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ABSTRACT 

Matrix pencils depending on a parameter and their canonical forms under 
equivalence are discussed. The study of matrix pencils or generalized eigenvalue 
problems is often motivated by applications from linear differential-algebraic 
equations (DAEs). Based on the Weierstrass-Kronecker canonical form of the 
underlying matrix pencil, one gets existence and uniqueness results for linear con- 
stant coefficient DAEs. In order to study the solution behavior of linear DAEs 
with variable coefficients one has to look at new types of equivalence transfor- 
mations. This then leads to new canonical forms and new invariances for pencils 
of matrix valued functions. We give a survey of recent results for square pencils 
and extend these results to nonsquare pencils. Furthermore we partially extend 
the results for canonical forms of Hermitian pencils and give new canonical forms 
there, too. Based on these results, we obtain new existence and uniqueness the- 
orems for differential-algebraic systems, which generalize the classical results of 
Weierstrass and Kronecker. 
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1. INTRODUCTION 

In this paper we study matrix pencils 

aE(t) - PA(t) 0) 

where E,A E C([to,t~],P’). H ere Cm( [ta,tr],P’) denotes the set of m 
times continuously differentiable functions from the interval [t,-,,tr] to the 
complex vector space C nJ We always talk synonymously about the matrix . 
pencil crE(t) - PA(t) and the pair of matrices (E(t), A(t)). 

The study of such matrix pencils is mainly motivated by the analy- 
sis of initial value problems for linear differential-algebraic equations with 
variable coefficients, 

E(t)i(t) = A(+(t) + f(t), t 65 [to,t117 (2) 

with f E C( [to, tl], P), together with an initial condition 

z(t0) = 20 E C”. (3) 

The first study of matrix pencils is usually dated back to the last century 
and the work of Sylvester [47], Weierstrass [54], and others who studied 
Hermitian pencils. For a historical overview see the papers of Uhlig [50, 
49, 511. A general canonical form under congruence for Hermitian pencils 
was given by Thompson [48]. It should be noted that this case still receives 
quite a lot of attention, in particular due to its importance in the study 
of mechanical systems (e.g. [27, 45, 59, 581) and optimal control problems 
(e.g. [18, 9, 421). 

For non-Hermitian regular pencils strict equivalence and a canonical 
from were first established by Weierstrass [55] and Kronecker [36], who 
extended the results of Weierstrass to the case of singular pencils. These 
results are well documented in textbooks (e.g. [23]), and they are well 
studied also from the point of view of perturbation theory (e.g. [46]) and 
numerical analysis (e.g. [28,1]). 

We will review the theory for constant pencils in Section 2, and for the 
corresponding linear differential-algebraic equation in Section 5. 

For the case of parameter dependent pencils the situation is completely 
different. Such pencils arise mainly in the analysis of linear differential- 
algebraic equations (DAEs) with variable coefficients. The interest in this 
field was revived by a paper of Gear [25], and this is now an area of very 
active research. Such DAEs are studied, for example, as differential equa- 
tions on manifolds (e.g. [44, 30, 291) or from the numerical point of view 



PENCILS OF MATRIX VALUED FUNCTIONS 217 

[31, 5, 321, as well as in application areas like control theory, where they 
are called descriptor or singular systems (e.g. [19, 421). 

Many attempts have been made to study the global solution behavior 
of DAEs by looking locally at the linearization (i.e. the matrix pencil) 
at a fixed time. But it was observed very quickly (e.g. [ll, 261) that the 
study of the constant matrix pencil crE( g) -PA(r) at a fixed point ris not 
enough to characterize the local solution behavior of the DAE, not even for 
the linear time varying case. We will discuss this point by studying a new 
local linearization which was first introduced in [41]. 

For the general nonlinear case it is often better to use linearizations 
along trajectories, which leads to linear time varying systems [16]. Thus it 
is important to study this problem separately. 

The approaches that discuss existence and uniqueness are rarely alge- 
braic, but often based on differential geometric or analytic tools, e.g. [30]. 
Nonetheless, algebraic approaches have been taken, but usually in the con- 
text of the construction of numerical methods [26, 12, 17, 13, 14, 2, 34, 151. 

All these approaches exclude equations which have nonunique solutions, 
and most of them lack an appropriate discussion of the local behavior. The 
first approach that covers also the case of nonunique solutions and gives 
a treatment of general linear variable coefficient DAEs via the study of 
square pencils of matrix valued functions is in [41]. This approach is used 
for the construction of numerical methods in [40]. 

We will extend these results here to the general case of nonsquare pencils 
in Section 3, where the local solution behavior is discussed, and in Section 4, 
where we study the global solution behavior with an algebraic approach. 
To do this we have to study new types of equivalence transformations for 
matrix pencils, and their canonical forms, which generalize the classical 



218 PETER KUNKEL AND VOLKER MEHRMANN 

still an open problem to extend these results to the variable coefficient case, 
since in general variable congruence transformations destroy the symmetry. 

2. CONSTANT PENCILS 

In this section, we survey the case of a constant pencil 

aE-PA (4 

it arises for example in the analysis of linear differential-algebraic equa- 
tions with constant coefficients, 

Ei = Ax + f(t), t E [to,t11, (5) 

where E, A E C”) ’ and f E C([t~,tll,C~). 

The standard way to treat (5) is to look at all regular transformations 
which take (5) into an equation of the same form. This leads to the defini- 
tion of so-called (strong) equivalence. 

