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We study the category of fields and places. We show the rational num- 
bers are the initial object in this category, and 

(1) every morphism can be factored (uniquely up to multiplication 
by a unit-that is, an isomorphism) as a product of a surjective morphism 
and a ring homomorphism; 

(2) every ring homomorphism can be factored (uniquely up to multi- 
plication by a unit) as a ring homomorphism and an integrally closed 
morphism; 

(3) every object has an essential ring homomorphism into an injec- 
tive object and this is unique up to isomorphism. 

We do some field theory in such a category. We leave the theory of local 
fields (i.e., Henselizations), and the theory of ordered fields (i.e., 
automorphisms of order two of injective objects), to a sequel, and restrict 
attention to studying the transcendence degree. We get a result which is 
new and can be stated in the more usual language; the group of 
automorphisms of an algebraically closed field has a certain structure 
and the perfect subfields correspond bijectively with certain subgroups 
(isomorphic subfields correspond to conjugate subgroups). In a short last 
section, we give a purely group theoretic realization of the category of 
subfields of algebraically closed fields of transcendence degree zero and 
their places. 

1. FIELDS AND PLACES 

Let Plc be the category whose objects are fields and whose morphisms 
are places. Recall that a place from a field F to E is a triple (D,, cp, I,), 

470 
0021-8693/91 $3.00 
Copynghf C 1991 by Academic Press, Inc 
All rights of reproduction m any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82410479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PROPERTIES OF FIELDS 471 

where D, is a valuation ring, cp is a ring homomorphism from D, onto I,, 
and I, is a subfield of E. We write A?‘(F, E) for the set of all ring 
homomorphisms from F to E, and &(F, E) for the set of all surjective 
places from F to E, for F and E fields. 

THEOREM 1.1. Plc has an initiul object. 

Proof. The initial object is Q. If FE Ob(Plc), and char F= 0, then 
Q c F and the unique place is the inclusion morphism. 

If char F= p # 0, then there is a unique place from Q to F with valuation 
ring Z,,,. 

DEFINITION 1.2. By a category with factorization we mean a category 59 
and for each pair of objects (A, B) subsets &(A, B) and A(A, B) of 
Mor(A, B) such that: 

(1) e,E&(A,B), e,E&(B,C)~e20e,E6(A,C); 

(2) m,E~(A,B),mzE~(B,C)~m,om,E~(A,C); 

(3) V’E %‘(A, B), f~ &(A, B) n &?‘(A, B) of is an isomorphism; 

(4) V~EA(A, B), 3f,~&, and f,,,EA withf=f,of,; 

(5) f =moe, eE&, mEAt!* unique isomorphism t with e=tof,, 
m=f,ot-‘; 

(6) eccF’,foe=goe*f=g; 

(7) mEA, mof=mog*f=g. 

THEOREM 1.3. Plc with A! and 8 is a category with factorization. 

Proof. We leave (l)-(4) and (6) as exercises. 

(5) Let (D,, rp, IV) be a place from F to E with cp = (~~0 (Pi, rp, E AZ’, 
v,E&. Write Z for cp(D,). Let i: 1~ E; define v]: F+ I by UH cp(cl). Then 
cp = ioq, q is surjective, and i is manic. For a ED,, cp,(q,(cr))= 
cp(~) = I E I. Let C be the codomain of cp,. cp, is surjective so cp,(D,) = C. 
Since (pm is a ring homomorphism, q,(C) EL If /I E 1, then 3~ E F with 
q(a) = b. So q(a) = /I - rp,(cp,(cc)) = fl a Is q,(C). Hence I= q,(C). 

Define h: C+Z by CH q,(c). h is an isomorphism, h(cp,(a))=q(cc). 
Hence hoq,=q. For CEC, i~h(c)=i(cp,(c))=cp,(c)*bh=cp,. If 
cp = m 0 e for m E ~2’ and e E 8, there exists an isomorphism t: C’ -+ I, 
where C’ is the codomain of e and toe = 4, io t = m. Thus h 0 cp, = 
toe=q=tp’ohocpr=e and q,,,Oh-‘=mot -‘+q,,,OhplOt=rn. Let 
$ = t-’ 0 h. Then Ic, 0 cpP = e, cp,,~ I+-’ = m. Suppose y is another such 
isomorphism. So y 0 qo, = e, (pm 0 y ~ ’ =m. But then YO~~,=$O(P~+Y=$ 
since cp, is surjective. 
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(7) Define P= Fu { 00 }. Let m: P+ E be a ring homomorphism. Let 
KeOb(Plc), q, $ EM~T(K, F). Suppose rnocp =moIl/. So for all /?E K, 
m(cp(/?)) = m(ll/(fi)). m is 1 - 1 since ker m is an ideal of F, but 
1 # ker m = 0. Hence, cp( /3) = $(/I) V/3 E K, which implies cp = 9. Thus, m is 
manic. 

DEFINITION 1.4. Let %? be a category with factorization, with 
A, BeOb(%?). ie&(A, B) is &-essential if j~Mor(B, C) with joi~A= 
jE&. 

THEOREM 1.5. Let cp E Mor(F, E); cp is A-essential- cp E ~2 with E 
algebraic over cp( F). 

