
J. LOGIC PROGRAMMING 1994:18:X1-98 81

ON THE RELATIONSHIP BETWEEN INDEXED

GRAMMARS AND LOGIC PROGRAMS

EBERHARD BERTSCH

D This article provides detailed constructions demonstrating that the class of
indexed grammars introduced as a simple extension of context-free gram-
mars has essentially the same expressive power as the class of logic
programs with unary predicates and functions and exactly one variable
symbol.

Some additional considerations are concerned with parsing procedures. a

1. INTRODUCTION

In a comprehensive survey of extant research results [6], Deransart and Maluszyn-
ski relate grammars and logic programs. Their main idea is that the declarative and
procedural readings of a logic program can be complemented by a grammatical
reading, where clauses are considered to be rewrite rules of a grammar. They try to
show that this point of view facilitates the transfer of expertise from logic
programming to other research focusing on or employing grammars and vice versa.

Some examples of such transfer are extensively discussed in that article. In

particular, the well-known class of Van-Wijngaarden grammars can be restricted to
be comparable to definite clause programs. On the other hand, an immediate
extension of logic programs leads to definite clause grammars. Furthermore, there
are various connections between appropriately modified notions of attribute gram-
mars and logic programs.

As an extension of earlier work by the same authors [5], the relationship
between attribute grammars and logic programs is studied in terms of their
respective capabilities to generate valid attributed trees and proof trees.

Related results based on a different notational framework are presented in [lo].
A theoretical treatment of the expressive power of logic programs is contained in

Address correspondence to Eberhard Bertsch, Lehrstuhl Praktische Informatik, Fakultst fiir Mathe-
matik, Ruhr-UniversitLt, D-44780 Bochum, Germany. E-mail: Eberhard.Bertsch@ruba.rz.ruhr-uni-
bochum.dbp.de.

Received May 1992; accepted May 1993.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82410168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

82 E. BERTSCH

[ill. Various publications in this area have also dealt with parsing questions, [141
being an important early example. Many further references can be found in the
book [l] by Abramson and Dahl.

The present paper describes an interesting correspondence for definite logic
programs, all of whose predicate symbols have arity 1, all of whose function
symbols have arity 1, and all of whose clauses contain exactly 1 variable name, say
X. Such programs will be called “unary programs.”

Rather surprisingly, a grammar class with the generative power thus specified
turns out to have been defined and studied over two decades ago. We are referring
to A.V. Aho’s “indexed grammars” [2], which were introduced as simple extensions
of context-free grammars (Chomsky-type-21 to provide some of the facilities
otherwise obtained by means of the more complex context-sensitive grammars
(Chomsky-type-l) 191.

A class of automata which recognize exactly the class of indexed languages was
introduced by Aho in a subsequent article [3]. For the sake of comparison, we
describe the salient features of that class informally in a separate section.

The structure of this article is roughly as follows. We review the definition of
indexed grammars and discuss a simple example. The notion of unary logic
program is made explicit. Then we present a construction which associates a logic
program with each indexed grammar in such a way that goals stand in an
essentially one-to-one relationship with sentential forms. The correctness proof of
this construction is outlined with the necessary amount of detail.

The converse direction of simulation is established by another explicit construc-
tion which is presented and discussed in the subsequent section. Thereby, goals
occurring in computations of unary logic programs are coded in terms of sentential
forms. A one-to-one relationship may be seen to hold if one distinguishes between
sets of proper and auxiliary nonterminal symbols of the grammar so constructed.

Both this distinction and the more basic one between terminal and nonterminal
symbols contribute to a noticeable lack of elegance in the formulation of the main
results. The section which follows takes account of these difficulties and provides a
partial solution by means of a (technically motivated) normal form.

The automata-theoretical counterpart of indexed grammars is then described
and compared to the present discussion in rather informal terms.

The final section gives an outline of a concrete parsing technique for indexed
languages based on the constructions presented before. Possibilities and limitations
of the approach are discussed.

2. DEFINITION OF INDEXED GRAMMARS

An indexedgrammar G is a 5tuple G = (N, T, F, R, S) where N, T, F are alphabets
whose elements are called nonterminals, terminals, and indices (or flags), respec-
tively.

A finite set Rf of index rules A + w (A E N, w E (T U N)*) is associated to each
index SE F. R is a finite set of rewriting rules

A +x,2, . ..x.t,,

whereAEN,x,EN~T,z~EF*,andz,=Eifx~ET(i<m).SENiscalledthe
initial nonterminal.

INDEXED GRAMMARS AND LOGIC PROGRAMS 83

Let M = NF* and K = (A4 U T>* as standard notations throughout this paper.
We write x + ,y for x, y E K if either

(i) x=uAwu,u,v~K, AEN,wEF*, A+x,z ,... x,,,z,~R,
y = u.qz; . . . x,.&p with Z:=E if xiETand z:=ziw forxiEN(i<m)

;) x=wlfw v,u,v~K, AEN,wEF*, fEF, A+x ,... x,,,ER~,
y = L&x,z; . . . x,z$ with Z~=E ifxiETand ti=w forxiEN(i4m).

The reflexive, transitive closure *o of jG combined with the notion of
terminal symbol gives us the language of a grammar

L(G):={wET*lS~Gw}.

To discuss intermediate stages of indexed derivations, we shall make use of the set
of sentential forms

SeF(G) := (WE K/S jc W}

and the set of terminal-free sentential forms

Sent(G) :=&F(G) nM*.

