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INTRODUCTION

We study the category of fields and places. We show the rational num-
bers are the initial object in this category, and

(1) every morphism can be factored (uniquely up to multiplication
by a unit—that is, an isomorphism) as a product of a surjective morphism
and a ring homomorphism;

(2) every ring homomorphism can be factored (uniquely up to muiti-
plication by a unit) as a ring homomorphism and an integrally closed
morphism;

(3) every object has an essential ring homomorphism into an injec-
tive object and this is unique up to isomorphism.

We do some field theory in such a category. We leave the theory of local
fields (i.e, Henselizations), and the theory of ordered fields (ie.,
automorphisms of order two of injective objects), to a sequel, and restrict
attention to studying the transcendence degree. We get a result which is
new and can be stated in the more usual language; the group of
automorphisms of an algebraically closed field has a certain structure
and the perfect subfields correspond bijectively with certain subgroups
(isomorphic subfields correspond to conjugate subgroups). In a short last
section, we give a purely group theoretic realization of the category of
subfields of algebraically closed fields of transcendence degree zero and
their places.

1. FIELDS AND PLACES

Let Plc be the category whose objects are fields and whose morphisms
are places. Recall that a place from a field F to E is a triple (D, o, I,,),
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where D, is a valuation ring, ¢ is a ring homomorphism from D, onto I,
and I, is a subfield of E. We write .#(F, E) for the set of all ring
homomorphisms from F to E, and &(F, E) for the set of all surjective
places from F to E, for F and E fields.

THEOREM 1.1. Ple has an initial object.

Proof. The initial object is Q. If FeOb(Ple), and char F=0, then
Q < F and the unique place is the inclusion morphism.

If char F= p #0, then there is a unique place from Q to F with valuation
ring Z .

DEFINITION 1.2. By a category with factorization we mean a category ¢
and for each pair of objects (4, B) subsets &(A4, B) and .#(A, B) of
Mor(A, B) such that:

(1} e, €é(A, B), e;ed(B, C)=>e,0e,€8(4, C);

(2) m,e.H(A, B), mye #(B, Cy=>m,om, € M(A, C),

(3) Vfe%(A, B), fe&(A, B)n .#(A, B)< fis an isomorphism;

(4) Yfe#(A, B), 3f, €&, and f,, € M with f = [, f.;

(5) f=moe, ee&, me A =3 unique isomorphism ¢ with e=t-f,,
m=fot "

(6) e€d, foe=goe=>f=g;

(7) med,mof=mog=f=g.

THEOREM 1.3. Plc with .# and & is a category with factorization.
Proof. We leave (1)-(4) and (6) as exercises.

(5) Let(D,,¢,1,)be a place from Fto E with 9 =0¢,,°0,, ¢,,€ 4,
p.€&. Write I for ¢(D,). Let i: I E; define #: F— I by a+> ¢(a). Then
@=ion, n is surjective, and i is monic. For aeD,, ¢,lp(x))=
o(a)=n(x)el Let C be the codomain of ¢,. ¢, is surjective so ¢ (D)= C.
Since ¢,, is a ring homomorphism, ¢, (C)= I If fel, then Jae F with
n(a)=p. So ¢p(a) == 0,(¢.(2))=F=1<¢,(C). Hence I=¢,(C).

Define h: C—>1 by c—¢,(c). h is an isomorphism, A(@.(a))=rn(x).
Hence hog@,=n. For ceC, ioh(c)=i¢,(c))=9¢,(c)=ich=¢,. I
p=moe for me.# and eeé, there exists an isomorphism ¢:C' - I,
where C’ is the codomain of ¢ and tce=n, iot=m. Thus hoq, =
toe=n=1t"'ohop,=e and @, -h '=mot '=>q@,ch 'ct=m. Let
W=t""'oh Then Yop,=e, @, '=m. Suppose y is another such
isomorphism. So yop,=e, @,y '=m. But then yop,=ycp,=>y=y
since ¢, 1s surjective.
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(7) Define F=Fu {0 }. Let m: F - E be a ring homomorphism. Let
KeOb(Ple), ¢,y e Mor(K, F). Suppose mop=moy. So for all feKk,
m(e(f))=m(y(B)). m is 1—1 since kerm is an ideal of F, but
1 ¢ ker m=0. Hence, ¢(f)=y(f) VB e K, which implies ¢ = . Thus, m is
monic.

DErFINITION 1.4. Let % be a category with factorization, with
A, Be Ob(%¥). ie #4(A, B) is .#-essential if je Mor(B, C) with joie # =
je .

THEOREM 1.5. Let oeMor(F, E); ¢ is M-essential<>@e . # with E
algebraic over ¢(F).