Proof C-G=] Since cp is a ring homomorphism, cp is manic. Let 
0~ Mor(E, K) with 00 cp E A. Let D be the domain of 8. Then 
q(F) n D = q(F) and q(F) n D\U(D) = 0. We show D = E. Let /?E E, and 
just suppose that fi $ D; 3a, . . .c(, ~, E F such that 

Choose n to be minimal. By factoring, fi(p+‘+a,- ,B”-*+ ... +cc,)~D 
and /I$D*~-‘ED. So /?H~‘+an~1/Y~2+ ... +cr,~D. This contra- 
diction gives p E D V’p E E, which implies E = D. Hence 8 is a ring homo- 
morphism which implies 8 E A. Thus cp is essential. 

[s] Assume cp is essential. Just suppose 3 transcendental XE E\F. 
Then 3 a valuation ring D of F(x) such that D # F(x). By the extension 
theorem for places, there exists a valuation ring V of E with 
F(x)n(V\U(V))=F(x)\U(D) and with DC V. Hence V#E so the 
composition map F + K -+ V\M( V) is not a ring homomorphism. 

DEFINITION 1.6. Let %? be a category with factorization, A, 2, X, 
YE Ob(%). An injective envelope of A is a pair (i, 2) where A is an object, 
iEJz’(A, A), i is &-essential, and mEdz’(X, Y) andfEMor(X, A) implies 
there exists g E Mor( Y, A) such that g 0 m = f: 

THEOREM 1.7. For F any object of Plc, an injective envelope (i, F) exists. 

ProoJ: Let F be the algebraic closure of F. Let i: F + P be the inclusion 
place. Since F/i(F) is algebraic, and i is a ring homomorphism, i is 
&-essential. 

THEOREM 1.8. Let i: F + F be an essential &?-morphism with F injective. -- 
Let 0 E Mor(F, F) with a 0 i = i. Then a is an isomorphism. 
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Proof. Let cx F-+ F be a place such that (T 0 i = i. Since i is &-essential, 
(T o i E JZ, so c E A. Let c1 E F. The splitting field N of the irreducible poly- 
nomial of c( over F is of finite dimension over F, and a(N) G N since N is 
a normal extension. ~1 N is 1 - 1 since 0 is a ring homomorphism. But 
01 N: N + N is linear and 1 - 1 so onto. Hence 38 E N such that a( /I) = CC 
Thus cr is an isomorphism. 

THEOREM 1.9. Let i: F-+ F be as above. Let j: F+ E be A-essential with 
E injective. Then there exists an isomorphism t : F + E with t 0 i = j. 

Proof, First note that by Definition 1.2(7), i E ,,M implies that i is manic. 
Since E is injective, 3t: F + E such that t 0 i = j. t is manic since j is manic 
and i is essential. Since A is injective and j is manic, 3s: E + F such that 
soj-i. s is manic since i is manic and j is essential. We have 
sotoi=soj=i-sotoi=i*sot is an isomorphism by Theorem 1.8. So s 
is onto, and t is injective. Applying Theorem 1.8 to j, one gets that t 0s is 
an isomorphism. Hence t is onto, which implies t is an isomorphism. 

DEFINITION 1.10. Let V be a category with factorization with 
A, BE Oh(W). A morphism f: A + B is A”-extremal iff = m 0 g with m E Jt’ 
implies r)l is an isomorphism. 

CLAIM 1.11. In Plc a morphism cp: F --) E is A-extremal o C+J is surjec- 
tive. 

Proof: C-1 Define q: F --H Im cp, i: Im qq E as above. f=ion and 
i E d so i is and isomorphism, and Im cp = E which implies cp is surjective. 

[-=I Suppose cp is surjective, and cp = m 0 II/ with m E A, where 
$: F + K; m: K + E. cp is surjective so V/I E E 3a E F such that cp(cr) = p. 
Hence, m(ll/(N)) = fi implies V/I E E, J+(U) E K such that m($(m)) = b. Thus 
m is onto. Define n: E -+ K by /IH $(a) where m($(cc)) = /I. Then 
n(m(ll/(cr))) = n(p) = $(cx) and m(n( /I)) = m($(a)) = 8. Hence m 0 n = 1 and 
n 0 m = 1. Thus m is an isomorphism and cp is A-extremal. 

DEFINITION 1.12. Let V be a category with factorization with 
A, BE Oh(W). A morphism f: A + B is integrally closed if f 6 J& and if 
f = g 0 m with m &?-essential implies m is an isomorphism. 

THEOREM 1.13. Any ring homomorphism cp in Plc can be factored 

where rp, is &-essential and ‘piC is integrally closed. If cp = I,!J 0 t with t essen- 
tial and $I integrally closed, then there exists a unique isomorphism y with 
t=Yocp, and$oy=cp,,. 
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Proof: Let cp: F+ E, I the integral closure of F in E and factor cp 
through I by cp = cptCo cps. Since I is algebraic over F and cp, is a ring 
homomorphism, cps is &-essential, hence qiC E A. Suppose ‘pi< factors 
through K by ‘pi<. = $0 m, and suppose m is &-essential. By Theorem 1.5, 
K is algebraic over m(Z). Hence K is algebraic over Z, but I is the algebraic 
closure of F in E so Kg I. Thus ‘piC is indeed integrally closed. 

