Existence of solutions for $p(x)$-Laplacian problems on a bounded domain

Jan Chabrowski a, Yongqiang Fu b, *

a Mathematics Department, The University of Queensland, St. Lucia 4072, Qld, Australia
b Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Received 23 July 2004
Available online 5 February 2005
Submitted by R. Manásevich

Abstract
In this paper we study the following $p(x)$-Laplacian problem:

$$
- \text{div} (a(x)|\nabla u|^{p(x)-2} \nabla u) + b(x)|u|^{p(x)-2}u = f(x,u), \quad x \in \Omega,
$$

$$
u = 0, \quad \text{on } \partial \Omega,
$$

where $1 < p_1 \leq p(x) \leq p_2 < n$, $\Omega \subset \mathbb{R}^n$ is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in $W^{1,p(x)}_0(\Omega)$ for the $p(x)$-Laplacian problems in the superlinear and sublinear cases.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Existence; $p(x)$-Laplacian problem; Bounded domain

1. Introduction

After Kovacik and Rakosnik first discussed the $L^{p(x)}$ spaces and $W^{k,p(x)}$ spaces in [17], a lot of research has been done concerning these kinds of variable exponent spaces; see,

Inspired by their works, we want to study the $p(x)$-Laplacian problem:

$$-\text{div}(a(x)|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u), \quad x \in \Omega,$$

$$u = 0, \quad \text{on} \quad \partial \Omega,$$

where Ω is a bounded domain in \mathbb{R}^n, $0 < a_0 \leq a(x) \in L^\infty(\Omega)$, $0 \leq b_0 \leq b(x) \in L^\infty(\Omega)$, p is Lipschitz continuous on $\overline{\Omega}$ and satisfies

$$1 < p_1 \leq p(x) \leq p_2 < n.$$ (1.2)

Our object is to obtain sufficient conditions on f for (1.1) to admit nontrivial and nonnegative solutions in the following prototype cases:

$$f(x,u) = \begin{cases} g(x)u^{\alpha(x)}, & p(x) - 1 < \alpha(x) < p^*(x) - 1, \\ h(x)u^{\beta(x)}, & 0 \leq \beta(x) < p(x) - 1, \end{cases}$$ (1.3)

where $p^*(x) = \frac{np(x)}{n-p(x)}$.

When $p(x)$ is a constant function, there are a lot of studies for the case of bounded domains; see, for example, [4,7,8,12,16] and references therein. It is beyond our ability to write out all the works in this direction here. When $p(x)$ is a variable function, Fan and Zhang [14] studied the $p(x)$-Laplacian problems on bounded domains. Under some conditions, they established some results on the existence of solutions. Although we study the $p(x)$-Laplace problems on bounded domains and we apply mountain pass theorem as well, our method is a bit different from that in [14] and in some sense we discuss the $p(x)$-Laplacian problem in a more general setting than that in [14].

2. Preliminaries

In this section we first recall some facts on variable exponent spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$. For the details see [13,15,17].

Let $P(\Omega)$ be the set of all Lebesgue measurable functions $p : \Omega \to [1, +\infty]$.

$$\rho_p(f) = \int_{\Omega \setminus \Omega_\infty} |f(x)|^{p(x)} \, dx + \inf_{\Omega_\infty} |f(x)|,$$ (2.1)

$$\|f\|_p = \inf \left\{ \lambda > 0 : \rho_p \left(\frac{f}{\lambda} \right) \leq 1 \right\},$$ (2.2)

where $\Omega_\infty = \{ x \in \Omega : p(x) = \infty \}$. The variable exponent Lebesgue space $L^{p(x)}(\Omega)$ is the class of all functions f such that $\rho_p(\lambda f) < \infty$ for some $\lambda = \lambda(f) > 0$. $L^{p(x)}(\Omega)$ is a Banach space endowed with the norm (2.2). $\rho_p(f)$ is called the modular of f in $L^{p(x)}(\Omega)$.
For a given \(p(x) \in P(\Omega) \) we define the conjugate function \(p'(x) \) as

\[
p'(x) = \begin{cases}
\infty, & \text{if } x \in \Omega_1 = \{ x \in \Omega : p(x) = 1 \}, \\
1, & \text{if } x \in \Omega_\infty, \\
\frac{p(x)}{p(x) - 1}, & \text{for other } x \in \Omega.
\end{cases}
\]

Theorem 2.1. Let \(p \in P(\Omega) \). Then the inequality

\[
\int_{\Omega} |f(x)g(x)| \, dx \leq r_p \|f\|_p \|g\|_{p'},
\]

holds for every \(f \in L^{p(x)}(\Omega) \) and \(g \in L^{p'(x)}(\Omega) \) with the constant \(r_p \) depending on \(p(x) \) and \(\Omega \) only.

Theorem 2.2. The topology of the Banach space \(L^{p(x)}(\Omega) \) endowed by the norm (2.2) coincides with the topology of modular convergence if and only if \(p \in L^\infty(\Omega) \).

Theorem 2.3. The dual space to \(L^{p(x)}(\Omega) \) is \(L^{p'(x)}(\Omega) \) if and only if \(p \in L^\infty(\Omega) \). The space \(L^{p(x)}(\Omega) \) is reflexive if and only if

\[
1 < \inf_{\Omega} p(x) \leq \sup_{\Omega} p(x) < \infty.
\]

(2.3)

Next we assume that \(\Omega \subset \mathbb{R}^n \) is a nonempty open set, \(p \in P(\Omega) \) and \(k \) is a given natural number.

