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In the present paper the invertibility of multipliers is investigated in detail. Multipliers are
operators created by (frame-like) analysis, multiplication by a fixed symbol, and resynthe-
sis. Sufficient and/or necessary conditions for invertibility are determined depending on
the properties of the analysis and synthesis sequences, as well as the symbol. Examples
are given, showing that the established bounds are sharp. If a multiplier is invertible, a for-
mula for the inverse operator is determined and n-term error bounds are given. The case
when one of the sequences is a Riesz basis is completely characterized.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In modern life, applications of signal processing can be found in numerous technical items, for example in wireless
communication or medical imaging. In these applications, “time-invariant filters”, i.e. convolution operators, are used very
often. Such operators are Fourier multipliers [1]. In the last decade time-variant filters have found more and more applications.
A particular way to implement such filters are Gabor multipliers [2,3], also known as Gabor filters [4]. Such operators find
application in psychoacoustics [5], computational auditory scene analysis [6], measurement of acoustical systems [7], and
seismic data analysis [8]. In [9] the concept of Bessel multipliers, i.e. operators of the form

M(mn),(φn),(ψn)h =
∑

n

mn〈h,ψn〉φn, ∀h ∈ H,

with (φn) and (ψn) being Bessel sequences and m bounded, were introduced and investigated. Further, the similar concept
for p-Bessel sequences is considered in [10].

From a theoretical point of view, it is very natural to investigate Bessel and frame multipliers. R. Schatten investigated
such operators in [11] for orthonormal sequences. By the spectral theorem, every self-adjoint compact operator on a Hilbert
space can be represented as a multiplier using an orthonormal system. Moreover, multipliers generalize the frame operators,
as every frame operator S for a frame (φn) is the multiplier M(1),(φn),(φn) . Therefore, the investigation of the invertibility of
multipliers in the special case of the identity implies properties of dual systems.
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Multipliers have application as time-variant filters [12,5,4] in acoustical signal processing. Therefore, it is interesting to
determine their inverses. If, for example, some operator can be well approximated by a multiplier, we could solve an oper-
ator equation numerically (like in computational acoustics, for example for the simulation of vibrations [13]) by inverting
the multiplier.

Some properties of the invertibility of multipliers are known [9,14]. In the present paper, we investigate the invertibility
of multipliers in much more details. In Section 2, we specify the notation and state the needed results for the paper. The
later sections concern the question of the invertibility of multipliers M(mn),(φn),(ψn) . Different cases for (φn) and (ψn) are
considered. Sections 3, 4 and 5 deal with multipliers where at least one sequence is a Bessel sequence, a frame or a Riesz
basis, respectively. Sufficient and/or necessary conditions for the invertibility of M(mn),(φn),(ψn) are given. If the multipliers
are invertible, formulas for M−1

(mn),(φn),(ψn)
are determined and n-term error bounds are given. Examples are given that show

the sharpness of the established bounds as well as the independence of the results.

2. Notation and preliminaries

Throughout the paper H denotes a separable, infinite-dimensional Hilbert space and (en)∞n=1 denotes an orthonormal
basis of H. The notion operator is used for linear mappings. The identity operator on H is denoted by I H . The operator G :
H → H is called invertible on H if there exists a bounded operator G−1 : H → H such that GG−1 = G−1G = I H (equivalently,
if G is bounded and bijective on H). Throughout the paper, the set N of the natural numbers is used as an index set, also
implicitly.

The notation Φ (resp. Ψ ) is used to denote the sequence (φn) (resp. (ψn)) with elements from H; Φ − Ψ denotes the
sequence (φn − ψn); m denotes a complex scalar sequence (mn), and m denotes the sequence of the complex conjugates
of mn; mΦ denotes the sequence (mnφn). Recall that m is called semi-normalized if there exist constants a,b such that
0 < a � |mn| � b < ∞, ∀n. The sequence m is called positive (resp. negative) if mn > 0, ∀n (resp. mn < 0, ∀n).