Proof. [«=] Since ¢ is a ring homomorphism, ¢ is monic. Let
feMor(E, K) with Bope.#. Let D be the domain of 6. Then
o(F)nD=@(F)and o(F)n D\U(D)=0. We show D=E. Let fe E, and
just suppose that f¢ D; 3o, ---a, _; € F such that

B +a, B+ - +a,peD.

Choose n to be minimal. By factoring, B(B" '+ a,_ f" >+ --- +a,)eD
and f¢D=p'eD. So B" '+wa, ,f" ?+ --- +a,eD. This contra-
diction gives e D Vf e E, which implies £= D. Hence 0 is a ring homo-
morphism which implies 8 € .#. Thus ¢ is essential.

[=1 Assume ¢ is essential. Just suppose 3 transcendental xe E\F.
Then 3 a valuation ring D of F(x) such that D # F(x). By the extension
theorem for places, there exists a wvaluation ring ¥V of E with
F(x)n(V\U(V))=F(x)\U(D) and with DcV. Hence V#FE so the
composition map F— K— FV\M(V) is not a ring homomorphism.

DEFINITION 1.6. Let 4 be a category with factorization, 4, 4, X,
Y e Ob(%). An injective envelope of 4 is a pair (i, A) where A4 is an object,
ic #M(A, A), iis M-essential, and me #(X, Y) and f € Mor(X, 4) implies
there exists ge Mor(Y, A) such that gom=f.

THEOREM 1.7. For F any object of Ple, an injective envelope (i, F) exists.

Proof. Let F be the algebraic closure of F. Let i: F— F be the inclusion
place. Since F/i(F) is algebraic, and i is a ring homomorphism, i is
A -essential.

THEOREM 1.8. Let i: F— F be an essential #-morphism with F injective.
Let ce Mox(F, F) with goi=i. Then o is an isomorphism.
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Proof. Let a: F— F be a place such that ¢i=i. Since i is .4 -essential,
ocoie M, s0 ce. M. Let o€ F. The splitting field N of the irreducible poly-
nomial of « over F is of finite dimension over F, and g(N)< N since N is
a normal extension. o|, is 1 —1 since ¢ is a ring homomorphism. But
6|n: N> N is linear and 1—1 so onto. Hence 3f € N such that o(f)=o.
Thus ¢ is an isomorphism.

THEOREM 1.9. Let i: F— F be as above. Let j: F — E be #-essential with
E injective. Then there exists an isomorphism t: F— E with toi=].

Proof. First note that by Definition 1.2(7), i e .# implies that { is monic.
Since E is injective, 3r: F— E such that toi=j. t is monic since j is monic
and i is essential. Since A is injective and j is monic, 3s: E - F such that
soj=1i s is monic since /i is monic and j is essential. We have
Sotoi=8oj=i=>sotoi=i=>5o0¢ is an isomorphism by Theorem 1.8. So s
is onto, and ¢ is injective. Applying Theorem 1.8 to j, one gets that tos is
an isomorphism. Hence ¢ is onto, which implies ¢ is an isomorphism.

DeriNITION 1.10. Let ¥ be a category with factorization with
A, Be Ob(%). A morphism f: 4 — B is .#-extremal if f =mo g with me .#
implies & is an isomorphism.

Cram 1.11. In Plc a morphism ¢: F— E is 4 -extremal <> ¢ is surjec-
tive.

Proof. [=] Define n: F—> Ime, i:Im ¢ E as above. f=ion and
ie # so iis and isomorphism, and Im ¢ = E which implies ¢ is surjective.
[«=] Suppose ¢ is surjective, and @ =moy with me.#, where
Y:F> K; m: K— E. ¢ is surjective so Ve E Jue F such that ¢(x)=4.
Hence, m(y(a)) = p implies VS e E, Jp(x) € K such that m(y(x)) = f. Thus
m is onto. Define n: E— K by pry(a) where m(y(a))=p. Then
n(m(y(a))) =n(B)=y(«) and m(n(f))=m(y(a))=p. Hence mon=1 and

nom=1. Thus m is an isomorphism and ¢ is .#-extremal.

DerFINITION 1.12. Let ¥ be a category with factorization with
A, Be Ob(¥). A morphism f: 4 — B is integrally closed if fe.# and if
[ = gom with m #-essential implies m is an isomorphism.

THEOREM 1.13.  Any ring homomorphism ¢ in Plc can be factored

(p = (pi(o (Ps,

where ¢, is M -essential and @, is integrally closed. If @ =\t with t essen-
tial and \r integrally closed, then there exists a unique isomorphism vy with
t=yoq,and Yoy=gq,.
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Proof. Let @: F— E, I the integral closure of F in E and factor ¢
through 7 by ¢ =¢,.c¢,. Since I is algebraic over F and ¢, is a ring
homomorphism, ¢, is .#-essential, hence ¢, € .#. Suppose ¢, factors
through K by ¢, .= -m, and suppose m is .#-essential. By Theorem 1.5,
K is algebraic over m(I'). Hence K is algebraic over I, but 7 is the algebraic
closure of Fin EF so K~ I Thus ¢, is indeed integrally closed.

