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Abstract

We study timelike surfaces in Lorentzian space forms which admit a one-parameter family of isometric
deformations preserving the mean curvature.
 2002 Elsevier Science B.V. All rights reserved.
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Introduction

Surfaces which admit a one-parameter family of isometric deformations preserving the mean curvature
are called Bonnet surfaces after a result due to Bonnet [4]:

Proposition. If a surface with constant mean curvature is not totally umbilic, then it admits a one-
parameter family of isometric deformations preserving the mean curvature.

In the following we assume that surfaces are sufficiently smooth and contain no umbilic points.
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Spacelike Bonnet surfaces in space forms have been studied by many differential geometers for long
years (see [1,2,5,6,8,10,12,14] and references therein). On the contrary very little is known about timelike
Bonnet surfaces in Lorentzian space forms, which we shall study in this paper.

An outline of this paper is as follows. As we shall see later, a timelike surface inM3
ν(c), whereM3

ν(c)

is the complete 3-dimensional space form of curvaturec with signature(3−ν, ν), is given by a conformal
immersionF from a Lorentz surfaceM to M3

ν(c), andF has two quadratic differentialsQdx2 andRdy2,
called the Hopf differentials ofF , where(x, y) is a null coordinate onM (see [15] for more about Lorentz
surfaces). We prove that ifQR = 0 thenF is a Bonnet surface and it is aB-scroll (cf. [7,11,13]). IfF is
a Bonnet surface withQR �= 0, then we can prove thatQ = ±R for a suitable choice of a null coordinate
(we call such a surface to be±isothermic), and 1/Q and 1/R are Lorentz-harmonic with respect to
the above coordinate, which is a result analogous to that by Graustein [10] and Raffy [14] for Bonnet
surfaces with definite induced metric. Furthermore, if the mean curvatureH is ±Lorentz-holomorphic
and dH �= 0, then±isothermic parametrization implies thatF is flat and enables us to calculate the
first and the second fundamental forms explicitly. In the case thatH is not±Lorentz-holomorphic and
HxHy �= 0, we can reduce the Gauss–Codazzi equations forF to an ordinary differential equation of the
third order, which is called a generalized Hazzidakis equation (see [1–3,5,6,12]). Following our previous
paper [8], we shall also study timelike±isothermic Bonnet surfaces with constant curvature and find that
they are parametrized by curves in 2-dimensional Riemannian or Lorentzian space forms with specific
geodesic curvature.

1. Preliminaries

In order to study surfaces in the Lorentzian space formM3
ν(c), we may assume thatc = 0,±1. In the

following we consider only the caseν = 1 for simplicity (we can carry out the similar computation for
the caseν = 2). We define a scalar product〈 , 〉c on R4 by

〈a, b〉0 = −a1b1 + a2b2 + a3b3,

〈a, b〉1 = −a0b0 + a1b1 + a2b2 + a3b3,

〈a, b〉−1 = −a0b0 − a1b1 + a2b2 + a3b3,

wherea = (a0, a1, a2, a3), b = (b0, b1, b2, b3) ∈ R4. M3
1(c) is embedded inR4 by

M3
1(0) = E3

1 = ({
p ∈ R4; p0 = 0

}
, 〈 , 〉0

); the Minkowski 3-space,

M
3
1(1) = S3

1 = {
p ∈ R4; 〈p,p〉1 = 1

}; the de Sitter 3-space,

M
3
1(−1) = H 3

1 = {
p ∈ R4; 〈p,p〉−1 = −1

}; the anti de Sitter 3-space.

Note that a timelike surface inM3
1(c) is given by a conformal immersionF from an oriented Lorentz

surfaceM to M3
1(c). Using a null coordinate(x, y) on M , we can write the induced metric onM as

eudx dy. LetN be a unit normal toF . The Gauss–Codazzi equations forF have the following form:

(1.1)



uxy + 1

2(H
2 + c)eu − 2QRe−u = 0,

Qy = 1
2euHx,

Rx = 1
2euHy,
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where 〈Fxy,N〉c = 1
2Heu, 〈Fxx,N〉c = Q and 〈Fyy,N〉c = R. The functionH and the quadratic

differentialsQdx2, Rdy2 are independent of the choice of(x, y), which are called the mean curvature
and the Hopf differentials ofF , respectively. The (intrinsic Gaussian) curvatureK is defined by

(1.2)K = H 2 + c− 4QRe−2u.

The extrinsic (Gaussian) curvature isK − c. Note that the first equation of (1.1) (the Gauss equation)
implies that

(1.3)K = −2uxye−u.

