
Journal of Pure and Applied Algebra 173 (2002) 49–58
www.elsevier.com/locate/jpaa

E'ective computation of singularities of
parametric a(ne curves

Hyungju Park
Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA

Received 30 October 2000; received in revised form 1 August 2001
Communicated by M.-F. Roy

Abstract

Let k be a 4eld of characteristic zero and f(t); g(t) be polynomials in k[t]. For a plane
curve parameterized by x = f(t); y = g(t), Abhyankar developed the notion of Taylor resultant
(Mathematical Surveys and Monographs, Vol. 35, American Mathematical Society, Providence,
RI, 1990) which enables one to 4nd its singularities without knowing its de4ning polynomial.
This concept was generalized as D-resultant by Yu and Van den Essen (Proc. Amer. Math.
Soc. 125(3) (1997) 689), which works over an arbitrary 4eld. In this paper, we extend this to
a curve in a(ne n-space parameterized by x1 = f1(t); : : : ; xn = fn(t) over an arbitrary ground
4eld k, where f1; : : : ; fn ∈ k[t]. This approach compares to the usual approach of computing
the ideal of the curve 4rst. It provides an e(cient algorithm of computing the singularities of
such parametric curves using GrCobner bases. Computational examples worked out by symbolic
computation packages are included. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 13P10; 14Q05

1. Introduction

For an arbitrary 4eld k, let f1; : : : ; fn ∈ k[t]. Consider the curve C ⊂ An
k given

parametrically by

x1 = f1(t); : : : ; xn = fn(t):
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This paper is concerned with the following two questions on this parameterization of C:
Q1. Can we e'ectively determine if the parameterization

 = (f1; : : : ; fn) : A→ C

is a birational equivalence, or equivalently k(f1; : : : ; fn) = k(t)?
Q2. If  : A → C is birational, can we compute all the singularities of C? (Without

knowing the ideal of C.)

Shannon–Sweedler’s algebra membership algorithm [11] e'ectively answers Problem
Q1. It uses a GrCobner bases computation involving n + 1 variables with respect to
lexicographic order, which can quickly become highly complex for a modestly large
n. A new algorithm is developed in this paper, which answers Problem Q1 using a
GrCobner bases computation involving two variables regardless of n with respect to an
arbitrary 4xed term order.
For the special case of two polynomials f1; f2 ∈ k[t] (i.e., when n = 2), there are

several results available. Abhyankar and Moh [2] have given a necessary condition for
k[f1; f2] = k[t] in terms of degrees of f1 and f2:

Theorem 1 (Abhyankar and Moh [2]). Let k be an arbitrary 5eld of characteristic p
(p=0 or p¿ 0). Suppose that f1 and f2 are in k[t] with m := deg(f1)6 n := deg(f2);
and that p does not divide gcd(m; n). If k[f1; f2] = k[t]; then m divides n.

Van den Essen and Yu [1,8] introduced the notion of D-resultant D(s)∈ k[s] of two
polynomials f1 and f2, and gave necessary and su(cient conditions for k(f1; f2)= k(t)
and k[f1; f2] = k[t] in terms of D(s) [7, Theorem 2.1].
Recently, Gutierrez et al. [10] extended the notion of D-resultant to a pair of rational

functions in k(t). For two rational functions f1; f2 ∈ k(t), they de4ned the D-resultant
of f1; f2, and used it to characterize when k(f1; f2) = k(t) or when k[t] ⊂ k[f1; f2],
and to 4nd the singularities of the parametric a(ne curve de4ned by x = f1(t); y
= f2(t).