Suppose  @;.c@, =y, . Integral closures are unique up to
isomorphism so there exists an isomorphism r: ] — J such that r 'oyr =g,
and Y,.or=g,.

DerFINITION 1.14. The adjusted characteristic of a field F, denoted adj.
char F, is p=char F if p#£0, and 1 if char F=0.

THEOREM 1.15. A ring homomorphism ¢: F — E is epic in Mor(F, E}<> ¢
is a ring homomorphism and Yoe E, 3n>=0 with a” =@(B), feF, and
p = adj. char(F).

Proof. [<=] Suppose o, teMor(F, E) with - p=1°0. Let a€eF.
a?" =@(pB) for some feF. Hence a(¢(B))=1(e(f))=0c(a”)=1(a")=
(6(2))”" = (r(a))”" = (6(a) — 1(a))”" = 0 = o(x) = 7(x), since F is an integral
domain. Hence o =1, s0 ¢ is epic.

[=] Just suppose Ife F and there does not exist an n with
B7" = p(a) for any a e F. Let E be the algebraic closure of E. Let L be the
image of ¢.

Case 1. B is algebraic over L. We have B”"¢ L, Yn>0. By the per-
fectness of fields of characteristic zero, and by p. 283, Lemma 6.3 of [5],
Im such that 7" is separable over L. Let N be the splitting field of the
irreducible polynomial that 87" satisfies over L. N is normal separable over
L, and 7" e N. Since 7" ¢ L, 3o € Aut, (N ) with o(B?") # B”". ¢ extends to
teAut, L (by p.317, Theorem 1.12 of [5]). Then t(o(y))=1(¢(y))
Vye '(L). Hence 1o@=10¢. But t# 1. This contradiction proves the
first case.

Case 2. J is transcendental over L and B2 # B. Jo € Rng(L(f), (L(?))

with o(8) = 2 and o: L(B) = L(B?). Extend ¢ to 7€ Aut,(L(B)). t(p(a)) =
1(p(a)) Yae o '(L). Hence Top =10¢ and t# 1. With this contradiction
the theorem is proved.

THEOREM 1.16. If ¢ is an epic morphism in Plc, and ¢ is also in M, then
@ is essential.

Proof. let ¢ e # and ¢ epic in Plc. By Theorem 1.15,

{acE|IneN,a” =¢(p), e F} =E.
So E/Im ¢ is algebraic, which implies ¢ is .#-essential.
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DerFINITION 1.17. Let € be a category with factorization, f is separable
if fis .#-essential and if f =705 with 7€ .4 and ¢ an epic morphism = ¢ is
an isomorphism.

THEOREM 1.18. Let ¢ be an M -essential morphism from F to E. Then
there exists a ring homomorphism b which is epic and a separable morphism
s with @ =bos. Moreover, if b'e . # with b’ epic and s’ is a separable
morphism, such that @ =b'os', then 3 a unique isomorphism ¢ such that
b'=boo, s =0 los.

Proof. Let F* be the set of elements in E which are separable over F.
Factor ¢ through F* by ¢ =hos. Since F’/F is algebraic, and s is a ring
homomorphism, s in .#-essential. Suppose s factors through K for
Ke Ob(Ple), by s=t-r, and suppose ¢ is a ring homomorphism which is
epic. By Theorem 1.15, F*= {a e F*|Ine N with a” =t(c) for ce K}. But
F*=(F*)”" V¥n implies t is onto. Since s is the inclusion map, t must be an
isomorphism. Hence s is separable. Since E/@(F) is algebraic, E/b(F°) is
algebraic, hence for any f € E, there exists n such that §7" is separable over
b(F*). Hence Jae F* with 7" =b(a). By Theorem 1.15, b is epic. Since
@ =bose # with s essential, b e .#. Uniqueness follows since the elements
of E separable over F form a subfield of E.

2. AN EXTENDED GALOIS CORRESPONDENCE

DerNITION 2.1, For I' a profinite group, consider a triple (G, ¢, &),
where G is a group, ¢ is a surjective group homomorphism from G onto
I', and & is a set of subgroups of ker ¢. For such, call a subgroup H of
G basic if

H=¢o '(N)nJ,n---nd,,

where 0<n, J,, ..., J,e ¥, and N is an open subgroup of /. Call a subset
V of G open if it is a union of sets of the form oH, o€ G, H basic.

DEerFINITION 2.2. A set # of subsets of & is independent if for » > 1 and
all distinct elements Jy, ..., J, of # the index [, J;:Ji;n ---nJ,]J=00
for all i=1, .., n.

