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We consider a system of autonomous ordinary differential equations depending
on a small parameter such that the unperturbed system has an invariant manifold
of periodic solutions. The problem addressed here is the determination of sufficient
geometric conditions for some of the periodic solutions on this invariant manifold
to survive after perturbation. The main idea is to use a Lyapunov-Schmidt reduc-
tion for an appropriate displacement function in order to obtain the bifurcation
function for the problem in a form which can be recognized as a generalization of
the subharmonic Melnikov function. Thus, the multidimensional bifurcation
problem can be cast in a form where the geometry of the problem is clearly incor-
porated. An important application can be made in case the uncoupled system of dif-
ferential equations is a system of oscillators in resonance. In this case the invariant
manifold of periodic solutions is just the product of the uncoupled oscillations.
When each of the oscillators has one degree of freedom, the bifurcation function is
computed by quadrature along the unperturbed oscillations. Additional applica-
tions include the computation of entrainment domains for a sinusoidally forced van
der Pol oscillator and the computation of mutual synchronization domains for a
system of inductively coupled van der Pol oscillators.  © 1994 Academic Press, Inc.

1. INTRODUCTION

We consider systems of autonomous differential equations depending on
a small parameter such that the unperturbed system has an invariant
manifold of periodic solutions and ask if any of these periodic solutions
persists after perturbation. This is of course a classical problem to which a
number of methods have been applied. The problem can be “solved” using
perturbation expansion methods, the method of averaging, and various
reduction methods. Notable examples of recent papers on the subject are
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[9, 10, 19]. Our intention is to show how the problem can be framed as a
generalization of the geometric methods popularized in [12, 24, 257 and
extended to the case of limit cycle oscillators in [5]. In particular, we
obtain an appropriate bifurcation function as a natural generalization of
the subharmonic Melnikov function familiar in forced oscillation problems.
For this, the main idea is to apply the Lyapunov-Schmidt reduction to a
displacement function whose zeros correspond to periodic solutions and
then to identify the reduced bifurcation function as a generalization of the
subharmonic Melnikov function. The implementation of these ideas not
only provides a generalization of a successful geometric analytic method to
a broad class of important multidimensional bifurcation problems, but also
offers some new formulas for the reduced bifurcation functions which have
proved useful in the applications. In fact, the specialization of the abstract
bifurcation function to the bifurcation function for various applications is
one of the main objectives of this paper.

In Section 2 we formulate the Lyapunov-Schmidt reduction as it will be
applied in subsequent sections. In Section 3 the Lyapunov-Schmidt reduc-
tion is applied to the bifurcation of periodic solutions in a smooth system
of autonomous differential equations of the form