Recall that Φ is called a Bessel sequence (in short, Bessel) for H with bound BΦ , if BΦ ∈ (0,∞) and
∑ |〈h, φn〉|2 � BΦ‖h‖2

for every h ∈ H. A Bessel sequence Φ with bound BΦ is called a frame for H with frame bounds AΦ, BΦ , if AΦ > 0 and
AΦ‖h‖2 �

∑ |〈h, φn〉|2 for every h ∈ H; Aopt
Φ and Bopt

Φ denote the optimal frame bounds for Φ . The sequence Φ is called a
Riesz basis for H with bounds AΦ, BΦ , if Φ is complete in H, 0 < AΦ � BΦ < ∞ and AΦ

∑ |cn|2 � ‖∑
cnφn‖2 � BΦ

∑ |cn|2,
∀(cn) ∈ �2. Every Riesz basis for H with bounds A, B is a frame for H with bounds A, B . For a given sequence Φ , the
sequence (φd

n) is called a dual of Φ if h = ∑〈h, φd
n〉φn = ∑〈h, φn〉φd

n for all h in H.
Let Φ be a frame for H. The operator SΦ : H → H given by SΦh = ∑〈h, φn〉φn is called the frame operator for Φ and

fulfills AΦ‖h‖ � ‖Sh‖ � BΦ‖h‖ for all h in H. The sequence Φ̃ = (S−1
Φ φn) is a dual frame of Φ , called the canonical dual

of Φ , with frame operator S−1
Φ and frame bounds 1

BΦ
and 1

AΦ
. For standard references for frame theory and related topics

see [15–17].
For any Φ , Ψ and any m (called weight or symbol), the operator Mm,Φ,Ψ , given by

Mm,Φ,Ψ h =
∑

mn〈h,ψn〉φn, h ∈ H,

is called a multiplier [9]. Depending on m,Φ , and Ψ , the corresponding multiplier might not be well defined, i.e. might not
converge for some h ∈ H. If Φ and Ψ are Bessel sequences for H and m ∈ �∞ , then Mm,Φ,Ψ is well defined from H into
H and ‖Mm,Φ,Ψ ‖ �

√
BΦ BΨ ‖m‖∞ . Note that the well-definedness of a multiplier Mm,Φ,Ψ does not require Φ and Ψ to be

Bessel sequences, examples can be found in [18]. We will need the following result:

Lemma 2.1. (See [14, Lemma 4.4].) If Φ is a frame for H and m is positive (resp. negative) and semi-normalized, then Mm,Φ,Φ =
S(

√
mn φn) (resp. Mm,Φ,Φ = −S(

√|mn|φn)) for the weighted frame (
√

mn φn) and is therefore invertible on H.

Note that one should not expect invertibility of Mm,Φ,Φ for all semi-normalized sequences. Consider for example the
frame Φ = (e1, e1, e2, e2, e3, e3, . . .) and m = (1,−1,1,−1,1,−1, . . .).

We will use the following criterion for the invertibility of operators:

Proposition 2.2. Let F : H → H be invertible on H. Suppose that G : H → H is a bounded operator and ‖Gh − F h‖ � ν‖h‖ for all h
in H, where ν ∈ [0, 1

‖F −1‖ ). Then

(i) G is invertible on H, G−1 = ∑∞
k=0[F −1(F − G)]k F −1, and∥∥∥∥∥G−1 −

n∑
k=0

[
F −1(F − G)

]k
F −1

∥∥∥∥∥ �
∥∥F −1

∥∥ ∞∑
k=n+1

∥∥F −1(F − G)
∥∥k

.

(ii) 1
ν+‖F‖ ‖h‖ � ‖G−1h‖ � 1

( 1
‖F−1‖ −ν)

‖h‖, ∀h ∈ H.



294 D.T. Stoeva, P. Balazs / Appl. Comput. Harmon. Anal. 33 (2012) 292–299
Proof. (i) is proved in [19, Theorem 8.1 and Corollary 8.2]. For the upper inequality in (ii), observe that ‖Gh − F h‖ �
ν‖F −1‖‖F h‖ and apply [20, Theorem 1] with λ1 = ν‖F −1‖ < 1 and λ2 = 0. The lower inequality can be shown by a direct
calculation. �

To shorten notation we will call the approximation error ‖G−1 − ∑n
k=0[F −1(F − G)]k F −1‖ the n-term error.

Note that having zero elements at “appropriate places” of Φ , Ψ and m, one can get any desired multiplier, for example,
the invertible identity operator and the zero operator. Observe that if Mm,Φ,Ψ is invertible on H, then Φ must be complete
in H. Therefore, without loss of generality, from now on we consider only sequences m,Φ, and Ψ , which do not contain
zero elements, and N is the index set.