DEFINITION 1. Two pairs of matrices (Ei, Ai), i = 1,2, with Ei, Ai E 
C”y 1 are called (strongly) equivalent if there are nonsingular matrices P E 
c n>n, Q E C1ll with 

(Ez, AZ) = P(El,Al) “k ; . 
[ 1 (6) 

Clearly, this defines an equivalence relation. The canonical form con- 
nected with this equivalence is the well-known Weierstrass-Kronecker canon- 
ical form (see [24, 521 for details). 

THEOREM 2. [52] Let E, A E C”>l. Then there exist nonsingular P E 
PI”, Q E C1>l such that 

P(QE - P4Q 

= diag(L,,,...,L~p,~~l,.. . ,M,,,,FPI,. . . ,Fpq,,S,,,.. . ,so,,), (7) 

where 

(a) L,? is an cj x (ej + 1) bidiagonal block, ej E No: 
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a[’ .i. .;. J-P[’ .“. .;. o]; VW 

(b) Mv3 is an (qj + 1) x Q bidiagonal block, 77 E &: 

(8b) 

(cl Fp;,Pj) = o!I - PJ&j), w h ere Jp3 (Xj) is a pj x pj Jordan block, 

(d) So, = cyNoj - PI, h w ere Noj is a aj x uj nilpotent Jordan block. 

All quantities on the right hand side of (7) are invariants for the pair 
(E, A), i.e., up to order, each canonical form of (E, A) consists of the same 
blocks. 

DEFINITION 3. A matrix pencil (YE-PA, E, A E C”> I, is called regular 
if n = 1 and if the characteristic polynomial 

P(cL, ,LI) = det(aE - /?A) (9) 

does not vanish identical; otherwise singular. The quantity 

for w = 0, 

max{0jIj=l,...,w} for w>O. 

with w as in (7) is called the index of aE - PA and is denoted by k = 
ind(E, A). 

Regularity of the pencil means that no blocks of the types L, or MT 
occur in the Weierstrass-Kronecker canonical form and guarantees that 
there exists a unique solution of (5) for each sufficiently smooth f and 
consistent initial condition (3). 

Note that the numerical computation of this canonical form is an ill- 
conditioned problem, since arbitrarily small perturbations can drastically 
change the structure. Also, the transformation matrices P, Q can be very 
large in norm, which may lead to large roundoff errors. 
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In the case that E, A are Hermitian matrices we use congruence trans- 
formations to preserve the Hermitian structure and also the inertia struc- 
ture of the system. 

DEFINITION 4. Two pairs of matrices (Ei, Ai), i = 1,2, with Ei, Ai E 
C”+ Hermitian are called (strongly) congruent if there exists a nonsingular 
matrix P E P” such that 

(Ez, AZ) = P*(EI, Ad ; ; 
[ 1 (11) 

Clearly, this also defines an equivalence relation. 

THEOREM 5 [48]. Let E, A E C”ln be Hermitian. Then there exists a 

nonsingular matrix P E C”l” such that 

P*(cuE - ,LIA)P 

=diag(A,,,...,A,n,o,,,...,o,u,h,,,...,h,,,3,,,...,8,““), (12) 

where 

(a) AEj is an (3 - I) x (2q - 1) block, ej E N: 

with 

0 1 
1 0 0 1 

Liz . . . ‘.. L2= . . 
‘. 

. . ) ; (134 

. . . . 0 . 1 

1 0 

(b) Q,? is an (nj + 1) x qj bidiagonal block, qj E No: 
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corresponding to Jordan block for a real eigenvalue Xj; 
(c) A,, is a 2pj x 2pj Jordan block, pj E N: 

Q [i i] -p [ f$j) ‘(:)I with z,J^(Aj) as in (b), (13c) 

corresponding to a pair of complex conjugate eigenvalues, 
(d) q,? is a oj x aj nilpotent block, uj E N: 

I 
0 

0 1 
cy 

. . . . 

0 1 1 I: 
1 

1 
-P . 

1 I (134 

Note again that the numerical computation of this canonical form is an 
ill-conditioned problem. 

We will see in the following two sections how one can generalize these 
canonical forms. 

3. LOCAL CANONICAL FORM 

Turning back to the case of matrix valued functions, one could try to 
generalize the concepts of the previous section in the following manner. 
Instead of the indices ~j, qj, pj , aj, k and the eigenvalues Xj in (7), (12) and 
k in (lo), we could consider functions ej, Q, ,o.j, aj, k : [to, tl] + (0,. . . , n}, 
by computing pointwise the canonical forms of the pair (E(t), A(t)). 

This approach is not suitable for the analysis of existence and unique- 
ness of solutions for (3), as is shown in [30, 33, 411. 

EXAMPLE 6. A short computation shows that 

[I: T]k= [ -:, _y]x, tE[-Lll, 

is uniformly regular and has uniform index 2, but that 

(14) 

x(t) = c(t) 4 [I (15) 
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is a solution for all c E C1 ([ -1, 11, C). In particular, there are more than 
one solution for consistent initial conditions. 

EXAMPLE 7. The equation 

[; _+= [ -; ;]J+I(x), t~[--l>ll, (16) 

with f E C’([-1, 1],C2) is not uniformly regular, because the pencil (E(t), 
A(t)) is singular for all t E [-1, I]. N evertheless, it has the unique solution 

xl(t) = fl(t) + ifi - t.f1(t), z = (wZ2)T, 

x2(t) = fi(G - fdt), f = hf2)T 

for each consistent initial condition. 