Given a multiindex \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n \), we set \(|\alpha| = \alpha_1 + \cdots + \alpha_n \) and \(D^\alpha = D_1^{\alpha_1} \cdots D_n^{\alpha_n} \), where \(D_i = \frac{\partial}{\partial x_i} \) is the generalized derivative operator.

The generalized Sobolev space \(W^{k,p(x)}(\Omega) \) is the class of all functions \(f \) on \(\Omega \) such that \(D^\alpha f \in L^{p(x)}(\Omega) \) for every multiindex \(\alpha \) with \(|\alpha| \leq k \), endowed with the norm

\[
\|f\|_{k,p} = \sum_{|\alpha| \leq k} \|D^\alpha f\|_p.
\]

(2.4)

By \(W_0^{k,p(x)}(\Omega) \) we denote the subspace of \(W^{k,p(x)}(\Omega) \) which is the closure of \(C_0^\infty(\Omega) \) with respect to the norm (2.4).

Theorem 2.4. The space \(W^{k,p(x)}(\Omega) \) and \(W_0^{k,p(x)}(\Omega) \) are Banach spaces, which are reflexive if \(p \) satisfies (2.3).

We denote the dual space of \(W_0^{k,p(x)}(\Omega) \) by \(W^{-k,p'(x)}(\Omega) \), then we have

Theorem 2.5. Let \(p \in P(\Omega) \cap L^\infty(\Omega) \). Then for every \(G \in W^{-k,p'(x)}(\Omega) \) there exists a unique system of functions \(\{g_\alpha \in L^{p'(x)}(\Omega) : |\alpha| \leq k \} \) such that

\[
G(f) = \sum_{|\alpha| \leq k} \int_{\Omega} D^\alpha f(x) g_\alpha(x) \, dx, \quad f \in W_0^{k,p(x)}(\Omega).
\]
The norm of $W^{-k,p'}(x)(\Omega)$ is defined as
\[\| G \|_{-k,p'} = \sup \left\{ \frac{|G(f)|}{\|f\|_{k,p}} : f \in W_{0}^{k,p}(\Omega) \right\}. \]

Theorem 2.6. If Ω is a bounded domain with the cone property, $p(x) \in C(\overline{\Omega})$ satisfies (1.2) and $q(x)$ is any Lebesgue measurable function defined on Ω with $p(x) \leq q(x)$ a.e. on $\overline{\Omega}$ and $\inf_{x \in \Omega} \{ p^*(x) - q(x) \} > 0$, then there is a compact embedding $W^{1,p(x)}(\Omega) \to L^{q(x)}(\Omega)$.

Theorem 2.7. Let Ω be a domain with the cone property. If $p: \overline{\Omega} \to \mathbb{R}$ is Lipschitz continuous and satisfies (1.2), and $q(x) \in \mathcal{P}(\Omega)$ satisfies $p(x) \leq q(x) \leq p^*(x)$ a.e. on $\overline{\Omega}$, then there is a continuous embedding $W^{1,p(x)}(\Omega) \to L^{q(x)}(\Omega)$.

Theorem 2.8. Let Ω be a bounded domain. If $p \in L^\infty(\Omega)$ and $u \in W_{0}^{1,p(x)}(\Omega)$, then
\[\int_{\Omega} |u|^{p(x)} \, dx \leq C \int_{\Omega} |\nabla u|^{p(x)} \, dx, \]
where C is a constant depending on Ω.

For the $p(x)$-Laplacian problems (1.1) we define two functionals $K(u)$ and $J(u)$ on Ω:
\[K(u) = \int_{\Omega} F(x,u) \, dx, \]
\[J(u) = \int_{\Omega} \frac{1}{p(x)} \left(a(x)|\nabla u|^{p(x)} + b(x)|u|^{p(x)} \right) \, dx - K(u), \]
where $F(x,t) = \int_{0}^{t} f(x,s) \, ds$.

Next we discuss the properties of $K(u)$ while f satisfies the following conditions:

(H1) $f \in C(\overline{\Omega} \times \mathbb{R})$, $f(x,t) > 0$ in $\Omega_{0} \times (0, +\infty)$ for some nonempty open set $\Omega_{0} \subseteq \Omega$ and $f(x,t) = 0$ for all $x \in \Omega$ and $t \leq 0$.

(H2) $|f(x,t)| \leq c_{1} + c_{2}|t|^{\beta(x)}$, $\alpha + 1 \in C(\overline{\Omega})$ with $\alpha = \inf_{x \in \Omega} \{ \alpha(x) - p(x) + 1 \} > 0$ and $a = \sup_{x \in \Omega} \{ p^*(x) - \alpha(x) - 1 \} > 0$. Here c_{1}, c_{2} are positive constants.

(H3) $|f(x,t)| \leq \tilde{c}_{1} + \tilde{c}_{2}|t|^{\beta(x)}$, $\beta + 1 \in \mathcal{P}(\Omega)$ with $0 \leq \beta(x)$ and $b = \sup_{x \in \Omega} \{ p(x) - \beta(x) - 1 \} > 0$. Here $\tilde{c}_{1}, \tilde{c}_{2}$ are positive constants.

Lemma 2.9. Suppose that f satisfies (H1) and (H2) or (H3). Then $K(u)$ is weakly continuous on $W_{0}^{1,p(x)}(\Omega)$.