3. Necessary conditions for invertibility of multipliers for Bessel sequences

If the multiplier M(1),Φ,Ψ is invertible and one of the sequences Ψ and Φ is Bessel, then the other one does not
need to be Bessel. For example, consider the sequence Φ = ( 1

2 e1, e2,
1

22 e1, e3,
1

23 e1, e4, . . .), which is Bessel for H, and
Ψ = (e1, e2, e1, e3, e1, e4, . . .), which is non-Bessel for H; they satisfy M(1),Φ,Ψ = M(1),Ψ,Φ = I H . Below we observe that if
one of the sequences is Bessel, invertibility of M(1),Φ,Ψ implies that the other one must satisfy the lower frame condition.

Proposition 3.1. Let Mm,Φ,Ψ be invertible on H.

(i) If Ψ (resp. Φ) is a Bessel sequence for H with bound B, then mΦ (resp. mΨ ) satisfies the lower frame condition for H with bound
1

B‖M−1
m,Φ,Ψ ‖2 .

(ii) If Ψ (resp. Φ) and mΦ (resp. mΨ ) are Bessel sequences for H, then they are frames for H.
(iii) If Ψ (resp. Φ) is a Bessel sequence for H and m ∈ �∞ , then Φ (resp. Ψ ) satisfies the lower frame condition for H.
(iv) If Ψ and Φ are Bessel sequences for H and m ∈ �∞ , then Ψ , Φ , mΦ , and mΨ are frames for H.

Proof. (i) For brevity, the multiplier Mm,Φ,Ψ will be denoted by M .
First step: m = (1). Assume that Ψ is a Bessel sequence for H with bound BΨ . For those g ∈ H, for which

∑ |〈g, φn〉|2
= ∞ or g = 0, clearly the lower frame condition holds. Now let g ∈ H be such that

∑ |〈g, φn〉|2 < ∞ and g �= 0. For every
f ∈ H,∣∣〈M f , g〉∣∣ �

√
BΨ ‖ f ‖

(∑∣∣〈φn, g〉∣∣2
)1/2

.

For f = M−1 g , it follows that ‖g‖ �
√

BΨ ‖M−1‖(∑ |〈φn, g〉|2)1/2. Therefore, Φ satisfies the lower frame condition with
bound 1

BΨ ‖M−1‖2 .

The case, when Φ is a Bessel sequence, can be shown in a similar way.
Second step: general m. Apply the first step to the multiplier M(1),mΦ,Ψ (resp. M(1),Φ,m Ψ ).
(ii)–(iv) follow now easily. �
Note that Proposition 3.1(i) generalizes one direction of [21, Prop. 3.4], which states that every dual of a Bessel sequence

fulfills the lower frame condition. Furthermore, [16, Lemma 5.6.2] states that if a dual of a Bessel sequence is also Bessel,
then both sequences are frames. This is a special case of Proposition 3.1(iv).

Note that the boundedness of m is essential for Proposition 3.1(iv) – if m /∈ �∞ , then a Bessel multiplier Mm,Φ,Ψ can be
invertible also in cases when the Bessel sequences Φ and Ψ are not frames. Examples are given in [18].

4. Sufficient conditions for invertibility of multipliers for frames

We begin with a more general statement than Lemma 2.1, allowing different sequences Φ and Ψ in the multiplier.

Proposition 4.1. Let Φ be a frame for H. Assume that

P1: ∃μ ∈ [0,
A2

Φ

BΦ
) such that

∑ |〈h,ψn − φn〉|2 � μ‖h‖2 , ∀h ∈ H.

Let M denote any one of Mm,Φ,Ψ and Mm,Ψ,Φ . For every positive (or negative) semi-normalized sequence m, satisfying

0 < a � |mn| � b, ∀n, and
b

a

√
μ <

AΦ√
BΦ

, (1)

it follows that Ψ is a frame for H, M is invertible on H and

1

bBΦ + b
√

μBΦ

‖h‖ �
∥∥M−1h

∥∥ � 1

aAΦ − b
√

μBΦ

‖h‖,
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M−1 =
⎧⎨⎩

∑∞
k=0[S−1

(
√

mnφn)
(S(

√
mnφn) − M)]k S−1

(
√

mnφn)
, if mn > 0, ∀n,

−∑∞
k=0[S−1

(
√|mn|φn)

(S(
√|mn|φn) + M)]k S−1

(
√|mn|φn)

, if mn < 0, ∀n,
(2)

where the n-term error is bounded by ( 1
aAΦ

)n+1 · (b
√

μBΦ)n+1

aAΦ−b
√

μBΦ
.