The reason for this strange behavior is that for (2) we need to include 
nonconstant transformations. Setting z(t) = Q(t)y(t) and premultiplying 
(2) by P(t), the Equation (2) transforms to 

P(W(t)Q(t)ti(t) = P(W(t)Q(t) - W)-W)Q(t)ly(t) + J’(t)f(t). (17) 

Therefore, one is led to the following definition: 

DEFINITION 8. Two pairs of matrix functions (E,(t), Ai(t I&, Ai E 
C([to,tl],Cn)l), i = 1,2, are called equivalent if there are P E C([to,tl], 
en,,) and Q E C’([t,,tl],C1~l) with P(t),&(t) nonsingular for all t E [to,tl] 
such that 

(E2(t),Az(t)) = P(t)(&(t),Al(t)) (18) 

Standard rules for differentiation show that this is indeed an equivalence 
relation. For an analysis of DAEs this approach will turn out to be useful, 
but for a numerical solution the occurrence of Q(t) creates difficulties. For 
the numerical solution it is usually important to consider local quantities 
which are numerically computable and which give information on the global 
behavior of the solution in the neighborhood of a fixed point t E [to, tl]. 

Taking into account that at a fixed point t E [to, tl] we can choose Q(t) 
and O(t) independently (see [26]), we modify (6) in the following way: 
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DEFINITION 9. Two pairs of matrices (Ei, Ai), Ei, Ai E Cn) I, i = 1,2, 
are called equivalent if there are matrices with P E C”)“, Q, B E Cl,‘, with 
P, Q nonsingular such that 

(-fh,Aa) = P(-G,Al) f Q” . [ I (19) 

We study the local equivalence, first because it is the basis for the global 
equivalence, and second because it is numerically computable. 

Since we get (6) back as a special case for B = 0, we obtain a simpler 
canonical form than the Weierstrass-Kronecker canonical form. With the 
convention that a matrix is a basis of a vector space if the set of its column 
vectors is, we get the following canonical form for the equivalence relation 
defined in Definition 9. The result generalizes the corresponding result for 
square pencils given in [41]. 

THEOREM 10. Let E,A E C”,’ and 

(a) T be a basis of 

kernel E; 

(b) 2 be a basis of 

corange E = kernel E*; 

(c) T’ be a basis of 

cokernel E = range E”; 

(d) V be a basis of 

corange( Z*AT). 

(2Oa) 

Wb) 

POC) 

(204 

Then the quantities (with the convention rank 8 = 0) 

r = rankE (rank), @la) 

a = rank(Z*AT) (algebraic part), Plb) 

s = rank(V*Z*AT’) (strangeness), G-1 

d = r-s (differential part), (214 

22 = n-r-a-s (left undetermined part), (21e) 
ur = l-d-a-s (right undermined part) Plf) 
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are invariant under (19), and (E,A) is equivalent to the canonical form 

0 0 0 0 
0 0 0 0 

(22) 
0 0 00 

0 0 00 0 0 0 0 

where the last block column in both matrices has width u’. 

Proof The proof is a small modification of the proof for the square 
pencil case given in [41] and is therefore omitted here. n 

REMARK 11. A few comments should be made on the use of the word 
strangeness in (21~). The two blocks of size s (if they occur) in the local 
canonical form (22) are responsible for the strange behavior of the sys- 
tem, when it is considered pointwise as demonstrated in Examples 6, 7. 
Contributing to these blocks are not only higher index blocks but also sin- 
gular blocks in the Weierstrass-Kronecker canonical form. To see this, note 
that the equivalence relation (6) is included in (19). Thus, we can first 
transform to Kronecker canonical form and then treat the single blocks 
separately. Denoting the ith canonical basis vector of length n by e!“’ and 
a nilpotent Jordan block of size I/ by IV,,, we obtain for the different types 
of blocks: 

(a) Kronecker block L,: 

(ETA) = ([O&l, [$)N,]), 
T= 

1 [I Z = 0, T’ 
0 

= 0 ’ [ 1 I, ’ 
Z’AT = 8, V*Z*AT’ = 8, 

r = E, a = 0, s = 0, d = E, 

(b) Kronecker block Mq: 

v = 0, 

u1 = 0, ur = 1. 

(E,A) = 

T = 0, T’ = I,, z= 
0 [I 1 , v = PI, 

Z*AT = 8, V* Z*AT’ = [etjT], 
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0 for = 

r = 77, a = 0, S= i 

77 0, 

1 for 7 # 0, 

for 77 = 0, 

77 - 1 for 7 # 0, 

u’ { 1 for 77 = 0, = Ur = 
0 for 77 f 0, 

0. 

(c) Kronecker block Fp: 

(ETA) = (Ip, Jp), 
T = 0, z = 0, 

r = P, a = 0, 

(d) Kronecker block S,,: 

T’ = Ip, V = 0, 

s = 0, a! = P, 22 = 0, d = 0. 

(E> A) = (NmL), 
T = ey), Z = ey, T’= @‘,...&‘), 

Z”AT = 
[l] for fs = 1, 

0 for ofl, 

V*Z*AT’ = 
0 for g=l, 

[0 . . ’ 0 l] for 0 # 1, 

r=g-1, 
{ 

1 for cr=l, 
a= 

0 for 0#1, 
s= 

{ 

0 for 0=1, 

1 for afl, 

d= 
0-l for a=l, 

a-2 for a#l, 
U’ = 0, 

ur = 
0 for ~7=1, 

1 for a#l. 

It is obvious that the singular blocks of type A&, 77 # 0, and higher index 
blocks contribute to a nonvanishing strangeness s. If, however, as is done 
in most other research, it is excluded by assumption that singular blocks 
occur, then only higher index blocks contribute to s. 