DerINITION 2.3, A triple (G, ¢, &) is a I'-system if:

(1) NsegJnkero={1};
(2) Je& implies {kJk~'|kekero}=%;
(3) Je¥, 6eG implies 6Jo '€ .¥;
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One checks that if (G, ¢, &) is a I'-system then G is a Hausdorff;
0-dimensional, topological group and ¢ is continuous.

DeriNiTION 2.4, For (G, ¢, &) a I'-system, call a subgroup T of G tight
if

=0 000 (7).

where the J are intersected over some subset # of & and M is a closed
subgroup of I

THEOREM 2.5. Let F be an algebraically closed field. Write F, for the set
of elements of F which are algebraic over the prime subfield P of F. Let I
be the Galois group of F, over P, let G = Aut(F), let ¢: G— I" be given by
restriction, and let

& = {Autp . (F)|lacF,a¢ Fy}.

Then a I'-system results, and the map L Aut,(F) is an order-inverting
bijection from the set of all perfect subfields of F onto the set of all tight
subgroups of G. This bijection takes composites to intersections. If L,
corresponds to T,;, i=1,2, then L, is isomorphic to L, if and only if T, is
conjugate to T,. Also L, includes F, if and only if T, is included in ker ¢.
Also Ly L,, if and only if T, = T,; if Ly,c L, thendim, L,=[T,:T,].

Proof. One checks the three properties of a I-system.
We will need three lemmas.

LEmMA 2.6. For any perfect subfield L of F with H=Aut, F then
F'=1L,

Proof. Let ae F\L and ae F".

Case 1. a algebraic over L, L=F H=Aut, F=Aut, L. Let b be any
other root of the irreducible polynomial of a over L. Then 3he Aut, L=H
such that h(a) = b. But this contradicts ae F*.

Case 2. a algebraic over L, L# F. Let A be the transcendence base of
L over P such that 4 < X, where X is the transcendence base of F. Let
B=X\A. Since a is algebraic over L, 3o Aut, L such that o(a)=b, for b
another root of the irreducible polynomial of a over L. Extend ¢ to
6: L(B) - L(B) by 6(d)=d, Vde B, 6(1Y=0a(l), Vie L [5, p.312]. L(B)=F
so extend 6 to 1: F— F. Then te Aut, F=H. But t(a)=5 which con-
tradicts ae F 7.
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Case 3. a is transcendental over L. Let b=a+ 1. Let S (respectively
T), be a transcendence base which contains a (respectively b). Define a
map y: L(a) = L(b) such that y| ;= 1 and a+> b. Extend y to §: L(S) - L(T),
and then extend to ¢: F— F. o € Aut, F= H. But ¢(a) = b, which contradicts
acF" Thus, FFcL=>F"=L.

LeMMa 2.7. For any perfect subfield of F, H= Aut, F is tight.

Proof. Aut, F={(),., Auty, F. Let T={reL|r is transcendental
over P}.

A= {ae L|ais algebraic over P}.

We have L= P(T)(A). Let ¢, be a particular element of T. For any te T
there is a map &,: P(ty) = P(t) by to—1t and &, can be extended to
o, € Aut, F as before. Autp,) F=Autp, ., F=0, '(Auty,, F)o, Hence,

Autp F= m G;I-l(Autp(lo) F) O-t;

teT

which is tight. For each a € 4,
o€Aut,y,, Feola)=a<da(a)=¢ '(l(a))=oecp "(Autyy,, Fy).

So Aut,,, F=¢ '(Autp,, Fy)and Aut,,, F=(\,., ¢ '(Autp,, F,) which
is tight. Thus

Aut, F= () Auty, F= () o, "(Autp,, F)o,n (| ¢ '(Autp,, Fy).

lelL teT ae A

LemMma 2.8. If H is a tight subgroup of G, then there exists a perfect
subfield L such that P L< F and H= Aut, F.

Proof. Case 1. H=¢ (M), M is a closed subgroup of I'". By infinite
Galois theory, M = Aut, F, with L perfect. So

H={p '(Aut, F))} ={oeGlo|s(l)=11eL}
={oceGlo(l)=1IVieL}
as L<F, Hence, ceH=0cec9 "(M)=>op(c)e M=¢(o)l=1 VielL.

Hence oeAut, F. For oecAut, F, ¢(o)cAut, Fy=>¢p(c)eM=0¢
¢ '(M)=H. Thus H=Aut, F.
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Case 2. H=Autp,, F, te F\F,. Let p be the adj. char F. Let L be the
perfect closure of P(t). That is,

L={a|a”"eP(t)}={a|o(a)=a,0e H}.

Case 3. H=¢ '(M)n(\,.pcsJ) Each Je# corresponds to a
field L, by Case 2. By Case 1, ¢ '(M) corresponds to a field L,,. Then
H=,. pomAut, F. Let L= F where |JL,cE<F. Then ceH<0o
fixes (Ve o, m< LS Fi” <>aeAut, F. With these lemmas, the theorem
is proved.

