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ON THE RELATIONSHIP BETWEEN INDEXED 

GRAMMARS AND LOGIC PROGRAMS 

EBERHARD BERTSCH 

D This article provides detailed constructions demonstrating that the class of 
indexed grammars introduced as a simple extension of context-free gram- 
mars has essentially the same expressive power as the class of logic 
programs with unary predicates and functions and exactly one variable 
symbol. 

Some additional considerations are concerned with parsing procedures. a 

1. INTRODUCTION 

In a comprehensive survey of extant research results [6], Deransart and Maluszyn- 
ski relate grammars and logic programs. Their main idea is that the declarative and 
procedural readings of a logic program can be complemented by a grammatical 
reading, where clauses are considered to be rewrite rules of a grammar. They try to 
show that this point of view facilitates the transfer of expertise from logic 
programming to other research focusing on or employing grammars and vice versa. 

Some examples of such transfer are extensively discussed in that article. In 

particular, the well-known class of Van-Wijngaarden grammars can be restricted to 
be comparable to definite clause programs. On the other hand, an immediate 
extension of logic programs leads to definite clause grammars. Furthermore, there 
are various connections between appropriately modified notions of attribute gram- 
mars and logic programs. 

As an extension of earlier work by the same authors [5], the relationship 
between attribute grammars and logic programs is studied in terms of their 
respective capabilities to generate valid attributed trees and proof trees. 

Related results based on a different notational framework are presented in [lo]. 
A theoretical treatment of the expressive power of logic programs is contained in 
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[ill. Various publications in this area have also dealt with parsing questions, [141 
being an important early example. Many further references can be found in the 
book [l] by Abramson and Dahl. 

The present paper describes an interesting correspondence for definite logic 
programs, all of whose predicate symbols have arity 1, all of whose function 
symbols have arity 1, and all of whose clauses contain exactly 1 variable name, say 
X. Such programs will be called “unary programs.” 

Rather surprisingly, a grammar class with the generative power thus specified 
turns out to have been defined and studied over two decades ago. We are referring 
to A.V. Aho’s “indexed grammars” [2], which were introduced as simple extensions 
of context-free grammars (Chomsky-type-21 to provide some of the facilities 
otherwise obtained by means of the more complex context-sensitive grammars 
(Chomsky-type-l) 191. 

A class of automata which recognize exactly the class of indexed languages was 
introduced by Aho in a subsequent article [3]. For the sake of comparison, we 
describe the salient features of that class informally in a separate section. 

The structure of this article is roughly as follows. We review the definition of 
indexed grammars and discuss a simple example. The notion of unary logic 
program is made explicit. Then we present a construction which associates a logic 
program with each indexed grammar in such a way that goals stand in an 
essentially one-to-one relationship with sentential forms. The correctness proof of 
this construction is outlined with the necessary amount of detail. 

The converse direction of simulation is established by another explicit construc- 
tion which is presented and discussed in the subsequent section. Thereby, goals 
occurring in computations of unary logic programs are coded in terms of sentential 
forms. A one-to-one relationship may be seen to hold if one distinguishes between 
sets of proper and auxiliary nonterminal symbols of the grammar so constructed. 

Both this distinction and the more basic one between terminal and nonterminal 
symbols contribute to a noticeable lack of elegance in the formulation of the main 
results. The section which follows takes account of these difficulties and provides a 
partial solution by means of a (technically motivated) normal form. 

The automata-theoretical counterpart of indexed grammars is then described 
and compared to the present discussion in rather informal terms. 

The final section gives an outline of a concrete parsing technique for indexed 
languages based on the constructions presented before. Possibilities and limitations 
of the approach are discussed. 

2. DEFINITION OF INDEXED GRAMMARS 

An indexedgrammar G is a 5tuple G = (N, T, F, R, S) where N, T, F are alphabets 
whose elements are called nonterminals, terminals, and indices (or flags), respec- 
tively. 

A finite set Rf of index rules A + w (A E N, w E (T U N)* ) is associated to each 
index SE F. R is a finite set of rewriting rules 

A +x,2, . ..x.t,, 

whereAEN,x,EN~T,z~EF*,andz,=Eifx~ET(i<m).SENiscalledthe 
initial nonterminal. 
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Let M = NF* and K = (A4 U T>* as standard notations throughout this paper. 
We write x + ,y for x, y E K if either 

(i) x=uAwu,u,v~K, AEN,wEF*, A+x,z ,... x,,,z,~R, 
y = u.qz; . . . x,.&p with Z:=E if xiETand z:=ziw forxiEN(i<m) 

;) x=wlfw v,u,v~K, AEN,wEF*, fEF, A+x ,... x,,,ER~, 
y = L&x,z; . . . x,z$ with Z~=E ifxiETand ti=w forxiEN(i4m). 

The reflexive, transitive closure *o of jG combined with the notion of 
terminal symbol gives us the language of a grammar 

L(G):={wET*lS~Gw}. 

To discuss intermediate stages of indexed derivations, we shall make use of the set 
of sentential forms 

SeF(G) := (WE K/S jc W} 

and the set of terminal-free sentential forms 

Sent(G) :=&F(G) nM*. 