We also wish to have a local canonical form for a pair of symmetric or 
Hermitian matrices E, A. There are several reasons why it is important to 
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have such a form. Usually the symmetry of the pencils reflects a physical 
property of the system. If we operate on such a pencil with equivalence 
transformations which destroy the structure, these physical properties are 
obscured, but what is worse, if we use numerical methods for the solution 
of such problems, then we may even get physically meaningless results. For 
a instructive example see [8]. The local Hermitian equivalence may also be 
the basis for a global Hermitian equivalence, which is still an open problem. 

To study the local equivalence, we modify the definition of congruence. 

DEFINITION 12. Two pairs of Hermitian matrices (E,, Ai), Ei, Ai E 
C”?“, i = 1,2, are called congruent if there are matrices P, B E C”)“, with 
P nonsingular such that 

(Ez,Az) = P*(El,Al) ; -; 
[ 1 (23) 

and Ea, AZ are again Hermitian. 

Observe that not any matrix B in (23) will lead again to a Hermi- 
tian pencil. Examples of possible matrices B are matrices such that EIB 
vanishes or matrices WP where W is a real polynomial in El. A gen- 
eral characterization of the possible matrices b depends strongly on the 
structure of El. 

In the following we will develop a canonical form under the congruence 
(23). In order to do this, we need the following lemma, which is closely 
related to the hyperbolic singular value decomposition recently introduced 
in [4] and the HR decomposition of [7]. 

LEMMA 13. Let 

D= -Ip _; 
i 1 Q P 

E CP+T> P-N 
1 

A= A1 ~C”+%~ 

[ 1 A2 
(24) 

be partitioned analogously. Then there exist nonsingular matrices P E 
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CP+q>P+q and Q E Cv3 ’ such that 

PDP* = 

PAQ = 

IO0 Vl 00 0 

0 -I,, 0 0 9 0 
0 0 Iv* 0 0 0 
0 0 0 -Iw, 0 0 

0 00 0 Iv3 0 
0 0 0 0 0 -Iw, 

I 0 Ul 0 0’ 

I 0 211 0 0 

0 I,, 0 0 

0 0 Iww, 0 

0 0 0 0 

0 0 0 0 

(25) 

Proof. We give a constructive proof: 
Perform a singular value decomposition (SVD; see e.g. [28]) 

Al = U1 
Cl 0 

[ 1 0 0 
VT 

with Cl po x po diagonal nonsingular, and set 

p = 1 : Q1 := V, nc;’ ’ . 
[ 1 I 

Then we partition 

I 

PIDP; =: ;;” Ippppo 

0 

’ :: 1, PIAQl=:[;; g,]. (26) 

0 -I, 

Perform a singular value decomposition 
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with CJ qo x qo diagonal nonsingular, and set 

Then partition 

P := P2P1, Q := QIQz. 

Set 
(27) 

I 0 0 

-C,-qoA3, C,’ o 

0 0 I7J -PC, - 40 I 

, Q := QQ3, 

and 

(28) 

Perform a singular value decomposition 

with Cd1 diagonal and nonsingular, having no singular values 1, and set 
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P := PsP, Q := QQ4. Then partition 

PDP’ =: 

PAQ =: 

-Ipl 0 0 0 0 0 0 

0 Ipo_pl 0 0 0 0 0 

0 0 Ip-po 0 0 0 0 

0 0 0 -Iqo 0 0 0 

0 0 0 0 -Ipl 0 0 

0 0 0 0 0 -4% -PI 0 

_o 0 0 0 0 0 -I4 - 40 -PO 

I Pl 0 00 0 

0 IPo-PI 0 0 0 

0 0 00 0 

0 0 0 14” 0 

I PI 0 00 0 

0 Y&1 0 0 0 

0 0 00 0 

229 

(29) 

As a next step we construct a hyperbolic matrix to eliminate Cdl. Set 

w = I~Pcl-Pl - %,I> where the absolute value is taken elementwise. Now 
W is nonsingular, since no diagonal element of Cdl is equal to 1. Set 

I Pl 0 0 0 0 0 

0 w-l/2 0 0 0 -w-l&41 

0 0 IP-PO 0 0 0 

P4:= 0 0 0 -14” 0 0 

0 0 0 0 -Ippl 0 
0 -w-lm41 0 0 0 w-1/2 

0 0 0 0 0 0 

I Pl 0 00 0 

(I - c&-lw1/2 0 0 0 

Q5 =: :: 0 IO 0. 

0 0 0 IQ” 0 

0 0 00 I 

0 

0 

0 

0 7 

0 

0 

~Q-Q"-P" _ 
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P := P4P, Q := Q&s, and partition 

PDP* =: 

PAQ =: 

I 
Pl 

0 0 0 0 0 0 

0 Dl 0 0 0 0 0 

0 0 Ip --PO 0 0 0 0 

0 0 0 -Iqo 0 0 0 

0 0 0 0 -IPl 0 0 

0 D2 0 

0 0 -I4 - 4” - PO 

0 0 0 0 

0 0 0 0 

I 
Pl 0 0 0 0 

0 IP” -PI 0 0 0 

0 0 0 0 0 

0 0 0 Iqo 0 
I Pl 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

(30) 
where Dl,D2 are diagonal matrices with elements 1 or -1 on the diagonal. 
The final form follows by an appropriate block permutation, with the fol- 
lowing block sizes vr = pr, ~2 is the number of positive diagonal elements 
of D1, w2 is equal to qo plus the number of negative diagonal elements of 
D1, 74 is equal to pa - pl plus the number of positive diagonal elements of 
D2, and ws = n - 2111 - 212 - w2 - vs. n 

Observe that the transformation is constructed from unitary and hy- 
perbolic transformations and inversions of diagonal matrices. Thus at each 
step a bound for the error can be computed. The algorithm given in the 
proof could be easily modified for numerical computation. 