DEFINITION 2.9. A subset 4 of & is a basis if the elements of # are
independent and VJe%, 3J,,..J,e# with [J,n---nJ,: Jn
Jin--nJ,]<oo.

THEOREM 2.10. Every independent subset of & can be expanded to a
basis. Every spanning subset of & can be contracted to a basis. Any two
bases have the same cardinality.

Proof. We use the fact that for tight subgroups T, T, and corresponding
fields L,, L,, dim,, L, = [T, : T,] and check that Theorems 64.1, 2, 3 from
{6] apply. Let .# be an independent set. We show that .# can be extended
to a basis. Let

F ={N| M =N, & independent }.

One checks that % is a partially ordered set. Given a chain ./, the upper
bound of & is {J , . /. Apply Corollary 33.1 of [6] to show that
U 4 < ¥ is independent. Thus, every chain of # has an upperbound, and
by Zorn’s Lemma, # has a maximal element. Let & be the maximal
element and apply Corollary 33.2 of [6] to show that & spans . Thus,
# is a spanning set for &, and the independent set .# can be expanded to
the basis 2.

We now show that any spanning set can be contracted to a basis. Sup-
pose 4" is a spanning set. Let # = {(@|0 = .4 and ¢ is a spanning set}.
One checks that & is partially ordered. Let & be a chain of #. Check that
4 has a lower bound of [, _4 ¢ by applying Corollaries 33.3 and 33.4 of
[6]. Thus, every chain of % has a lower bound, so by Zorn’s Lemma, %
has a minimal element, 2. Apply Theorem 64.3 of [6] to show that 2 is
linearly independent. Thus 4" contracts to a basis 2. We refer to p. 315 of
[5] to show that any two sets have the same transcendence degree.

DeriNiTION 2.11. The transcendence degree of a [-system (G, ¢, &)
is the cardinality of the basis of &. One checks this is equal to the
transcendence degree of the algebraically closed field.
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THEOREM 2.12. Let y: E— F be a ring homomorphism between fields
(ie., Y € M(E, F)) with F algebraically closed. The following are equivalent.

(1) Autg F is compact,
(2) VaeF the orbit Aut F(x) is finite;
(3) the extension F/E is algebraic.

Proof. (1)=(2). Let H=Aut,F. In the Krull topology, V,({a}) is
open. The set of left cosets H/V,({«}) maps bijectively onto the orbit H(a)
by oV ({a})— o(a).

H=) oV ({a}).

H is compact, hence there exists a finite number of ¢ such that
H=), oV ({a}).

(2)= (3). Just suppose F/E is a transcendental extension. Suppose E
is infinite. 3x e F\E transcendental, and x + o transcendental for all a € F.
For each «, Jo: E(x) = E(x + ) defined by x — x+a and o] = 1. Extend
o to TeAut F. Since E is infinite, the orbit of x is infinite. Now suppose
that E is finite. Then E is infinite. Since F is transcendental over E and
F is algebraically closed, E is a proper subset of F. Now use the above
argument to prove the theorem.

(3)=(1). Consider E*, the perfect closure of E. F/E* is a Galois
extension. By infinite Galois theory, Autz. F is compact. But Autg. F=
Aut; F, hence the theorem is proved.

THEOREM 2.13. Let (G, 9, %) be a I-system associated to an algebrai-
cally closed field F. For Je &, J is compact <> the transcendence degree of
S is 1 or 0.

Proof. [<«<] If the transcendence degree is 0, then ¥ is empty. If the
transcendence degree is 1, and J corresponds to the subextension L of F,
then F/L is an algebraic extension, so by Theorem 2.12, J=Aut, F is
compact.

[=]1 Let H be any open subgroup of G. Jn H is open since both J
and H are open. Hence [J: Jn H] has finite index since J is compact.
Thus, J, and H are dependent, and J spans %. Thus, the transcendence
degree is 1.

THEOREM 2.14. Let (G, ¢, &) be a I'-system associated to an algebrai-
cally closed field F. G is locally compact if and only if the transcendence
degree of & is finite.
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Proof. We use the fact that G is locally compact and 0-dimensional if
and only if G has an open profinite subgroup. (See [4, pp. 12, 62] for one
direction. The other is an easy check.)

Let G= Aut F. For T a trancendence basis of F over P, G = Aut, F,(T).
Let

H=Aut, F(T),

where F is the perfect closure of P. H is compact since Fy(T)\P(T) is an
algebraic extension. Also, H=(,.r V,(¢). This is a finite intersection, so H
is open. Thus G has a compact open subgroup, hence G is locally compact.