Example 1. Consider f1(t) = t3; f2(t) = t2 + t ∈ k[t]. The function 4eld k(t) is an
algebraic extension of its sub4eld k(t3; t2 + t). To determine if k(t3; t2 + t) = k(t);
denote the 4eld k(t3; t2 + t) by K . Then

t2 + t ∈K ⇒ (t2 + t)2 = t4 + 2t3 + t2 = t4 − t + (t2 + t) + 2t3 ∈K

⇒ t4 − t = t(t3 − 1)∈K (since t2 + t; 2t3 ∈K)

⇒ t ∈K (since t3 − 1∈K):

This shows k(t3; t2+ t)=k(t). However; since the Abhyankar–Moh necessary condition
is not satis4ed; k[f1; f2] ( k[t]. This means that the parameterization  = (t3; t2 + t) :
A→ C is a birational equivalence; but not an isomorphism.
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Remark 1. It is worth noting that Problem Q1 is closely related to the problem of
decomposing polynomials.
For given nonconstant polynomials f1; : : : ; fn ∈ k[t], if k(f1; : : : ; fn) is a proper sub-

4eld of k(t), then, by LCuroth’s theorem, it is equal to k(h) for some rational function
h∈ k(t) with deg(h)¿ 1. In this case, the polynomials f1; : : : ; fn are decomposable in
the following way: for each i=1; : : : ; n, ∃gi ∈ k(t) such that fi(t)=gi(h(t)). Therefore,
Problem Q1 has a(rmative answer if and only if the polynomials f1; : : : ; fn are not
decomposable in this form. See [4,8] for further discussion.

In this paper, we give algorithmic solutions to Problems Q1 and Q2 in the general
case of n polynomials using the method of GrCobner bases.

2. Birational parameterization of curves

Throughout this paper, unless there is a possibility of confusion, we will use the
shorthand notation An for the a(ne space An

k .
For an arbitrary 4eld k, consider the curve C ⊂ An given parametrically by

x1 = f1(t); : : : ; xn = fn(t);

where f1; : : : ; fn ∈ k[t]. The morphism  de4ned by

 = (f1; : : : ; fn) : A→ An

will be simply referred to as the parameterization of C by polynomials f1; : : : ; fn. The
curve C is the Zariski closure Im( ) of Im( ) in An, and we occasionally identify
the morphism  : A→ An with the induced morphism  : A→ C.
Problem Q1 is equivalent to determining if the induced map of the functions 4elds

 ∗ : K(An) = k(x1; : : : ; xn)→K(A) = k(t):
xi �→fi

is surjective, i.e.,

k(f1; : : : ; fn) = k(t):

So we need to understand what conditions on the polynomials f1; : : : ; fn will guarantee
k(f1; : : : ; fn) = k(t).
Consider the induced k-algebra homomorphism  ∗ of the coordinate rings

 ∗ :A(An) = k[x1; : : : ; xn]→ A(A) = k[t];
xi �→fi:

Note that the coordinate ring of C = Im( ) is

A(C) = k[x1; : : : ; xn]=Ker( ∗) = Im( ∗) ∼= k[f1; : : : ; fn]:
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Proving that  is an immersion is equivalent to proving that their coordinate rings are
isomorphic:

k[t] = k[f1; : : : ; fn]:

Now we describe the injectivity and birationality of

 :A→ C ⊂ An

in terms of a set of bivariate polynomials derived from fi’s.

Lemma 1. Suppose that f′
1; : : : ; f

′
n ∈ k[t] are not identically zero. Then; the morphism

 := (f1; : : : ; fn) : A→ An

is 5nite.

Proof. We may assume; without loss of generality; that f1 is not a constant. Consider

 ∗ : k[x1; : : : ; xn]→ k[t];
xi �→fi:

Dividing f1 by its leading coe(cient if necessary; we may assume f1(t) is monic.
Then the monic polynomial

G(T ) :=f1(T )− f1 ∈ k[f1; : : : ; fn](T )

gives an integral dependence of t ∈ k[t] on k[f1; : : : ; fn].

