| < 1. If γ < 1 decreases then the derivative
M ′

γ decreases also, and there exists a parameter value γ = γpd , such that M ′
γpd

(xa,γpd ) = −1, that is, we have a period
doubling bifurcation.

We see from the above analysis that a period doubling bifurcating has begin to appear, which is shown in the next
picture.

As above, let pr,γ = G(xr,γ ) and qr,γ = G(−xr,γ ). Now we have, varying the parameter γ , that there exists a set Γ of
positive Lebesgue measure such that for γ ∈ Γ the map Mγ admits a probability invariant measure, which is absolutely
continuous with respect to the Lebesgue measure and also has positive Lyapunov exponents. This implies, in particular, that
for these parameter values, Mγ is chaotic.

If we continue decreasing γ , there exists a parameter value γT , such that mγT = qr,γ . For γT we have M̃γT (pa,γT ) = pr,γT

and M̃γT JγT
has the same shape as the one-parameter map qμ(x) = μx(1 − x), for μ = 4.

Now, for 0 < γ < γT , an invariant Cantor set of non-escaping points appears. It is not difficult to show that these
invariant Cantor set has zero Lebesgue measure. This invariant Cantor set of non-escaping points exists for all parameter
values γ , with 0 < γ < γT .
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Now, for γ = 0, f0(x) = x3 + 1. In this case, M0 is given by

M0(x) = 46x9 − 42x6 − 6x3 + 1

81x8
.

This map has one super-attracting fixed point at x1 = −1. Moreover, there are other two fixed points which are extrane-
ous repelling fixed points.

For γ < 0, let c1 = (−3γ )1/2

3 be the positive critical point of fγ and let γc be the parameter values γc = − (12)2/331/3

4 . This
value of the parameter γ is the solution of the equation

(−3γ )3/2

27
+ γ (−3γ )1/2

3
+ 1 = 0.

Note that fγc has a double root at c1.
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For γc < γ < 0 the iterative method Mγ (x) has two vertical asymptotes at a1,γ = −
√−3γ

3 and at a2,γ =
√−3γ

3 , with

limx→a−
1,γ

Mγ (x) = limx→a+
1,γ

Mγ (x) = limx→a−
2,γ

Mγ (x) = limx→a+
2,γ

Mγ (x) = +∞. Also, note that Mγ (0) = − 1
γ + 1

γ 4 is the

minimum of Mγ (x) in the interval ]a1,γ ,a2,γ [. On the other hand, the fixed points of Mγ (x) are xsa,γ < 0 which correspond
to the roots of fγ , and then super-attracting. Also there exist others two fixed points x2,γ and x3,γ , with x1,γ < x2,γ < a1,γ

and a2,γ < x3,γ . The fixed points x2,γ and x3,γ are extraneous fixed points, and they are repelling. This configuration for

Mγ (x) is the same for all parameter values γc = − (12)2/331/3

4 < γ < 0.
For the parameter values γc < γ < 0 ( fγ has only one real root) γ = γc ( fγ has two real root, one of them, the positive

one, is a double root) and for γ < γc ( fγ has three real roots).
Finally, for γ < γc the iterative method Mγ (x) has three super-attracting fixed point, three repelling fixed points and

two vertical asymptotes.
This configuration remains valid for all γ < γc .

5. Conclusion

In this work we have studied the dynamics of a third-order method for approximating roots of nonlinear equations, and
have shown that, as with Newton’s method, when applied to a one-parameter family of cubic polynomials, bifurcations
and chaos appear. From the numerical point of view, this represents a great difficulty in order to determine the regions of
convergence of a method to the roots of a nonlinear equation.
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