Suppose G is locally compact. G contains a subgroup H which is open
and compact. Vo € H, choose a finite subset 4, of F such that ¥V, (4,)< H.
Then H=J,.y V,(A4,). Since each V,(A,) is open and H is compact,
there exists a finite subset / such that H=1{J, V, (4,,). Since H is a group
at least one V, (A4,) contains the identity. For this i, V,(4,)="V(4,).
Vi(4,) is a tight subgroup of G. Hence V,(4,,) corresponds to a perfect
subfield L of F. L=Fy(A4,) or (Fy(4,))* (where * denotes the perfect
closure). Since the transcendence degree of (Fy(A4,))* equals the trans-
cendence degree of Fy(A4, ) and Fy(A4, ) has finite transcendence degree over
P, L has finite transcendence degree over P. But F” < F"'4s) Hence F*
has finite transcendence degree. But Aut,» F=H by Lemma 1.9 of [3],
and H is compact, so F/F* is algebraic. Therefore F is an algebraic extension
of a finitely generated field extension, hence F has finite transcendence
degree.

3. ABSOLUTE GALOIS GROUPS

DerINITION 3.1. A coplace from a profinite group H to a profinite
group G is a closed subgroup 4 of H x G such that for all # € H there exists
a ge G with (h, g)e 4.

THEOREM 3.2. If A: H - G, @: G — K are coplaces then

OoA:={(h k)e HxK|3ge G with (h, g)e 4, (g, k)e O}

is a coplace from H to K.

Proof. Let he H. Since 4 is a coplace, 3g € G such that (4, g) € 4. Since
© is a coplace, 3k € K such that (g, k)€ ©. Thus, (h, k)€ @ - A. One checks

©- 4 is closed under inverses, multiplication, associativity, and that @ 4
is a closed subgroup of H x K.
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THEOREM 33. For geG, 4,:={(0,g0g ')eGxG|oeG} is a coplace
from G to G.

Proof. VoeG, gog 'eG=(0,gog 'Jed,. One checks 4, is closed
under inverses, multiplication, and that 4, is a closed subgroup of G x G.

DErFINITION 3.4. Coplaces 4: H— G, @: H— G will be called conjugate
if 4=4,-6 for some ge G.
THEOREM 3.5. If (g,€)€ @, then 4,-0=0-4,.

Proof. (a,b)ed,o@=3teG such that (a,1)e®, (1,b)ed,. Hence
b=ete '=eO(a)e”'. (a,b)e@-d,=3teG such that (a,t)ed,,
(t,b)e®. Hence t=gag~ !, b=0(t)=0O(gag™"). But b=e@(a)e '=
O(g)O(a)O(g ')=0O(gag ")=>4,0=0-4,.

DEFINITION AND THEOREM 3.6. For A: H— G, and ©: G - K, let
[4]={4,-4|geG}

and let [@]o[4]=[O-4]. This is well-defined and a category results.

Proof. Let d4,,°0cd4,4, 4,004, -4€[@c4], where k,, k,eK,
g1, g,€G. We show that there exists an m e K such that

Apodiyo@odyod=24,0004,54.

By Theorem 3.5, 4, c@cd, cA=4; 4,04, where (g,,1,)€O. Also,
A3,0 @0l 0d=A4,,04,°004, where (g,,1,)€0.

AkloAlloAlzvloAkz—loAkzoAbo@oA :AkloAIIO@OA'

Equivalently, 4, ,yn-1° 04,2004 = 4, 04,004, We have
k1, (ky1,) "' €K, so call this m. Applying Theorem 3.5 again, we have

Apodyyo @0l od=A, 004,04

One checks associativity, and that the identity map 1 is a coplace. With
these, a category results.

THEOREM 3.7. For each object A, let i ;: A — A be essential with A injec-
tive, and define

Gal(4)={cecAut(d)|goi,=i,}.

For any morphism f: A — B, since A is injective, we can choose an f: A — B
such that foi,=igzo f. For each te Gal(B), 3o Gal(4) with foc=10].
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Define
G(f):={(1,0)eGal(B)x Gal(A4)| foa=1-f}.

Up to conjugacy (as in 3.4), this is well-defined contravariant functor from
Mor 10 the category of profinite groups and conjugacy classes of coplaces.

Proof. We first show that G(f)=4 is a coplace. By Proposition 7,
p. 428 of [2], Vte Gal(B), 3o € Gal(A4) with foo =1- f, YVt e Gal(B). Thus,
(t,0)e 4. One checks that 4 is a closed subgroup of Gal(B)x Gal(A).
Thus, 4 = G(f) € hom(Gal(B), Gal(A4)).

Suppose f: A— B, g:B— Cinduce f: 4> B, g: B— C, and

(t.o)e[G(H]=4, (1 1)e[G(g)]=06.

We have foo=bth " 'of, and got=cyc 'o g, for be Gal(B), and
ceGal(C). By Theorem 3.5, foaca '=1of for (b,a)ed= gofo
aca™' = gotof =cyc 'ogof. So (cyc !, aca ')e@-4, which implies
(y,0)e[@-4].