X = F{(x, ¢), xeR", ceR,

where the unperturbed system (¢ =0) has a manifold of periodic solutions.
In particular, we identify the bifurcation function and the geometric non-
degeneracy conditions required to ensure that an unperturbed periodic
solution, which corresponds to a simple zero of the bifurcation function on
a nondegenerate manifold of unperturbed periodic solutions, persists after
perturbation. The first nondegeneracy condition is intrinsic to the unper-
turbed flow on the invariant manifold and requires the periodic solutions
on this manifold to satisfy a resonance condition. An invariant manifold
satisfying this nondegeneracy condition is called a period manifold. The
second nondegeneracy condition requires the invariant period manifold to
be “normally nondegenerate” relative to the ambient unperturbed flow.
This condition is satisfied if the period manifold is normally hyperbolic
with respect to the unperturbed flow, but is in fact a weaker condition. The
bifurcation function is defined as an integral over unperturbed periodic
solutions of the system on the period manifold; it is the generalization of
the Melnikov integral alluded to above. The final section, Section 4, gives
several applications of the method. In particular, the method is applied to
the bifurcation of subharmonics of forced oscillators with one degree of
freedom along the lines of the more extensive investigation of forced
oscillators presented in [5]. Here we also give an application of the results
of this investigation to the computation of the tangents at the Arnold
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tongue of an entrainment domain. More generally, the method is also
applied to systems of coupled oscillators. Although the formulation
becomes quite complex, we obtain the bifurcation function for coupled
oscillators with an arbitrary number of degrees of freedom. When these
results are specialized to the case where each uncoupled oscillator has one
degree of freedom, the formulas are especially appealing. In fact,
immediately recognizable generalizations of the Melnikov integral arise in
this case after applying Diliberto’s geometric integration [5,8] of the
variational equation for a two dimensional system of differential equations.
Specific applications of the resulting formula for the bifurcation function
are made to systems of coupled “standard” limit cycle oscillators and to the
case of a limit cycle oscillator coupled to an integrable oscillator. In the
second case, the relationship of our geometric analysis with the classical
perturbation expansion method of Poincaré-Lindstedt is discussed. A final
application is made to the problem of mutual synchronization for two
inductively coupled van der Pol oscillators in the presence of a detuning.
For this example we show how to obtain the infinitesimal synchronization
domains, ie., the first order approximations to the synchronization
domains in the frequency amplitude space for the case of van der Pol
oscillators with moderate damping, small detuning, and weak coupling.
Finally, we use the bifurcation function obtained for this application to
numerically approximate the shape of the infinitesimal (1:1) synchroniza-
tion domain.

2. LyapPuNOvV-ScHMIDT REDUCTION

In this section the main features of the Lyapunov—Schmidt reduction are
outlined in a form suitable for later application to the bifurcation of
periodic solutions in systems of ordinary differential equations. Here we
consider a function 4: R” x R — R" given by (&, ) — (&, €) and we assume
the unperturbed function &+ 6(&, 0) has a zero. The bifurcation problem is
to determine if the given zero persists for nonzero values of the bifurcation
parameter ¢. More precisely, we say &=¢&, is a branch point of zeros of 6
if there is a curve g—o(e) in R" and ¢,>0 such that ¢(0)=¢, and
6(o(e), £) =0 for |g| < ¢,. The bifurcation problem now takes the following
form: to determine which zeros of the unperturbed function are branch
points. The basic tool for the construction of a bifurcation theory to solve
the bifurcation problem is the Implicit Function Theorem. In fact, the first
proposition of the theory is just a special case of the Implicit Function
Theorem. If 6(¢,, 0) =0 and the partial derivative ,(&,,0): R"+— R" is an
isomorphism, then & =, is a branch point of zeros of 6. However, in many
important physical problems this proposition does not apply because the
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linear transformation given by L :=§.(£,, 0) has a nontrivial kernel. In
these cases the existence of branch points of zeros can be reduced to an
application of the Implicit Function Theorem for a new bifurcation func-
tion obtained from the Lyapunov-Schmidt reduction. This method is
explained in detail in [11]. Here we will fix notation and give the reduced
bifurcation function in the precise form needed for the later applications
where the function & will be interpreted as the displacement function
defined on a Poincaré section transverse to an unperturbed periodic solu-
tion of a system of differential equations. There, the zeros of the displace-
ment function correspond to periodic solutions of the system of differential
equations.

The Lyapunov-Schmidt reduction for the function ¢ defined above
begins with the identification of the kernel of the Jacobian at &= ¢, given
by L. If L has kernel " with dim # =4 >0 and 2 * denotes a comple-
ment of & in R”, then, from linear algebra, L has range # with
dim # = n — k and this range has a complement #* in R” with dim #* = k.
We let 7n: R”"—> % denote the linear projection onto the range and
nt: R"— A+ the complementary projection. Also, we choose coordinates
on R” so that the first £ coordinates correspond to X and the remaining
n—k coordinates correspond to # ', and such that the origin of the coor-
dinate system corresponds to &,. Then, p: R* x R" % x R — # defined by
(0, &) :=nd((8, {), ¢) has its partial derivative