Furthermore, for subsets N’ of N, it is useful to have the following subsets of
Sent(G).

Sent(G, N’) := {WE (N’F*)*lS -G W}.

As an informal explanation of the derivation process in indexed grammars, please
note that an index rule is applicable for rewriting a particular nonterminal if the
leftmost flag (f) associated to that nonterminal designates (labels) the set contain-
ing the index rule (denoted as Rf). Thus, rules which generate flags provide a
simple way of stacking control information for later derivation steps.

In [2], various interesting properties of indexed languages are demonstrated. [3]
gives an automata-theoretic characterization.

An efficient parsing procedure for a subclass characterized in terms of unambi-
guity conditions is presented in [41.

A standard example of a noncontext-free language will serve to illustrate the
core idea: The language L = {a”b”a”ln r 1) is generated by the indexed grammar

G=({~,T,~},(a,bj,{f,g},{~~aTg,T~aTf,T-,~},~)

with index rule sets

Rf={U-+bUa), R,={lJ-+ba).

The flags f serve as a counter of unindexed derivation steps. When T has been
rewritten as U, fs can be taken off again. The additional flag symbol g precludes
premature termination.

3. UNARY LOGIC PROGRAMS

Throughout this paper, we use the notations and definitions of [12] without explicit
reference. Unary (l-ary) terms, atoms, clauses, and programs are defined in the
following straightforward way.

84 E. BER-ISCH

A variable X is a unay term.
If t is a unary term and f is a unary function symbol, then f(t) is a unay term.
We also say that f, t, and the terms and function symbols occurring in t occur in

f(t).
If t is a unary term and p is a unary predicate symbol, then p(t) is a unay

atom.
We also say that p, t, and the terms and function symbols occurring in t OCCUY in

p(t).
For unary atoms A, B,, . . . , B,,

A :- B, , . . . , B,

is a unay clause if the same variable, say X, occurs in all atoms. (The body
B ,, . . . , B, may be empty.>

A unay program is a finite set of unary clauses.
For a given program P, Func(P) and Pred(P) denote the set of function

symbols and predicate symbols, respectively, which occur in the atoms of its
clauses.

To discuss goals, subgoals, and SLD-derivations, we shall use a unique constant
term c. Please note that c is not a component of unary programs. It will occur only
in goals which are processed by applying unary clauses. Given sets Func and Pred
containing unary function and predicate symbols, respectively, every ground atom
has the form

for f,,..., f, E Func, a E Pred (including a(c) as a special case), and every ground
goal has the form

._

.p PI?7 i,“‘,

where P,, . _ . , P,,, are ground atoms (including the empty goal as a special case).
Let us call the set of ground goals based on Func and Pred Ground(Func, Pred)

or simply Ground if the choice of Func and Pred is evident.
Given a unary program P and a definite goal Gl, we define the set Detiv(P, GO

to contain all and only those goals Gl’ which are obtained by an SLD-derivation of
P U {G[l (cf. [12, p. 411) consisting of the sequence of goals GZ = Gl,, GI,, . . . , Gl, =
G1’(0 I n).

The notion of definite program in [12] does not require that each predicate
symbol occur in the head atom of some clause. In our framework of associating
logic programs with grammars, predicate symbols not occurring in any head atom
may be thought to correspond to nonterminal symbols which can only be rewritten
by strings containing terminal symbols. As a practical justification, such predicates
may be implemented by a forward move on input combined with checking for a
particular lexical item. This line of thought is taken up in more detail in the
concluding section.

4. A BRIEF SURVEY OF THE MAIN RESULTS

This paragraph provides an informal view of the correspondence between logic
programs and indexed grammars. In a derivation by means of an indexed grammar,

INDEXED GRAMMARS AND LOGIC PROGRAMS 85

the basic rewriting process is that of context-free productions. Additionally, as in
various other kinds of enhanced context-free grammars, there is a method by which
rewriting may be restricted or controlled. For indexed grammars and languages,
this restriction is achieved by flag lists which are associated to individual nontermi-
nal symbols. If their length were bounded, the expressive power of indexed
languages could readily be shown to be equivalent to that of context-free lan-
guages. Flag lists may become longer or shorter in individual derivation steps. The
derivation process is thus used in a twofold way: for ordinary string derivation and
for addition or subtraction of flags. A significant feature is that entire lists are
passed on in several copies whenever a nonterminal symbol equipped with flags is
expanded into more than one new nonterminal. There is an immediate similarity
between this type of rewriting and the application of clauses in logic programs if we
compare flag lists to nested expressions made out of unary (one-aryl function
symbols. For unary terms to have a ground substitution, there must also be at least
one constant (zero-ary) term available. What corresponds to rewrite rules? Since
flag lists are passed on-either changed or unchanged-they must be modeled by
some kind of parameter. The simplest case of parameter passing is that of an
individual variable symbol occurring identically on the left-hand and right-hand
sides of program clauses. We restrict the class of logic programs to permit exactly
that kind of parameter transmission. Now, rules A 4 BC correspond to clauses
A(X):- B(X),C(X). Rules A + Bf which produce flags are modeled by A(X):-
B(f(X)). Rules A + B in flag sets used for erasing f become A(f(X)):- B(X).
In the construction required to prove Proposition 1, we show that this type of
simulation covers all indexed derivations. The result is clearly much stronger than
usual automata-theoretical theorems, in which the identity of classes of generated
or recognized sets of terminal strings is claimed. Here we show the existence of
bijective mappings between sets of intermediate stages in derivations. The structure
of the respective generation procedures is thus shown to be (almost) exactly the
same. The essence of Proposition 2 and its corollary is that the converse holds as
well. The effects of all unary, one-parameter clauses can be simulated by indexed
rewriting. There are some technical incompatibilities which turn out to be of minor
importance. Others are less straightforward-most notably the special role of
terminal symbols in indexed grammars. Partial solutions to this problem are
offered in a later section.