Furthermore, for subsets N’ of N, it is useful to have the following subsets of 
Sent(G). 

Sent(G, N’) := {WE (N’F*)*lS -G W}. 

As an informal explanation of the derivation process in indexed grammars, please 
note that an index rule is applicable for rewriting a particular nonterminal if the 
leftmost flag (f) associated to that nonterminal designates (labels) the set contain- 
ing the index rule (denoted as Rf). Thus, rules which generate flags provide a 
simple way of stacking control information for later derivation steps. 

In [2], various interesting properties of indexed languages are demonstrated. [3] 
gives an automata-theoretic characterization. 

An efficient parsing procedure for a subclass characterized in terms of unambi- 
guity conditions is presented in [41. 

A standard example of a noncontext-free language will serve to illustrate the 
core idea: The language L = {a”b”a”ln r 1) is generated by the indexed grammar 

G=({~,T,~},(a,bj,{f,g},{~~aTg,T~aTf,T-,~},~) 

with index rule sets 

Rf={U-+bUa), R,={lJ-+ba). 

The flags f serve as a counter of unindexed derivation steps. When T has been 
rewritten as U, fs can be taken off again. The additional flag symbol g precludes 
premature termination. 

3. UNARY LOGIC PROGRAMS 

Throughout this paper, we use the notations and definitions of [12] without explicit 
reference. Unary (l-ary) terms, atoms, clauses, and programs are defined in the 
following straightforward way. 
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A variable X is a unay term. 
If t is a unary term and f is a unary function symbol, then f(t) is a unay term. 
We also say that f, t, and the terms and function symbols occurring in t occur in 

f(t). 
If t is a unary term and p is a unary predicate symbol, then p(t) is a unay 

atom. 
We also say that p, t, and the terms and function symbols occurring in t OCCUY in 

p(t). 
For unary atoms A, B,, . . . , B,, 

A :- B, , . . . , B, 

is a unay clause if the same variable, say X, occurs in all atoms. (The body 
B ,, . . . , B, may be empty.> 

A unay program is a finite set of unary clauses. 
For a given program P, Func(P) and Pred(P) denote the set of function 

symbols and predicate symbols, respectively, which occur in the atoms of its 
clauses. 

To discuss goals, subgoals, and SLD-derivations, we shall use a unique constant 
term c. Please note that c is not a component of unary programs. It will occur only 
in goals which are processed by applying unary clauses. Given sets Func and Pred 
containing unary function and predicate symbols, respectively, every ground atom 
has the form 

for f,,..., f, E Func, a E Pred (including a(c) as a special case), and every ground 
goal has the form 

._ 

.p PI?7 i,“‘, 

where P,, . _ . , P,,, are ground atoms (including the empty goal as a special case). 
Let us call the set of ground goals based on Func and Pred Ground(Func, Pred) 

or simply Ground if the choice of Func and Pred is evident. 
Given a unary program P and a definite goal Gl, we define the set Detiv( P, GO 

to contain all and only those goals Gl’ which are obtained by an SLD-derivation of 
P U {G[l (cf. [12, p. 411) consisting of the sequence of goals GZ = Gl,, GI,, . . . , Gl, = 
G1’(0 I n). 

The notion of definite program in [12] does not require that each predicate 
symbol occur in the head atom of some clause. In our framework of associating 
logic programs with grammars, predicate symbols not occurring in any head atom 
may be thought to correspond to nonterminal symbols which can only be rewritten 
by strings containing terminal symbols. As a practical justification, such predicates 
may be implemented by a forward move on input combined with checking for a 
particular lexical item. This line of thought is taken up in more detail in the 
concluding section. 

4. A BRIEF SURVEY OF THE MAIN RESULTS 

This paragraph provides an informal view of the correspondence between logic 
programs and indexed grammars. In a derivation by means of an indexed grammar, 
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the basic rewriting process is that of context-free productions. Additionally, as in 
various other kinds of enhanced context-free grammars, there is a method by which 
rewriting may be restricted or controlled. For indexed grammars and languages, 
this restriction is achieved by flag lists which are associated to individual nontermi- 
nal symbols. If their length were bounded, the expressive power of indexed 
languages could readily be shown to be equivalent to that of context-free lan- 
guages. Flag lists may become longer or shorter in individual derivation steps. The 
derivation process is thus used in a twofold way: for ordinary string derivation and 
for addition or subtraction of flags. A significant feature is that entire lists are 
passed on in several copies whenever a nonterminal symbol equipped with flags is 
expanded into more than one new nonterminal. There is an immediate similarity 
between this type of rewriting and the application of clauses in logic programs if we 
compare flag lists to nested expressions made out of unary (one-aryl function 
symbols. For unary terms to have a ground substitution, there must also be at least 
one constant (zero-ary) term available. What corresponds to rewrite rules? Since 
flag lists are passed on-either changed or unchanged-they must be modeled by 
some kind of parameter. The simplest case of parameter passing is that of an 
individual variable symbol occurring identically on the left-hand and right-hand 
sides of program clauses. We restrict the class of logic programs to permit exactly 
that kind of parameter transmission. Now, rules A 4 BC correspond to clauses 
A(X):- B(X),C(X). Rules A + Bf which produce flags are modeled by A(X):- 
B(f(X)). Rules A + B in flag sets used for erasing f become A(f(X)):- B(X). 
In the construction required to prove Proposition 1, we show that this type of 
simulation covers all indexed derivations. The result is clearly much stronger than 
usual automata-theoretical theorems, in which the identity of classes of generated 
or recognized sets of terminal strings is claimed. Here we show the existence of 
bijective mappings between sets of intermediate stages in derivations. The structure 
of the respective generation procedures is thus shown to be (almost) exactly the 
same. The essence of Proposition 2 and its corollary is that the converse holds as 
well. The effects of all unary, one-parameter clauses can be simulated by indexed 
rewriting. There are some technical incompatibilities which turn out to be of minor 
importance. Others are less straightforward-most notably the special role of 
terminal symbols in indexed grammars. Partial solutions to this problem are 
offered in a later section. 