p:0,0,0)=L|,.: ¥ >R

an isomorphism. Hence, the Implicit Function Theorem applies to p and
there is a function A R*x R — R"~* such that A(0,0)=0 and, for suf-
ficiently small |A] and |e|, p(f, A(8,¢),e)=0. The Lyapunov-Schmidt
reduced function is the complementary function 7: R* x R — #* defined by
(0, &) :=n"5((8, h(B, £)), €). It is easy to see that (0, 0)=0. If there is a
curve ¢+ y(¢) in R* such that y(0) =0 and t(y(e), £) =0, then (8, {) = (0, 0)
is a branch point of zeros of é with the required curve of zeros e+ o(¢) in
R* x R" ~* given by a(g) := (y(¢), A(7(¢), ). Of course, we will not be able
to determine the existence of the curve y by a direct application of the
Implicit Function Theorem because L has a nontrivial kernel. However, a
further reduction is possible in many important applications. In particular,
a reduction can be made when the zero set of the unperturbed function is
a submanifold of R” on which the Jacobian of the unperturbed function has
maximal rank. More precisely, suppose

ZF < {leR"|6(£0)=0}

is a k-dimensional submanifold of R”, with 0 <k < n. In a neighborhood of
each point of Z, for example in a neighborhood of &,, there are local
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coordinates 4: R* x R" ™% — R" given by (6, {) > 4(8, {) such that R* iden-
tified with {(8, {)e R*x R"~*| { =0} is the local representation of Z. This
means the corresponding local coordinate representation of 4, namely
80, (, £) :=06(4(0, (), e), satisfies §(0,0,0)=0. We say the bifurcation
problem is minimally degenerate if the linear transformation given by the
partial derivative 6,(6,0,0): R"~* > R" has rank n—k for each feR*
Under the assumption of minimal degeneracy there are parameterized
families of subspaces (vector bundles over & ) corresponding to the kernel
A and range # of L together with their complements X * and £ such
that each subspace is isomorphic to a Euclidean space of appropriate
dimension. In particular, there are linear isomorphisms (local trivializa-
tions of the vector bundles)

H(0): R(O)— R r4(0): B(0) > R¥
and linear projections

w(0): R" — R(0), 7 (8): R" > R*(0).
If we express p: R* x R”"¥x R — R"* in coordinates by

p(8,{, e)=r(8) n(8) 6(6, {, ¢),
then, for each 6 e R, the linear transformation p(6,0,0): R"* > R" * is
an isomorphism and there is a map A: R*xR— R"~* such that for a
perhaps smaller domain p(6, A(8, ¢), ¢) =0. Next, as before, we define
7: R¥ x R — R* by
(0, e)=r"(8) n*(6) (6, h(8, &), ¢).

We note t(0, 0) =0. Thus, by Taylor’s Theorem, we have

7(0, &) = &(1.(6, 0) + O(e)),
where

7,(0,0)=r*(6) n*(8) 6,(6, 0, 0) ~,(6, 0) + r*(6) n*(8) 5,(6, 0, 0).

However, the range of 4,(6, 0,0) is #(0), so the first term of the last for-
mula vanishes and we obtain the bifurcation function %#: R* — R* given by

B(0)=r(0)n(0) 5,(6,0,0).

Strictly speaking, 7,(6, 0): R — R* is a linear map which we have identified
as an element of R*.
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By the above reductions, if there is a curve e+ y(g) in R* such that
t(y(e),e)=0 and e—a(e) is the curve in R*xR" % defined by
a(e) := (p(&), h(y(&), £)), then 8(a(e), £)=0 and a(0) = (y(0), 0) e R* x R" %
is a branch point of zeros of 4. Thus, by a final application of the Implicit
Function Theorem, we obtain a useful result: If 8 € R* is a simple zero of
the bifurcation function 9 in the sense that #(0)=0 and D#(0): R* - R* is
an isomorphism, then (0,0)e R* x R" "~ * is a branch point of zeros of é.