For f1; : : : ; fn ∈ k[t], we introduce a new variable s and consider

f1(t); : : : ; fn(t); f1(s); : : : ; fn(s)∈ k[s; t]:

For each i = 1; : : : ; n, t − s divides fi(t) − fi(s) and there exists gi(s; t)∈ k[s; t] such
that fi(t)− fi(s) = (t − s)gi(s; t). We will identify the fraction (fi(t)− fi(s))=(t − s)
with the polynomial gi(s; t)∈ k[s; t]. One notes that this fraction is the Bezoutian [5,6]
of the polynomials fi and 1, and it is easy to prove that gi(s; s)=f′

i(s). The following
theorem characterizes the algebraic set V Rk(g1; : : : ; gn) ⊂ A2.

Theorem 2. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:

Consider the induced morphism  = (f1; : : : ; fn) = Rk → Rk
n
. Then

V Rk(g1; : : : ; gn) = A 	 B ; (1)

where

A = {(a; b) | a �= b∈ Rk and  (a) =  (b)};
B = {(a; a) | a∈ Rk and f′

1(a) = · · ·= f′
n(a) = 0}:
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Proof. Suppose (a; b)∈A . Then;

(a; b)∈A ⇒ a �= b and  (a) =  (b)

⇒ a �= b and fi(a) = fi(b) ∀i = 1; : : : ; n

⇒ gi(a; b) = 0 ∀i = 1; : : : ; n

⇒ (a; b)∈V Rk(g1; : : : ; gn):

Hence; A ⊂ V Rk(g1; : : : ; gn).
Suppose (a; a)∈B . Then,

(a; a)∈B ⇒f′
i(a) = 0 ∀i = 1; : : : ; n

⇒ gi(a; a) = 0 ∀i = 1; : : : ; n

⇒ (a; a)∈V Rk(g1; : : : ; gn):

Hence B ⊂ V (g1; : : : ; gn). Therefore, A 	 B ⊂ V Rk(g1; : : : ; gn).
In order to show V Rk(g1; : : : ; gn) ⊂ A 	 B , let (a; b)∈V Rk(g1; : : : ; gn).
If a �= b, then

gi(a; b) =
fi(b)− fi(a)

b− a
= 0 ∀i = 1; : : : ; n

⇒ fi(b) = fi(a) ∀i = 1; : : : ; n

⇒  (a) =  (b)

⇒ (a; b)∈A :

If a= b, then

gi(a; a) = 0 ∀i = 1; : : : ; n

⇒ a∈V Rk(g1(s; s); : : : ; gn(s; s)) = V (f′
1(s); : : : ; f

′
n(s))

⇒ (a; a)∈B :

Remark 2. The set A in Theorem 2 describes the multiple points on the curve C;
while the set B describes the rami4cation points (or branch points) on C. More
precisely; if (a; b)∈A ; then the point  (a) =  (b) on C has multiplicity of at least
2. If (a; a)∈B ; then  (a) is a rami4cation point on C. Therefore; if B = ∅; then the
parameterization  : A→ C is an Setale morphism.
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Theorem 3. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:

Suppose that f′
1; : : : ; f

′
n ∈ k[t] are not identically zero and C is the curve in An given

parametrically by x1 = f1(t); : : : ; xn = fn(t). Then the parameterization

 = (f1; : : : ; fn) =A→ C

is a birational equivalence if and only if V Rk(g1; : : : ; gn) is a 5nite set.

Proof. We may assume that k is algebraically closed. By Lemma 1; the morphism
 :A→ An is 4nite; and thus proper. Hence Im( ) is a Zariski closed set of dimension
1 in An; and is equal to C.

(⇐=) Let V (g1; : : : ; gn)= {(a1; b1); : : : ; (al; bl)}. De4ne open sets U ⊂ A and V ⊂
An by

U =A− {a1; : : : ; al}; V = C − { (a1); : : : ;  (al)}:
Then  induces a 4nite injective morphism  |U :U → V . Since each 4ber of  |U has
one point, its degree [K(U ) :K(V )] is 1. Therefore,  =A→ C is birational.
(⇒) Since  :A→ C=Im( ) is birational, there exist open sets U ⊂ A and V ⊂ C

such that  induces an isomorphism between them. Since A − U is a proper closed
subset of A, the irreducibility of A forces dim(A−U )¡ 1, i.e. A−U is a 4nite set.
Therefore, the injectivity of  fails only at 4nitely many points of A, and A is a 4nite
set. Since at least one of f′

i ’s is nonzero, f′
1; : : : ; f

′
n ∈ k[t] have at most 4nitely many

zeros. This means that B is a 4nite set. Hence, by Theorem 2 V (g1; : : : ; gn)=A 	B 

is a 4nite set.