5. SIMULATING INDEXED GRAMMARS BY LOGIC PROGRAMS

In this section, we describe a simple construction which yields a unique definite
logic program P(G) for a given indexed grammar G. We claim that P(G)
simulates the generative capability of G.

Proposition 1. Let G = (N, T, F, R, S) be an indexed grammar. Then there exists a
unary program P(G) and a bijective mapping

p: M* --) Ground(Func(P(G)), Pred(P(G)))

such that

Iv, . . . w, E Sent(G) (w,EM, 1 <i_<n)

86 E. BER'ISCH

if and only if

/L(w~ . ..wn) ~Deriv(P(G),/.@)).

PROOF. To avoid notational overloading, we distinguish between a bar-mapping p
defined on an alphabet of symbols and flags, a hat-mapping G defined on strings
consisting of single nonterminals and arbitrarily many flags, and a mapping p
defined on concatenations of such strings.

We associate a unique new predicate symbol c(n) to every nonterminal II E N,
and a unique new function symbol p(k) to every flag k E F. We call the set of all
such predicate symbols Pred, and the set of all such function symbols Func.

Please note that we are leaving terminal symbols out of consideration. The
results about smooth grammars in the special section on terminal symbols indicate
the importance of this restriction. A brief discussion of the treatment of terminals
in a parsing framework is given in the final part of the paper.

We construct a bijective mapping

p: M* + Ground(Func, Pred)

by first letting

for si = ak, . . . k, E M and fixed constant c and extending c to p by p(sl.. . s,) =
:- j.xs,>, . . .) jXs,> where si EM (1 I i < n).

As a special case, we let P.(E) be the empty goal (:-).
The decomposition of words in M* is obviously well defined because each S,

starts with a single nonterminal.
We need to consider two kinds of rules. Let us first turn to rewriting rules

r= (A +x,zl . ..x.z,) ER where xi 6 T.

(Rules producing terminal symbols do not need to be considered here because they
lead outside of M*.)

Each zi is composed of individual flag symbols zr,,, . . ., zi, n, or is the empty
string. Then we construct the clause

p(r) =~(A)(X):-p:lZ1,...,prXmZm

where p:cZi (1 I i 2 m) stands for

cL(xi)(x) ifz, = E

or else

ji(Xi)(~(Zi,l)(CL(‘i,~)(..‘CL(‘i.“,)(X).”)))’

Empty right sides of rules r do not require special treatment.
Thus, each nonempty flag sequence is coded by a term containing unary

function symbols. The variable X occurs in each such term at the innermost level
of nesting. On the other hand, index rules

rf=(A -)wl...wn) ERf where fEF,wiEN(l<i<n)

INDEXED GRAMMARS AND LOGIC PROGRAMS 87

lead to the construction of clauses p(r,) of the form

Here, the flag symbol which is used up in applications of the rule rf appears as a
single function symbol in the term on the left-hand side of the corresponding
clause.

We form P(G) by assembling all clauses p(r) and p(r,) so constructed.
To prove the proposition, we have to discuss individual steps of the derivation.

The key to the correctness of our construction is that flag sequences are coded as
terms made up of 1-ary function symbols.

As a basis of the induction, note that p(S) is identical to the initial goal and
derived in 0 steps.

The induction hypothesis is that the if-and-only-if assertion of the proposition
holds under the condition that the number of derivation steps involved in either
the indexed grammar or the logic program is no more than a fixed finite number k.

Then we want to show that a subsequent derivation step in the indexed grammar
leads to a string whose image is also obtained by resolution from the image of the
original string in the logic program. Conversely, we demonstrate that a resolution
step starting with the image of a particular string can only lead to a goal which is
the image of a string derived by one application of some rule of the indexed
grammar from the previous string.

The induction on the number of derivation steps contains a case distinction
depending on whether flags are added or taken off.

Suppose a string x = wlwu (u, v EM*, A EN, w E F”) has been derived in no
more than k steps and is rewritten by a rule r = (A +x,zl.. . x,z,). The result is
(by definition of the rewriting process)

y=ux,z; . ..X.ZkC’

where zj=ziw (1 li<m).
In p.(x), we consider the subgoal fi(Aw). From the induction hypothesis, we get

that for w=w,... w,, (w~EF, 1 <isn)

fi(Aw) =~(A)(~(w,)(...L(w,)(c)...))

is a subgoal of p(x).
Performing a resolution step with the clause p(r), the most general unifier of

L(A)(X) and XA)(L(~~l(...Xw,)(c) . ..>)

is given by substituting the term jXwi)(. . . in.. .> occurring in the latter
atom for X.

