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1. INTRODUCTION 

LET V be a finite dimensional vector space over the complex numbers. An arrangement J&’ in 

V is a finite collection of affine hyperplanes. Let 

N=N(d)= (j H 
HE& 

and consider the complement 

M = M(d) = V-N(d). 

This space is an open connected submanifold of V. We wish to give a presentation for its 

fundamental group rcl (M). By standard methods it suffices to consider only affine arrange- 

ments S? in V = C2. 

The answer is known provided d is the complexification of a real arrangement [3,4,5]. 

In this paper we remove this restriction and thus the fundamental group of any complex 

arrangement can be determined. 

A presentation for x1(M) is determined from a certain planar graph with additional 

structure. If d is a complexified real arrangement this planar graph needs no additional 

structure and is just the underlying real arrangement of z&‘. In this case our calculation of 

n,(M) agrees with [3, 4, 51. 

We refer the reader to [2] for introductory material regarding arrangements. 

2. PRELIMINARIES 

We assume here and in the sequel that d is an affine arrangement in V = C2. 

Choose coordinates z.~, z2 for C2 and coordinates xi, y,, x2, y, for R4. Identify C2 with 

R4 via 

z1 = x1 + iy, 

z2 = x2 + iy,. 

We identify R2 with the real part of C2 and thus R2 has coordinates x1, x2. 

A multiple point is the non-empty intersection of two or more distinct hyperplanes. If d 

is a complexified real arrangement then we refer to its underlying real arrangement as the 

real graph of &. 

If u and v are words in a free group we set u” = v-i uv. If a group lJ is given by a set of 

generators G and a set of relators R then II has presentation 

l-I = (GIR). 
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Ifw,,. .) wk are words in a free group we set 

cw,, . . . 9 WJ = {WI . . . Wk = W,(l). . . W,(+T} 

where o ranges over all cyclic permutations of the tuple (1, . . . , k). The set on the right 
should be interpreted as a set of relators. 

3. ANALOG OF THE REAL GRAPH- Tz 

Intuition and Motivation 

Suppose for the moment that d is a complexified real arrangement. 
In [3,4, 51 we find that a presentation for x1(M) is encoded in the real graph of d. In 

particular there is a generator for each hyperplane and a subset of relators for each multiple 
point p of the form 

R, = [g;‘, . . . , gp]. 

The symbols gl,. . . , gk are the generators associated to those hyperplanes which pass 
through p in the order indicated by the real graph. The conjugating words wl,. . . , wk are 
also determined by the real graph. 

Our aim is to define for any complex arrangement an analog of the real graph of a 
complexified real arrangement. 

Definition of the Analog 

Assumption 1. No hyperplane in d is of the form {zl = c> for any constant ceC. 

Assumption 2. Each pair of distinct multiple points can be distinguished by their x1- 
coordinates alone. 

Remark 3.1. Both assumptions are valid after a suitable change of coordinates. 
Let p1 < . . . < pr be the multiple points ordered by x1 -coordinate. Thus we have 

X,(P,) <. . . < XlW 
Set P = {pi}. 

Let h : R + R be an arbitrary continuous map. Now consider the l-parameter family of 
2-planes in R4 defined for t E R by 

K, = kR4:x1(q) = t,y,(q) = h(t)) 

= {qECz:zl(q) = t + h(t)}. 

Let HE d be a hyperplane. By Assumption 1 the set H n K, is a single point in R4 whose 
coordinates are continuous in the parameter t. Now recall that N = UHEdH and let 
n = I&I. Consider the set N n K,. This set consists of n distinct points unless it should 
happen that some multiple point p EP is contained in it i.e. both t = xl(p) and h(t) = y,(p). 
In this case the set consists of n - v(p) + 1 points where u(p) is the number of hyperplanes 
through p. By Assumption 2 at most one multiple point may lie in N n K,. 

Dejnition 3.2. The graph of d relative to the map h is the pair (W4, I-,,) where I-,, is the 
subset of R4 defined by 

rh= u NnK,. 
tcR 
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Identify R3 as the span of the coordinates xi, x1, y, in R4 and recall that R2 is the span of 

xi, x2 . Let 4’ and 43 denote the natural projections 

V:R4+@ ~‘(~1,Yl,xz,Y1)=(~1,~2) 

d3:R4-+R3 ~3(~~,Yl,~z,Y2)=(~1,~*,Yz). 

Now set 

Call the pairs (W’, If) and (R3, I,“) the 2-graph and the 3-graph of d respectively. We refer 
to the function h as the graphing map. 