Corollary 4. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:

Suppose that f′
1; : : : ; f

′
n ∈ k[t] are not identically zero. Then;

k(f1; : : : ; fn) = k(t)

if and only if |V (g1; : : : ; gn)|¡∞.

Let  1 :A2
Rk
→ A Rk be the projection onto the 4rst component. C is the curve in

An given parametrically by x1 = f1(t); : : : ; xn = fn(t). If the parameterization  =
(f1; : : : ; fn) =A Rk → C Rk is a birational equivalence, then  ( 1(V Rk(g1; : : : ; gn))) ⊂ C Rk is
a 4nite set. The following theorem says that this set describes all the singularities of
C Rk .

Theorem 5. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:
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If the parameterization  = (f1; : : : ; fn) =A Rk → C Rk is a birational equivalence; then
 ( 1(V Rk(g1; : : : ; gn))) ⊂ C Rk is the set of all the singularities of C Rk .

Proof. The map  is the normalization of C Rk ; which can be seen as a cascade of
blow-ups. Noting that the resolution of each singularity produces a point in A or B ;
one deduces a theorem from Theorem 2.

Theorem 6. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:

Suppose that f′
1; : : : ; f

′
n ∈ k[t] are not identically zero. Then; the morphism

 :=(f1; : : : ; fn) : A→ An

is a closed immersion if and only if V Rk(g1; : : : ; gn) = ∅.

Proof. By Theorem 5; the condition V Rk(g1; : : : ; gn)= ∅ is equivalent to the nonsingu-
larity of the curve C Rk := Im( ). This immediately implies the theorem.

Corollary 7. For f1; : : : ; fn ∈ k[t]; let

gi(s; t) :=
fi(t)− fi(s)

t − s
∈ k[s; t]; i = 1; : : : ; n:

Suppose that f′
1; : : : ; f

′
n ∈ k[t] are not identically zero. Then;

k[f1; : : : ; fn] = k[t]

if and only if V Rk(g1; : : : ; gn) = ∅.

3. Examples and applications

The results of the previous section provide a simple new proof of the following
well-known result.

Theorem 8 (A special case of the Abhyankar–Moh epimorphism theorem). Suppose that
f1; f2 ∈ k[t] and gcd(deg(f1); deg(f2))= 1. Then k(f1; f2)= k(t) while k[f1; f2] �=
k[t].

Proof. Let m= deg(f1) and n= deg(f2). From the chains of 4eld extensions

k(fi) ,→ k(f1; f2) ,→ k(t); i = 1; 2;
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one easily deduces that [k(t) : k(f1; f2)] is a common divisor of m = [k(t) : k(f1)]
and n=[k(t) : k(f2)]. Hence; the condition gcd(m; n)=1 implies [k(t) : k(f1; f2)]=1;
i.e., k(f1; f2) = k(t).
It remains to show that the set V Rk(g1; g2) ⊂ A2 is nonempty where g1(s; t) := (f1(t)−

f1(s))=(t− s) and g2(s; t) := (f2(t)−f2(s))=(t− s). Consider the projective embedding
of A2 into P2, and let gh

1; g
h
2 ∈ k[s; t; u] be the homogenizations of g1; g2 ∈ k[s; t]. Then,

the points at in4nity of V Rk(g
h
1; g

h
2) is described by

V Rk

(
tm − sm

t − s
;
tn − sn

t − s

)
;

which is empty due to the condition gcd(m; n) = 1. By Bezout, this means V Rk(g
h
1; g

h
2)

has (m− 1)(n− 1) points in A2 (counting multiplicity). Since V Rk(g1; g2) is nonempty,
Corollary 7 implies k[f; g] �= k[t].