It follows that the atoms in the body of p(r) become new subgoals after
substituting the same term for their respective occurrences of X. This gives us
subgoals

cLCxi)(LCzi,l)(FCzi,2)(*-* cL(zi,n,)(l(wl)(...cL(w")(c)...))...)))

for llirm.
Applying our mapping p, the sequence of subgoals j.Xx,zj> (i = 1,. . . , ml results

from adding the function symbols which correspond to the flags of zi to the

88 E. BERTSCH

function symbols already present in b(Aw) for all terms. The predicate symbols
are necessarily the images of xi under ii.

This is exactly what we have just obtained by one resolution step.
On the other hand, if some p(r) constructed from a rule r = (A + xlzl . . . x,z,)

in R is applicable to a subgoal sg whose predicate symbol is necessarily p(A), this
fact is due to the possibility of rewriting A in a string x = wlwu with @(Aw) = sg
and getting y = ux,z’, . . . x,,&u such that the images of all nonterminals and flags
in r are predicate and function symbols occurring in p(r) in the particular order
prescribed by its construction from r. It follows that the images of all flags in zi
(1 5 i I m> are added to the images of the flags in w for the ith new subgoal.

Each x,zi (1 2 i I m) satisfies zi = z,w, and +<xiziw> contains a term made up
of function symbols which are images of the flags in zi and w in that order. The
sequence of subgoals resulting from the resolution step is therefore identical to the
image under p of the string y produced by r. This settles the first case.

The applicability of flag rules presupposes the existence of a particular flag.
Now, if x = UAfiu is reached in k or fewer steps and rr = (A + w1 . . . w,) E R, is
used to derive a string y, the sequence p(x) contains $A)(i&fl(. . . (cl.. .)> by
the induction hypothesis, and the rule p(r,> is indeed applicable. The argument
proceeds as in the previous case by keeping in mind that no flags are added. Thus,
the subgoal sg = i$A)(z(f)(. . .(c>. . . >> is replaced by a sequence of subgoals
whose predicate symbols are exactly the images of the nonterminals wi on the right
side of rf in the same order and whose terms are obtained from the term occurring
in sg by dropping the first function symbol p(f) and its opening and closing
parentheses. Conversely, if p(r,) is applicable at all in some goal gl by virtue of
our construction, then the corresponding string which is mapped on gl by k
contains the flag f as the leftmost symbol of some flag string by the induction
hypothesis, and rr is applicable there. rr produces a string, which in turn is mapped
on the goal resulting from the application of p(r,> in the way just shown.

This completes the case distinction.

6. SIMULATION OF UNARY LOGIC PROGRAMS BY
INDEXED GRAMMARS

The basic idea of this section is that SLD-derivation of goals by means of unary
logic programs can also be performed in an indexed grammar setting. In conjunci-
ton with the previous result, the specific way in which rules and flags of indexed
grammars can be used is thus shown to be essentially equivalent to resolution in
the context of logic programming for an easily characterized class of predicates.

Proposition 2. Let P be a unaly logic program. Single out a predicate symbol rr
occum’ng in the head atom of some clause.

Then there is an indexed grammar G = (N, T, F, R, S>, a subset N’ of N, and a
bijective mapping p: Ground + (N’F*)* such that

gEDeriu(P,:- n(c)) ifandonlyif /3(g) ESent(G,N’).

PROOF. Similarly to the procedure used in showing Proposition 1, we introduce
mappings on an alphabet, on the set of atomic subgoals, and on the set of goals,
built successively on top of each other.

INDEXED GRAMMARS AND LOGIC PROGRAMS 89

We define p to map Bed(P) bijectively into a set ,N’ of symbols and to map
Func(P) bijectively into a set F of flags. Furthermore, p mapping atoms on strings
in N’F” is constructed by letting

&Pi) = R4Sl> . . . P(r,>

for atoms of the form p, = s(t,(t,(. . . (t,(c)). . . >>I such that f,, t,, . . . , t, E FLUX, and
finally, we let

P(:--PI,..., P,t> =&PJ..&pn)

where pi are atoms (1 -< i in).
As a special case, the empty goal maps on the empty string.
This gives us a mapping: /3: Ground + (N’F” >*.
Each string in (N’F*>* is uniquely decomposable into individual symbols and

flags. For-each such item, there is a unique predicate or function symbol mapped
on it by p. We construct the sets of rules and flag rules of an indexed grammar
G(P) as follows: Let a unary program P be given. Suppose clause cl in P has the
following form:

Define in the set of flag rules I?P(~,,,~) a new rule

PCP”) -+Pfl,

in the sets of flag rules RP(~,~,,) (2 I i I 2) new rules

p,cf- c’ 1 -)Pi

and finally, in the set of rules R a new rule

The special case that the left-hand side of cl contains no functionsymbol (p,(X))
is conveniently dealt with by defining no new flag rules and taking p(p,,> instead of
pf’ in the only new rule of R.

Please note that we have introduced additional, auxiliary nonterminals which
are not images of predicate symbols. p;“, p;‘, . . . , p,” are taken as new elements of
the alphabet N.

The set of terminal symbols of the grammar may be any (possibly the empty>
alphabet. The start symbol S is chosen as PCS->.

We begin with the induction by stating that after zero steps of grammatical
derivation, we have S = p(:- n(c)) as the only sentential form of G, and after zero
steps of SLD-resolution, we have :- r(c) as the only goal.

We define Detiu,(P, Gl) as the set of goals reached in no more than k
resolution steps from Gl.

An analogous set Sent,(G(P), N’) is defined to be the set of all sentential forms
WE (N’F” >* that can be reached from S by S =x0 +o x1 . . . -jG x, = W Cm 2 1)
such that no more than k 5 m elements of the sequence x1 . . . x, are contained in
(N’F*)*.