3. IDENTIFICATION OF THE BIFURCATION FUNCTION

Consider a smooth system of differential equations E, given by
X =F(x,¢), xeR**lL ceR

where the unperturbed system E, has periodic solutions. We ask if any of
these periodic solutions persists for ¢#0. This bifurcation problem is
framed within the context of the last section by showing it is equivalent to
the bifurcation of zeros of a displacement function. In this section a precise
formulation of this equivalence will be given together with an identification
of the resulting bifurcation function in terms of the system E,. The analysis
to follow applies verbatim to the more general system of differential equa-
tions given by

x=f(x)+eg(x, %,¢), xeR"™. ¢eR.

The system E, is used in the formal presentation for notational sim-
plicity.

The fundamental geometric construction of the subject is the Poincaré
section. For this we choose a periodic trajectory I" of E, whose period is
n>0. If y,er, there are local coordinates 4:RxR"—R"*! given by
(s, &y—> 4(s, &) such that 4(0,0)=y,, such that the map s+ 4(s, 0)
parameterizes [  near y, and the map ¢ 4(0, &) parameterizes an
n-dimensional submanifold X< R"*" that is transversal to I" at y,. We
define the coordinate projections n, and =n, onto the first and second
factors of R x R” and let 7+ x(z, £, ¢) denote the solution of E, satisfying
the initial condition x(0, &, ) = 4(0, &). Since

.4 (x(n,0,0))=0, 7, [D4(0,0)] " %(n,0,0)#0,

an application of the Implicit Function Theorem shows there is a smooth
parameterized transit time function 7 : R" x R — R such that

m, 47 (x(T (&, €), &, €))=0.
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Of course, .7 may only be defined for || and |e| sufficiently small.
However, we continue to use X' to denote the Poincaré section contained
in the first factor of the product neighborhood of (y,,0)e R"x R where
the transit time is defined. In a similar manner the parameterized Poincaré
map P: R" xR — R" is defined by

P(éa 8) = TE2A _I(X(‘aj—(é> 8)a é; 8))
and the parameterized displacement function 6: R" x R — R" is defined by

9(¢,e)=P( )<

Since 4(0, 0) =0, the reduction method of the last section can be applied to
the displacement function. A branch point of its zeros is called a branch
point of periodic solutions of E,. If £ =0 is a branch point of periodic solu-
tions we also say the unperturbed periodic solution I” persists.

As we have seen in the previous section, the reduction method begins
with the identification of the kernel and the range of the linear transforma-
tion on R” defined by L :=§,(0, 0). Here, as in all subsequent identifica-
tions, the quantities of interest are identified in terms of the solutions of
appropriate variational equations along the unperturbed solution I". In
fact, we have

L =n,[DA4(0,0)17" (x(n, 0, 0) F¢(0, 0) + x¢(n, 0,0)) — I,

where I denotes the identity on R”. Since s+ A(s, 0) parameterizes I” and
X(n,0,0)=%(0, 0, 0) is tangent to I” at y,, this formula for L reduces to

L=7,[D4(0,0)] ' (x.(n,0,0)) -7

where 1> x,(¢,0,0) is the (matrix) solution of the homogeneous varia-
tional initial value problem

W=F.x(t,0,0),0)W, W(0)=4,(0, &).

Here, the initial condition is satisfied because x(0, &, &) = 4(0, £). In these
coordinates the linear transformation L + 7 that represents the derivative
of the Poincaré map is called a monodromy transformation on I'. We have
a basic fact: If a monodromy transformation on the unperturbed periodic
solution I' does not have 1 as an eigenvalue or equivalently if L has trivial
kernel, then I' persists. Of course, having 1 as an eigenvalue is independent
of the choice of the monodromy transformation. Also, hyperbolic periodic
solutions persist; their monodromy transformations have spectra off the
unit circle in the complex plane.