Proof. Suppose that f satisfies (H1) and (H3). Let $u_{j} \to u$ weakly in $W_{0}^{1,p(x)}(\Omega)$. Then $\{ u_{j} \}$ is bounded in $W_{0}^{1,p(x)}(\Omega)$. By Theorem 2.6 there is a compact embedding $W^{1,p(x)}(\Omega) \to L^{p(x)}(\Omega)$ while there is a continuous embedding $L^{p(x)}(\Omega) \to$
$L^{\beta(x)+1}(\Omega)$, so the embedding $W^{1,p(x)}(\Omega) \to L^{\beta(x)+1}(\Omega)$ is compact and $u_j \to u$ in $L^{\beta(x)+1}(\Omega)$. Then by Theorem 2.2 $u_j \to u$ in modular as well. From (H3) we get

$$|F(x,t)| \leq \tilde{c}_1|t| + \frac{\tilde{c}_2}{\beta(x)}|t|^{\beta(x)+1}.$$

Then by Vitali theorem (see [18]), we have

$$\int_{\Omega} F(x,u_j) \, dx \to \int_{\Omega} F(x,u) \, dx \text{ as } j \to \infty.$$

Similarly if f satisfies (H1) and (H2) the theorem is valid as well. □

Theorem 2.10. Suppose that f satisfies (H1) and (H2) or (H3). Then $K(u)$ is differentiable on $W^{1,p(x)}_0(\Omega)$ with

$$K'(u)\phi = \int_{\Omega} f(x,u) \phi \, dx \quad \forall \phi \in W^{1,p(x)}_0(\Omega).$$

Proof. For differentiability of K, we will show that for any $\varepsilon > 0$, there exists a $\delta = \delta(\varepsilon, u) > 0$ such that

$$\left| K(u + \phi) - K(u) - \int_{\Omega} f(x,u) \phi \, dx \right| < \varepsilon \, \|\phi\|_{1,p}$$

for all $\phi \in W^{1,p(x)}_0(\Omega)$ with $\|\phi\|_{1,p} < \delta$.

Let $\Omega_1 = \{x \in \Omega_k: |u(x)| \geq h\}$, $\Omega_2 = \{x \in \Omega_k: |\phi(x)| \geq r\}$, $\Omega_3 = \{x \in \Omega_k: |u(x)| < h \text{ and } |\phi(x)| < r\}$, where h, r are constant which will be determined later.

Next we consider the case that f satisfies (H1) and (H3) only, the other case that f satisfies (H1) and (H2) can be treated similarly. First on Ω_1 we have

$$\int_{\Omega_1} F(x,u + \phi) - F(x,u) - f(x,u) \phi \, dx$$

$$\leq C \int_{\Omega_1} (\tilde{c}_1 + \tilde{c}_2 (|u| + |\phi|)^{\beta(x)}) |\phi| + (\tilde{c}_1 + \tilde{c}_2 |u|^{\beta(x)}) |\phi| \, dx$$

$$\leq C \int_{\Omega_1} (|\phi| + |u|^{\beta(x)} |\phi| + |\phi|^{\beta(x)+1}) \, dx$$

$$\leq C \|\chi_{\Omega_1}\|_{(p^*)'} \|\phi\|_{p^*} + I_1 + I_2,$$

since

$$|u|^{\beta(x)} \leq 2^{\beta(x)} (|u|^{\beta(x)} + |\phi|^{\beta(x)}) \leq 2^{\tilde{\beta}} (|u|^{\beta(x)} + |\phi|^{\beta(x)}),$$

where $\tilde{\beta} = \sup_{\Omega} \beta(x)$.

Because \(u \in W^{1,p(x)}(\Omega) \), we can get

\[
\int_{\Omega_1} |u|^{p(x)} \, dx \geq \int_{\Omega} h^{p(x)} \, dx \geq \min \{ h^{p_1}, h^{p_2} \} \, \text{meas} \, \Omega_1.
\]

(2.5)

From (2.5), \(\text{meas} \, \Omega_1 \to 0 \) as \(h \to \infty \). Then we can get for sufficiently large \(h \),

\[
C \| \chi_{\Omega_1} \|_{(p^*)'} \| \phi \|_{p^*} \leq C (\text{meas} \, \Omega_1)^{\frac{np_1}{np_1-n+p_1}} \| \phi \|_{1,p} < \frac{\varepsilon}{9} \| \phi \|_{1,p}.
\]

(2.6)

Second from \(f \in C(\Omega \times \mathbb{R}) \) we have \(F \in C^1(\Omega \times \mathbb{R}) \). For any \(\varepsilon_1, h > 0 \), there exists \(r > 0 \) such that

\[
|F(x, \xi + \eta) - F(x, \xi) - f(x, \xi) \eta| < \varepsilon_1 |\eta|
\]

(2.7)
whenever \(x \in \bar{\Omega} \), \(|\xi| \leq h\) and \(|\eta| < r\). From (2.7) we have
\[
\int_{\Omega} |F(x, u + \phi) - F(x, u) - f(x, u)\phi| \, dx \leq \varepsilon_1 \|\phi\|_p \|\chi_{\Omega}\|_{p'}.
\]
Choose \(\varepsilon_1 \) such that \(\varepsilon_1 \|\chi_{\Omega}\|_{p'} < \frac{\varepsilon}{3} \), then
\[
\int_{\Omega} |F(x, u + \phi) - F(x, u) - f(x, u)\phi| \, dx < \frac{\varepsilon}{3} \|\phi\|_{1,p}.
\] (2.8)

Here \(\|\chi_{\Omega}\|_{p'} < \infty \) because \(\int_{\Omega} (\chi_{\Omega})^{p'} \, dx = \text{meas} \Omega < \infty \).