90 E. BERTSCH

In this way, intermediate stages containing nonterminals not in N’ are skipped
in the step count.

As an induction hypothesis, we now assume that the proposition holds for
Deriu,(P :- V(C)) and Sent,(G(P), N’).

Then for a given goal

reached from the initial goal after k or fewer resolution steps, the sentential form
P(G1) is indeed derivable from S in the indexed grammar G(P) and is an element
of Sent,(GW, N’).

Suppose that the next resolution step uses Pl(fi,,(. . . f,, n!~>. . .>> and that,
furthermore, P,(f,,,(. . . f,, .!c>. . .I) unifies with the head of a rule

C(4,1(. *. bqo(q)

For this to be possible, Pi(fi 1(. . . f, .(c). . .I) must have the sequence of function
symbols h,,, I,. . . , ho, 4,, as an initial subsequence of length q. of its own sequence of
function symbols fi, 1,. . . , fi, “,.

Then we know that the resulting goal will have the form

G1’= :-P,(f,,,(...fi;.l(c)...)!,...,

NOW, by construction, the flag rules in G(P) have been defined in such a way that
for .z = qo, the sets &, ,), . . . , Rp(f,, ,) contain rules taking off the indices
h &,,“‘, h,, z and leading to’an auxiliary nonterminal p,“’ specific to that rule.

Furthermore, the rule

adds index symbols at its jth nonterminal in agreement with the individual functioi
symbols h, 1, . . . ,
5 ml.

hj,s, occurring in Pi,(hj,,(...hj,4i(f,,,+I(...fi,.,(C>...)>...>> (1 -<

Therefore, p(G1’) is indeed a sentential form of G(P). Since the intermediate
stages leading to this string contained auxiliary symbols not in N’, the step count i
increased by 1 in both the grammar and the program.

On the other hand, there is no way for a derivation in G(P) to proceed, excq
by using rules constructed as just stated. In particular, an index sequence can on1
be shortened by p(f) if the rule of P which leads to the construction of such a fla
rule has the function symbol f in its head atom at the appropriate position.

INDEXED GRAMMARS AND LOGIC PROGRAMS 91

To make this argument more exact, consider a sequence of derivation steps in
G(P) leading from a string x, all of whose nonterminals are images under p of
predicate symbols, to another string with that property. In general, there will be
intermediate stages whose number depends on the number of flag symbols that
must be taken off. Note that the sentential forms containing auxiliary symbols are
not images of goals. All rules and flag rules applied in this part of the derivation
were constructed from a single clause cl in P.

Based on our knowledge that the proposition holds if the number of clause
applications is no more than a fixed number k, let x be the image of a goal
reached in k or fewer steps.

Putting aside the left and right contexts, A0f,f2f, is rewritten as AlfZ . . .
f n,. . . , Ai_ ,f, . . . f,, (for nonterminals A,, A,, . . . , and flags f,, f2,. . .), and finally,
as y=x,z; . ..x.zk where z; (1 5 j I m) are concatenated from the flags given by
the rewriting rule and the flags f, . . . f, left over from before. By the construction
of p, this sequence of rewriting steps simulates a single application of cl. Since the
induction hypothesis gives us that A, fl f2 . . . f, is /3(g) for some subgoal g, y is
p(g’) for the sequence of subgoals g’ resulting from g if cl is applied in P.

We have performed one resolution step and a sequence of derivation steps in
G(P), one of which contributes to the count in Sent,(G(P>, N’).

The arbitrary choice of a particular predicate symbol in the formulation of
Proposition 2 plays only the minor role of determining a start symbol in the
corresponding grammar. If we are willing to deal with strings generated from other
symbols, the following version of the result may be preferred.

Corollary. Let P be a unaq logic program. Then there is an indexed grammar
G = (N, T, F, R, S>, and an inject&e mapping 5: Ground + M* such that for any
predicate symbol rr, any constant c, and any goal g

gEDetiu(P,:- 5-(c)) if and only if l(:- m(c)) aG l(g).

REMARK. The only difference in the construction is that instead of choosing an
arbitrary predicate symbol which is then mapped on the start symbol, we proceed
by first defining the mapping, and later on picking an arbitrary nonterminal as the
start symbol of the grammar. The notion of sentential form is thus replaced by the
more general transitive closure of the rewrite relation on pairs of strings. By using
injectivity instead of bijectivity, the specifics of our subset technique are hidden.

7. TREATMENT OF TERMINAL SYMBOLS AND RELATED ISSUES

In defining the set of sentential forms which are then related to logic program
goals by a one-to-one mapping, we have excluded all strings containing terminal
symbols from consideration. There are two reasons for doing so. The first and most
fundamental reason is that the essential distinction between terminals and nonter-
minals does not have any obvious analog in terms of predicate symbols used in
logic programs. Strings consisting entirely of terminal symbols are incapable of
being rewritten by the application of grammatical rules. This marks them as final
products of a derivational process. On the logic programming side, goals incapable
of being rewritten (i.e., resolved) signal a failed attempt to derive the empty goal,
which is in turn the only successfully derived final product. To introduce a

92 E. BERTSCH

distinction similar to the one between terminals and nonterminals would require
an artificial and otherwise unmotivated separation between two kinds of atoms of a
logic program.