Proof. If μ = 0, the statement is given in Lemma 2.1. Let μ > 0. First note that we need μ <
A2

Φ

BΦ
in order to be able to

fulfill (1). Since Φ is a frame for H and Bopt
Ψ −Φ <

A2
Φ

BΦ
� AΦ , the perturbation result [16, Corollary 15.1.5] implies that Ψ is

also a frame for H. Assume that m is positive and (1) holds. Thus, Mm,Φ,Ψ is well defined on H. The sequence (
√

mnφn) is
a frame for H with lower bound aAΦ and upper bound bBΦ (see [14, Lemma 4.3]), and thus, ‖S−1

(
√

mnφn)
‖ � 1

aAΦ
. For every

h ∈ H,

‖Mm,Φ,Ψ h − S(
√

mnφn)h‖ = ‖Mm,Φ,Ψ −Φ h‖ � b · √μBΦ ‖h‖.
Since b · √μBΦ < aAΦ � 1

‖S−1
(
√

mnφn)
‖ , one can apply Proposition 2.2 to complete the proof.

If m is negative, apply what is already proved to the multiplier M−m,Φ,Ψ .
An analogous proof can be used for the invertibility of Mm,Ψ,Φ and the conclusions for M−1

m,Ψ,Φ . �
Remark. The bound for μ in P1 is sharp. For every μ � A2

Φ

BΦ
there exist multipliers Mm,Φ,Ψ which are non-invertible on H,

see Example 6.1. Note that invertible multipliers exist for any value of μ, see Example 6.2.
The bound for b/a in (1) is also sharp. If P1 holds with μ > 0 and supn |mn|

infn |mn| = AΦ√
μBΦ

, the multiplier Mm,Φ,Ψ can

be non-invertible on H. For example, consider the sequences Φ and Ψ from Example 6.3 with k ∈ (0, 1
2 ) and m =

(1/k,−1/k,2,2,2,2, . . .); clearly, Mm,Φ,Ψ is not surjective.

Note that P1 is equivalent to the following two conditions (see [16]):

• ∃ν ∈ [0, AΦ√
BΦ

) such that ‖∑
cn(ψn − φn)‖ � ν‖(cn)‖2 for all finite scalar sequences (cn) (and thus, for all (cn) ∈ �2);

• ∃μ ∈ [0,
A2

Φ

BΦ
) such that

∑ |〈h,ψn − φn〉|2 � μ‖ f ‖2, for all h in a dense subset of H.

The above result assumed the symbol to be positive or negative, and therefore real. Now we give sufficient conditions
for invertibility of multipliers allowing m to be complex.

Proposition 4.2. Let Φ be a frame for H and P1 hold. Let (mn) satisfy

|mn − 1| � λ <
AΦ − √

μBΦ

BΦ + √
μBΦ

, ∀n ∈ N, (3)

for some λ, and let M denote any one of Mm,Φ,Ψ and Mm,Ψ,Φ . Then Ψ is a frame for H, Mm,Φ,Φ and M are invertible on H, and

1

(λ + 1)BΦ

‖h‖ �
∥∥M−1

m,Φ,Φh
∥∥ � 1

AΦ − λBΦ

‖h‖,
1

(λ + 1)(BΦ + √
μBΦ)

‖h‖ �
∥∥M−1h

∥∥ � 1

AΦ − λBΦ − (λ + 1)
√

μBΦ

‖h‖,

M−1
m,Φ,Φ =

∞∑
k=0

[
S−1

Φ (SΦ − Mm,Φ,Φ)
]k

S−1
Φ ,

where the n-term error is bounded by ( λBΦ

AΦ
)n+1 · 1

AΦ−λBΦ
, and

M−1 =
∞∑

k=0

[
M−1

m,Φ,Φ(Mm,Φ,Φ − M)
]k

M−1
m,Φ,Φ,

where the n-term error is bounded by (
(λ+1)

√
μBΦ

AΦ−λBΦ
)n+1 · 1

AΦ−λBΦ−(λ+1)
√

μBΦ
.