Third similar to the above we have
\[
\left| \int_{\Omega} F(x, u + \phi) - F(x, u) - f(x, u)\phi \, dx \right|
\leq C \int_{\Omega} |u|^{\beta(x)}|\phi| + |\phi|^{\beta(x) + 1} \, dx
\leq C \left(\|u\|^{\beta} \|\chi_{\Omega}\|_{p',\Omega} + \|\phi\|^{\beta + 1} \|\chi_{\Omega}\|_{p',\Omega} \right) \|\phi\|_{\beta + 1,\Omega}.
\]

For any \(0 < \varepsilon_2 < 1 \), we have
\[
\int_{\Omega} \left(\frac{|\phi|}{\varepsilon_2 \|\phi\|_{p'}} \right)^{\beta(x) + 1} \, dx \leq \int_{\Omega} \left(\frac{|\phi|}{\|\phi\|_{p'}} \right)^{p^*(x)} \left(\frac{\|\phi\|_{p'}}{r} \right)^{p^*(x) - \beta(x) - 1} \left(\frac{1}{\varepsilon_2} \right)^{\beta(x) + 1} \, dx.
\]

As \(\bar{b} = \sup_{x \in \Omega} \{ p^*(x) - \beta(x) - 1 \} > 0 \), we can choose \(\|\phi\|_{1,p} \) sufficiently small such that
\[
\int_{\Omega} \left(\frac{|\phi|}{\varepsilon_2 \|\phi\|_{p'}} \right)^{\beta(x) + 1} \, dx \leq \int_{\Omega} \left(\frac{|\phi|}{\|\phi\|_{p'}} \right)^{p^*(x)} \, dx \leq 1
\]
and further
\[
\|\phi\|_{\beta + 1,\Omega} \leq \varepsilon_2 \|\phi\|_{p'} \leq C \varepsilon_2 \|\phi\|_{1,p}.
\]

From \(u \in W^{1,p(x)}(\Omega) \) and Theorem 2.6, \(u \in L^{\beta(x) + 1}(\Omega) \), so \(\int_{\Omega} |u|^{\beta(x) + 1} \, dx < \infty \) and further \(\|u\|^{\beta} \|\chi_{\Omega}\|_{p',\Omega} < \infty \). Similarly \(\|\phi\|^{\beta + 1} \|\chi_{\Omega}\|_{p',\Omega} < \infty \) if \(\|\phi\|_{1,p} < 1 \). Choose \(\varepsilon_2 \) such that
\[
\int_{\Omega} |F(x, u + \phi) - F(x, u) - f(x, u)\phi| \, dx < \frac{\varepsilon}{3} \|\phi\|_{1,p}.
\] (2.9)

From (2.6), (2.8) and (2.9) we conclude that \(K(u) \) is differentiable on \(W^{1,p(x)}_0(\Omega) \) with
\[
K'(u)\phi = \int_\Omega f(x, u)\phi \, dx \quad \forall \phi \in W^{1,p(x)}_0(\Omega).
\]
Theorem 2.11. Suppose that f satisfies (H1) and (H2) or (H3). Then $K'(u)$ is a continuous and compact mapping from $W^{1,p(x)}_0(\Omega)$ to $W^{-1,p'(x)}(\Omega)$.

Proof. From
\[
|K'(u_j)\phi - K'(u)\phi| \leq \int_\Omega |f(x,u_j) - f(x,u)| |\phi| \, dx \\
\leq C \left\| f(x,u_j) - f(x,u) \right\|_{p^*} \|\phi\|_{p^*} \\
\leq C \left\| f(x,u_j) - f(x,u) \right\|_{p^*} \|\phi\|_{1,p},
\]
we have
\[
\left\| K'(u_j) - K'(u) \right\|_{-1,p'} \leq C \left\| f(x,u_j) - f(x,u) \right\|_{p^*}.
\]
Similarly to the differentiability of $K(u)$ we can get the result.

At last we show the compactness of $K'(u)$. We consider the case in which f satisfies (H1) and (H3) only and the other case can be treated similarly as well. Let $\{u_j\}$ be a bounded sequence in $W^{1,p(x)}_0(\Omega)$. As the embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{p(x)+1}(\Omega)$ is compact, then the boundedness of $\{u_j\}$ in $W^{1,p(x)}(\Omega)$ implies that $\{u_j\}$ has a Cauchy subsequence which is still denoted by $\{u_j\}$. Similar to the above we can choose j sufficiently large such that
\[
\left\| f(x,u_j) - f(x,u_i) \right\|_{p^*} < \varepsilon.
\]
Then $\{K'(u_j)\}$ is a Cauchy sequence in $W^{-1,p'(x)}(\Omega)$ and the compactness of K' follows immediately. \qed

3. Existence of solutions

The critical points u of $J(u)$, i.e.,
\[
J'(u)(\phi) = \int_\Omega a(x)|\nabla u|^{p(x)-2}\nabla u\nabla \phi + b(x)|u|^{p(x)-2}u\phi - f(x,u)\phi \, dx = 0 \quad (3.1)
\]
for all $\phi \in W^{1,p(x)}_0(\Omega)$ are weak solutions of
\[
-\text{div}(a(x)|\nabla u|^{p(x)-2}\nabla u) + b(x)|u|^{p(x)-2}u = f(x,u).
\]
So next we need only to consider the existence of nontrivial critical points of $J(u)$.