Apart from this aspect, a less fundamental but challenging problem arises from
the different ways in which flag symbols are consumed in indexed grammar
derivations. To see this, consider the rule set consisting of two rewrite rules

S+Sf and S-a,

where S may be assumed to be the start symbol, f the only available flag, and a
the only terminal symbol. By repeated application of S + Sf, we get sentential
forms

for arbitrarily long sequences of flags. Using the construction presented in the
previous section, the goal corresponding to this by one-to-one mapping has the
form

:-P,(f(..*f(c> 4).

Now, the decisive point is that such sentential forms can be replaced by the
terminal symbol a in a single step because, according to the definition of indexed
rewriting, flag strings are only passed on to occurrences of nonterminals. In unary
logic programs, on the other hand, the terms resulting from an individual resolu-
tion step can only differ by a bounded number of (added or subtracted) function
symbols from the term contained in the subgoal chosen for resolution. This
property is quite straightforward because all terms in program clauses contain the
(same) variable X at their innermost level of nesting. X unifies with all but a
bounded-sized part of the term chosen and is reproduced in the resulting terms. A
simulation of the grammatical derivation step considered here would therefore
require an arbitrarily long sequence of resolution steps, and it is obvious that there
can be no bijectiue mapping having these intermediate stages of resolution as
images.

The purpose of this section is to show that by using a certain normalized version
of indexed grammar, bijective mappings between goals and sentential forms are
again possible.

We introduce the notion of “smooth” indexed grammars. Call an indexed
grammar smooth if the start symbol S never occurs on the right side of any rule or
flag rule and occurs on the left side of only one rule which has the form

S+TI

where T is a nonterminal and I is a flag not generated by any other rule, and if
the set of flag rules (index rules) associated to the flag I consists of rules of the
form

where A is a nonterminal, a is a terminal, and there are no other rules or flag
rules with terminal symbols on their right-hand sides.

We can now claim the following.

Proposition 3. Every indexed language is generated by a smooth indexed grammar.

INDEXED GRAMMARS AND LOGIC PROGRAMS 93

Furthermore, for smooth indexed grammars, an analog of Proposition 1 holds
even if sentential forms containing terminals are included in the domain of the
mapping.

Proposition 4. Let G = (N, T, F, R, S> be a smooth indexed grammar. Then there
exists a wary program P(G) and a bijectiue mapping

p: K -+ Ground(Func(P(G)) , Pred(P(G)))

such that

w,...wn ESeF(G) (w~EMuT, lsisn)

if and only if

,u(w~...w~) EDeriu(P(G),p(S)).

The motivation of the smoothness construction is that rewriting rules with terminal
symbols must somehow be forced to be applicable only after the flag sequences
which they might otherwise delete in a single step have been cancelled flag by flag.
This is achieved by placing a unique bottom symbol at the start of every flag
sequence. Terminal replacements are restricted to the context of a reemergent
bottom flag. To get to that point, nonterminal place-holders for the terminals must
be capable of cancelling all other flags in individual auxiliary derivation steps.

To show Proposition 3, let

G=(N,T,F,R,S)

be an indexed grammar. Choose a new start symbol S’ and construct a rule

S’-+S_L

where I is a new flag symbol. For every terminal t of G, provide a new unique
nonterminal N,. Replace every occurrence of t in some rule or index rule by N,.
Additionally, let N, + N, be an element of the index rule set Rf for all flags f # J_
and all new symbols N,, and let N, + t be an element of the index rule set R i for
all new symbols N,.

As a consequence, for every derivation step

CYN# * at/?

where (Y, p E K, N a nonterminal, 4 E F*, the modified grammar permits a
derivation step

aN+P ==+ aNt +P.

It should be noted that the final flag in $ is always I by construction of the
starting rule. The N, -+ N, rules permit a sequence

As R, contains N, -+ t, c+ I P * at/3 holds. Alternative ways of deriving strings
containing terminals have been excluded by the construction. On the other hand,
every terminal word of the language is generated in this way.

To complete our discussion, we sketch the way in which a one-to-one map-
ping between derivation steps and resolution steps is obtained. This gives us Propo-
sition 4.

94 E. BERTSCH

As stated, derivation steps producing terminal symbols have the general form

aN, _L /3 * atp.

Clearly, we can have clauses in logic programs of the type

P,,(fL (X1):-P,(X).

Considering a smooth indexed grammar constructed as shown, we establish a
bijection which associates, for instance, the terminal symbol t with a predicate
symbol pt. All derivation steps now have the property of consuming at most one
flag. It is thus easy to see that the bijection can be extended to all sentential forms.

Let us now turn our attention to the nonterminal asymmetry.
While the set of terminal-free sentential forms and the set of goals constructed

to simulate them stand in a one-to-one relationship in the proof of our Proposition
1, the analogous relationship induced by the construction in the proof of our
Proposition 2 is weaker.

A one-to-one relationship holds between the set of goals and a specially
characterized subset of the set of sentential forms.

The reason for this difference can be stated quite easily: By definition, indexed
grammars cancel flag symbols one at a time. Clauses which contain terms consist-
ing of two or more function symbols on their left-hand sides must therefore be
simulated by several consecutively applied flag rules.

This situation in turn excludes the possibility of having a bijective mapping with
regard to the entire set of sentential forms. While the difference appears somewhat
superficial, it must obviously be respected unless we want to change the original
concept of an indexed grammar to suit our purposes.