If the kernel of L is nontrivial, we can use the Lyapunov—-Schmidt reduc-
tion of Section 2. There are many situations that can be studied using the
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abstract reduction procedure. However, since our goal is to find some of
these cases where there is a reasonable chance of analyzing the resulting
bifurcation function, some choices must be made. Here we consider a case
anticipated by our parameterized version of the Lyapunov—Schmidt reduc-
tion. In particular, we consider the bifurcation problem when I” belongs to
a submanifold of periodic solutions of E,. More precisely, we assume
' of where o/ is a {k + 1)-dimensional connected submanifold of R"*!
with &£ > 1 such that every point of &/ lies on a periodic solution of E, and
such that the following condition holds. For each y, € .o/ and any Poincaré
section 2 for the flow of E, at y, with corresponding parameterized transit
time map 7, the period of the periodic solution of E; through each
yed/ nL is given by its transit time, ie, x(J(y0),y, 0)=y.
Equivalently, the displacement function vanishes identically on o/ N 2.
If this condition is satisfied, &7 is called a period manifold.

For the remainder of this section we assume /" is a periodic solution of
E, which lies in a period manifold &/ whose dimension is k + 1 with k> 1.
In this case it is natural to decompose R”*' along ./ into three families of
parameterized subspaces: the one dimensional space & generated by the
unperturbed vector field, a k-dimensional complementary space £° in the
tangent space of &/ and an (n — k)-dimensional space £"°" which is normal
to .o/ in R** ! These spaces determine a (vector bundle) splitting of R”*!
by taking R"*!=&(y)® &£ (y) @ E™"(y) at each point y € /. Moreover,
at each point of &/ the coordinate map 4 can be redefined with respect to
the splitting as a map A:RxR*xR" * s R"*! given by (s,0,()—
A(s, 0, ). Then, the derivative of the map s+ A4(s, 8, 0) takes the vector
field defined by d/és on R to the vector field defined by F(A4(s, 8, 0), 0), the
map 8+ A(s, 8, 0) has tangent £" and the map { — 4(s, 8, {) has tangent
&™" when evaluated at { =0. Such coordinates are called adapted to of. Of
course, the summands £"" and &"°" are not unique. The appropriate
choice for these summands in the applications is determined by special
geometric features of the system E,. For example, there are often naturally
defined frame fields on the period manifold which serve to define the
splitting.

In adapted coordinates we define d(6, {, ¢) :=d(4(0, 6, {), ¢) and let Do
denote the Jacobian of the map (0, {)+> (6, {, 0). Then, with the usual
identification, we clearly have RYckernel D6(6,0). The bifurcation
problem is minimally degenerate (using the definition of Section 2) when
this inclusion is an equality. Equivalently, the problem is minimally
degenerate when the monodromy transformation for the periodic trajectory
through the point 4(0, 6,0) has 1 as an eigenvalue with geometric multi-
plicity k&. When this holds for every point on & we say the period manifold
is normally nondegenerate. Later we will see some examples where this con-
dition can be verified. Here we note the obvious fact: If &/ is normally
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hyperbolic in R"*! with respect to the unperturbed flow, then <f is normally
nondegenerate.

The bifurcation function is identified in terms of the components, with
respect to an adapted coordinate system, of a fundamental matrix solution
of the homogeneous variational equation for E; along the unperturbed
periodic solutions in the period manifold /. In order to make this
identification precise we require a few auxiliary definitions. First, define
t— x(1, 8, {, £) to be the solution of x = F(x, ¢) with x(0, 8, {, ¢) = 4(0, 8, {).
For notational convenience we write y(7, 8) := x(z, 6, 0, 0) and recall the
homogeneous variational equation along the solution t+— y(t, ) is given by

W=F.(y(1,0),0)W.