Suppose (pi<.0 cp, = fjiC.o II/,s. Integral closures are unique up to 
isomorphism so there exists an isomorphism r: I -+ J such that r ~ I 0 $ = cp, 
and Il/iC 0 r = (pi<.. 

DEFINITION 1.14. The adjusted characteristic of a field F, denoted adj. 
charF, isp=charFifp#O, and 1 ifcharF=O. 

THEOREM 1.15. A ring homomorphism cp: F -+ E is epic in Mor( F, E) o cp 
is a ring homomorphism and Vcr E E, 3n > 0 with tip” = cp( /3), b E F, and 
p = adj. char(F). 

Proof [e] Suppose cr, r~Mor(F, E) with CD cp = to cp. Let NE E. 
a”“=tp(/?) for some fief. Hence a(cp(j3))=t(cp(/?))*~(~r~“)=~(~1~”)* 
(a(‘!x))P”= (t(ct))P” = (o(a) - z(cz))~” = 0 *a(a) = z(a), since F is an integral 
domain. Hence 0 = T, so cp is epic. 

[.a] Just suppose 3j~ E and there does not exist an n with 
BP”= cp(cr) for any CI E F. Let E be the algebraic closure of E. Let L be the 
image of cp. 

Case 1. /zI is algebraic over L. We have fip’# L, Vn > 0. By the per- 
fectness of fields of characteristic zero, and by p. 283, Lemma 6.3 of [S], 
3m such that apm is separable over L. Let N be the splitting field of the 
irreducible polynomial that flpm satisfies over L. N is normal separable over 
L, and Bpm E N. Since Bpm # L, 3a E Aut,(N) with C( Bpm) # fipm. rr extends to 
zEAutL L (by p. 317, Theorem 1.12 of [S]). Then r(cp(y)) = l(cp(y)) 
Vy E q-‘(L). Hence r 0 cp = 1 0 q. But r # 1. This contradiction proves the 
first case. 

Case 2. fi is transcendental over L and /?‘#/3. kERng(L(/?), (L(b*)) 
with a( /?) = /3’, and 6: L( /I) g L( /I’). Extend 0 to z E Aut,(L( /I)). r(cp(cr)) = 
1 (cp(cr)) Va E cp - l(L). Hence r 0 cp = lo cp and T # 1. With this contradiction 
the theorem is proved. 

THEOREM 1.16. Zf cp is an epic morphism in Plc, and cp is also in A, then 
cp is essential. 

Proof Let cp E &’ and cp epic in Pk. By Theorem 1.15, 

{crEE13nEN,crP”=q(/?),/lEF}=E. 
So E/Im cp is algebraic, which implies cp is &‘-essential. 
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DEFINITION 1.17. Let %? be a category with factorization, f is separable 
if f is &-essential and if f = t 0 s with t E 4 and t an epic morphism * t is 
an isomorphism. 

THEOREM 1.18. Let cp he an A-essential morphism from F to E. Then 
there exists a ring homomorphism h which is epic and a separable morphism 
s with 40 = b OS. Moreover, if h’ E A with h’ epic and s’ is a separable 
morphism, such that cp = b’ OS’, then 3 a unique isomorphism o such that 
b’=bog, s’=~-~os. 

Proof: Let F” be the set of elements in E which are separable over F. 
Factor cp through F” by cp = b OS. Since F”IF is algebraic, and s is a ring 
homomorphism, s in &-essential. Suppose s factors through K for 
KG Ob(Plc), by s = t 0 r, and suppose t is a ring homomorphism which is 
epic. By Theorem 1.15, F”= {rx E F”I 3n E N with up” = t(c) for CE K}. But 
F’ = (F”)P” Vn implies t is onto. Since s is the inclusion map, t must be an 
isomorphism. Hence s is separable. Since E/q(F) is algebraic, E/b(F”) is 
algebraic, hence for any p E E, there exists n such that pp” is separable over 
b(F”). Hence ~QE F” with BP”= b(u). By Theorem 1.15, b is epic. Since 
cp = b 0 s E & with s essential, b E A. Uniqueness follows since the elements 
of E separable over F form a subfield of E. 

2. AN EXTENDED GALOIS CORRESPONDENCE 

DEFINITION 2.1. For f a profinite group, consider a triple (G, cp, Y), 
where G is a group, cp is a surjective group homomorphism from G onto 
r, and Y is a set of subgroups of ker cp. For such, call a subgroup H of 
G basic if 

H=cp-‘(N)nJ,n ‘.. nJ,,, 

where 0 <n, J,, . . . . J, E Y, and N is an open subgroup of r, Call a subset 
V’ of G open if it is a union of sets of the form aH, u E G, Z-I basic. 

DEFINITION 2.2. A set g of subsets of Y is independent if for n 2 1 and 
all distinct elements J1, . . . . J, of @ the index [ njf i J,: J, n ... n J,] = 00 
for all i= 1, . . . . n. 