5. SIMULATING INDEXED GRAMMARS BY LOGIC PROGRAMS 

In this section, we describe a simple construction which yields a unique definite 
logic program P(G) for a given indexed grammar G. We claim that P(G) 
simulates the generative capability of G. 

Proposition 1. Let G = (N, T, F, R, S) be an indexed grammar. Then there exists a 
unary program P(G) and a bijective mapping 

p: M* --) Ground( Func( P( G)), Pred( P( G))) 

such that 

Iv, . . . w, E Sent(G) (w,EM, 1 <i_<n) 
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if and only if 

/L(w~ . ..wn) ~Deriv(P(G),/.@)). 

PROOF. To avoid notational overloading, we distinguish between a bar-mapping p 
defined on an alphabet of symbols and flags, a hat-mapping G defined on strings 
consisting of single nonterminals and arbitrarily many flags, and a mapping p 
defined on concatenations of such strings. 

We associate a unique new predicate symbol c(n) to every nonterminal II E N, 
and a unique new function symbol p(k) to every flag k E F. We call the set of all 
such predicate symbols Pred, and the set of all such function symbols Func. 

Please note that we are leaving terminal symbols out of consideration. The 
results about smooth grammars in the special section on terminal symbols indicate 
the importance of this restriction. A brief discussion of the treatment of terminals 
in a parsing framework is given in the final part of the paper. 

We construct a bijective mapping 

p: M* + Ground( Func, Pred) 

by first letting 

for si = ak, . . . k, E M and fixed constant c and extending c to p by p(sl.. . s,) = 
:- j.xs,>, . . .) jXs,> where si EM (1 I i < n). 

As a special case, we let P.(E) be the empty goal (:- ). 
The decomposition of words in M* is obviously well defined because each S, 

starts with a single nonterminal. 
We need to consider two kinds of rules. Let us first turn to rewriting rules 

r= (A +x,zl . ..x.z,) ER where xi 6 T. 

(Rules producing terminal symbols do not need to be considered here because they 
lead outside of M*.) 

Each zi is composed of individual flag symbols zr,,, . . ., zi, n, or is the empty 
string. Then we construct the clause 

p(r) =~(A)(X):-p:lZ1,...,prXmZm 

where p:cZi (1 I i 2 m) stands for 

cL(xi)(x) ifz, = E 

or else 

ji(Xi)( ~(Zi,l)(CL(‘i,~)(..‘CL(‘i.“,)(X).”)))’ 

Empty right sides of rules r do not require special treatment. 
Thus, each nonempty flag sequence is coded by a term containing unary 

function symbols. The variable X occurs in each such term at the innermost level 
of nesting. On the other hand, index rules 

rf=(A -)wl...wn) ERf where fEF,wiEN(l<i<n) 
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lead to the construction of clauses p(r,) of the form 

Here, the flag symbol which is used up in applications of the rule rf appears as a 
single function symbol in the term on the left-hand side of the corresponding 
clause. 

We form P(G) by assembling all clauses p(r) and p(r,) so constructed. 
To prove the proposition, we have to discuss individual steps of the derivation. 

The key to the correctness of our construction is that flag sequences are coded as 
terms made up of 1-ary function symbols. 

As a basis of the induction, note that p(S) is identical to the initial goal and 
derived in 0 steps. 

The induction hypothesis is that the if-and-only-if assertion of the proposition 
holds under the condition that the number of derivation steps involved in either 
the indexed grammar or the logic program is no more than a fixed finite number k. 

Then we want to show that a subsequent derivation step in the indexed grammar 
leads to a string whose image is also obtained by resolution from the image of the 
original string in the logic program. Conversely, we demonstrate that a resolution 
step starting with the image of a particular string can only lead to a goal which is 
the image of a string derived by one application of some rule of the indexed 
grammar from the previous string. 

The induction on the number of derivation steps contains a case distinction 
depending on whether flags are added or taken off. 

Suppose a string x = wlwu (u, v EM*, A EN, w E F”) has been derived in no 
more than k steps and is rewritten by a rule r = (A +x,zl.. . x,z,). The result is 
(by definition of the rewriting process) 

y=ux,z; . ..X.ZkC’ 

where zj=ziw (1 li<m). 
In p.(x), we consider the subgoal fi(Aw). From the induction hypothesis, we get 

that for w=w,... w,, (w~EF, 1 <isn) 

fi(Aw) =~(A)(~(w,)(...L(w,)(c)...)) 

is a subgoal of p(x). 
Performing a resolution step with the clause p(r), the most general unifier of 

L(A)(X) and XA)( L(~~l(...Xw,)(c) . ..>) 

is given by substituting the term jXwi)(. . . in.. .> occurring in the latter 
atom for X. 