This variational equation has a fundamental matrix solution ¢+ ®(t, 8)
with initial value @(0, §)= 1. There are parameterized linear maps

a(t, 0): ™ (y(0, 8)) —» £“(y(1, ), (1, 0): &' (¥(0, 6)) — ™" (3(1, 0)),
e(1,0): £27(3(0, 0)) > £“(y(1,8)),  d(1,0): £™(3(0, 8)) - E(3(1, 0)),
e(t, 8): £°°(y(0, 0)) » £(y(1, 0)),

such that the block form of @{t, 6) with respect to the splitting is

1 e(1,8) dt,8)
(1, 0)={0 c(t,0) als,8)
0 0 b0
and such that

e(0,8)=0, d(0, 8)=0, c(0,0)=1, a(0, 8)=0, b(0,8)=1

Moreover, if F(6,(,¢) denotes the parameterized transit time map in
adapted coordinates and 7(8) := 7 (0, 0, 0), then, in view of the fact that
o is a period manifold, we have ¢(7(8), 8) = I. Define

H(6): £(3(0, 8))® €"*"(3(0, 6)) @ £™*(3(0, 6)) > R*

to be the linear projection onto the complement of the range of Dd(6, 0)
and note that H(#) can be viewed as the linear projection
R x R* x R"~* — R* in adapted coordinates. Also, let the components of F,
with respect to the splitting be given by

Fi(1,0)

Fi(y(1,0),0)=| F(s,0)
F7°(1, 0)
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The bifurcation function for the system E, adapted to the period manifold <
is the function #: R* —» R* defined by

0
#(0)=H(0)| A4(0) |,
M (0)

where

T(8)
M(0) ;=JO b=\(s, 0) F™'(s, 0) ds,

A(0) :=fm) c s, 8) F2(s,0)—c (s, 0) a(s, 0) b~ (s, 0) F'(s, 0) ds.

4]

THEOREM 3.1. Suppose the system E, given by
X = Fl(x, &), xeR*! geR

has a normally nondegenerate period manifold of. If 0 is a simple zero of the
bifurcation function for E, adapted to s/, then 8 is a branch point of periodic
solutions of E..

Proof. We show the bifurcation function for E, adapted to .o/ is the
identification in the context of bifurcation on a normally nondegenerate
period manifold of the abstract bifurcation function derived from the
Lyapunov-Schmidt reduction in Section 2. We use the notation developed
above and assume adapted coordinates have been chosen. Consider the
derivative of the displacement function at (6, 0). In order to identify a com-
plement to the range of the derivative DJ(6,0) in adapted coordinates,
recall 7, denotes the projection of R x R* x R"~* onto R* x R"~* and

5(0, 8, &) =m, 47 (x(F(6,{, ), 0, L, £)) — (0, 0).

We already know the kernel of D&(6, 0) is R* so §,(6, 0, 0) =0. Thus, the
range is obtained as the image of J,(6, 0,0). In order to determine this
image, compute

3:(6,0,0)=mn,[DA(0,6,0)]" "' X(T(8), 6, 0,0) 7,6, 0,0)
+7,[DA(0, 6,0)] " x.(T(8), 6,0,0)—(0, I).
Since 7(0) is the period of the periodic solution ¢+ (¢, 8), it follows that

x(7(6),6,0,0)e¢&
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and, therefore,
n,[DA(0, 6,0)] ' X(T(9), 6,0, 0) 7.0,0,0)=0.

Moreover, in view of the block form of & and the equality
x(0,60,, e)=4(0, 8, {), the partial derivative

x.(0,0,0,0)=14,(0,8,0)
is given by
x:(0,0,0,0)= (0, a(0, 0) 4,(0, 8,0), b(0, §) 4.(0, 6,0))
=(0,0, 4.0, 6, 0))

with respect to the splitting and, in adapted coordinates,
DA(0, 0,0 RxR*xR" * D E" D E™".
Thus,
0.(0,0,0)=(a(8), B(8)— 1),

where x(8): R” ~* - R* is defined by

a(f) =450, 6,0)a(T(0), 0) 4.0, 6, 0)
and (8): R"~* —» R*~* is defined by

B(8) := 4.0, 8,0) b(T(8), 0) 4,(0, 6, 0).