Proof. First step: Ψ = Φ . By the assumptions (3), one can apply Proposition 4.1 to the multiplier M(1),mΦ,Φ . This implies
validity of the conclusions for M−1 .
m,Φ,Φ
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Second step: general Ψ . If P1 holds with μ = 0, then Ψ = Φ and the statement is already proved. Assume that P1 holds
with μ > 0. As in Proposition 4.1, it follows that Ψ is a frame for H. For every h ∈ H,

‖Mm,Φ,Ψ h − Mm,Φ,Φh‖ = ‖Mm,Φ,Ψ −Φh‖ � (λ + 1)
√

μBΦ‖h‖.
Since

(λ + 1)
√

μBΦ < AΦ − λBΦ � 1

‖M−1
m,Φ,Φ‖ ,

Proposition 2.2 completes the proof. Similar arguments hold for Mm,Ψ,Φ . �
Remark. As in Proposition 4.1, the bound for μ in Proposition 4.2 is sharp. If P1 holds with μ = 0, then the bound for λ in
Proposition 4.2 is sharp – if the assumptions hold with λ = AΦ

BΦ
, then the multiplier Mm,Φ,Φ might be non-invertible on H.

Consider for example M
( 1

n ),(en),(en)
which is injective but not surjective.

Proposition 4.3. Let Φ be a frame for H, G : H → H be a bounded bijective operator and ψn = Gφn, ∀n, i.e. Φ and Ψ are equivalent
frames.1 Let m be semi-normalized and satisfy one of the following three conditions: m is positive; m is negative; or there exists λ

with |mn − 1| � λ < AΦ/BΦ , ∀n ∈ N. Then Ψ is a frame for H, the multipliers Mm,Φ,Ψ and Mm,Ψ,Φ are invertible on H, M−1
m,Φ,Ψ =

(G−1)∗M−1
m,Φ,Φ and M−1

m,Ψ,Φ = M−1
m,Φ,Φ G−1 .

Proof. By [16, Corollary 5.3.2], Ψ is a frame for H. Observe that Mm,Φ,Ψ = Mm,Φ,Φ G∗ and Mm,Ψ,Φ = GMm,Φ,Φ . Now the
conclusions follow from Lemma 2.1 and Proposition 4.2. �

As stated in the Introduction and in the comments after Proposition 3.1, the invertibility of multipliers is related to the
topic of dual frames. Note that the above proposition covers the case when Ψ is the canonical dual of Φ and does not cover
any other dual frame of Φ . Indeed, if Ψ = (Gφn) is a dual frame of Φ for some bounded operator G , then G must coincide
with S−1

Φ , and thus, Ψ must be the canonical dual of Φ , see [23, pp. 19–20]. For other duals, the following statement can
be used.

Proposition 4.4. Let Φ be a frame for H and Φd = (φd
n) be a dual frame of Φ . Let M denote any one of Mm,Φ,Φd and Mm,Φd,Φ , and

let (mn) be such that |mn − 1| � λ < 1√
BΦ B

Φd
for all n in N, for some λ. Then M is invertible on H,

1

1 + λ
√

BΦ BΦd

‖h‖ �
∥∥M−1h

∥∥ � 1

1 − λ
√

BΦ BΦd

‖h‖, ∀h ∈ H,

M−1
m,Φ,Φd =

∞∑
k=0

(M(1−mn),Φ,Φd )
k and M−1

m,Φd,Φ
=

∞∑
k=0

(M(1−mn),Φd,Φ)k, (4)

and the n-term error is bounded by
(λ

√
BΦ B

Φd )n+1

1−λ
√

BΦ B
Φd

.

Proof. The case λ = 0 is trivial. Consider the case λ > 0. For every h ∈ H,

‖Mm,Φ,Φd h − h‖ = ‖M(mn−1),Φ,Φd h‖ � λ
√

BΦ BΦd‖h‖.
Now apply Proposition 2.2. Since Φ is a dual of Φd , the conclusions for Mm,Φd,Φ follow directly from what is already
proved. �
Remark. The bound for λ in Proposition 4.4 is sharp – if the assumptions hold with λ = √

BΦ BΦd , then the multiplier might
be non-invertible on H. Consider for example the multiplier M

( 1
n ),(en),(en)

which is injective but not surjective.

For multipliers in the form Mm,Φ,Φ̃ we could use either Proposition 4.3 or 4.4. The second one gives, in general, the
more convenient inversion formula.