DEFINITION 2.3. A triple (G, cp, 9) is a f-system if: 

(1) nJEy Jnkercp= (1); 

(2) JEY implies {kJk-‘IkEkercp} =Y; 

(3) JEY, agG implies crJo-‘~Y; 
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One checks that if (G, cp, 9) is a r-system then G is a Hausdorff, 
O-dimensional, topological group and q is continuous. 

DEFINITION 2.4. For (G, cp, 9) a r-system, call a subgroup T of G tight 
if 

T=cp-‘(M)n nJ , 
( > 

where the J are intersected over some subset X of 9’ and M is a closed 
subgroup of IY 

THEOREM 2.5. Let F be an algebraically closed field. Write F, for the set 
of elements of F which are algebraic over the prime subfield P of F. Let I 
be the Galois group of F, over P, let G = Aut(F), let q: G + I be given by 
restriction, and let 

Then a I-system results, and the map L H Aut,(F) is an order-inverting 
bijection from the set of all perfect subfields of F onto the set of all tight 
subgroups of G. This bijection takes composites to intersections. If L, 
corresponds to Ti, i = 1, 2, then L, is isomorphic to L, if and only tf T, is 
conjugate to Tz. Also L, includes FO if and only if T, is included in ker q. 
Also L, s L,, tf and only tf T2 E T,; tf L, 5 L, then dim,, L, = [T, : T2]. 

Proof One checks the three properties of a r-system. 
We will need three lemmas. 

LEMMA 2.6. For any perfect subfield L of F with H = Aut, F then 
FH=L. 

Proof Let a E F\L and a E FH. 

Case 1. a algebraic over L, L= F. H = Aut, F= Aut, E. Let b be any 
other root of the irreducible polynomial of a over L. Then 3h E Aut, E = H 
such that h(a) = b. But this contradicts a E FH. 

Case 2. a algebraic over L, z # F. Let A be the transcendence base of 
L over P such that A E X, where X is the transcendence base of F. Let 
B = X\A. Since a is algebraic over L, 30 E Aut, L such that o(a) = 6, for b 
another root of the irreducible polynomial of a over L. Extend CJ to 
8: E(B) + E(B) by b(d) = d, Vdg B, 8(l) = a(l), t’l~ L [S, p. 3121. L(B) = F 
so extend 8 to r: F+ F. Then z E Aut, F= H. But s(a) = b which con- 
tradicts a E FH. 
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Case 3. a is transcendental over L. Let b = a + 1. Let S (respectively 
T), be a transcendence base which contains a (respectively b). Define a 
map y: E(a) -+ L(b) such that y( L = 1 and a H 6. Extend y to y^: L(S) -+ L(T), 
and then extend to cp: F -+ F. cp E Aut, F= H. But q(a) = b, which contradicts 
aEFH. Thus, FH~L=z-FH=L. 

LEMMA 2.7. For any perfect subfield of F, H = Aut, F is tight. 

Proof: Aut, F= nIEL Aut.(,, F. Let T= {t E L I t is transcendental 
over P}. 

A = {a E L 1 a is algebraic over P}. 

We have L = P(T)(A). Let t, be a particular element of T. For any t E T 
there is a map 8, : P(t,) --) P(t) by t, M t and d, can be extended to 
(T, E Aut, F as before. AutPcrl F= Autp,,,(,,,)) F= a,p’(Aut,c,, F) 0,. Hence, 

Aut, F= n (~;-‘(Aut~~,~~ F) o,; 
(ET 

which is tight. For each a E A, 

oEAut p(a) Fe o(a) = a oa(a)=cp-‘(l(a))oaEcp~‘(Aut,,,,F,). 

So Aut P~~)F=(P~~(A~~~~,~~~) and Aut.(,, F=fL,,, ~‘(Aut,~,, F,) which 
is tight. Thus 

LEMMA 2.8. If H 1s a tight subgroup of G, then there exists a perfect 
subfield L such that PC LE F and H = Aut, F. 

Proox Case 1. H = cp -l(M), A4 is a closed subgroup of r. By infinite 
Galois theory, M= Aut, F,, with L perfect. So 

H= {q-l(Aut, F,J} = {LEG lalFo (l)=l, 1~ L} 

= {cr~Glcr(l)=lVl~L) 

as L < F,. Hence, o~H~a~cp~‘(M)=>cp(a)~M~cp(o)l=l, VIEL. 
Hence oEAutL F. For aEAut, F, cp(o)~Auf~ F,=scp(o)~M=g~ 
q-‘(M)= H. Thus H=Aut,F. 
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Case 2. H= AutpC,) F, te F\FO. Let p be the adj. char F. Let L be the 
perfect closure of P(t). That is, 

L= {crIc/~P(t)}= {uIcr(a)=a,a~H}. 

Case 3. H=q-‘(M)n (nJt.TE5f J). Each JE% corresponds to a 
field L, by Case 2. By Case 1, dP ‘(M) corresponds to a field L,. Then 
H=n JEXVMAutLJF. Let L=r)E where U LicE<F. Then a~Hoa 
fixes n JE.KVM-L~J; in; o (TE Aut, F. With these lemmas, the theorem 
is proved. 

DEFINITION 2.9. A subset B of Y is a basis if the elements of &I are 
independent and VJ E Y, 3J,, . . . . J,,EB with [J, n ... n J,,: Jn 
J,n ... nJ,]<co. 