Since we assume thatF is umbilic-free, we haveQ or R �= 0. In the following we divide our study into
two cases: (i)Q �= 0,R ≡ 0 orQ ≡ 0,R �= 0, (ii) Q, R �= 0.

2. B-scrolls

Before studying the case (i) in the previous section, we shall give several definitions.

Definition 2.1. A curveγ in M3
1(c) is called a null Frenet curve if it admits a frame field(A,B,C) such

that 


dA
dx

= κC,

dB
dx

= −cγ + τC,

dC
dx

= −τA− κB,

whereA= dγ

dx
, 〈A,A〉c = 〈B,B〉c = 0, 〈A,B〉c = 1 andC is a vector product ofA andB onTM3

1(c). κ
andτ are called the curvature and the torsion ofγ , respectively.

Definition 2.2. Let γ be a null Frenet curve inM3
1(c). A surfaceF in M3

1(c) defined by

F(x, y) = γ (x)+ yB(x)

is called aB-scroll ofγ .

Let F be a timelike surface withQ �= 0, R ≡ 0 orQ ≡ 0, R �= 0. Then it follows thatF is a Bonnet
surface.

Theorem 2.1. F is aB-scroll.

Proof. We consider only the case in whichQ �= 0,R ≡ 0, for simplicity. Since the caseK = 0 is due to
Dajczer and Nomizu [7] and Graves [11], we have only to consider the caseK �= 0 (in the case ofK = 1,
c = 0, we shall give an alternative proof of McNertney’s [13]).

Note that we can solve (1.1) explicitly:

u = log
−4df

dx

dg

dy

(H 2 + c)(f + g)2
, Q = 2dH

dx

df

dx

(H 2 + c)(f + g)
+ v,
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wheref andg are functions ofx andy only, respectively, such that
df

dx

dg

dy

H 2 + c
< 0

andv is a function ofx only.
Let γ be a null Frenet curve such thatκ ◦ w = [(H 2 + c)2v]/[4(df/dx)2], τ ◦ w = H . Then a direct

computation shows thatF is given by

F = γ ◦w + 1

f + g
B ◦w,

wherew = ∫ 2df
dx

H2+c
dx.

3. Timelike ±isothermic Bonnet surfaces

If F is a timelike Bonnet surface withQ,R �= 0 then there exists a real-valued functionλ of x andy
such that{

(λQ)y = 1
2euHx,

(λ−1R)x = 1
2euHy.

Combining the second and the third equations of (1.1) (the Codazzi equations), we have{
(λ− 1)Q = f (x),

(λ−1 − 1)R = g(y),

wheref andg are real-valued functions ofx andy, respectively. Then we obtaingQ + fR = −fg.
Changing the null coordinate, we may assume thatρQ + σR = 1, whereρ, σ = ±1. Since we have
Q = f (σg+1)

ρf−σg
andR = −g(ρf+1)

ρf−σg
, changing the null coordinate again, we may assume thatQ = R = −fg

f+g

or Q = −R = fg

f−g
.

Definition 3.1. A timelike surfaceF :M → M3
1(c) is said to be isothermic(respectively anti-isothermic)

if Q = R (respectivelyQ = −R) for a suitable choice of a null coordinate, which is called an isothermic
(respectively an anti-isothermic) coordinate.

Computations as above leads to the following:

Theorem 3.1. F :M → M3
1(c) is a timelike Bonnet surface withQ,R �= 0 if and only if it is±isothermic,

i.e., isothermic or anti-isothermic and1/Q, 1/R are Lorentz-harmonic with respect to the±isothermic
coordinate(x, y), i.e.,(1/Q)xy = (1/R)xy = 0.

4. Timelike ±isothermic Bonnet surfaces with ±Lorentz-holomorphic mean curvature

Let F :M → M3
1(c) be a timelike±isothermic Bonnet surface and(x, y) a ±isothermic coordinate.

In this section we consider the case thatQ andR are±Lorentz-holomorphic, i.e., they are functions
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of x or y only, which implies automatically that 1/Q and 1/R are Lorentz-harmonic. From the Codazzi
equations, we have

Proposition 4.1. Q andR are Lorentz-holomorphic(respectively anti Lorentz-holomorphic) if and only
if H is anti Lorentz-holomorphic(respectively Lorentz-holomorphic).

From Proposition 4.1 and (1.3), we have

Proposition 4.2. If dH �= 0, thenF is flat.