Suppose (y,6)e [@-A4]. We have go fooa=cyc o gof, for ce Gal(C).
Since @ is a coplace, 3B Gal(B) such that cyc 'og=gobBb~'. So
cyc logof=gobBb'of Since 4 is a coplace, 36 Gal(A4) such that
bBp™'of = foada '=gobfb 'of=gofoada '=>gofoa=gofoada .
By Lemma A, p. 383 of [1], there exists an automorphism 7 of B such that
(o) =ada"'. If 7 is given by conjugation by an element r of Gal(B), we
have ror'=ada'. So oc=rad(ra)”'. Hence, (B,0)e[4], (y,$)e[O].
Thus G(—) preserves composition. One checks that 1 is the identity
coplace to complete the proof that G(—) is a contravariant functor.

THEOREM 3.8. With notation as above,

(1) If f is .#-essential then G(f)=A4 is an injective group
homomorphism.

(2) If fed then 4 is a surjective homomorphism.
(3) Iffe& then the set {acGal(4)|(a,1)ed}={1}.

Proof. (1) [=] One checks that f .#-essential implies that f is
M-essential. Since f is .#-essential, B/f(A) is an algebraic extension. But
f(A) is algebraically closed, hence B=f(A). Thus, B~A4 and f is an
isomorphism. In particular, f is epic. Suppose (o,1)ed. Then
gof=fol=60of=1of=0=1 Next show that fe.# implies 4 is a
group homomorphism. Suppose (1, o) € 4. Since fe.#, f is monic. Then
fea=1lof=fol=0=1, as f is monic. Also, for any o e Gal(B),
Jre Gal(A), with 6o f = fo1 (by [2, Proposition 7]).
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To prove (2), it suffices to show that 4 is surjective. Let y € Gal(A). Since
B is injective and fe.# = f monic=f monic, dw:B— B such that
wof=fey=(w,y)e4 .

To prove (3), we first show that if f is extremal then f is extremal. Sup-
pose f = jo g with je 4. If D is the valuation ring for f, and M is its unique
maximal ideal, D/M = k. Suppose k is not algebraically closed. There exists
a monic irreducible non-linear polynomial, / € k[ x]. Choose representatives
of the coefficients of 4 in D so that

t=x"+a, x"" '+ - +a,

satisfies # + Mx[x]=h. There exists be 4 such that #(b)=0. b is integral
over D, so be D. Hence b+ M is a zero of h; but this is a contradiction.
Since « is algebraically closed, x is injective, hence j(x) is injective and
j(x)=B. Thus, j is an isomorphism and f is extremal. By Claim 1.11, [ is
surjective.

Now suppose (a, 1)e 4. Then fel=aof=1of=acf=>1=ua

4. EMBEDDED ALGEBRAIC FIELDS

We say a field F is algebraic if F is algebraic over its prime subfield. By
an embedded field we mean a triple (F, i, F) where F is an algebraically
closed algebraic field, F is an algebraic field, and ir is a ring
homomorphism from F to F. By a morphism (F, i, F) = (K, ig, K) we
mean a pair (¢, ¢), where ¢ is a place from F to K, ¢ is a place from
F to K, and ¢oip=i,op. We write & for the resulting category. We
sometimes write F for the triple (F, i, F).

ProOPOSITION 4.1. For any embedded algebraic field F there exists
wr: Q — F such that ipoo=p,op where a: Q@ — F, f: Q- Q.

Proof. Since F is algebraically closed, it is injective. Since § is monic,
there exists p,: Q — F such that izoq=ppop.

PROPOSITION 4.2.  For each morphism ¢: F — K there exists ge G = Aut Q
with pe=@oureg.

Proof. ipoa=pgpof, ixoy=pgef where : Q> F, :Q-Q, Q> K
Since Q is initial, poca=7. Write a=@oug, b=pu,. Then a-f=b-f. For
V' the valuation ring of ¢ and W the valuation ring of b, there exists € G
with ¢(W)=V (Lemma A of [1]). Hence ac¢~! and b have the same
valuation ring. There exists 1€ Aut K, togoo ' =5 since aoo ' and b are

481/143/2-15
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equivalent. By Proposition 7, p.428 of [2], there exists we G with
toa=a~w. Hence there exists ge G with a- g=5b. One checks that g is
well-defined with respect to i,.

DEFINITION 4.3. A= {6€ G|Ire Aut F with pupco=1cp,}. Sp=
{ceGlupco=ypr}. Hp={0eG|Ite AutF with ppo0=10p, and

Tolp=ip}.

PROPOSITION 4.4. If pux=@opreg =@oupog,, then g,Sx=g>5k
where Sp={06€G|proo=pr}, Sx={0€CG|puxo0=py}.