Example 2. Consider f1(t)= t3 and f2(t)= t2 + t ∈ k[t] of Example 1. Let us compute

V
(
f1(t)− f1(s)

t − s
;
f2(t)− f2(s)

t − s

)
:

We have to solve

f1(t)− f1(s)
t − s

=
t3 − s3

t − s
= t2 + ts+ s2 = 0;

f2(t)− f2(s)
t − s

=
(t2 − s2) + (t − s)

t − s
= t + s+ 1 = 0:

From the second equation; t =−s− 1. By putting it into the 4rst equation;

(−s− 1)2 + (−s− 1)s+ s2 = s2 + s+ 1 = 0:

Let # be a primitive cubic root of unity in Rk. Then;

V Rk

(
f1(t)− f1(s)

t − s
;
f2(t)− f2(s)

t − s

)
= {(#; #2); (#2; #)}:

Since this set is 4nite; Theorem 3 con4rms our earlier 4nding k(t3; t2 + t) = k(t).
But since this set is nonempty; by Theorem 6; k[t3; t2 + t] ( k[t] as predicted by
the Abhyankar–Moh result [2]. By Theorem 5; the plane curve parametrized by x =
f1(t); y = f2(t) has precisely one singular point (f1(#); f2(#)) = (f1(#2); f2(#2)) =
(1;−1).
For f1; : : : ; fn ∈ k[t], de4ne g1; : : : ; gn by gi(s; t) := (fi(t)−fi(s))=(t−s); i=1; : : : ; n.

The 4niteness condition on V (g1; : : : ; gn) described in Theorem 3 is equivalent to the
zero dimensionality of the ideal I := 〈g1; : : : ; gn〉 ⊂ k[s; t]. Fix a term order ≺ on the set
of monomials in k[s; t], and let h1; : : : ; hl ∈ k[s; t] be the reduced GrCobner basis of the
ideal I w.r.t. ≺. For an arbitrary polynomial f∈ k[s; t], denote the initial (or leading)
term of f w.r.t. ≺ by in(f). Then I is zero dimensional if and only if there exist
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i; j∈{1; : : : ; l} such that in(hi)= sp and in(hj)= tq for some p; q∈N (see [3, Theorem
2.2.7] for a proof). This produces the following algorithmic solution to Problem Q1:

Algorithm 1.

Input: f1; : : : ; fn ∈ k[t].
Output: yes if k(f1; : : : ; fn) = k(t); no otherwise.
Step 1: For each i = 1; : : : ; n; compute gi := (fi(t)− fi(s))=(t − s)∈ k[s; t].
Step 2: Compute the reduced GrCobner basis G = {h1; : : : ; hl} of the ideal

I := 〈g1; : : : ; gn〉 ⊂ k[s; t].
Step 3: Output yes if there exist i; j∈{1; : : : ; l} such that in(hi)=sp and in(hj)= tq

for some p; q∈N. Output no otherwise.

As mentioned in the Introduction, Shannon–Sweedler’s algebra membership algo-
rithm [11] e'ectively answers Problem Q1. It uses a GrCobner bases computation in-
volving n+1 variables with respect to lexicographic order, which can quickly become
highly complex for even a modest n. The algorithm described above answers Problem
Q1 using a GrCobner bases computation involving two variables regardless of n with
respect to an arbitrary 4xed term order.
The following examples are worked out with the computer algebra system Singular

[9].