It follows that the atoms in the body of p(r) become new subgoals after 
substituting the same term for their respective occurrences of X. This gives us 
subgoals 

cLCxi)( LCzi,l)( FCzi,2)(*-* cL(zi,n,)(l(wl)(...cL(w")(c)...))...))) 

for llirm. 
Applying our mapping p, the sequence of subgoals j.Xx,zj> (i = 1,. . . , ml results 

from adding the function symbols which correspond to the flags of zi to the 
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function symbols already present in b(Aw) for all terms. The predicate symbols 
are necessarily the images of xi under ii. 

This is exactly what we have just obtained by one resolution step. 
On the other hand, if some p(r) constructed from a rule r = (A + xlzl . . . x,z,) 

in R is applicable to a subgoal sg whose predicate symbol is necessarily p(A), this 
fact is due to the possibility of rewriting A in a string x = wlwu with @( Aw) = sg 
and getting y = ux,z’, . . . x,,&u such that the images of all nonterminals and flags 
in r are predicate and function symbols occurring in p(r) in the particular order 
prescribed by its construction from r. It follows that the images of all flags in zi 
(1 5 i I m> are added to the images of the flags in w for the ith new subgoal. 

Each x,zi (1 2 i I m) satisfies zi = z,w, and +<xiziw> contains a term made up 
of function symbols which are images of the flags in zi and w in that order. The 
sequence of subgoals resulting from the resolution step is therefore identical to the 
image under p of the string y produced by r. This settles the first case. 

The applicability of flag rules presupposes the existence of a particular flag. 
Now, if x = UAfiu is reached in k or fewer steps and rr = (A + w1 . . . w,) E R, is 
used to derive a string y, the sequence p(x) contains $A)( i&fl( . . . (cl.. . )> by 
the induction hypothesis, and the rule p(r,> is indeed applicable. The argument 
proceeds as in the previous case by keeping in mind that no flags are added. Thus, 
the subgoal sg = i$A)(z(f)(. . .(c>. . . >> is replaced by a sequence of subgoals 
whose predicate symbols are exactly the images of the nonterminals wi on the right 
side of rf in the same order and whose terms are obtained from the term occurring 
in sg by dropping the first function symbol p(f) and its opening and closing 
parentheses. Conversely, if p(r,) is applicable at all in some goal gl by virtue of 
our construction, then the corresponding string which is mapped on gl by k 
contains the flag f as the leftmost symbol of some flag string by the induction 
hypothesis, and rr is applicable there. rr produces a string, which in turn is mapped 
on the goal resulting from the application of p(r,> in the way just shown. 

This completes the case distinction. 

6. SIMULATION OF UNARY LOGIC PROGRAMS BY 
INDEXED GRAMMARS 

The basic idea of this section is that SLD-derivation of goals by means of unary 
logic programs can also be performed in an indexed grammar setting. In conjunci- 
ton with the previous result, the specific way in which rules and flags of indexed 
grammars can be used is thus shown to be essentially equivalent to resolution in 
the context of logic programming for an easily characterized class of predicates. 

Proposition 2. Let P be a unaly logic program. Single out a predicate symbol rr 
occum’ng in the head atom of some clause. 

Then there is an indexed grammar G = (N, T, F, R, S>, a subset N’ of N, and a 
bijective mapping p: Ground + (N’F* )* such that 

gEDeriu(P,:- n(c)) ifandonlyif /3(g) ESent(G,N’). 

PROOF. Similarly to the procedure used in showing Proposition 1, we introduce 
mappings on an alphabet, on the set of atomic subgoals, and on the set of goals, 
built successively on top of each other. 
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We define p to map Bed(P) bijectively into a set ,N’ of symbols and to map 
Func(P) bijectively into a set F of flags. Furthermore, p mapping atoms on strings 
in N’F” is constructed by letting 

&Pi) = R4Sl> . . . P(r,> 

for atoms of the form p, = s(t,(t,( . . . (t,(c)). . . >>I such that f,, t,, . . . , t, E FLUX, and 
finally, we let 

P( :--PI,..., P,t> =&PJ..&pn) 

where pi are atoms (1 -< i in). 
As a special case, the empty goal maps on the empty string. 
This gives us a mapping: /3: Ground + (N’F” >*. 
Each string in (N’F*>* is uniquely decomposable into individual symbols and 

flags. For-each such item, there is a unique predicate or function symbol mapped 
on it by p. We construct the sets of rules and flag rules of an indexed grammar 
G(P) as follows: Let a unary program P be given. Suppose clause cl in P has the 
following form: 

Define in the set of flag rules I?P(~,,,~) a new rule 

PCP”) -+Pfl, 

in the sets of flag rules RP(~,~,,) (2 I i I 2) new rules 

p,cf- c’ 1 -)Pi 

and finally, in the set of rules R a new rule 

The special case that the left-hand side of cl contains no functionsymbol (p,(X)) 
is conveniently dealt with by defining no new flag rules and taking p(p,,> instead of 
pf’ in the only new rule of R. 