We now have the following canonical form for the equivalence relation 

(23). 

THEOREM 14. Let E,A E fYn be Hermitian, and consider matrices 

(a) T, basis of 

(b) T’, basis of 

kernel E (314 

cokernel E (31b) 

(c) V’, basis of 

corange(T* AT’) (31c) 
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(d) V, basis of 

kernel(T*AT’). (314 

The following quantities are invariant under congruence (with the notation 
of the previous Lemma): 

v,, (324 

the number of positive eigenvalues of V*(T’)*ET’V; 

w2, Wb) 

the number of negative eigenvalues of V*(T’)*ET’V; 

Sd3 

the number of strange eigenvallle pairs; 

s = sp + sn (324 

the strangeness; 

d=r-s=dP+d”, 

the differential part; 

r = rank E, 

the ranlc; 

ap, 

the number of positive eigenvalues of T’AT; 

a”, 

the number of negative eigenvalues of T*AT; 

a = ap + a” = rank(T*AT), 

the algebraic part; 

u=n-r-a-s, 

the undetermined part. 

WC) 

(324 

Wf) 

Wd 

WV 

(32i) 

(32j) 
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Furthermore (E, A) is congruent to the canonical form 

Id 0 

0 -I& 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I v2 
0 

0 

0 

0 

I Y2 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I Wz 
0 

0 0 

0 0 

0 0 

-I,, 0 
0 IdP 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 I& 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

- 

0 

0 

0 

0 

0 

.I@ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

I@ 

0 

0 

0 

0 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

000000 

I 0 0 0 s” 

I & 0 0 0 

0 Iv2 0 0 

0 0 IW, 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

where v2 = sP - 8, w2 = s” - 8, and the last column has width u. 

7 (33) 

Proof The proof is constructive by the following sequence of transfor- 
mations: 

Let E = QD112SD1/‘Q* be a spectral factorization of E, where 

I$ 0 0 

s= 0 

[ I -Ip 0 ) (34) 
0 00 

Q is unitary, D is positive diagonal, (ip, i”, n - r) is the inertia of E, and 
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T = ip 4 i”. Set P = Dm1i2Q*, and partition 

[ 

A11 Alz A13 

A := PAP’ = AZ1 A22 A23 

A31 A32 A33 

and E := PEP’ = S analogously. 
Perform a spectral factorization of A33, 

where 

l/2 - l/2 
-433 = Q& SD, Q;, 

233 

(35) 

(36) 

(37) 

Q3 is unitary, D is positive diagonal, (up, an, n - T - a) is the inertia of 
Ass, and a = ap + a”. Set 

and partition 

All A12 A13 A14 A15 

A21 A22 A23 A24 A25 

A := P,AP; = AS1 A32 Id’ 0 0 (38) 

A41 A42 0 -Ia” 0 

A51 A52 0 0 0 

and E := PI EP; analogously. We then eliminate A31, A32, A23, A13, A41, 

A42, A24, A14 by a congruence transformation with 

I 0 -A13 A14 0 

0 I -A23 A24 0 

Pz=OO IO 0, 

00 0 IO 

00 0 0 I 
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and obtain with changed matrices All, A12, Aal, A22 

All A12 0 0 A15 

A21 A22 0 0 A25 

A:=P2AP; = 0 0 lap 0 0 (39) 
0 0 0 -Iall 0 

A51 A52 0 0 0 

and E := PzEP,*. We then eliminate the upper left corner of A, by choosing 

Ali Ai2 0 0 0 

-A21 -A22 0 0 0 
B= 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

and 
0 0 0 0 AIS 
0 0 0 0 A25 

A:=A-EB= 0 0 lap 0 0 . (40) 
0 0 0 -Iall 0 

A51 A52 0 0 0 

We then apply Lemma 13 to the two matrices 

and obtain the required canonical form with s* = vi+-u2, s” = wi +ws, sd = 
vi,dF = va, and d” = 2~3. n 

REMARK 15. Again it is clear that congruence includes strong congru- 
ence, and hence we could first transform to the canonical form for Hermitian 
pencils under congruence and then reduce this form further. 

4. GLOBAL CANONICAL FORM 

We now apply the local canonical forms (22), (33) for each fixed value 
t E [to, ti]. Then we obtain integer valued functions T, a, s, u’, U’ : [to, tl] -+ 
No, dp, d”, a*, an, s*, s”, sd, u : [to, tl] --f No, respectively. 
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If we do not pose any further restrictions, then it is possible that these 
quantities change their values with t. In order to demonstrate some of the 
possibilities consider the following simple examples: 

EXAMPLE 16. Consider the scalar equation 

ti = f. (41) 

Here u(t) s 0, s(t) E 0, 

we have r(t) = O,s(t) E 0, but a(t) h as a jump at the origin from 1 to 0, 
and we have the same necessary condition for existence of solutions. As a 
third example consider 

(43) 

Here r(t) = 0, u(t) s 0, but s(t) h as a jump at the origin. We obtain fi(t) = 
-txl(t), where ~1 is continuously differentiable. A necessary condition 
for the existence of solutions is that f2 is continuously differentiable and 
fi(0) = 0, and the change in the strangeness seems to be responsible for 
the higher smoothness requirement on f. 