THEOREM 2.10. Every independent subset of Y can be expanded to a 
basis. Every spanning subset of Y can be contracted to a basis. Any two 
bases have the same cardinality. 

Proof We use the fact that for tight subgroups T, , T, and corresponding 
fields L,, L,, dim,, L, = [T, : T2] and check that Theorems 64.1,2, 3 from 
[6] apply. Let J&’ be an independent set. We show that J%’ can be extended 
to a basis. Let 

F = {J’ I& c JV, .N independent }. 

One checks that F is a partially ordered set. Given a chain -01, the upper 
bound of d is U,,-,, Jf. Apply Corollary 33.1 of [6] to show that 
U,,.,, JV is independent. Thus, every chain of 9 has an upperbound, and 
by Zorn’s Lemma, 9 has a maximal element. Let P be the maximal 
element and apply Corollary 33.2 of [6] to show that 9 spans Y. Thus, 
9 is a spanning set for Y, and the independent set JY can be expanded to 
the basis 9. 

We now show that any spanning set can be contracted to a basis. Sup- 
pose N is a spanning set. Let B = { 0 10 c JV and 0 is a spanning set }. 
One checks that 9 is partially ordered. Let g be a chain of F. Check that 
$8 has a lower bound of n, Ea Lo by applying Corollaries 33.3 and 33.4 of 
[6]. Thus, every chain of F has a lower bound, so by Zorn’s Lemma, 9 
has a minimal element, 2. Apply Theorem 64.3 of [6] to show that 2 is 
linearly independent. Thus N contracts to a basis 2. We refer to p. 315 of 
[S] to show that any two sets have the same transcendence degree. 

DEFINITION 2.11. The transcendence degree of a f-system (G, 4, 9) 
is the cardinality of the basis of Y. One checks this is equal to the 
transcendence degree of the algebraically closed field. 
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THEOREM 2.12. Let $: E + F be a ring homomorphism between fields 
(i.e., II/ E A(E, F)) with F 1 b a ge raically closed. The following are equivalent. 

( 1) Aut, F is compact; 

(2) Vu E F the orbit Aut,F(a) is finite; 

(3) the extension F/E is algebraic. 

Proof: (l)+(2). Let H=Aut,F. In the Krull topology, V,({a)) is 
open. The set of left cosets H/V,( {u}) maps bijectively onto the orbit H(u) 
by aVl({m))~da). 

H= u aV,({cc}). 
0 

H is compact, hence there exists a finite number of r~ such that 
H= UC avl({a)). 

(2) + (3). Just suppose F/E is a transcendental extension. Suppose E 
is infinite. 3x E F\E transcendental, and x + c( transcendental for all c( E F. 
For each CX, 30: E(x)-+E(x+cr) defined by x--+x+0! and gIE= 1. Extend 
CJ to T E Aut F. Since E is infinite, the orbit of x is infinite. Now suppose 
that E is finite. Then i? is infinite. Since F is transcendental over i? and 
F is algebraically closed, E is a proper subset of F. Now use the above 
argument to prove the theorem. 

(3) =z- (1). Consider E*, the perfect closure of E. F/E* is a Galois 
extension. By infinite Galois theory, Ad,, F is compact. But Ad,, F= 
Aut, F, hence the theorem is proved. 

THEOREM 2.13. Let (G, cp, 9’) be a r-system associated to an algebrai- 
cally closed field F. For JE 9, J is compact o the transcendence degree of 
Y is 1 or 0. 

Proof: [e] If the transcendence degree is 0, then Y is empty. If the 
transcendence degree is 1, and J corresponds to the subextension L of F, 
then F/L is an algebraic extension, so by Theorem 2.12, J= Aut, F is 
compact. 

[ *] Let H be any open subgroup of G. Jn H is open since both J 
and H are open. Hence [J: Jn H] has finite index since J is compact. 
Thus, J, and H are dependent, and J spans 9. Thus, the transcendence 
degree is 1. 

THEOREM 2.14. Let (G, cp, 9’) be a r-system associated to an algebrai- 
cally closed field F. G is locally compact if and only if the transcendence 
degree qf Y is,finite. 
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Proof: We use the fact that G is locally compact and O-dimensional if 
and only if G has an open profinite subgroup. (See [4, pp. 12,621 for one 
direction. The other is an easy check.) 

Let G = Aut F. For T a trancendence basis of F over P, G = Aut, F,(T). 
Let 

H = Aut P F,( T), 

where F, is the perfect closure of P. H is compact since F,( T)\P( T) is an 
algebraic extension. Also, H = n,, T V,(t). This is a finite intersection, so H 
is open. Thus G has a compact open subgroup, hence G is locally compact. 