Remark 3.3. We may occasionally suppress the graphing map and the ambient space 
and thus use I, I3 or I2 to denote the embedded graph. 

Incidence Condition 

In [3,4,5] we see that the multiple points play a principal role when we are considering 
a complexified real arrangement. Thus for complex arrangements we find it necessary to 
require that the graph I,, pass through each multiple point i.e. 

pEPapd-h. 

This is equivalent to the following incidence condition on the graphing map h. 

PEP=>Yl(P) = ~(-%(P)) 

We henceforward require that all graphing maps satisfy this incidence condition. 

Extension of the Real Graph 

Example 3.4. Suppose that d is a complexified real arrangement and choose the 
graphing map h to be identically zero. In this case the 2-graph (R2, If) is precisely the real 
graph of d. The 3-graph (R*, I:) is the natural embedding of the real graph into W3. See 
Fig. l(A). 

Combinatorial Graphs 

Observe that both of the sets I,, E R4 and Ii E lR3 are indeed combinatorial graphs in 
the sense that they consist of oertices and edges. The vertices are in one-to-one correspond- 
ence with the multiple points of d. The edges are of two types: closed and half-open. Each 
closed edge joins two distinct vertices with a path. The half-open edges are paths starting at 
one vertex and running off to infinity. No two distinct edges intersect at an interior point. 

Fig. 1. 

TOP 31:4-F 
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Assertion 3.5. The projection 4” : R4 + OX3 induces an isomorphism 

I-h = l-z. 

Now consider l-,2 c Iw*. This set is the projection of the graph r onto a 2-plane. The 
vertices project to distinct points. However self intersections may occur. 

Dejinition 3.6. Call the 2-graph r2 regular provided all self intersections are distinct, 
transverse and occur only on the interiors of edges. 

Remark 3.7. After a change of coordinates and a change of graphing map if necessary we 
can assume without loss of generality that the 2-graph is regular. 

Dejnition 3.8. If the 2-graph is regular we can refine its graph structure as follows. 
We view each self intersection as a new vertex. Those vertices which arise from multiple 

points are referred to as actual vertices, and those which arise as self intersections are 
referred to as virtual vertices. 

Each edge is subdivided into one or more new edges by those self intersections which lie 
on it. The new edges are referred to as segments. 

Dejinition 3.9. Suppose that the 2-graph T* is regular. By comparison with the 3-graph 
r3 each virtual vertex of r* may be marked to indicate whether it represents an under or 
overcrossing of two edges in lR3. If r* is so marked we refer to it as the marked 2-graph. 

The marking is made explicit by the following. Let q E I” be a virtual vertex. Let p, p’ E r 
be the two points with 4*(p) = cj*(p’) = q. Let Zf, H’ E d be the two hyperplanes with p E H 

and ~‘EH’. Now choose a real number c < x,(q) sufficiently close to x,(q). Recall that 
H n K, and H’n K, are points in r. Assume that p and p’ were labelled so that 
x,(H n K,) < x,(H’ n K,). Set t = x1(q) and call the virtual vertex q positive if y,(H n K,) 

< y,(H n K,) and negative in the other case. See Fig. 2. 

Remark 3.10. The 3-graph can be recovered up to ambient isotopy from the marked 
a-graph. 

node 

vertex 

X2 

t- Xl I I 

ui-1 vi 

Fig. 2. A portion of an admissible 2-graph 

I 

ui 
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Choosing the Graphing Map 

We wish now to consider the marked 2-graph for an explicit choice of graphing map. 

Using a linear graphing map is in general precluded by the incidence condition. However a 

piecewise-linear (PL) map may be chosen. Since the multiple points play a principal role we 

would like the graphing map to be well-behaved near each of them. More precisely we will 

choose the graphing map to be constant on a neighborhood of each point xi(p) for p EP. 

Thus we choose real numbers uO,. . . , u, and oO,. . . . , u, so that 

- co <u,=u,<x,(p,) 

X,(pi)<Ui<Ui <X,(pi+l) i=l,...,r-I 

x1(p,) < u, = u, < cc. 

We define a PL graphing map h as follows. 

- 00 < a I u1 *h(a) = Yl(Pl) 

Ui-1 IUIUi*h(a)=y,(pi) 

u,- 1 I a -c 00 * h(a) = y,(p,). 

On the complementary intervals we interpolate linearly. See Fig. l(B). 

Nodes 

We now consider the 2-graph for the graphing map described above. First fix a real 

number t E {ui} u (q}. Recall the set N n K, c IX4 which was considered earlier. This set 

consists of n distinct points-one for each hyperplane. The xi, x,-projections of these 

points lie in the 2-graph. These projected points are referred to as nodes-not to be 

confused with vertices. 