Currently it is not completely understood how to characterize conditions 
at interior points. For this reason, we exclude such phenomena by assuming 

r(t) = T, a(t) 3 a, s(t) = s, u’(t) = u’, u’(t) = ur (44) 

and 

d!‘(t) z dp, d”(t) = d”, a”(t) f up, c?(t) EE un, 

s”(t) f sp, s”(t) E s”, sd(t) 3 Sd, u(t) = u, (45) 

respectively, throughout the rest of this paper. 

We should point out that there are other assumptions which allow us to 
weaken the assumptions (44) or (45) by assuming higher differentiability of 
the inhomogeniety and uniqueness of solutions; see [13, 51. It is currently 
under investigation how to relax the conditions (44) or (45) without extra 
assumptions. 
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Applying the equivalence (18) to the pair (E(t), A(t)), we obtain the 
following canonical form: 

THEOREM 17. Let E, A in (2) be suficiently smooth, and let (44) hold. 
Then, (E(t), A(t)) is equivalent to a pair of matrix functions of the form 

0 Alz(t) 0 Ala(t) s 

0 Azx(t) d 

I, 0 a, (46) 
0 0 00 0 0 s 

0 0 u’ 

where the last block column in both matrices has width u’. 

Proof The proof is again similar to the proof for the square case given 
in [41] and is therefore omitted. n 

We do not know a corresponding result for the Hermitian case, mainly 
because we do not know an appropriate definition of congruence in the 
variable coefficient case. 

By considering Examples 6, 7 we observe that the reduction to the 
form (46) is not sufficient to explain the different solution behavior, since 
in both cases we obtain (r,a,s) = (l,O, 1). The consequence is that we 
have to allow further transformations. 

Writing down the system of differential-algebraic equations that corre- 
sponds to (46), we get 

k:l(t) = An(t)xz(t) + A14(t)a(t) + h(t), (474 
h(t) = h(h(t) + fz($ (47b) 

0 = x3(t) + f3(% (47c) 
0 = xl(t) +f4(% (474 
0 = f5(Q. (47e) 

Here, we can insert Equations (47d) in (47a), which then becomes an alge- 
braic equation. This corresponds to passing from (46) to 
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(48) 

for which we again compute characteristic values r, a, s, d, u’, IL’. 

The above procedure therefore leads to an inductive definition of a 
sequence of pairs of matrix functions (&(t),Ai(t)),i E No, where (I&(t), 
Ao(t)) = (E(t), A(t)) and (Ei+l(t),A,+l(t)) is derived from (Ei(t),Ai(t)) 
by bringing it into the form (46) and passing then to (48). Here we must 
assume (44) for every occurring pair of matrices. Connected with this 
sequence, we then have sequences ri, a,, si, d,, ui, UT, i E N, of nonnegative 
integers, which are characteristic for the given pair (E(t), A(t)), that is, that 
they do not depend on the specific way they are obtained. Furthermore, 
the sequence stops after finitely many (say m) steps with si = 0. The 
quantity m is called the strangeness index of the pencil (E(t), A(t)). 

Both results are proved for the square case in [41], and the proofs there 
are simple to modify. 

Note that for square systems, for which u’ = u’ = 0 and for which 
the same smoothness and rank assumptions hold, the strangeness index is 
closely related to the differentiation index (e.g. [5]). The two indices are 
equal if m = 0, ae = 0; and the differentiation index is m+l otherwise. But, 
since we also allow nonuniqueness of solutions for which the differentiation 
index is not defined, we have defined a new expression to distinguish the 
different indices. 

With the finite sequences ri, ai, si, di, u:, IL:, i E (0,. . , m}, we now ob- 
tain an appropriate generalization of the Kronecker canonical form in the 
case of variable pencils (E(t), A(t)). 

THEOREM 18. Let the strangeness index m be well defined for the 

pair (E(t), A(t)) of smooth matrix functions. Let ri, ai, si,di,ui,u:,i E 

(0, ‘. . 3 m) be the related characteristic values as above. Define 

bo = ao, bi = rank [A:;‘)(t)] (49a) 

CO = a0+s0, ci = rank 
[ 
A$f2-‘) (t) A!%] > (49b) 

wg = Ub, Wi =U~-Ui_1, i = l,...,m. (49c) 
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We then have 
ci = bi + si, i=O,...,m, (50a) 

Wi = Si_1 - Ci, i = 1,. . . , m, (50b) 

and the pair (E(t), A(t)) is equivalent to a pair of matrix functions of the 
form (without arguments) 

(- 

\_ 

IO0 * 

0 0 0 F, 
. . . . . . . . 

. . . . . . . . . 

0 0 0 

0 0 0 G, 
. . . . . . . . . . . 
. . . . . . . . . 
0 0 0 

* 

* 

Fl 
0 
* 

G 
0 

* * 0 .” 

0 0 0 ... 
. . . . . 

. . . . . . . 

0 0 0 ... 

0 0 I 
. . . . . . 
. 
. . 

0 0 

. . . 0 

. . . 0 

. . 0 

I 

where 

rank z 
i 1 =Ci+Wi=Si-1 sCi_1, 

t 

and the second block column in both matrices has width u;. 

dm 

Proof. The proof is a simple modification of the proof for the square 
case in [41]. w 

REMARK 19. Again it is natural to look at a constant pair (23, A) in 
Kronecker canonical form (51) and compute the strangeness index of the 
different blocks of the Kronecker canonical form separately. Let again N, 
denote a nilpotent Jordan block of size u. 