Suppose G is locally compact. G contains a subgroup H which is open 
and compact. Vo E H, choose a finite subset A, of F such that V,(A,) E H. 
Then H= UosH V,(A,). Since each VO(A,) is open and H is compact, 
there exists a finite subset I such that H = U, V,,(A,). Since H is a group 
at least one P’,,(A,,) contains the identity. For this i, V,,(A,)= V,(AOC). 
V,(A,,) is a tight subgroup of G. Hence V,(A,) corresponds to a perfect 
subfield L of F. L = F,(A,) or (F,,(A o,))* (where * denotes the perfect 
closure). Since the transcendence degree of (FO(AOC))* equals the trans- 
cendence degree of FO(A,,) and F,(A,) has finite transcendence degree over 
P, L has finite transcendence degree over P. But FH c F”lCasl). Hence FH 
has finite transcendence degree. But AutFH F= H by Lemma 1.9 of [3], 
and H is compact, so F/FH is algebraic. Therefore F is an algebraic extension 
of a finitely generated field extension, hence F has finite transcendence 
degree. 

3. ABSOLUTE GALOIS GROUPS 

DEFINITION 3.1. A coplace from a prolinite group H to a profinite 
group G is a closed subgroup A of H x G such that for all h E H there exists 
a gEG with (h, g)EA. 

THEOREM 3.2. If A: H + G, 0: G + K are coplaces then 

is a coplace from H to K. 

ProoJ Let h E H. Since A is a coplace, 3g E G such that (h, g) E A. Since 
0 is a coplace, 3k E K such that (g, k) E 0. Thus, (h, k) E 0 0 A. One checks 
0 0 A is closed under inverses, multiplication, associativity, and that 0 0 A 
is a closed subgroup of H x K. 
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THEOREM 3.3. For gEG, A,:={(o,gag~‘)EGxGloEG} is a copluce 
from G to G. 

ProoJ Va E G, gag-’ EGa(a,gog-‘)EA,. One checks A, is closed 
under inverses, multiplication, and that A, is a closed subgroup of G x G. 

DEFINITION 3.4. Coplaces A: H + G, 0: H -+ G will be called conjugate 
if A-A,00 for some gEG. 

THEOREM 3.5. If(g,e)EO, then A,~O=OoA,. 

Proof. (a,b)~A.oO*?lt~G such that (a,t)~O, (t,b)EA,. Hence 
b=ete-‘=eO(u)e-‘. (u,~)EOOA~*~~EG such that (a, t)EAg, 
(t,b)~O. Hence t=gug-‘, b=O(t)=O(gug-‘). But b=eO(u)e-‘= 
O(g)O(u)O(g-‘)=O(gug~~‘)~A/@=O~A,. 

DEFINITION AND THEOREM 3.6. For A: H + G, and 0: G + K, let 

[A]={A,oAlgEG} 

and let [0] 0 [A] = [O 0 A]. This is well-defined and a category results. 

Proof. Let A,, 0 @oA,,~A, A,,~@~A,,~AE[@~A], where k,,k,EK, 
g,, g, E G. We show that there exists an m E K such that 

By Theorem 3.5, A,, 0 0 0 A,, 0 A = A,, 0 A,, 0 0 0 A, where (g, , 1,) E 0. Also, 
A,,~O~A,,~A=A,,~A,~O~A, where (g,,l,)EO. 

Akl~A,,~A,;i~AkZ~aAk2~A/z~O~A=Ak,~A,,~O~A. 

Equivalently, Ak,,,CkZ,2,-~ 0 Ak2 0 A,2 0 0 o A = A,, 0 A,, 0 0 o A. We have 
k,l,(k,l,)-’ E K, so call this m. Applying Theorem 3.5 again, we have 

A,oA oO~A,,~A=A k2 ,,oO~A,,~A. 

One checks associativity, and that the identity map 1 is a coplace. With 
these, a category results. 

THEOREM 3.1. For each object A, let i, : A + A be essential with A injec- 
tive, and define 

Gal(A)= {a~Aut(A)Iooi~=i~}. 

- - 
For any morphism f: A + B, since 2 is injective, we can choose an f: A -+ B 
such that fo i, = iaof: For each T E Gal(B), 3aE Gal(A) with fo o = t oj: 
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Define 

G(f) := 
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{ (7, CT) E Gal(B) x Gal(A) If0 CJ = 503). 

Up to conjugacy (as in 3.4), this is well-defined contravariant functor from 
MOM to the category of profinite groups and conjugacy classes of cop&es. 

Proof: We first show that G(f) = A is a coplace. By Proposition 7, 
p.428 of [2], v’z~Gal(B), ib~Gal(A) withfoa=sof, VreGal(B). Thus, 
(z, CJ)E A. One checks that A is a closed subgroup of Gal(B) x Gal(A). 
Thus, A=G(f)~hom(Gal(B), Gal(A)). 

Suppose f: A -+ B, g: B -+ C induce f: A + B, 2: B + c, and 

(% 0)~ CWf )]=A, (~7 7) E [G(g)1 = 0. 

We have fo CJ = Bob .~ ’ 0 f: and g 0 z = cyc ~ ’ o S, for b E Gal(B), and 
c~Gal(C). By Theorem 3.5, foaaa~’ = to.7 for (b, a) E A a gofo 
aaa-’ = gotof=qc-’ 0goE So (cyc-‘, aaa-‘)EOo A, which implies 
(Y, 0)~ COoAl. 