Please note that we have introduced additional, auxiliary nonterminals which 
are not images of predicate symbols. p;“, p;‘, . . . , p,” are taken as new elements of 
the alphabet N. 

The set of terminal symbols of the grammar may be any (possibly the empty> 
alphabet. The start symbol S is chosen as PCS->. 

We begin with the induction by stating that after zero steps of grammatical 
derivation, we have S = p( :- n(c)) as the only sentential form of G, and after zero 
steps of SLD-resolution, we have :- r(c) as the only goal. 

We define Detiu,(P, Gl) as the set of goals reached in no more than k 
resolution steps from Gl. 

An analogous set Sent,(G(P), N’) is defined to be the set of all sentential forms 
WE (N’F” >* that can be reached from S by S =x0 +o x1 . . . -jG x, = W Cm 2 1) 
such that no more than k 5 m elements of the sequence x1 . . . x, are contained in 
(N’F*)*. 
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In this way, intermediate stages containing nonterminals not in N’ are skipped 
in the step count. 

As an induction hypothesis, we now assume that the proposition holds for 
Deriu,(P :- V(C)) and Sent,(G(P), N’). 

Then for a given goal 

reached from the initial goal after k or fewer resolution steps, the sentential form 
P(G1) is indeed derivable from S in the indexed grammar G(P) and is an element 
of Sent,(GW, N’). 

Suppose that the next resolution step uses Pl(fi,,(. . . f,, n!~>. . .>> and that, 
furthermore, P,(f,,,(. . . f,, .!c>. . .I) unifies with the head of a rule 

C(4,1(. *. bqo(q) 

For this to be possible, Pi(fi 1(. . . f, .(c). . .I) must have the sequence of function 
symbols h,,, I,. . . , ho, 4,, as an initial subsequence of length q. of its own sequence of 
function symbols fi, 1,. . . , fi, “,. 

Then we know that the resulting goal will have the form 

G1’= :-P,(f,,,(...fi;.l(c)...)!,..., 

NOW, by construction, the flag rules in G(P) have been defined in such a way that 
for .z = qo, the sets &, ,), . . . , Rp(f,, ,) contain rules taking off the indices 
h &,,“‘, h,, z and leading to’an auxiliary nonterminal p,“’ specific to that rule. 

Furthermore, the rule 

adds index symbols at its jth nonterminal in agreement with the individual functioi 
symbols h, 1, . . . , 
5 ml. 

hj,s, occurring in Pi,(hj,,(...hj,4i(f,,,+I(...fi,.,(C>...)>...>> (1 -< 

Therefore, p(G1’) is indeed a sentential form of G(P). Since the intermediate 
stages leading to this string contained auxiliary symbols not in N’, the step count i 
increased by 1 in both the grammar and the program. 

On the other hand, there is no way for a derivation in G(P) to proceed, excq 
by using rules constructed as just stated. In particular, an index sequence can on1 
be shortened by p(f) if the rule of P which leads to the construction of such a fla 
rule has the function symbol f in its head atom at the appropriate position. 
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To make this argument more exact, consider a sequence of derivation steps in 
G(P) leading from a string x, all of whose nonterminals are images under p of 
predicate symbols, to another string with that property. In general, there will be 
intermediate stages whose number depends on the number of flag symbols that 
must be taken off. Note that the sentential forms containing auxiliary symbols are 
not images of goals. All rules and flag rules applied in this part of the derivation 
were constructed from a single clause cl in P. 

Based on our knowledge that the proposition holds if the number of clause 
applications is no more than a fixed number k, let x be the image of a goal 
reached in k or fewer steps. 

Putting aside the left and right contexts, A0f,f2f, is rewritten as AlfZ . . . 
f n,. . . , Ai_ ,f, . . . f,, (for nonterminals A,, A,, . . . , and flags f,, f2,. . . ), and finally, 
as y=x,z; . ..x.zk where z; (1 5 j I m) are concatenated from the flags given by 
the rewriting rule and the flags f, . . . f, left over from before. By the construction 
of p, this sequence of rewriting steps simulates a single application of cl. Since the 
induction hypothesis gives us that A, fl f2 . . . f, is /3(g) for some subgoal g, y is 
p(g’) for the sequence of subgoals g’ resulting from g if cl is applied in P. 

We have performed one resolution step and a sequence of derivation steps in 
G(P), one of which contributes to the count in Sent,(G(P>, N’). 

The arbitrary choice of a particular predicate symbol in the formulation of 
Proposition 2 plays only the minor role of determining a start symbol in the 
corresponding grammar. If we are willing to deal with strings generated from other 
symbols, the following version of the result may be preferred. 

Corollary. Let P be a unaq logic program. Then there is an indexed grammar 
G = (N, T, F, R, S>, and an inject&e mapping 5: Ground + M* such that for any 
predicate symbol rr, any constant c, and any goal g 

gEDetiu(P,:- 5-(c)) if and only if l( :- m(c)) aG l(g). 