By Proposition 4.1, when Ψ is a perturbation of Φ , the inverse operator of M(1),Ψ,Φ is given by M−1
(1),Ψ,Φ =∑∞

k=0[S−1
Φ (SΦ − M(1),Ψ,Φ)]k S−1

Φ . A simpler representation for M−1
(1),Ψ,Φ

can be obtained if Ψ is a perturbation of a dual
frame of Φ:

1 For a treatise of equivalence of frames see [22] for the continuous and [15] for the discrete setting.
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Proposition 4.5. Let Φ be a frame for H. Assume that

P2: ∃μ ∈ [0, 1
BΦ

) such that
∑ |〈h,mnψn − φd

n〉|2 � μ‖h‖2, ∀h ∈ H,

for some dual frame Φd = (φd
n) of Φ . Let M denote any one of Mm,Φ,Ψ and Mm,Ψ,Φ . Then mΨ is a frame for H, M is invertible on H

and

1

1 + √
μBΦ

‖h‖ �
∥∥M−1h

∥∥ � 1

1 − √
μBΦ

‖h‖, ∀h ∈ H.

Furthermore, M−1 = ∑∞
k=0(I H − M)k, and the n-term error is bounded by (

√
μBΦ)n+1

1−√
μBΦ

.

Proof. The case μ = 0 is trivial. Assume that μ > 0. Since Φd is a dual frame of Φ , the number 1
BΦ

is a lower bound for Φd

(see the proof of [21, Prop. 3.4]). Since μ < Aopt
Φd , it follows from [16, Corollary 15.1.5] that mΨ is a frame for H. Therefore,

Mm,Φ,Ψ is well defined on H. For every h ∈ H,

‖Mm,Φ,Ψ h − h‖ = ‖M
(1),(φn),(mnψn−φd

n )
h‖ �

√
μBΦ‖h‖

and similarly, ‖Mm,Ψ,Φh − h‖ �
√

μBΦ‖h‖. Now apply Proposition 2.2. �
Similar equivalences as for P1 hold for P2.

Remark. The bound for μ in P2 is sharp. For every μ � 1/BΦ there exist multipliers Mm,Φ,Ψ and Mm,Ψ,Φ which are
non-invertible on H, see Example 6.1. Note that invertible multipliers exist for any value of μ, see Example 6.2.

Remark. When Φ is a tight frame with A = B = 1 (so-called Parseval frame), then Φ is self-dual and both Propositions 4.1
and 4.5 can be applied to multipliers in the form M(1),Φ,Ψ . Note that Propositions 4.1 and 4.5 do not cover the same classes
of sequences. Example 6.3 (resp. 6.4) shows a multiplier M(1),Φ,Ψ for which Proposition 4.1 applies (resp. does not apply),
but Proposition 4.5 does not apply (resp. applies).

5. Sufficient and necessary conditions for invertibility of multipliers for Riesz bases

For two Riesz bases and a semi-normalized symbol, the multipliers are always invertible [9, Prop. 7.7]. If Φ is a Riesz
basis for H, m is real and semi-normalized, and Ψ is a frame for H, then the multiplier Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible
on H if and only if Ψ is a Riesz basis for H [24, Prop. 4.2]. What can be said about the cases, when one of the sequences
has the Riesz property, m is complex and not necessarily semi-normalized, and Ψ is not necessarily a frame? The answer is
given in the following assertion, whose proof is quite technical and lengthy, so we only give the sketch for a proof.

Theorem 5.1. Let Φ be a Riesz basis for H. Then the following hold.

(i) If Ψ is a Riesz basis for H, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible on H if and only if m is semi-normalized.
(ii) If m is semi-normalized, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible on H if and only if Ψ is a Riesz basis for H.

(iii) If m is not semi-normalized, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) can be invertible on H only in the following cases:
(R1): Ψ is Bessel for H, which is not a frame for H and not norm-bounded from below, m is norm-bounded from below and
m /∈ �∞;
(R2): Ψ is non-Bessel for H which is norm-bounded from below and not norm-bounded, m ∈ �∞ , and m is not norm-bounded
from below;
(R3): Ψ is non-Bessel for H which is neither norm-bounded from above nor norm-bounded from below, m is not norm-bounded
from below, and m /∈ �∞ .

In the cases of invertibility, M−1
m,Φ,Ψ = M

(1),m̃ Ψ ,Φ̃
and M−1

m,Ψ,Φ = M(1),Φ̃,m̃Ψ . For the cases (i) and (ii) this is equivalent to M−1
m,Φ,Ψ =

M
( 1

mn
),Ψ̃ ,Φ̃

and M−1
m,Ψ,Φ = M

( 1
mn

),Φ̃,Ψ̃
.