First we study the prototype case (1.3). To establish the existence of solutions, we suppose that f satisfies the following additional condition:

(H4) there exist constants $M > 0$ and $\mu > p(x)$ with $\sup_{x \in \Omega} \{\mu - p(x)\} > 0$ such that $\mu F(x,t) \leq tf(x,t)$ for $x \in \Omega$ and $|t| \geq M$, and $f(x,t) = o(t^{p(x)-1})$ as $t \to 0$.

Theorem 3.1. Under conditions (H1), (H2) and (H4) the $p(x)$-Laplacian problem (1.1) has a nontrivial and nonnegative solution $u \in W_0^{1,p(x)}(\Omega)$.

Proof. By (H4), for any $\varepsilon > 0$ there exists a $\delta > 0$ such that $F(x, t) \leq \frac{\varepsilon}{2} |t|^{p(x)}$ whenever $x \in \Omega$ and $|t| < \delta$. By (H2) there exists a constant $A = A(\delta) > 0$ such that $F(x, t) \leq A|t|^{p(x)+1}$ whenever $x \in \Omega$ and $|t| \geq \delta$. Combining the two inequalities, we get

$$F(x, t) \leq \frac{\varepsilon}{2} |t|^{p(x)} + A|t|^{p(x)+1}.$$

Then

$$J(u) \geq \int_\Omega \frac{a_0}{p_2} |\nabla u|^{p(x)} \, dx - \frac{\varepsilon}{2} \int_\Omega |u|^{p(x)} \, dx - \int_\Omega \left(\frac{c_2}{p_1} + A \right) |u|^{p(x)+1} \, dx.$$

By Theorem 2.8 we can take ε sufficiently small such that

$$\frac{\varepsilon}{2} \int_\Omega |u|^{p(x)} \, dx \leq \frac{a_0}{2p_2} \int_\Omega |\nabla u|^{p(x)} \, dx.$$

Then

$$J(u) \geq \frac{a_0}{2p_2} \int_\Omega |\nabla u|^{p(x)} \, dx - C \int_\Omega |u|^{p(x)+1} \, dx. \quad (3.2)$$

By Theorems 2.6 and 2.8 we have $\|u\|_{p+1} \leq C\|\nabla u\|_p$. If $\|\nabla u\|_p < 1$ is sufficiently small such that $C\|\nabla u\|_p < 1$, then $\|u\|_{p+1} < 1$.

For any $x \in \Omega$, as $p, \alpha \in C(\tilde{\Omega})$ we can get $Q_R(x) = \{y = (y^1, \ldots, y^n) : |y^i - x^i| < R, \ i = 1, \ldots, n\}$ such that $|p(y) - p(x)| < \varepsilon$ and $|\alpha(y) - \alpha(x)| < \varepsilon$ whenever $y \in Q_R(x) \cap \tilde{\Omega}$. Take $\varepsilon = \frac{\delta}{2}(\alpha(x) - p(x) + 1)$, then

$$p_{x,2} = \sup_{x \in Q_R(x) \cap \tilde{\Omega}} p(x) \leq \alpha_{x,1} + 1 = \inf_{x \in Q_R(x) \cap \tilde{\Omega}} \alpha(x) + 1.$$

\{Q_R(x)\}_{x \in \tilde{\Omega}} is an open covering of $\tilde{\Omega}$. As $\tilde{\Omega}$ is compact, we can pick a finite subcovering $\{Q_{R_i}(x_i)\}_{i=1}^m$ for $\tilde{\Omega}$ from the covering $\{Q_R(x)\}_{x \in \tilde{\Omega}}$. If $Q_{R_i}(x_i) \subseteq \Omega$ we define $u = 0$ on $Q_{R_i}(x_i) \setminus \Omega$ and then Theorem 2.6 is still valid for $u \in W_0^{1,p(x)}(\Omega)$ on $Q_{R_i}(x_i)$. We can use all the hyperplanes, for each of which there exists at least one hypersurface of some $Q_{R_i}(x_i)$ lying on it, to divide $\bigcup_{i=1}^m Q_{R_i}(x_i)$ into finite open hypercubes $\{Q_j\}_{j=1}^J$ which mutually have no common points. It is obvious that $\tilde{\Omega} \subseteq \bigcup_{j=1}^J \tilde{Q}_j$ and for each Q_j there exists at least one $Q_{R_i}(x_i)$ such that $Q_j \subseteq Q_{R_i}(x_i)$. By Theorems 2.6, 2.8 and [11],

$$\int_{Q_j \cap \Omega} |u|^{p(x)+1} \, dx \leq (C\|u\|_{1,p, Q_j \cap \Omega})^{d_{j,1}+1}, \quad (3.3)$$

where $d_{j,1} = \inf_{x \in Q_j \cap \Omega} \alpha(x)$. As $\|\nabla u\|_{p, Q_j \cap \Omega} < 1$, we have