REMARK. The only difference in the construction is that instead of choosing an 
arbitrary predicate symbol which is then mapped on the start symbol, we proceed 
by first defining the mapping, and later on picking an arbitrary nonterminal as the 
start symbol of the grammar. The notion of sentential form is thus replaced by the 
more general transitive closure of the rewrite relation on pairs of strings. By using 
injectivity instead of bijectivity, the specifics of our subset technique are hidden. 

7. TREATMENT OF TERMINAL SYMBOLS AND RELATED ISSUES 

In defining the set of sentential forms which are then related to logic program 
goals by a one-to-one mapping, we have excluded all strings containing terminal 
symbols from consideration. There are two reasons for doing so. The first and most 
fundamental reason is that the essential distinction between terminals and nonter- 
minals does not have any obvious analog in terms of predicate symbols used in 
logic programs. Strings consisting entirely of terminal symbols are incapable of 
being rewritten by the application of grammatical rules. This marks them as final 
products of a derivational process. On the logic programming side, goals incapable 
of being rewritten (i.e., resolved) signal a failed attempt to derive the empty goal, 
which is in turn the only successfully derived final product. To introduce a 
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distinction similar to the one between terminals and nonterminals would require 
an artificial and otherwise unmotivated separation between two kinds of atoms of a 
logic program. 

Apart from this aspect, a less fundamental but challenging problem arises from 
the different ways in which flag symbols are consumed in indexed grammar 
derivations. To see this, consider the rule set consisting of two rewrite rules 

S+Sf and S-a, 

where S may be assumed to be the start symbol, f the only available flag, and a 
the only terminal symbol. By repeated application of S + Sf, we get sentential 
forms 

for arbitrarily long sequences of flags. Using the construction presented in the 
previous section, the goal corresponding to this by one-to-one mapping has the 
form 

:-P,(f( ..*f(c> 4). 

Now, the decisive point is that such sentential forms can be replaced by the 
terminal symbol a in a single step because, according to the definition of indexed 
rewriting, flag strings are only passed on to occurrences of nonterminals. In unary 
logic programs, on the other hand, the terms resulting from an individual resolu- 
tion step can only differ by a bounded number of (added or subtracted) function 
symbols from the term contained in the subgoal chosen for resolution. This 
property is quite straightforward because all terms in program clauses contain the 
(same) variable X at their innermost level of nesting. X unifies with all but a 
bounded-sized part of the term chosen and is reproduced in the resulting terms. A 
simulation of the grammatical derivation step considered here would therefore 
require an arbitrarily long sequence of resolution steps, and it is obvious that there 
can be no bijectiue mapping having these intermediate stages of resolution as 
images. 

The purpose of this section is to show that by using a certain normalized version 
of indexed grammar, bijective mappings between goals and sentential forms are 
again possible. 

We introduce the notion of “smooth” indexed grammars. Call an indexed 
grammar smooth if the start symbol S never occurs on the right side of any rule or 
flag rule and occurs on the left side of only one rule which has the form 

S+TI 

where T is a nonterminal and I is a flag not generated by any other rule, and if 
the set of flag rules (index rules) associated to the flag I consists of rules of the 
form 

where A is a nonterminal, a is a terminal, and there are no other rules or flag 
rules with terminal symbols on their right-hand sides. 

We can now claim the following. 

Proposition 3. Every indexed language is generated by a smooth indexed grammar. 
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Furthermore, for smooth indexed grammars, an analog of Proposition 1 holds 
even if sentential forms containing terminals are included in the domain of the 
mapping. 

Proposition 4. Let G = (N, T, F, R, S> be a smooth indexed grammar. Then there 
exists a wary program P(G) and a bijectiue mapping 

p: K -+ Ground( Func( P( G)) , Pred( P( G))) 

such that 

w,...wn ESeF(G) (w~EMuT, lsisn) 

if and only if 

,u(w~...w~) EDeriu(P(G),p(S)). 

The motivation of the smoothness construction is that rewriting rules with terminal 
symbols must somehow be forced to be applicable only after the flag sequences 
which they might otherwise delete in a single step have been cancelled flag by flag. 
This is achieved by placing a unique bottom symbol at the start of every flag 
sequence. Terminal replacements are restricted to the context of a reemergent 
bottom flag. To get to that point, nonterminal place-holders for the terminals must 
be capable of cancelling all other flags in individual auxiliary derivation steps. 

To show Proposition 3, let 

G=(N,T,F,R,S) 

be an indexed grammar. Choose a new start symbol S’ and construct a rule 

S’-+S_L 

where I is a new flag symbol. For every terminal t of G, provide a new unique 
nonterminal N,. Replace every occurrence of t in some rule or index rule by N,. 
Additionally, let N, + N, be an element of the index rule set Rf for all flags f # J_ 
and all new symbols N,, and let N, + t be an element of the index rule set R i for 
all new symbols N,. 

As a consequence, for every derivation step 

CYN# * at/? 

where (Y, p E K, N a nonterminal, 4 E F*, the modified grammar permits a 
derivation step 

aN+P ==+ aNt +P. 

It should be noted that the final flag in $ is always I by construction of the 
starting rule. The N, -+ N, rules permit a sequence 

As R, contains N, -+ t, c+ I P * at/3 holds. Alternative ways of deriving strings 
containing terminals have been excluded by the construction. On the other hand, 
every terminal word of the language is generated in this way. 