In the following we assume thatdH �= 0. For simplicity we consider only the case thatQ = εR =
1
2f (x) andH = g(y), whereε = ±1, andf andg are functions ofx andy, respectively. Then (1.1) is
equivalent to

(4.1)

{
(g2 + c)(

df

dx
)2 = ε(f

dg

dy
)2,

df

dx
= εeu dg

dy
.

Note thatf , g2 + c, df

dx
, dg

dy
�= 0 by the assumption. It is obvious to see thatε = 1 if c = 0,1. Solving (4.1)

directly, we obtain

Theorem 4.1.

f = Ce±αx, g =
{
C1eαy +C2e−αy if F is isothermic,
C1 cosαy +C2 sinαy if c = −1,F is anti-isothermic,

whereC ∈ R \ {0}, α > 0 and(C1,C2) ∈ R2 \ {0} such that{
4C1C2 + c = 0, df

dx

dg

dy
> 0 if F is isothermic,

C2
1 +C2

2 = 1, df

dx

dg

dy
< 0 if c = −1,F is anti-isothermic.

Remark 4.1. Whenc = 0, we can solve the Gauss–Weingarten formulas forF explicitly. See Section 6
Remark 6.3.

5. Timelike ±isothermic Bonnet surfaces with non ±Lorentz-holomorphic mean curvature

Let F :M → M3
1(c) be a timelike±isothermic Bonnet surface and(x, y) a ±isothermic coordinate

as in the previous section. We assume thatH is not ±Lorentz-holomorphic andHx,Hy �= 0. Then by
Theorem 3.1 we haveQ = εR = 1

f (x)+g(y)
, whereε = ±1, f andg are functions ofx andy respectively

such thatf , g, df

dx
, dg

dy
�= 0. From the Codazzi equations, we havedf

dx
Hx = ε

dg

dy
Hy . Hence if we put

s =
∫

dx
df

dx

+ ε

∫
dy
dg

dy

thenH depends ons only. The Codazzi equations become

(5.1)eu = − 2df

dx

dg

dy

(f + g)2Hs

.
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Then the Gauss equation becomes a generalized Hazzidakis equation:

(5.2)

{(
Hss

Hs

)
s

−Hs

}
S2 = ε

(
2− H 2 + c

Hs

)
,

where

S = f + g
df

dx

dg

dy

.

In the following we shall consider two cases: (i) 2− H2+c
Hs

= 0, (ii) 2 − H2+c
Hs

�= 0.
Note that (5.2) is always satisfied in the case of (i). Combining this with the condition (5.1), we have

Theorem 5.1. If 2− H2+c
Hs

= 0 then one of the following holds:

(i) c = 0, df

dx

dg

dy
< 0, H = − 2

s+C
, whereC ∈ R,

(ii) c = 1, df

dx

dg

dy
< 0, H = arctan(1

2s +C), whereC ∈ R,

(iii) c = −1, df

dx

dg

dy
< 0, H = 1+Ces

1−Ces
, whereC > 0,

(iv) c = −1, df

dx

dg

dy
> 0, H = 1+Ces

1−Ces
, whereC < 0.

In the case of (ii),S depends ons only, i.e., df
dx
Sx = ε

dg

dy
Sy . Hence we have

(5.3)
d2f

dx2
− ε

d2g

dy2
= 1

f + g

{(
df

dx

)2

− ε

(
dg

dy

)2}
.

Proposition 5.1.

(5.4)

{
(
df

dx
)2 = Af 2 + 2Bf +C,

ε(
dg

dy
)2 = Ag2 − 2Bg +C,

whereA, B, C ∈ R which satisfy one of the following:
(i) ε = 1, A > 0, (ii) ε = 1, A = 0, B �= 0, (iii) ε = 1, A = B = 0, C > 0, (iv) ε = 1, A < 0,

AC −B2 < 0, (v) ε = −1, AC −B2 < 0.

Proof. Note that (5.3) is equivalent to{
d2f

dx2 − ε
d2g

dy2 = ϕ,

(
df

dx
)2 − ε(

dg

dy
)2 = (f + g)ϕ,

whereϕ is an unknown function which is to be determined. A direct computation shows thatϕ =
C1(f − g)+C2, whereC1, C2 ∈ R. This completes the proof.✷

Solving (5.4) directly, we obtain
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Theorem 5.2.

S2 =




1
AC−B2 sin2(

√
AC −B2 s +D) if ε = 1, AC > B2,

(s +D)2 if ε = 1, AC = B2,
1

B2−AC
sinh2(

√
B2 −AC s +D) if ε = 1, AC < B2,

1
B2−AC

cosh2(
√
B2 −AC s +D) if ε = −1, AC < B2,

whereD ∈ R.