Example 3. Consider the curve C ⊂ A2
C given parametrically by

x = f1(t) := 2t8 + t4 + 3t + 1; y = f2(t) := t4 − 2t2 + 2:

Then;

g1(s; t) :=
f1(t)− f1(s)

t − s

= 2(t7 + t6s+ t5s2 + t4s3 + t3s4 + t2s5 + ts6 + s7)

+ (t3 + t2s+ ts2 + s3) + 3;

g2(s; t) :=
f2(t)− f2(s)

t − s

= (t3 + t2s+ ts2 + s3)− 2(t + s):

Fix the lex order ≺ on C[s; t] with s ≺ t. Then a computation shows that the reduced
GrCobner basis of {g1; g2} w.r.t. ≺ is {h1; h2} where

h1 = 128s10 − 640s8 + 1600s6 + 48s5 − 2240s4 − 96s3 + 1800s2 + 108s− 639;
h2 = 3t − 16s6 + 48s4 − 68s2 − 3s+ 36:

Therefore; the parameterization  = (f1; f2) :AC → C is a birational equivalence;
but not an isomorphism. Note that h1 is a univariate polynomial of s; which can be
numerically solved. A numerical computation shows that h1(s) has two real roots and
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eight complex roots. Let s1; : : : ; s10 be the ten roots of h1. Then S := {(f1(si); f2(si)) | i=
1; : : : ; 10} is the set of singularities of C; which consists of 4ve points.
Although C[f1; f2] �=C[t], the Abhyankar–Moh necessary condition [2] for

C[f1; f2] = C[t] is satis4ed since deg(f1) divides deg(f2). Hence, this example con-
4rms that the Abhyankar–Moh condition is a necessary but not a su(cient condition
for C[f1; f2] = C[t].

Example 4. Consider the curve C ⊂ A3 given parametrically by

x = f1(t) := t10 + t4; y = f2(t) := t8 + 2t2; z = f3(t) := t6 − t4 + 1:

Then; for gi(s; t) := (fi(t)− fi(s))=(t − s); i = 1; 2; 3; the reduced GrCobner basis G of
{g1; g2; g3} w.r.t. the degree reverse lex order is

G = {t + s}:
Hence; according to Algorithm 1; the parameterization

 = (f1; f2; f3) :A→ C

is not a birational equivalence.

References

[1] A. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs,
Vol. 35, American Mathematical Society, Providence, RI, 1990.

[2] A. Abhyankar, T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975)
148–166.

[3] W. Adams, P. Loustaunau, An Introduction to GrCobner Bases, Graduate Studies in Mathematics, Vol.
3, American Mathematical Society, Providence, RI, 1994.

[4] C. Alonso, J. Gutierrez, T. Recio, A rational function decomposition algorithm, J. Symbol. Comput. 19
(1995) 527–544.

[5] A. Cayley, On the theory of elimination, Cambridge Dublin Math J. III (1865) 210–270.
[6] A.L. Dixon, The elimination of three quantics in two independent variables, Proc. London Math. Soc.

6 (1908) 468–478.
[7] A. van den Essen, J. Yu, The D-resultant, singularities and the degree of unfaithfulness, Proc. Amer.

Math. Soc. 125 (3) (1997) 689–695.
[8] J. von zur Gathen, J. Gutierrez, R. Rubio, On multivariate polynomial decomposition, in: V. Ganzha,

E. Vorozhtsov (Eds.), Computer Algebra in Scienti4c Computing-CASC’99, Springer, Berlin, 1999, pp.
463–478.

[9] G.-M. Greuel, G. P4ster, H. SchConemann, SINGULAR 2.0. A computer algebra system for
polynomial computations, Centre for Computer Algebra, University of Kaiserslautern, 2001,
http://www.singular.uni-kl.de.

[10] J. Gutierrez, R. Rubio, J. Yu, D-resultant for rational functions, Proc. Amer. Math. Soc. 2002, to appear.
[11] D. Shannon, M. Sweedler, Using GrCobner bases to determine algebra membership, split surjective

algebra homomorphisms determine birational equivalence, J. Symbol. Comput. 6 (2–3) (1988)
267–273.

http://protect elax protect edef cmr{cmtt}protect xdef U/lasy/m/n/5 {OT1/cmr/m/n/8 }U/lasy/m/n/5 size@update enc@update http://www.singular.uni-kl.de

	Effective computation of singularities of parametric affine curves
	Introduction
	Birational parameterization of curves
	Examples and applications
	References