$$\int_{Q_j \cap \Omega} |\nabla u|^{p(x)} \, dx \geq \frac{1}{1 + C\|u\|_{1,p, Q_j \cap \Omega}}. \quad (3.4)$$
where \(p_{j2} = \sup_{x \in Q_j \cap \Omega} p(x) \). From (3.2)–(3.4) we have
\[
\frac{\alpha_0}{2p_2} \int_{Q_j \cap \Omega} |\nabla u|^{p(x)} \, dx - C \int_{Q_j \cap \Omega} |u|^{\alpha(x)+1} \, dx \\
\geq C_1 (\|u\|_{1,p,Q_j \cap \Omega})^{p_{j2}} - C_2 (\|u\|_{1,p,Q_j \cap \Omega})^{\alpha_{j1}+1}.
\]
As \(\alpha_{j1} + 1 > p_{j2} \), there exists \(r_j \) such that
\[
C_1 (\|u\|_{1,p,Q_j \cap \Omega})^{p_{j2}} - C_2 (\|u\|_{1,p,Q_j \cap \Omega})^{\alpha_{j1}+1} \geq C_r > 0
\]
if \(\|u\|_{1,p,Q_j \cap \Omega} = r \) and \(0 < r < \frac{1}{1+C_r} \), where \(C \) is the embedding constant in \(\|u\|_{\alpha+1} \leq C \|\nabla u\|_p \). Take \(r_0 = \min_{1 \leq j \leq J} \{ r_j \} \). As
\[
\|u\|_{1,p} = \left\| u \sum_{j=1}^J \chi_{Q_j \cap \Omega} \right\|_{1,p} \leq \sum_{j=1}^J \|u\chi_{Q_j \cap \Omega}\|_{1,p} = \sum_{j=1}^J \|u\|_{1,p,Q_j \cap \Omega}.
\]
So there exists at least one \(\|u\|_{1,p,Q_j \cap \Omega} \) satisfying
\[
r_0 \leq \|u\|_{1,p,Q_j \cap \Omega} \leq r_0.
\]
Then we have
\[
J(u) \geq \sum_{j=1}^J \left(\frac{\alpha_0}{2p_2} \int_{Q_j \cap \Omega} |\nabla u|^{p(x)} \, dx - C \int_{Q_j \cap \Omega} |u|^{\alpha(x)+1} \, dx \right) \\
\geq C_1 \left(\frac{r_0}{J} \right)^{p_{j2}} \left(1 - \frac{C_2}{C_1} \right) > 0
\]
if \(\|u\|_{1,p} = r_0 > 0 \).

By (H1) and (H4) we have
\[
F(x,t) \geq a_1 t^\mu - a_2, \quad |t| \geq M,
\]
where \((x,t) \in \Omega_0 \times \mathbb{R} \) and \(a_1, a_2 > 0 \) are constant. Pick \(x_0 \in \Omega_0 \) and \(B_{2R}(x_0) = \{ x : |x-x_0| < 2R \} \subset \Omega_0 \) with \(2R < 1 \). Let \(\phi \in C_0^\infty(B_{2R}(x_0)) \) such that \(\phi \equiv 1 \), \(x \in B_R(x_0) \), \(0 \leq \phi(x) \leq 1 \) and \(|\nabla \phi| \leq \frac{1}{R} \). Denote \(l = \inf_{x \in \Omega} \{ \mu - p(x) \} \). Then for \(s > 1 \),
\[
J(s\phi) \leq \int_{B_{2R}(x_0)} \frac{s^{p(x)}}{p(x)} (a(x)|\nabla \phi|^{p(x)} + b(x)|\phi|^{p(x)}) \, dx - \int_{B_{2R}(x_0)} s^\mu a_1 |\phi|^\mu \, dx \\
+ \int_{B_{2R}(x_0) \cap \{ x \in \Omega : s|\phi| \leq M \}} s^\mu a_1 |\phi|^\mu \, dx \\
- \int_{B_{2R}(x_0) \cap \{ x \in \Omega : s|\phi| \leq M \}} f(x,s\phi) \, dx \\
+ a_2 \text{ meas } B_{2R}(x_0) \\
\leq C \left(\frac{1}{R^{p_2}} + 1 \right) \int_{B_{2R}(x_0)} s^{p(x)} \, dx - s^\mu a_1 \int_{B_{2R}(x_0)} |\phi|^\mu \, dx + C \text{ meas } B_{2R}(x_0)
\[
\int_{B_2} s^{p(x)} \left(\frac{C}{R_{p/2}} + C - \tilde{C} s^{-p(x)} \right) dx + \tilde{C} \text{ meas } B_{2R}(x_0) \\
\leq \int_{B_2} s^{p(x)} \left(\frac{C}{R_{p/2}} + C - \tilde{C} \right) dx + \tilde{C} \text{ meas } B_{2R}(x_0) < 0
\]

if \(s \) is sufficiently large. Here \(\tilde{C} = \int_{B_2} a_1 |\phi|^\mu dx / \text{ meas } B_{2R}(x_0) \).