Remark 5.1. Theorem 5.2 implies that (5.2) is equivalent to the generalized Hazzidakis equation obtained
in [1–3,5,6,12].

6. Timelike ±isothermic Bonnet surfaces with constant curvature

The following proposition can be obtained in a way to similar [6, Proposition 2.1].

Proposition 6.1. LetF :M → M3
1(c) be a timelike±isothermic Bonnet surface with constant curvature

K . ThenK = c or 0, i.e.,F is extrinsically or intrinsically flat.

First we consider the case thatF :M → M3
1(c) is a timelike±isothermic Bonnet surface with flat

extrinsic curvature. If we use±isothermic parametrization, then (1.2) implies thatF is isothermic and
4Q2 = e2uH 2. Let (x, y) be an isothermic coordinate. Computations similar to those as in [8] leads to
the following:

Theorem 6.1.

(u,Q,H)=
(
u(η),

e
1
2u(η)

2ψ(ξ)
,
µe− 1

2u(η)

ψ(ξ)

)
,

whereµ= ±1, η = x −µy, ξ = x +µy,

(u,ψ) =






(log 4α2

sinh2(αη+β)
,C1eαξ +C2e−αξ ),

(log 4α2

cos2(αη+β)
,C1 cosαξ +C2 sinαξ),

(log 4
(η+β)2

,C1ξ +C2),

if c = µ,

(log 4α2

cosh2(αη+β)
,C1eαξ +C2e−αξ ), if c = −µ,

(β,C1η +C2), (αη + β,C1e
α
2 ξ +C2e− α

2 ξ ), if c = 0

for α > 0, β ∈ R and(C1,C2) ∈ R2 \ {0}.

Remark 6.1. Using Theorem 6.1, we can solve the Gauss–Weingarten formulas forF explicitly. Then we
find thatF is parametrized by a curve or a timelike curve in a 2-dimensional Riemannian or Lorentzian
space form respectively whose geodesic curvature is defined byψ . We will not go into further details
(cf. [8]).



110 A. Fujioka, J. Inoguchi / Differential Geometry and its Applications 18 (2003) 103–111

If F :M → M3
1(c) is a flat timelike±isothermic Bonnet surface, then using a±isothermic coordinate

(x, y), (1.1) is equivalent to

(6.1)




4εQ2 = e2u(H 2 + c),

Qy = 1
2euHx,

εQx = 1
2euHy,

whereε = 1 or −1 if F is isothermic or anti isothermic respectively. Note thatε = 1 if c = 0,1. (6.1)
implies thatF is a flat±isothermic timelike HIMC surface (see [8, §3]). SinceF is a HIMC surface, we
can writeH = f (x)g(y)−c

f (x)+g(y)
, wheref andg are functions ofx andy only respectively. Then (6.1) becomes

(6.2)




4εQ2 = e2u (f 2+c)(g2+c)

(f+g)2
,

Qy = 1
2eu g2+c

(f+g)2
df

dx
,

εQx = 1
2eu f 2+c

(f+g)2
dg

dy
.

If we denote byCH,c the set of flat timelike±isothermic Bonnet surfaces inM3
1(c) with H = fg−c

f+g
, then

(6.2) leads to the following:

Theorem 6.2. If M is simply connected, thenCH,0
∼= CH,1

∼= CH,−1, i.e., flat timelike±isothermic Bonnet
surfaces in one Lorentzian space form correspond locally to those in the others.

Remark 6.2. Theorem 6.2 is a special case of Lawson’s correspondence obtained in [9].

Whenc = 0, using the same notation as in Theorem 6.1, we can obratin

Theorem 6.3.

(u,ψ) = (β,C1η +C2) or
(
αη + β,C1e

α
2 ξ +C2e

− α
2 ξ

)
.

Remark 6.3. (1) If (u,ψ) = (β,C1ξ + C2), thenF is parametrized by a curve or a timelike curve in
the Euclidean or the Minkowski 2-space, respectively. If(u,ψ) = (αη + β,C1e

α
2 ξ + C2e− α

2 ξ ), theF is
parametrized by a curve or a timelike curve in the hyperbolic or the de Sitter 2-space, respectively. In
each case the geodesic curvature of the (timelike) curve is defined byψ .

(2) A simple computation shows thatH is ±Lorentz-holomorphic anddH �= 0 if and only if
(u,ψ) = (αη + β,Ce± α

2 ξ ) for C ∈ R\{0}.
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