These linear maps have adjoints (given by matrix transpose with respect to
the usual inner product)

2HO): R >R, BE(O): R Rk
and, in terms of these maps, §,(6, 0,0): R* * — R*@® R" * has adjoint
8X(6,0,0): RE@R™ % 5 R
given by
(v, W) a*(@)v + (B*(6) — D)w.

A convenient choice for the complement #+(6) to the range of 4.(6, 0, 0)
required by the Lyapunov-Schmidt reduction is

A*(8) = (range 5.(6, 0, 0))* =kernel 5*(6, 0, 0).
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Once #+(0) is chosen, there is a projection n*(0): R" —» #+(0) and an

isomorphism r*(8): #+(6) - R*. Then, the bifurcation function is
BO)=r(6)11(0) 6,6, 0,0).

To determine 6,(8, 0, 0) we use the definition of 6, hold ¢ fixed at { =0,
and differentiate and reduce as in the computation of J.(0, 0, 0) to obtain

3,(0,0,0)=n,[DA(0,8,0)] ' x,(T(6), 4,0, 0).

Then #(0) := H(0) x,(T(0), 6, 0, 0) where H(0): & ® £*" @ ™" — R* is the
linear projection given by

H(O):=r*(0) n*(0) m,[ DA(0, 6,0)] ]
with
n,[DA0,0,0)] L EDETPE » RE xR F

the projection onto the coordinate representation of the second two sum-
mands of its domain.

The partial derivative x, is the solution of the inhomogeneous variational
initial value problem

X, =F((1,0),0)x,+ F.(3(1,0),0),  x(0,6,0,0)=0,

where the initial condition is obtained by differentiating the identity
x(0,0,(, &)= 4(0, 8, {). Using variation of parameters with respect to the
fundamental matrix @, we find

B(6) = H(0) an (T(6), ) D (5, 0) F,(3(s, 0), 0) ds.

This formula can be simplified. For this we recall ¢(7(0),8)=1 and
compute

¢ Ys, 0) —c " Ys, 0)a(s, 0) b (s, 0)

(1 —e(s, ) c s, 0) els, 0)c (s, B)als, )b (s, 0) —dis, 8) b 1(s, 9))
& s, 0)=|0
0 0 b~'(s, 8)

in order to determine
D(T(9),0) P (s, 0)

1 L5 8) Lis(s, 0)
=10 ¢ 's5,08) a(T(0),0)b "(5,0)—c (s, 0)al(s,0)b (s, 0) |,
0 0 b(T(6)) b~ (s, 0)
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where
Ly(s, 8) :=(e(T(6), 0) —e(s, 0)) ¢~ '(s, 0),
Lis(s, 0) := —(e(T(0), 8) —e(s, 0)) c (s, 0) a(s, 6) b~ (s, 0)
+ (d(T(8), 8) —d(s, 8)) b~ (s, B).
Then, with the decomposition
F(y(s, 0),0) := F{(s, 0) + F (s, ) + F*'(s, 0),
and the definitions
a(0) :=a(T(0), 0),
b(9) .= b(T(0), 8),

T(8)

2(0):= jo F4(s,0)+ Ly5(s, 0) F*(s, 0) + Lys(s, 0) F™(s, 0) ds,
(o)

M(D) :=j0 b~(s, 0) F™(s, 0) ds,

T(8)
A°(9) :=J0 c (s, 0) F(s, 0)— ¢~ '(s, O) a(s, 0) b (s, 0) F™'(s, 0) ds,

we obtain
Z(9)
B(O)=H(@)| A(6)+a(6) #(0) |.
b(8) #(6)

This formula can also be simplified. For this recall

H(6) :=r*(0) n*(8) n,[ DA(0, 6,0)] ',
where
1,[DA4(0,0,0)] " E@ETDE T >R xR *

represents projection onto the second two summands of its domain. It
follows that #(8) does not depend on £(8). Next, note