Next we show that the (PS) condition (i.e., any sequence \(\{u_i\} \subset W^{1, p(x)}(\Omega) \) for which \(J(u_i) \leq C \) and \(J'(u_i) \to 0 \) as \(i \to \infty \) in \(W^{-1, p'(x)}(\Omega) \) possesses a convergent subsequence) holds. Suppose that \(\{u_i\} \subset W^{1, p(x)}(\Omega) \) is a sequence such that \(J(u_i) \leq C \) and \(J'(u_i) \to 0 \) in \(W^{-1, p'(x)}(\Omega) \). By (H4) we have

\[
J(u_i) \geq \int_\Omega \frac{a(x)}{p(x)}(|\nabla u_i|^{p(x)} + \frac{b(x)}{p(x)} |u_i|^{p(x)}) dx - \int_\Omega \frac{1}{\mu} f(x, u_i) u_i dx \\
- \int_{\Omega \cap \{x \in \Omega: |u_i| \leq M\}} F(x, u_i) dx + \int_{\Omega \cap \{x \in \Omega: |u_i| \leq M\}} \frac{1}{\mu} f(x, u_i) u_i dx \\
\geq \int_\Omega \left(\frac{1}{p(x)} - \frac{1}{\mu} \right) \left(a(x)|\nabla u_i|^{p(x)} + b(x)|u_i|^{p(x)} \right) dx \\
+ \frac{1}{\mu} \int_\Omega \left(a(x)|\nabla u_i|^{p(x)} + b(x)|u_i|^{p(x)} - f(x, u_i) u_i \right) dx - C
\]

In the following we consider two cases to show that \(\{u_i\} \) is bounded in \(W^{1, p(x)}(\Omega) \):

1. If \(\|\nabla u_i\|_p \leq 1 \), it is immediate that \(\|u_i\|_{1,p} \leq C \) in view of Theorem 2.8.

2. If \(\|\nabla u_i\|_p > 1 \), then \(\|\nabla u_i\|_p \leq \int_\Omega |\nabla u_i|^{p(x)} dx \). For \(i \) sufficiently large we have

\[
\frac{1}{\mu} \|J'(u_i)\|_{-1,p'} \leq \frac{a_0}{2\mu p_2}
\]

and then \(\int_\Omega |\nabla u_i|^{p(x)} dx \leq C \) and \(\int_\Omega |u_i|^{p(x)} dx \leq C \) as well by Theorem 2.8. Therefore by Theorem 2.2 \(\|u_i\|_{1,p} \leq C \).

From (1)–(2) we conclude that \(\{u_i\} \) is bounded in \(W^{1, p(x)}(\Omega) \) and by Theorem 2.11 there exists a subsequence of \(\{u_i\} \) (we still denote it by \(\{u_i\} \)) such that \(K'(u_i) \) is a Cauchy sequence in \(W^{-1, p'(x)}(\Omega) \).

Divide \(\Omega \) into two parts:

\(\Omega_1 = \{ x \in \Omega: p(x) < 2 \} \), \(\Omega_2 = \{ x \in \Omega: p(x) \geq 2 \} \).
From (3.1) it is easy to get
\[
\begin{aligned}
\int_{\Omega} a(x)(|\nabla u_i|^{p(x)} - 2 \nabla u_i - |\nabla u_j|^{p(x)} - 2 \nabla u_j)(\nabla u_i - \nabla u_j) \\
+ b(x)(|u_i|^{p(x)} - |u_j|^{p(x)})(u_i - u_j) \, dx \\
\leq |J'(u_i)(u_i - u_j)| + |J'(u_j)(u_i - u_j)| \\
+ \left| \int_{\Omega} (f(x, u_i) - f(x, u_j))(u_i - u_j) \, dx \right| \\
\leq C \left(\left\| J'(u_i) \right\|_{-1, p'} + \left\| J'(u_j) \right\|_{-1, p'} + \left\| K'(u_i) - K'(u_j) \right\|_{-1, p'} \right) \\
\rightarrow 0.
\end{aligned}
\]
\[\tag{3.5}\]

On \(\Omega_1\) we have
\[
\begin{aligned}
\int_{\Omega_1} |\nabla u_i - \nabla u_j|^{p(x)} \, dx \\
\leq \int_{\Omega_1} \left((|\nabla u_i|^{p(x)} - 2 \nabla u_i - |\nabla u_j|^{p(x)} - 2 \nabla u_j)(\nabla u_i - \nabla u_j) \right)^{\frac{p(x)}{2}} \\
\times \left(|\nabla u_i|^{p(x)} + |\nabla u_j|^{p(x)} \right)^{-\frac{p(x)}{2}} \, dx \\
\leq \left\| \left((|\nabla u_i|^{p(x)} - 2 \nabla u_i - |\nabla u_j|^{p(x)} - 2 \nabla u_j)(\nabla u_i - \nabla u_j) \right)^{\frac{p(x)}{2}} \right\|_{\frac{2}{p}, \Omega_1} \\
\times \left\| \left(|\nabla u_i|^{p(x)} + |\nabla u_j|^{p(x)} \right)^{-\frac{p(x)}{2}} \right\|_{\frac{2}{p}, \Omega_1}.
\end{aligned}
\]
From (3.5) and Theorem 2.2 we get
\[
\left\| \left((|\nabla u_i|^{p(x)} - 2 \nabla u_i - |\nabla u_j|^{p(x)} - 2 \nabla u_j)(\nabla u_i - \nabla u_j) \right)^{\frac{p(x)}{2}} \right\|_{\frac{2}{p}, \Omega_1} \rightarrow 0.
\]
As \(\int_{\Omega_1} (|\nabla u_i|^{p(x)} + |\nabla u_j|^{p(x)} \right)^{-\frac{p(x)}{2}} \, dx\) is bounded, by Theorem 2.2 and (3.6),
\[
\int_{\Omega_1} |\nabla u_i - \nabla u_j|^{p(x)} \, dx \rightarrow 0.
\]
\[\tag{3.7}\]
On \(\Omega_2\), by (3.5) we have
\[
\begin{aligned}
\int_{\Omega_2} |\nabla u_i - \nabla u_j|^{p(x)} \, dx \\
\leq C \int_{\Omega_2} \left((|\nabla u_i|^{p(x)} - 2 \nabla u_i - |\nabla u_j|^{p(x)} - 2 \nabla u_j)(\nabla u_i - \nabla u_j) \right) \, dx \\
\rightarrow 0.
\end{aligned}
\]
\[\tag{3.8}\]
Combining (3.7) with (3.8) and by Theorem 2.2 we conclude \(\|\nabla u_i - \nabla u_j\|_{p} \to 0 \) and moreover \(\|u_i - u_j\|_{1,p} \to 0 \) by Theorem 2.8. Thus the (PS) condition holds.