To complete our discussion, we sketch the way in which a one-to-one map- 
ping between derivation steps and resolution steps is obtained. This gives us Propo- 
sition 4. 
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As stated, derivation steps producing terminal symbols have the general form 

aN, _L /3 * atp. 

Clearly, we can have clauses in logic programs of the type 

P,,(fL (X1):-P,(X). 

Considering a smooth indexed grammar constructed as shown, we establish a 
bijection which associates, for instance, the terminal symbol t with a predicate 
symbol pt. All derivation steps now have the property of consuming at most one 
flag. It is thus easy to see that the bijection can be extended to all sentential forms. 

Let us now turn our attention to the nonterminal asymmetry. 
While the set of terminal-free sentential forms and the set of goals constructed 

to simulate them stand in a one-to-one relationship in the proof of our Proposition 
1, the analogous relationship induced by the construction in the proof of our 
Proposition 2 is weaker. 

A one-to-one relationship holds between the set of goals and a specially 
characterized subset of the set of sentential forms. 

The reason for this difference can be stated quite easily: By definition, indexed 
grammars cancel flag symbols one at a time. Clauses which contain terms consist- 
ing of two or more function symbols on their left-hand sides must therefore be 
simulated by several consecutively applied flag rules. 

This situation in turn excludes the possibility of having a bijective mapping with 
regard to the entire set of sentential forms. While the difference appears somewhat 
superficial, it must obviously be respected unless we want to change the original 
concept of an indexed grammar to suit our purposes. 

8. AN INFORMAL PRESENTATION OF NESTED STACK AUTOMATA 

Shortly after introducing the class of indexed grammars, Aho gave an automata- 
theoretic characterization of the corresponding language class in terms of what he 
called nested stuck automatu ha) [3]. A discussion of the possible formal relation- 
ships between nested stack automata and logic programs is clearly beyond the 
scope of this article. In fact, the definition of nsa in [3] alone requires about two 
and a half pages of formalism. Nevertheless, it may be helpful to provide a general 
survey of the simulation in [3] as a particular kind of low-ievel implementation of 
indexed grammars. In contrast, definite clause programs obviously exemplify a very 
high level of representation. As an enhanced facility by comparison to those of the 
well-known pushdown automata, stack automata are capable of accessing any 
symbol previously written on the stack. This access is done by means of a pointer 
which can travel up and down the pushdown list one symbol at a time. However, 
replacements occur only at the top of the stack. A nested stack is a yet more 
powerful memory structure obtained by permitting stacks to be embedded or 
nested within stacks to arbitrary depths. Each such substack is delimited by 
top-of-stack and bottom-of-stack markers. There are four ways in which a configu- 
ration may change: 

1. A new stack with a finite number of symbols may be formed between the 
presently active (i.e., pointed to> symbol and the symbol below it. 
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2. Empty stacks may be removed. 
3. If the active symbol is at the top of some stack, it may be replaced by a finite 

length string of symbols, possibly by the empty string. 
4. The pointer may be moved both ways with one restriction: It cannot be 

moved out of an existing stack at the top symbol. Moving out at the bottom is 
permitted. 

The usual distinctions between one-way and two-way reading of input symbols 
and between deterministic and nondeterministic state changes give us four con- 
crete classes of nsa. Aho’s main result in [31 states that L is an indexed language if 
and only if L is accepted by some one-way nondeterministic nested stack automa- 
ton. Further results deal with closure properties of the classes of languages 
generated by variants of nsa. In the present context, we are interested in how an 
appropriate nsa recognizes the words generated by a given indexed grammar. We 
sketch the construction of the moves corresponding to individual rules of the 
grammar. For details, the reader is encouraged to consult the original publication. 

At a stack top, changes of the stack corresponding to individual rewriting rules 
are possible. In this way, flag symbols, as well as terminal and nonterminal symbols, 
are generated in the same order as in the indexed grammar. Terminal symbols 
occurring at a stack top and matching the next symbol on the input tape are 
consumed and the input pointer is simultaneously moved on. Alternatively, when 
reading any particular nonterminal symbol A on the stack, the automaton may go 
into a unique state qA associated to that symbol, erase A, and move to the right 
while in that state. When the symbol being read is a flag symbol S and there exists 
a flag rule A -+B for flag f, the flag symbol is NOT erased, but the state qA is 
changed into the neutral state q and a new nested stack containing the initial 
string B is created next to the flag symbol. Furthermore, empty stacks can be 
erased, and the automaton may move to the left in its neutral state. Finally, flag 
symbols at the top of stacks may be erased. This corresponds to the consumption of 
flags by terminal symbols in indexed grammars. The important point is that the 
entire derivation from a nonterminal rewritten by means of a flag rule is performed 
in a separate nested stack placed next to the flag. The flag itself survives that 
partial derivation, and is again available when another nonterminal must be 
rewritten in the same way. 