(a) Kronecker block L,: 

(E, A) = ([Q L] , [ei” ~~1) N ([I, 01, [No et’]), 

m = 0, d, =E, c, =O, w, =O, ut, =O, u’, = 1. 

(b) Kronecker block M,: 
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7-n = 77, cg = “. =c,_1= 1, c, =o > 
w. = . . . = w,_1= 0, 20, = 1, 

so = . . . = s,-1= 1, sm = 0, 

b. = . . = b,_l = 0, b, = 0, 

d, = 0, U,=FCi=Tj, Ul,=fJWi=l, 
i=O i=O 

u; = 1 - d, - a,,, = 0. 

(c) Jordan block Fp: 

@>A) = (Ip, Jp)r 

m = 0, d, =p, a, =O, uh =O, z&, =O. 

(d) Nilpotent block S,: 

(E, A) = (N,, J,), 

m = fs - 1, ce = . . . = h-1 = 1, c, = 1, 

wa = . . . =w,_i=o, w,=o, 

sg = . . =s,_1=1, s,=o, 

b,, = . . = b,_ 1 = 0, b, = 1, 

d,=O, a,= Ci = gr 

i=O 2=0 

REMARK 20. It is now clear from the analysis of the sequences T,, ai, 
Si, di, ui what is the difference between the two examples. In Example 6, 
we obtain (r~,al, ~1, dl,ul) = (O,l,O, 0, l), while in Example 7, we obtain 

(Tr,al,si, dr,ur) = (0,2,6, O,O). 

REMARK 21. As already mentioned, it is an open problem to gener- 
alize Theorem 17 and consequently also Theorem 18 to Hermitian pencils, 
since we do not know in general how to get an appropriate time varying 
congruence transformation which keeps the symmetry at each step. 

There are examples, however, where such transformations exist, and in 
that case it is often important to use them and not to destroy the symmetry. 

If for example the transformations from the right operate in the right 
nullspace of E, then we keep the symmetry. Consider the following exam- 
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ple: 
‘0 1 1 2 1+t2 1 

1 2 1 1 ?= [ 1+t2 2t2-1 

0 z+f, 
1 1 0 1 0 -1 I 

(53) 

Then a congruence transformation with 

P= [ 

1 1 0 
1 

t2 

1 
0 1 1 1 

yields the symmetric system 

which obviously has a pencil of index 3. The local canonical form (33) at 
time t # 0 has indices s P = s” = sd = 1 and hence displays, via a symmetric 
transformation, that the system has a nonvanishing strangeness index. 

Another example where we can obtain a global Hermitian canonical 
form is when (E(t), A(t)) are commuting pairs. Ignoring the symmetry, we 
end up with a Hermitian canonical form 

where each diagonal block may be missing. In any case we have m = 0. 

5. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DAE’S 

We can now apply the results obtained in the previous sections to char- 
acterize the solutions of linear DAEs. To do this we recall the following 
definition from [41]. 

DEFINITION 22. A function z : [to, tl] ---f C” is called a solution of (2) 
ifj: E C’([to,tl],C”) and J: satisfies (2) pointwise. It is called a solution of 
the initial value problem (2), (3) f i z is solution of (2) and z satisfies (3). 

An initial condition (3) is called consistent if the corresponding initial 
value problem is solvable, i.e. has at least one solution. 
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Note that this definition differs slightly from the definition used in some 
of the literature, e.g. [5]. 

Using the results of Section 4, we can transform (2) to an equivalent 
differential-algebraic equation of a very special structure. Equivalence here 
means that there is a one-to-one correspondence of their solutions. 

Note that, since the constant coefficient case is a special case of the 
variable coefficient case, we obtain the standard results on existence and 
uniqueness of solutions and consistency of initial conditions, as given for 
example in [23], as a corollary of the following theorem. 

THEOREM 23. Let the strangeness index m be well defined for the pair 

(E(t)? A(t)) in (2) and f E Cm([ta,tl],C”). Then (2) is equivalent to a 
differential-algebraic equation of the form 

&(t) = Ala(t)xs(t) + fl(t), (5% 

0 = x2(t) +.f2(t), (56b) 

0 = f3(Q, (56~) 

where the inhomogeneity is determined by f (‘1,. . , f(“). In particular, 

d,,a,,uk are the numbers of differential, algebraic and undetermined 

components of the unknown x in (a), (b), respectively, while u!, is the 

number of conditions in (c). 

Proof Inductively transforming (E(t), A(t)) to the form (46) and then 
passing to (48) until s, = 0 yields a pair of matrix functions of the form 

([a a :I.[: B 1’8(“1), 

with block sizes d,, a,, I&, for the rows and d,, a,, % for the columns. 
All steps in the procedure are reversible, and in each step the inhomogeneity 
is differentiated once. n 

Then we have the following results characterizing existence and unique- 
ness of solutions and consistency of initial conditions. 

COROLLARY 24. Under the assumptions of Theorem 23, the following 

statements hold if in addition f E Cm+ ‘([to, tl], C”): 

Equation (2) is solvable if and only if the ul,,,, functional consistency 
conditions 

f3(t) = 0 (57) 
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are satisfied. 

An initial condition (3) is consistent if and only if in addition the a, 

conditions 

xz(to) = -fi(to) (58) 

hold. 

The initial value problem (2), (3) as uniquely solvable if again in addition 
we have 

u:, =o (59) 

Otherwise, we can choose x3 E C’([to, tl],&-) arbitrarily. 