8. AN INFORMAL PRESENTATION OF NESTED STACK AUTOMATA

Shortly after introducing the class of indexed grammars, Aho gave an automata-
theoretic characterization of the corresponding language class in terms of what he
called nested stuck automatu ha) [3]. A discussion of the possible formal relation-
ships between nested stack automata and logic programs is clearly beyond the
scope of this article. In fact, the definition of nsa in [3] alone requires about two
and a half pages of formalism. Nevertheless, it may be helpful to provide a general
survey of the simulation in [3] as a particular kind of low-ievel implementation of
indexed grammars. In contrast, definite clause programs obviously exemplify a very
high level of representation. As an enhanced facility by comparison to those of the
well-known pushdown automata, stack automata are capable of accessing any
symbol previously written on the stack. This access is done by means of a pointer
which can travel up and down the pushdown list one symbol at a time. However,
replacements occur only at the top of the stack. A nested stack is a yet more
powerful memory structure obtained by permitting stacks to be embedded or
nested within stacks to arbitrary depths. Each such substack is delimited by
top-of-stack and bottom-of-stack markers. There are four ways in which a configu-
ration may change:

1. A new stack with a finite number of symbols may be formed between the
presently active (i.e., pointed to> symbol and the symbol below it.

INDEXED GRAMMARS AND LOGIC PROGRAMS 95

2. Empty stacks may be removed.
3. If the active symbol is at the top of some stack, it may be replaced by a finite

length string of symbols, possibly by the empty string.
4. The pointer may be moved both ways with one restriction: It cannot be

moved out of an existing stack at the top symbol. Moving out at the bottom is
permitted.

The usual distinctions between one-way and two-way reading of input symbols
and between deterministic and nondeterministic state changes give us four con-
crete classes of nsa. Aho’s main result in [31 states that L is an indexed language if
and only if L is accepted by some one-way nondeterministic nested stack automa-
ton. Further results deal with closure properties of the classes of languages
generated by variants of nsa. In the present context, we are interested in how an
appropriate nsa recognizes the words generated by a given indexed grammar. We
sketch the construction of the moves corresponding to individual rules of the
grammar. For details, the reader is encouraged to consult the original publication.

At a stack top, changes of the stack corresponding to individual rewriting rules
are possible. In this way, flag symbols, as well as terminal and nonterminal symbols,
are generated in the same order as in the indexed grammar. Terminal symbols
occurring at a stack top and matching the next symbol on the input tape are
consumed and the input pointer is simultaneously moved on. Alternatively, when
reading any particular nonterminal symbol A on the stack, the automaton may go
into a unique state qA associated to that symbol, erase A, and move to the right
while in that state. When the symbol being read is a flag symbol S and there exists
a flag rule A -+B for flag f, the flag symbol is NOT erased, but the state qA is
changed into the neutral state q and a new nested stack containing the initial
string B is created next to the flag symbol. Furthermore, empty stacks can be
erased, and the automaton may move to the left in its neutral state. Finally, flag
symbols at the top of stacks may be erased. This corresponds to the consumption of
flags by terminal symbols in indexed grammars. The important point is that the
entire derivation from a nonterminal rewritten by means of a flag rule is performed
in a separate nested stack placed next to the flag. The flag itself survives that
partial derivation, and is again available when another nonterminal must be
rewritten in the same way.

In contrast to the derivation of sentential forms of an indexed grammar, we
never get more than one copy of a particular flag instance generated by means of a
rewriting rule. Instead, the same flag instance is used for all replacements. In
global terms, this represents an extreme case of structure sharing. It is imple-
mented by (nondeterministically) moving back and forth between symbols to be
replaced and flag instances enabling their replacement. The development of a
more efficient version of this procedure remains as a research problem.

Due to the close simulation of unary logic programs by indexed grammars
presented above, the construction of an equivalent nsa for such programs is quite
straightforward. There appears to be no reasonable alternative to first applying the
procedure given in the proof of our Proposition 2 and subsequently transforming
the indexed grammar as stated in 131. A direct route might provide notational
simplifications, but no advantages in principle.

By considering Aho’s other main theorem, an nsa could be implemented in
terms of unary logic programs. In that context, there would be no resultant

96 E. BERTSCH

separation of various rule sets, the analogous distinction being whether function
symbols occur on the left-hand or right-hand side of a clause.

9. DISCUSSION OF PARSING QUESTIONS AND
CONCLUDING REMARKS

The relationships which exist between the set of derivations in some indexed
grammar G and the set of goals obtained by applying clauses of an appropriate
logic program to a unique initial goal have been presented and discussed so far
without consideration of the grammar-specific role of terminal symbols as distin-
guished from nonterminal symbols.

It has been felt that modifications of the concept of logic program aiming at
some kind of analog of this distinction would be artificial. Nevertheless, it appears
to be an interesting problem to what extent the class of indexed languages is
affected by the results of this article.

While the focus of this paper has been on logic programs as such, rather than on
any of the extant PROLOG-based grammar formalisms [l] which are in turn
compiled or interpreted to provide parsers for their languages, it is worth noting
that P(G) of Proposition 1 can also be easily enhanced to serve as a parser for
L(G). In that sense, indexed grammars appear to be natural candidates for
treatment in a logic programming framework.