Suppose (y,a)~[OoA]. We have g~f~a=cyc~‘~g~f, for cEGal(C). 
Since 0 is a coplace, 38 E Gal(B) such that cyc- ’ 0 2 = g 0 hbh ‘. So 
cyc-’ 0 gof= gob/U~‘of: Since A is a coplace, 36~Gal(A) such that 
@b-‘of = fDasa~‘~g~bBb~‘~f=g~f~asa~‘~g~f~cc=g~f~asa-’. 
By Lemma A, p. 383 of [ 11, there exists an automorphism z of B such that 
$a) = a6a- ‘. If z is given by conjugation by an element r of Gal(B), we 
have ror-’ =ada-‘. So a=ra6(ra)~‘. Hence, (b, 0)~ [A], (y, B)E [O]. 
Thus G( -) preserves composition. One checks that 1 is the identity 
coplace to complete the proof that G( - ) is a contravariant functor. 

THEOREM 3.8. With notation as above, 

(1) If f is A-essential then G(f) = A is an injective group 
homomorphism. 

(2) If f E JZ then A is a surjective homomorphism. 

(3) ZffE& then theset {a~Gal(A)~(a,l)~A}={1}. 

Proof: (1) [a] One checks that f A-essential implies that f is 
.A-essential. Since f is M-essential, B/f (A) is an algebraic extension. But 
f(A) is algebraically closed, hence B =3(A). Thus, B 2 A and 3 is an 
‘isomorphism. In particular, f is epic. Suppose (0, 1) E A. Then 
~03=30l*~03=l03 =E- 0 = 1. Next show that f E JZ implies A is a 
group homomorphism. Suppose (1, IJ) E A. Since f E J&!, f is manic. Then 
foa=l~f=f~l-a=l, as 3 is manic. Also, for any aEGal(B), 
3r~Gal(A), with oof=fo~ (by [2, Proposition 71). 
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To prove (2), it suffices to show that A is surjective. Let y E Gal(A). Since 
B is injective and f~ ~$8 af manic -f manic, 30: B + B such that 
wof=fq-(o,y)~A. 

To prove (3), we first show that if f is extremal then f is extremal. Sup- 
pose f = j 0 g with j E JV. If D is the valuation ring for j: and M is its unique 
maximal ideal, D/Mr K. Suppose K is not algebraically closed. There exists 
a manic irreducible non-linear polynomial, h E K[x]. Choose representatives 
of the coeffkients of h in D so that 

t=xn+a,_,x”- ‘+ ... +a, 

satisfies t + Mlc[x] = h. There exists b E A such that t(b) = 0. b is integral 
over D, so b E D. Hence b + M is a zero of h; but this is a contradiction. 
Since K is algebraically closed, K is injective, hence j(rc) is injective and 
j(lc) = B. Thus, j is an isomorphism and Ji is extremal. By Claim 1.11, f is 
surjective. 

Now suppose (a, l)~d. Thenf~l=a~f~l~f=a~~~l=a. 

4. EMBEDDED ALGEBRAIC FIELDS 

We say a field F is algebraic if F is algebraic over its prime subfield. By 
an embedded field we mean a triple (F, i,, F) where F is an algebraically 
closed algebraic field, F is an algebraic field, and i, is a ring 
homomorphism from F to i? By a morphism (F, i,, F) + (K, i,, R) we 
mean a pair (cp, Cp), where @ is a place from F to K, cp is a place from 
F to K, and (p o i,= i, 0 cp. We write 8 for the resulting category. We 
sometimes write F for the triple (F, i,, F). 

PROPOSITION 4.1. For any embedded algebraic field F there exists 
pLF: 0 + F such that i,o CI = pFofi wherecc:Q-+F, /?:Q+Q. 

Proof. Since P is algebraically closed, it is injective. Since /3 is manic, 
there exists ,uLF: Q + F such that i,o c1= pLfo 8. 

PROPOSITION 4.2. For each morphism cp: F -+ K there exists g E G = Aut Q 
with pK= (popLFo g. 

Proof: iFOa=pLFOfl, iKoy=pLKofi where a:Q+F, /3:Q+Q, y:Q+K. 
Since Q is initial, cp 0 c1= y. Write a = (p 0 pLF, b = pK. Then a 0 fl= b 0 /I. For 
V the valuation ring of a and W the valuation ring of b, there exists (T E G 
with o( W) = V (Lemma A of [ 1 I). Hence a 0 r~ ~ ’ and b have the same 
valuation ring. There exists T E Aut & T 0 a 0 c-r = b since a 0 C-- ’ and b are 

481.143.2-15 
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equivalent. By Proposition 7, p. 428 of [2], there exists WE G with 
z 0 a = a 0 o. Hence there exists g E G with a 0 g = b. One checks that g is 
well-defined with respect to i,. 

DEFINITION 4.3. A, = {O E G( 3~ E Aut F with pLF 0 0 = t 0 pFj. S, = 
{a~GIp~ou= pF}. H,= (aeG13TeAutF with pF~c=topF and 
T 3 i, = iF}. 

PROPOSITION 4.4. If pK=(P~pF~gl=@oppg2, then glS,=g2S, 
where SF= {a~GIppg=p~), S,= {a~GIp~og=p~}. 