Proof Observing that we need the higher differentiability off to guar- 
antee that 52 is differentiable, the results are direct conclusions from The- 
orem 23. n 

For the case of constant coefficients we can use the indices computed in 
Remark 19 to characterize existence and uniqueness. This gives a different 
proof for the following well-known result: 

COROLLARY 25. Consider the linear DAE (5) with constant coefi- 

cients in the Weierstrass-Kronecker canonical form (7). 

There exists a solution of (5) for all f E Cm+’ ([to, tl], C”) and for all 
consistent initial conditions (3) if and only if no blocks of type (8b) occur 
in the canonical form (8). A solution of (5) is unique if and only if no 

blocks of type (8a) occur in the canonical form (8). 

Proof The proof follows from Theorem 23 and Remark 19. We have 
a solution for all sufficiently smooth f and all consistent initial conditions 
if and only if u& = 0, which is true if and only if no blocks of type (8b) 
occur in the canonical form. 

If a solution exists, it is unique if and only uk = 0, which is true if and 
only if no blocks of type (8a) occur in the canonical form. n 

Note that this result differs from other versions of existence and unique- 
ness results for linear constant coefficient systems (e.g. [lo, 5]), due to the 
slightly different definition of solvability. 

REMARK 26. Here we have discussed so far the case of general pen- 
cils. As already mentioned above, the case of Hermitian pencils is also 
very important in applications. We do not know of a general result, in 
the variable coefficient case, that gives a canonical form under transfor- 
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mations that keep the symmetry as congruence transformations do in the 
constant coefficient case. Observe that the transformation (18) destroys 
symmetry of E and A, even if P = Q’, due to the derivative introduced in 
an unsymmetric way. 

Summarizing the results of this section, we have shown that three quan- 
tities are sufficient to discuss the solution behavior of a differential-algebraic 
equation whose coefficients satisfy some indispensable rank and smoothness 
assumptions. These are the strangeness index m and the final numbers d, 
and a, of differential and algebraic components. Dependent on these quan- 
tities we have the parameters z&, &, from which we directly see the solv- 
ability and number of free components. The quantity m is closely related 
to other well-known indices for differential-algebraic equations; see [41]. 

6. NUMERICAL METHODS FOR GENERAL PENCILS 

As we have already mentioned before, the numerical computation of 
the Weierstrass-Kronecker canonical form of a constant pencil is an ill- 
conditioned problem, since the transformation matrices are in general not 
norm bounded, and arbitrarily small perturbations may change the block 
structure. In finite precision arithmetic, we cannot expect accurate sizes 
of the indices if we do not use unitary transformations. The only hope we 
have to compute the invariants accurately is to restrict the transformation 
matrices to be unitary and therefore to reduce to a less condensed form. 
Such a form is the generalized Schur decomposition of a arbitrary pencil. 
This decomposition has been studied widely in recent years, and good, 
reliable software is now available in the public domain; see [20, 21, l] and 
the references therein. Similar approaches are for example due to Van 
Dooren [52, 53, 31, Wilkinson [56, 571, Kublanovskaya [37], and Kagstrom 
[35]. See [20] for a comparison of the different approaches. 

Here we briefly discuss the GUPTRI form given in [20, al]. 

THEOREM 27. Let E, A E en,‘. Then there exist unitary matrices 
P E C”l”, Q E Cz)l such that 

(PEQ, PAQ) 
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where the diagonal blocks describe the Kronecker structure of the pair (E, A) 
in the following way: 

(E’, A’) contains all the blocks of type (8a), 

(E”, A”) contains all Jordan blocks with the eigenvalue 0, 

(Ef, Af) contains all Jordan blocks with finite nonzero eigenvalues, (61) 

(E’, A’) contains all Jordan blocks with infinite eigenvalues, 

(E’, A’) contains all the blocks of type (8b) 

The Jordan structure of the zero and infinite eigenvalues is explicitly 
exposed in this form, while the Jordan structure for the other finite eigen- 
values is not exposed. 

From this form we can directly decide on the existence, uniqueness, and 
index of the corresponding constant coefficient DAE. More work has to be 
done, though, to characterize consistent initial values. For the solution 
of linear constant coefficient DAEs, this has been discussed in [56, 61. In 
the latter a reduction procedure based on singular value decompositions is 
given, which successively determines consistency conditions or nonunique 
components of the solution and finally uses a method for ordinary differ- 
ential equations to solve the differential part. 

For the variable coefficient case many different approaches have been 
taken; see for example [12, 43, 22, 14, 2, 151. All these approaches deal 
partly with higher index DAEs, but none is able to treat DAEs with free 
components as they occur for example in the numerical solution of opti- 
mal control problems for descriptor systems [38, 39, 421. The most general 
approach that can also deal with such cases was given in [40] and is based 
on reduced forms for nonconstant matrix pencils that are obtained by nu- 
merically stable methods and that (similarly to the global canonical form 
discussed in Section 4) expose the solution behavior of the original DAE. 
They are computed from the DAE (5) and its derivatives and are no longer 
related to the matrix pencil with variable coefficients. We therefore refrain 
from presenting them here. 
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7. CONCLUSION 

We have presented equivalence relations and corresponding canonical 
forms for matrix pencils that depend on a parameter, as they arise for 
example in differential algebraic equations. They can be viewed as direct 
generalizations of the Weierstrass-Kronecker canonical form of constant 
matrix pencils. 

Based on the existence of these canonical forms, uniqueness for diff- 
erential-algebraic equations and consistency of initial conditions can be 
characterized. For numerical computation these forms are not suitable, 
but they can be modified in such a way that the important invariants can 
be computed in a numerically stable way and that differential-algebraic 
equations also can be solved. 
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