The technique is, in fact, fairly standard.
Given an indexed grammar G, the first step would be the replacement of

terminal symbols t in all rules by uniquely associated new nonterminals N(t). Let
us call the resulting grammar G’. Then the construction yielding a unary program
P(G’) is used. Quite obviously, the predicate symbols ji(N(t)) do not occur in the
head of any clause. Without wanting to get into technical details at this point, the
subsequent development essentially requires two additional arguments for each
predicate, giving us ternary (3-ary) instead of unary predicate symbols. Generally,

A(t,):-B,(t,),...,B,(t,)

is transformed into

In the case of empty bodies, L is taken instead of L,,. This provides for the case of
e-productions. Furthermore, for all terminals t, we need a clause of the form

jZ(N(t)):-check(L,,t,L,)

where goals check(L,, t, L,) are defined to succeed if the first argument is a list,
the second is its head, and the third is its tail. check is usually available as a built-in
predicate (called “C”, for example) in PROLOG systems. Instead of :- y(S)(c) as
the initial goal, we now have

:- p(S) (c, TerminalString, [1)

provided that TerrninalStting is instantiated to a list of terminals.
To demonstrate this procedure, we take the example grammar shown before.

The terminal symbols a and b are replaced by nonterminals A and B in all rules
and flag rules. With function symbols f and g and predicate symbols S, T, U, A, B,

NDEXED GRAMMARS AND LOGIC PROGRAMS 97

the set of clauses P(G’) may be written as

S(X):-A(X),T(g(X)). T(X):-A(X),T(f(X)). T(X):-U(X).

U(f(X)):-B(X),U(X),A(X). U(g(X)):-B(X),A(X).

The above augmentation yields S(X, L,,, L):-A(X, L,,, L,), T@(X), L,, L), and
likewise for the other clauses of P(G’).

A(X, L,,, L , > :- check(L,,.a, L, > and B(X, L,,, L, I:- check(L,, b, L, > are added
to deal with terminal symbols. Please note that the argument X is superfluous in
these two rules. It is there because of the uniform treatment of all predicates in the
construction of Proposition 1.

The construction which leads to the simulation of unary logic programs P by
indexed grammars has the property that SLD-refutations in P correspond to the
derivation of E in G. As stated before, the existence of a refutation is thus reduced
to a parsing problem.

It is admittedly hard to assess the practical usefulness of the techniques
presented here. As an immediate observation, what we do have is a rare case of
easy implementability for a well-known type of controlled context-free grammar. In
[4], we showed that a simply stated unambiguity condition provides fast parsing for
indexed grammars. It is to be expected that testable sufficient conditions for
unambiguity will lead to optimized implementation of corresponding parsers.
Beyond that, fast processing-even in terms of orders of magnitude-remains a
difficult research problem. In their article on parsing and deduction [14], F.C.N.
Pereira and D.H.D. Warren discuss a mixed top-down bottom-up (elsewhere called
yo-yo [8]) strategy that follows Earley’s [7] context-free parsing concept. In spite of
the inherent efficiency of that procedure, its application to definite clauses appears
already too general to transfer favorable time bounds. In fact, they feel compelled
to state that “it is not at all obvious that grammar formalisms based on unification
can be parsed within reasonable bounds of time and space.” Nevertheless, they are
able to present interesting estimates for the complexity of individual deduction
steps and checks.

The extensive comments and suggestions of three reviewers are gratefully acknowledged. The corollary

to Proposition 2 was, in fact. first formulated by one of them. Special thanks are due to the area editor,
Veronica Dahl, for substantial assistance in preparing the revised version.

REFERENCES

1. Abramson, H. and Dahl, V., Logic Grammars, Springer, 1989.
2. Aho, A. V., Indexed Grammars-An Extension of Context-Free Grammars, J. Assoc.

Comput. Mach. 15:647-671 (1968).
3. Aho, A. V., Nested Stack Automata, .I. Assoc. Comput. Mach. 16:383-406 (1969).

4. Bertsch, E., Two Thoughts on Fast Recognition of Indexed Languages, Information and
Control 29:381-384 (197.5).

5. Deransart, P. and Maluszynski, J., Relating Logic Programs and Attribute Grammars, .I.
Logic Programming 1:119-225 (1985).

6. Deransart, P. and Maluszynski, J., What Kind of Grammars are Logic Programs?, in:
Saint-Dizier, P. and Szpakowicz, S. (eds.), Logic and Logic Grammars for Language
Processing, Ellis Horwood, 1990, pp. 29-55.

98 E. BERTSCH

7.

8.

9.

10.

11.

12.
13.

14.

1.5.

Earley, J., An Efficient Context-Free Parsing Algorithm, Comm. ACM 13:94-102
(1970).
Fisher, A. J., A “YO-YO” Parsing Algorithm for a Large Class of Van Wijngaarden
Grammars, Acta Informatica 29:461-472 (1992).
Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.
Isakowitz, T., Can We Transform Logic Programs into Attribute Grammars, Znforma-
tique Theorique et Applications 25:499-543 (1991).
Kolaitis, P. G., The Expressive Power of Stratified Logic Programs, Information and
Computation 90:50-66 (1991).
Lloyd, J. W., Foundations of Logic Programming, Springer, 1987.
Pereira, F. and Warren, D. H. D., Definite Clause Grammar for Language Analysis,
Artificial Zntelligence 13:231-278 (1980).
Pereira, F. and Warren, D. H. D., Parsing as Deduction, in Proceedings of the 1983
Conference of the Association for Computational Linguistics, pp. 137-144.
Warren, D. S., Memoing for Logic Programs, Comm. ACM 35:93-111 (1992).