The Admissible 2-Graph 

DeJinition 3.12. Call the 2-graph I2 admissible if it is regular, marked, arises from a PL 

graphing map as described above and satisfies the following conditions on its vertices and 

nodes. Distinct vertices (both actual and virtual) are required to have distinct xi- 

coordinates. Two nodes which share the same x,-coordinate and arise from distinct 

hyperplanes are required to have distinct x2 -coordinates. 

Remark 3.14. After a change of coordinates and a different choice of real numbers 

{pi} u (ui} if necessary we can assume without loss of generality that the 2-graph is 

admissible. 

Remark 3.15. The admissible 2-graph I2 is our generalization of the real graph to any 

complex arrangement in c2. 

4. DETERMINING n,(M) FROM r2 

PROPOSITION 4.1. There is an algorithm for determining a presentation for 7c1 (M) from an 
admissible 2-graph for d. 

Remark 4.2. If d is a complexified real arrangement we may choose the graphing map 

to be identically zero. The 2-graph for this choice is the ordinary real graph i.e. there are no 
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virtual vertices. In this case the algorithm which we give for determining z,(M) from the 
2-graph agrees with Randell [3] and Salvetti [4]. 

Statement of Algorithm 

Let I2 be an admissible 2-graph for d. Let q1 < . . . c ql be the vertices (actual and 
virtual) of l-‘-ordered by x,-coordinate. Choose a sequence of real numbers t, c . . . < t, 

which separate the x,-coordinates of the vertices. Thus we have 

to < Xi(%) < t1 < Xi(&) <. * . < X1(%) < t,. 

Now recall that the segments of I2 are just its edges. Let E, denote the vertical line 
{xi = tk} s R2. Let F(k) d enote the set of those segments which Ek crosses-ordered by 
x,-coordinate. 

Remark 4.3. The segments in F(k) are in one-to-one correspondence with the hyper- 
planes in d and thus F(k) has cardinality n = IdI. 

We now relate F(m + 1) to F(m). For f~ F(m) let f’~ F(m + 1) be that segment which is 
associated to the same hyperplane as 1: Let q = q,,,+ 1 be the vertex between E, and E,,,+l. 

Now write F(m) = (fi, . . . J,) in increasing order. Let j be the first index for which the 
segment fj has the vertex q as endpoint and let k be the last such index. Note that 
{A :j I i I k} are precisely those segments in F(m) which have the vertex q as endpoint. We 
also note that if i < j or i > k then f; =A. We now observe that 

F(m + 1) = (fi,. * * ,fi-l,f;,f;-lT.. * J;+l,f;,“&+l,. * f Tf.1 

where the indicated subsequence is obtained from the appropriate subsequence of F(m) by 
priming and reversing the order. See Fig. 3(A) wherein the depicted vertices may be either 
actual or virtual. 

to 

Remark 4.4. If q is a virtual vertex then k = j + 1 since only two hyperplanes contribute 
the segments with endpoint q. 

Let G = {gi,. . . , g,} be the generators for the free group of rank n. 
We associate a word in the symbols G to each segment as follows. 
First write F(0) = (fi, . . . ,f,) in increasing order. Now associate fi~gi. 
Proceeding by induction on m assume we have associated the sequence of words 

W(m)=(w,,. . . , w,) to the segments in F(m) = (fi, . . . ,f.) coordinatewise. Now write 
F(m + 1) as above. 

FM + 1) = (A,. . . ,&l,fhf-l,. . . ,fJ+l,f>Ji+l,. . . A,). 

Fig. 3. 
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Set q = qm + 1. Note that q is the vertex between the vertical lines E, and E, + 1. 
There are three cases to consider: 
(1) q is an actual vertex. 
(2) q is a positive virtual vertex. 
(3) q is a negative virtual vertex. 

Case 1. q is an actual vertex. In this case we associate the sequence of words 

W(m+1)=(W,,...,Wj_,,W;,W;_,,...,WJ+,,WJ,W,+,,...,W,) 

Y 

to the segments in F(m + 1) coordinatewise where 

WJ = wj 

WJ 
w;+l = r+l 

w;+, 
= w;;;lwj 

w! = w?)i-l...Wj 

I I 

See Fig. 3(B) where for simplicity weusea,b,c,dinplaceofwj )..., wk. 