In contrast to the derivation of sentential forms of an indexed grammar, we 
never get more than one copy of a particular flag instance generated by means of a 
rewriting rule. Instead, the same flag instance is used for all replacements. In 
global terms, this represents an extreme case of structure sharing. It is imple- 
mented by (nondeterministically) moving back and forth between symbols to be 
replaced and flag instances enabling their replacement. The development of a 
more efficient version of this procedure remains as a research problem. 

Due to the close simulation of unary logic programs by indexed grammars 
presented above, the construction of an equivalent nsa for such programs is quite 
straightforward. There appears to be no reasonable alternative to first applying the 
procedure given in the proof of our Proposition 2 and subsequently transforming 
the indexed grammar as stated in 131. A direct route might provide notational 
simplifications, but no advantages in principle. 

By considering Aho’s other main theorem, an nsa could be implemented in 
terms of unary logic programs. In that context, there would be no resultant 
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separation of various rule sets, the analogous distinction being whether function 
symbols occur on the left-hand or right-hand side of a clause. 

9. DISCUSSION OF PARSING QUESTIONS AND 
CONCLUDING REMARKS 

The relationships which exist between the set of derivations in some indexed 
grammar G and the set of goals obtained by applying clauses of an appropriate 
logic program to a unique initial goal have been presented and discussed so far 
without consideration of the grammar-specific role of terminal symbols as distin- 
guished from nonterminal symbols. 

It has been felt that modifications of the concept of logic program aiming at 
some kind of analog of this distinction would be artificial. Nevertheless, it appears 
to be an interesting problem to what extent the class of indexed languages is 
affected by the results of this article. 

While the focus of this paper has been on logic programs as such, rather than on 
any of the extant PROLOG-based grammar formalisms [l] which are in turn 
compiled or interpreted to provide parsers for their languages, it is worth noting 
that P(G) of Proposition 1 can also be easily enhanced to serve as a parser for 
L(G). In that sense, indexed grammars appear to be natural candidates for 
treatment in a logic programming framework. 

The technique is, in fact, fairly standard. 
Given an indexed grammar G, the first step would be the replacement of 

terminal symbols t in all rules by uniquely associated new nonterminals N(t). Let 
us call the resulting grammar G’. Then the construction yielding a unary program 
P(G’) is used. Quite obviously, the predicate symbols ji(N(t)) do not occur in the 
head of any clause. Without wanting to get into technical details at this point, the 
subsequent development essentially requires two additional arguments for each 
predicate, giving us ternary (3-ary) instead of unary predicate symbols. Generally, 

A(t,):-B,(t,),...,B,(t,) 

is transformed into 

In the case of empty bodies, L is taken instead of L,,. This provides for the case of 
e-productions. Furthermore, for all terminals t, we need a clause of the form 

jZ(N(t)):-check(L,,t,L,) 

where goals check( L,, t, L,) are defined to succeed if the first argument is a list, 
the second is its head, and the third is its tail. check is usually available as a built-in 
predicate (called “C”, for example) in PROLOG systems. Instead of :- y(S)(c) as 
the initial goal, we now have 

:- p(S) (c, TerminalString, [ 1) 

provided that TerrninalStting is instantiated to a list of terminals. 
To demonstrate this procedure, we take the example grammar shown before. 

The terminal symbols a and b are replaced by nonterminals A and B in all rules 
and flag rules. With function symbols f and g and predicate symbols S, T, U, A, B, 
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the set of clauses P(G’) may be written as 

S(X):-A(X),T(g(X)). T(X):-A(X),T(f(X)). T(X):-U(X). 

U(f(X)):-B(X),U(X),A(X). U(g(X)):-B(X),A(X). 

The above augmentation yields S(X, L,,, L):-A(X, L,,, L,), T@(X), L,, L), and 
likewise for the other clauses of P(G’). 

A(X, L,,, L , > :- check( L,,.a, L, > and B(X, L,,, L, I:- check( L,, b, L, > are added 
to deal with terminal symbols. Please note that the argument X is superfluous in 
these two rules. It is there because of the uniform treatment of all predicates in the 
construction of Proposition 1. 

The construction which leads to the simulation of unary logic programs P by 
indexed grammars has the property that SLD-refutations in P correspond to the 
derivation of E in G. As stated before, the existence of a refutation is thus reduced 
to a parsing problem. 

It is admittedly hard to assess the practical usefulness of the techniques 
presented here. As an immediate observation, what we do have is a rare case of 
easy implementability for a well-known type of controlled context-free grammar. In 
[4], we showed that a simply stated unambiguity condition provides fast parsing for 
indexed grammars. It is to be expected that testable sufficient conditions for 
unambiguity will lead to optimized implementation of corresponding parsers. 
Beyond that, fast processing-even in terms of orders of magnitude-remains a 
difficult research problem. In their article on parsing and deduction [14], F.C.N. 
Pereira and D.H.D. Warren discuss a mixed top-down bottom-up (elsewhere called 
yo-yo [8]) strategy that follows Earley’s [7] context-free parsing concept. In spite of 
the inherent efficiency of that procedure, its application to definite clauses appears 
already too general to transfer favorable time bounds. In fact, they feel compelled 
to state that “it is not at all obvious that grammar formalisms based on unification 
can be parsed within reasonable bounds of time and space.” Nevertheless, they are 
able to present interesting estimates for the complexity of individual deduction 
steps and checks. 
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