Sketch of the proof. (ii) Let m be semi-normalized. If Ψ is not Bessel for H, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is not well defined.
If Ψ is Bessel for H, which is not a frame for H, then Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is not invertible on H, see Proposition 3.1. If
Ψ is an overcomplete frame for H and m is real, the non-invertibility of the multipliers is proved in [24, Prop. 4.2]. Similar
arguments can be used in the cases when m is complex. If Ψ is a Riesz basis for H, see [9, Prop. 7.7].

(iii) Assume that m is not semi-normalized. By (ii), Mm,Φ,Ψ (resp. Mm,Ψ,Φ ) is invertible on H if and only if mΨ

(resp. mΨ ) is a Riesz basis for H if and only if mΨ is a Riesz basis for H. When m is real, it is proved in [24, Prop. 3.2] that
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mΨ can be a Riesz basis for H only in the case (R1) or in the case (R̃): Ψ is non-Bessel for H which is not norm-bounded
from above and m is not norm-bounded from below with mn �= 0, ∀n. Similar arguments can be used for the cases when m is
complex. Furthermore, one can prove that among the combinations in (R̃), mΨ can be a Riesz basis only in the cases (R2)

and (R3).
(i) follows from (ii) and (iii).
The representations for M−1

m,Φ,Ψ and M−1
m,Ψ,Φ follow from [9, Prop. 7.7]. �

6. Examples

In this section we list some examples, which we refer to throughout the paper.

Example 6.1. Let Φ = (en) and Ψ = (ke1,
1
2 e2,

1
3 e3,

1
4 e4, . . .) for some real number k. The sequence Ψ − Φ(= Ψ − Φd) is

Bessel for H with optimal bound

Bopt
Ψ −Φ =

{
|k − 1|2 > 1 = 1/BΦ = A2

Φ/BΦ, when |k − 1| > 1,

1 = 1/BΦ = A2
Φ/BΦ, when |k − 1| � 1,

which shows that the example fulfills P1 (resp. P2) with any μ � A2
Φ/BΦ (resp. μ � 1/BΦ ). The multipliers M(1),Φ,Ψ and

M(1),Ψ,Φ are non-invertible on H.

Example 6.2. Let Φ = (en) and Ψ = (ke1, e2, e3, e4, . . .), where k �= 0. The sequence Ψ − Φ(= Ψ − Φd) is Bessel for H with
optimal bound μ = |k − 1|2. The multipliers M(1),Φ,Ψ and M(1),Ψ,Φ are invertible on H.

Example 6.3. Consider the frames Φ = (e1, e1, e2, e3, e4, e5, . . .) and Ψ = ((k + 1)φn), where k ∈ (0, 1
2 ). The sequence Ψ − Φ

is Bessel for H with the optimal bound Bopt
Ψ −Φ = 2k2 <

(Aopt
Φ )2

Bopt
Φ

. Furthermore, 1 < 1
2k = Aopt

Φ√
Bopt

Ψ −Φ Bopt
Φ

. Thus, Proposition 4.1

implies the invertibility of M(1),Φ,Ψ and M(1),Ψ,Φ .
Now observe that all the dual frames of Φ are among the sequences (h, e1 − h, e2, e3, e4, . . .), h ∈ H. Let Φd = (φd

1, e1 −
φd

1, e2, e3, e4, . . .) be an arbitrary chosen dual frame of Φ and denote 〈e1, φ
d
1〉 = x + iy. Assume that Ψ − Φd is Bessel for H

with bound BΨ −Φd � 1
2 = 1

Bopt
Φ

. Applying the Bessel inequality to the element e1, we obtain 2k2 +2x2 +2k−2x+2y2 +1 � 1
2 ,

which never holds. Thus, the invertibility of M(1),Φ,Ψ and M(1),Ψ,Φ cannot be concluded from Proposition 4.5.

Example 6.4. Consider the frame Φ = (e1, e1, e1, e2, e2, e2, e3, e3, e3, . . .) and its dual frame Ψ = (e1, e2,−e2, e2, e3,−e3, e3,

e4,−e4, . . .). Clearly, M(1),Φ,Ψ = M(1),Ψ,Φ = I H and the assumptions of Proposition 4.5 are fulfilled with μ = 0. Since
(Aopt

Φ )2

Bopt
Φ

= 3 and Bopt
Ψ −Φ � 4, Proposition 4.1 does not apply.
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