Proof: ~K=(PO~LFOg,=(PO~~Og2jllKOg11=(Po~F=(PO~~OgZOg11 
=a ppg; = &pg,‘o g2og;’ +- PK = PK”gr’og20g;10gl =+- 
wg,‘” g, = pK. Hence gr’ og,ES,. Thusg,S,=g,SK. 

DEFINITION 4.5. Let 9 be all pairs (S, A) where A is a closed subgroup 
of a prolinite group G, and S is a closed normal subgroup of A. For (S, A), 
(T,B)E~ write (S,A)<(T,B) if T<S and AdB. For gEG, 
g(S,A) gg’=(gSg-‘, gAg-‘)E9. Let P be the set of all (S,,A,) such 
that F is an object in 9. A P-object is a triple (S, H, A) where (S, A)E P 
and H is a closed subgroup of A which includes S. Let X= (S, H, A), 
Y = (T, L, B) be P-objects. We write 

%‘(X, Y)={gSleitherg(S,A)g-‘<(T,B),or 

g(S,A)g~‘=(T,B)andgHg~‘<L}, 

with g E Aut Q. Let Z = (U, M, C) be a P-object, and let g, TE 97( Y, Z). 
Define g, TO gS = g, gS. One checks % is a well-defined category. For F an 
embedded algebraic field define WF)=(S,, H,, A.). For (cp, (PI a 
morphism from F to K choose g as in Proposition 4.2 and define 
!P(u(cp, (p) = gS,. !P is well-defined by Proposition 4.4. 

THEOREM 4.6. Y is a contravariant equivalence of categories. 

Proof: One checks that Y preserves the identity and composition. We 
check that Y is dense, faithful, and full. Y is dense by the fundamental 
theorem of Galois theory. 

Full. Given gS: (S, H, A)+ (T, L, B) with g(S, A) g-l= (T, B). Let 
H = H, and L = H,. gHg-’ < L +- gH,g-’ < H, + H,(,, < H, 3 
g(K)ZF. Let Cp=gp’IF. If (S,H,A)<(T,L,B) then (T,B)=(l,G) and 
pF is an isomorphism. Let (p = ~~0 g-i 0 p; ‘. 

Faithful. Suppose g, SK = g,S,, g, = a 0 g, 0 b where ~~0 a = ,up, 

p,cob=p.v> and a, bEAutQ. We have PK=(P,“lLFogl> and 



PROPERTIESOF FIELDS 485 

PK=@‘z”OF”gz~ Hence pK=(P,0pLFOaog20b * pKob-’ = (P,opLFoaog2 
* pK = @,~,up~a~g2. Thus @I~~F~g2=(p2~~LF~g2. Since both pFandg2 
are epic, pLr 0 g, is epic. Thus Cp, = (p2. 

Comment. In Theorem 4.6 we have not claimed that factorization is 
preserved; however, in the case where the characteristics of the fields are 
the same, factorization is preserved. The following lemmas are to this effect. 

LEMMA 4.7. Either char F = char K and @ is an isomorphism with (p map- 
ping F into K, or char F # char K and pF is an isomorphism with @ mapping 
P into R 

Proof If char F= char K then FG K. For V the valuation ring of (p and 
M the maximal ideal of Cp, V/M is algebraically closed, hence V/VIM E K. But 
then V/M = P which implies V = F and M = 0. Thus (p is an isomorphism. 
The fact that (p maps F into K follows from (p 0 i, = i,o cp. 

If char K#char K then char F= 0, FE Q and Pi: Q + P by the above 
argument. Thus pl; is an isomorphism. 

LEMMA 4.8. S,<gS,g-‘. 

Proof Let 0 E S,. 

Hence g-’ OcrogES,. Thus S,dgSKgP’. 

LEMMA 4.9. A,dg-‘A,g. 

Proof Case 1. char F=char K. Let CTE A,. 3r~Aut K such that 
~KoO=ro~K. Since (POpLFOg=pK, @OpFOgoa=rO@OpFOg. Composing 
with 4-l on the left and g-’ on the right, one has pFO goao g-’ = 
cp --l”~“fj”pF. Since $5 -’ cro@EAutF, goaog-‘EAF. Thus 
A,< g-‘A,g. 

Case 2. char I;# char K. char F= 0 = pLF is an isomorphism. Hence 
AF=G. Thus A.dg-‘A.g=G. 

LEMMA 4. LO. For char F = char K, gH, g ~ ’ < H,. 

Proof: Let a E H,. 3~ E Aut K with ~~0 a = r 0 ,uLK and r 0 i, = i,. 

(PO~FOgOa=~o~O~,og=>~~ogOaOg-‘=~-’O~O~O~~. 

Also, cp-’ ~s~@oi,=i,since @(F)<Kand toi,=i,. 
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LEMMA 4.11. For char F=char K, H,d gA,g-‘. 

Proof: Let CT E H,. 3~ E Aut F with ,uFo rs = zopF and z 0 i, = iF. 

P/cog-’ ooog = (p"/+"gog-' o(Jog = ~opFo~og = @o~opFog = 

(ps~o(p-~o 'popFog = cpcrocp-’ opK. Also, cpozocpp’eAutE. Hence 
g-‘ogEAK. Thus H,6 gA,g~-‘. 
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