Proof. Hi=PoHre g =</30m~olgz:ukogf‘ =@opr=0oppo 8108
= uxe &' = pxc8 08208 = k= Mkogr 082081081 =
Hkogflogz = py. Hence g o g,€Sk. Thus g,Sx= 8,5k

DEFINITION 4.5. Let 2 be all pairs (S, 4) where A4 is a closed subgroup
of a profinite group G, and S is a closed normal subgroup of 4. For (S, 4),
(T, B)e? write (S,4)<(T,B) if T<S and A<B. For gegG,
g(S, A) g '=(gSg ', gAg ')eP. Let P be the set of all (S, 4,) such
that F is an object in #. A P-object is a triple (S, H, A) where (S, A)e P
and H is a closed subgroup of 4 which includes S. Let X=(S, H, A),
Y=(T, L, B) be P-objects. We write

%(X, Y)={gS|either g(S, A) g ' <(T, B), or
g(S, Ay g '=(T,B)and gHg '< L},

with ge Aut Q. Let Z=(U, M, C) be a P-object, and let g,Te¥4(Y, Z).
Define g, T gS= g, gS. One checks ¥ is a well-defined category. For F an
embedded algebraic field define Y(F)=(S,, Hr, Ar). For (¢,¢) a
morphism from F to K choose g as in Proposition4.2 and define
Yo, @)= gSg. ¥ is well-defined by Proposition 4.4.

THEOREM 4.6. ¥ is a contravariant equivalence of categories.

Proof. One checks that ¥ preserves the identity and composition. We
check that ¥ is dense, faithful, and full. ¥ is dense by the fundamental
theorem of Galois theory.

Full. Given gS:(S, H, A) - (T, L, B) with g(S, 4) g~ '=(T, B). Let
H=Hgand L = Hp. gHg ' < L= gHyg ' < Hy= Hyx, < Hp =
g(K)=F. Let o=g 'z If (S, H, A)<(T, L, B) then (T, B)=(1, G) and
Uy is an isomorphism. Let ¢ = pgog 'oush.

Faithful. Suppose g,Sx=g,Sx, g =acg,ob where pgoa=py,
Uxeb=px, and a,becAutQ. We have pux=@ou.cg,, and
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Hg=@2°1r° & Hence ﬂK=(?1°/1F°a°gz"b = Hkob'_l = Qyoppeac g,
= fix = @ oppoacgy. Thus ¢ oppo gy =@,0ppo g,. Since both - and g,
are epic, ji o g, is epic. Thus ¢, = @,.

Comment. In Theorem 4.6 we have not claimed that factorization is
preserved; however, in the case where the characteristics of the fields are
the same, factorization is preserved. The following lemmas are to this effect.

LEMMA 4.7.  Either char F = char K and ¢ is an isomorphism with @ map-
ping F into K, or char F # char K and u, is an isomorphism with ¢ mapping
F into K.

Proof. 1f char F=char K then F= K. For V the valuation ring of ¢ and
M the maximal ideal of @, V/M is algebraically closed, hence V/M = K. But
then V/M = F which implies ¥ =F and M =0. Thus ¢ is an isomorphism.
The fact that @ maps F into K follows from @oi.=igo @.

If char K #char K then char F=0, F~Q and u,: Q —» F by the above
argument. Thus u, is an isomorphism.

1

LEMMA 48. S .<gSpg ™.
Proof. Let ceS,.

Hkog le0og=(oppogog looog

UpoOog=@QoUro g=[ig.

ogogeSy. Thus S, < gS,g L

1

Hence g~

LEMMA 49. A,<g 'd,g

Proof. Case 1. char F=char K. Let occAy. JrcAut K such that

HgoG =7To g SINCE Qopipog=ix, Pofpegoad=710@opuyog Composing
with ' on the left and g~' on the right, one has purogegog '=
@ leto@ou, Since @ 'ctopeAutF, gocog'eAd, Thus

Ax<g 'drg

Case 2. char F#char K. char F=0=p, is an isomorphism. Hence
Ar=G. Thus A, < g '4.8=0G.

LEmMMA 4.10. For char F=char K, gH g '< H,.
Proof. Let oe Hy. 3re Aut K with pgoo=topus and toig=iy.

1 -

Poprogo0=ToQoppeg=>ppogo0og =@ oToPops.

1

Also, p7lotopoip=1ipsince p(F)< K and toi,=ig.
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LEMMA 4.11. For char F=char K, H. < gA, g "'

Proof. Let ce Hy. Ite AutF with prooc=tou, and 1oip=1i,.
'uKogfloo'og = (ﬁoul,ogog”logog = q_)o'uFo(;og = (l_)o‘ro'uFog =

@otop loPourog = Petod 'opg. Also, @otop 'eAut K. Hence
g 'ogedy. Thus H < gAgg™'
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