Case 2. q is a positive virtual vertex. In this case we know that k = j + 1 and thus 

Hm + 1) = (fi,. . . &lLfJ+lLfj~fj+2>~ . . ,f,). 
L J 

Now associate the sequence of words 

w(m + 1) = (W,, . . . ) Wj_1, W~+1, W;, Wj+z,. . . ) W,) 

I J 

to the segments in F(m + 1) coordinatewise where 

w; = wj 
w1 w;+i = wj+i. 

See Fig. 4(A) where for simplicity we use a and b in place of wj and w~+~. 

Case 3. q is a negative virtual vertex. This case is identical to case 2 except that we have 
instead 

WJ = ,p 

w;+1 = wj+l. 

Fig. 4. 
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See Fig. 4(B) where again for simplicity we use u and b in place of wj and wj+ 1. 

And thus iteratively we associate a word with each segment. 

Now to each actual vertex q = q,,,+ 1 we associate a set of relators R, as follows. As before 

let fj, . . . ,f,~F(m) be those segments which have q as endpoint where j < k. Let 

wj,. . .) w, be the words associated to these segments. Set 

R, = [w,‘, . . . , wj] 

Note that the wi are written in reuerse order. 

In Fig. 3(B) we have R, = Cd, c, b, a]. 
We may now give our main result. 

THEOREM 4.7. Let JZJ+ be an arrangement of complex hyperplanes in @‘. Let M be the 
complement of &. Let r2 be an admissible 2-graph for JZI. Then 

~I(M)=WUR~) 
4 

where q ranges over the actual vertices of T2. 

Proof: We abuse notation slightly and set Ki = Kri. Let J be a negative integer of 

sufficiently large magnitude. Let B, be the contractible subspace of M given by 

B, = (mE[W4:xI(m) = t,,y,(m) = h(t,),y,(m) = J}. 

Note that B, c K,. Identify the generating symbols gl,. . . , gn with the loops depicted in 

Fig. 5. Each of these loops runs around a point of the form K, n H for HE&. 

Now move these loops along the graph I in the direction of increasing x,-coordinate. 

The local behavior at a multiple point (actual vertex) is the same as the complexified real 

case [3, 4, 51. At the virtual vertices any braiding that occurs between multiple points is 

rectified as in [l]. 

No other generators or relators are needed by the work of Zariski and van Kampen 

[6, 71 on the complements of algebraic curves in @‘. Cl 

Remark 4.9. Consider again the pencil of four lines in Fig. 3(B)-viewed as a portion of 

an admissible 2-graph. 

We observe that the generators (or words) a, b, c, d suffer the depicted conjugations as 

they pass through the actual vertex q. In particular the first line through q is unconjugated, 

the second conjugated by the first, the third by the second then the first, and so forth. Since 

R, = [d, c, b, a] and thus dcba = d we may simplify (remove) the conjugation of the last line 

through q. However no other simplifications are apparent. 

Sj+l 
Sj-1 . . P _____-_ ___-_ Y Bo __ _-__ _- 

Fig. 5. 
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If we generalize this observation to pencils of arbitrarily many lines the association of 
words to segments in the algorithm may be somewhat simplified i.e. the last line through an 
actual vertex need not be conjugated. 

Remark 4.10. Let q = q,,,+ 1 be the first actual vertex which occurs in the list of vertices. 
Since no relators arise from the portion of the 2-graph to the left of the vertical line E, one 
may use the symbols associated to the segments in F(m) as a generating set. In other words 
we may discard those virtual vertices which come before q and start the algorithm at F(m) in 
place of F(0) and proceed to the right from there. 

Acknowledgement--I wish to thank Peter Orlik for suggesting this problem and for his support and guidance 
during its solution. 

REFERENCES 

1. B. MOISHEZON and M. TEICHER: Braid group technique in complex geometry, I: Line arrangements in CP*, 
Contemp. Math. 78 (1988), 425-555. 

2. P. ORLIK: Introduction to Arrangements, CBMS Lecture Notes 72 (1989). 
3. R. RANDELL: The fundamental group of the complement of a union of complex hyperplanes, Invent. math. 69 

(1982), 103-108. Correction Invent. math. 80 (1985), 467-468. 
4. M. SALVETTI: Arrangements of lines and monodromy of plane curves, Compos. Math. 68 (1988), 103-122. 
5. M. SALVETTI: Topology of the complement of real hyperplanes in CN, Invent. math. 88 (1987), 603-618. 
6. VAN KAMPEN: On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260. 
7. 0. ZARISKI: On the Poincark group of a projective hypersurface, Ann. Math. 38 (1937), 131-141. 

Department of Mathematics 
SUNY-BufSalo 
Bufalo, NY 14214 
U.S.A. 