The mountain pass theorem (see [21]) guarantees that \(J \) has a nontrivial critical point \(u \). Let \(\phi = \max\{-u(x), 0\} \) in (3.1) we arrive at the conclusion that \(u \geq 0 \) in \(\Omega \).

Second we study the prototype (1.4). To establish the existence of solutions, we suppose that \(f \) satisfies:

\[(H5) \quad f(x,t) \geq \tilde{c}_3|t|^\beta_0 \text{ as } t \to 0^+, \quad 0 \leq \beta_0 \leq \beta(x), \text{ where } \tilde{c}_3 > 0.\]

Theorem 3.2. Under conditions (H1), (H3) and (H5), the \(p(x) \)-Laplacian problem (1.1) has a nontrivial and nonnegative solution \(u \in W_0^{1,p(x)}(\Omega) \).

Proof. By condition (H3) the functional \(J \) is weakly continuous and differentiable.

Next we show that \(J \) is bounded below. In view of Theorem 2.8 it is easy to calculate that

\[
J(u) \geq \int_{\Omega} \frac{1}{p(x)} \left(a_0 |\nabla u|^{p(x)} + b_0 |u|^{p(x)} \right) dx - \int_{\Omega} \frac{\tilde{c}_2}{\beta(x)} |u|^{\beta(x)+1} dx \\
\geq \frac{1}{p_2} \int_{\Omega} a_0 |\nabla u|^{p(x)} + b_0 |u|^{p(x)} - p_2 \tilde{c}_1 |u| - p_2 \tilde{c}_2 |u|^{\beta(x)+1} dx \\
\geq \frac{1}{p_2} \int_{\Omega} |u| \left(\frac{C|u|^{p(x)-1}}{2} - p_2 \tilde{c}_1 \right) + |u|^{\beta(x)+1} \left(\frac{C|u|^{p(x)-\beta(x)-1}}{2} - p_2 \tilde{c}_2 \right) dx.
\]

Denote

\[L = \max \left\{ 1, \left(\frac{2p_2 \tilde{c}_1}{C} \right)^{\frac{1}{p(x)}}, \left(\frac{2p_2 \tilde{c}_2}{C} \right)^{\frac{1}{p(x)}} \right\}\]

and \(\Omega_1 = \{x \in \Omega : |u(x)| \geq L\} \), \(\Omega_2 = \{x \in \Omega : |u(x)| < L\} \). Then from

\[
\int_{\Omega_1} |u|^{p(x)} - p_2 \tilde{c}_1 |u| - p_2 \tilde{c}_2 |u|^{\beta(x)+1} dx \geq 0
\]

and

\[
\int_{\Omega_2} |u|^{p(x)} - p_2 \tilde{c}_1 |u| - p_2 \tilde{c}_2 |u|^{\beta(x)+1} dx \\
\leq \int_{\Omega_2} L^{p(x)} + p_2 \tilde{c}_1 L + p_2 \tilde{c}_2 L^{\beta(x)+1} dx \\
\leq 2(L^{p_2} + p_2 \tilde{c}_1 L + p_2 \tilde{c}_2 L^{p_2}) \text{ meas } \Omega,
\]

we conclude that \(J \) is bounded below. Thus \(J \) has a critical point \(u \): \(J(u) = \inf\{J(v) : v \in W_0^{1,p(x)}(\Omega)\} \) and \(u \) is a weak solution of (1.1).
At last we show u is nontrivial and nonnegative. Pick $x_0 \in \Omega$ and $B_{2R}(x_0) \subset \Omega$ with $2R < 1$. Let $\phi \in C_0^\infty(B_{2R}(x_0))$ such that $\phi \equiv 1$, $x \in B_R(x_0)$; $0 \leqslant \phi(x) \leqslant 1$ and $|\nabla \phi| \leqslant \frac{1}{R}$.

Then for $s < 1$,

$$J(s\phi) \leqslant \int_{B_{2R}(x_0)} \frac{s^{p(x)}(x)}{p(x)} (a(x)|\nabla \phi|^{p(x)} + b(x)|\phi|^{p(x)}) \, dx - \int_{B_{2R}(x_0)} \frac{s^{\beta_0+1}c_3}{\beta_0 + 1} |\phi|^{\beta_0+1} \, dx$$

$$\leqslant \int_{B_{2R}(x_0)} s^{\beta_0+1} \left(\frac{C}{R^{p(x)}} + C \right) s^{\beta} \, dx < 0$$

if s is sufficiently small. Therefore u is nontrivial and similar to Theorem 3.1 we can conclude that u is nonnegative. □

Acknowledgments

The corresponding author was supported by the Scientific Research Foundation of Harbin Institute of Technology HIT.202.52. The authors express their gratitude to the reviewers for their valuable comments.

References