A(0)+ a(B) .#(0) A(0)+a(8) #(0)
( b(8) #(6) > B (Jl(g) +(6(0)—1) ﬂ(9)>
and
0
a(B) #(6) € R(0).
(b(8)—1) H(0)
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Thus, since H(f) is the coordinate representation of the projection onto
R(0),
0
#B(0)=H(O)| 4(9)
H(0)

as required. |

4. APPLICATIONS

4.1. The Single Forced Oscillator

A prototypical application for our reduction method is the bifurcation of
subharmonics in forced oscillators, cf. [5]. For this consider a differential
equation

X=f(x)+eg(t, w), xeR?% ceR, weR,

where t+ g(t, w) is periodic with period 2n/w and such that the unforced
system has a periodic solution A with period 1> 0. To use our results, we

study the forced oscillator as a first order system (), ,

X = f(x)+ egle, ),

¢ = w mod 27

Here ¢, , is defined on R* x S’ rather than on R®, where we view S' as the
interval [0, 2n/w] with its end points identified. In this language,
o g(p, w)is a map S' —» R? where the angular coordinate ¢ is related
to the time variable via

euul — eltp.

However, as is easily seen, the introduction of an angular variable does not
change our reduction method. We also allow for the possibility that the
frequency w is a function of the amplitude &. In particular, we assume the
frequency of the forcing can be expressed as

w=wy+w &+ O(e?)

and the period of the forcing as

2%+ ke+ O()
w
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In particular, we have

We also assume the unforced oscillation 4 is in resonance with the forcing
when ¢=0; i.e., there are relatively prime positive integers n and m such
that nt =mpn. In this case & is called a detuning parameter.

From the resonance condition it follows that the torus .o/ ;= A xS' is a
2-dimensional period manifold for €, , in R°x S'. Let I~ denote a periodic
solution on .«/. To obtain appropriate coordinates, let 8 denote an angular
coordinate on A, let £ denote the Poincaré section in R? x S' given by

2 :=R*x {0},
and let
1 (x(1, 0), (1))

denote the solution of ¢, , with initial condition (x(0, 8), ¢(0)) = (8, 0). We
will use the notation f(¢, 8) := f(x(¢, 8)). Also, for vectors v=(v,, v,) and
w=(w,, w,) in R?% we define v* :=(~v,,v,), v AW:=0v,w,—v,w, and
<p,w> :=v,w, +U,w,. Then, a (bundle) splitting along &/ is given by

(él@évtan@éanor)(t, 9)

_ [(f(;;:)))}@ [(/(I(;H))]@[((Hfll ’Zgl)(h 9))]’

where the square bracket denotes the vector subspace generated in R* by
the enclosed vector. The normalization of the generator of £"° is chosen
to conform with the notation of [5]. This choice will simplify some of the
formulas to follow.

The key result used to obtain the identification of the bifurcation func-
tion is

THeOREM 4.1 (Diliberto’s Theorem [5,8]). If x=f(x), xeR?
f(p)#£0, and t+> x(t, p) is the solution of the differential equation such that
x(0, p)=p, then the homogeneous variational equation

W=Df(x(1, p)) W
has a fundamental matrix solution t+— ¥(t)

T af, p))

‘"(”=<o B, p)



422 CARMEN CHICONE

with respect to the moving frame

S ) 1 f ) 2 S p)D ),

where

Bt p)=exp [ div fls. p) s,

a(t,p) = [[ §z 2 11— curl 18} 5. )

and x denotes the signed scalar curvature

K(t, p) = ;f(t p) A Df(t, p) f(1, p).

IIf( I3l

By an application of Diliberto’s theorem we obtain the fundamental
matrix solution of the homogenecous variational equation for ¢, in the
form

10 0
O(1,0)={ 0 1 «1,6)
0 0 B(10)

In the adapated coordinates the range of the derivative of the displacement
is given by

2 ol 9
20)=[ atm. 0) (""" om0 -y (VOO FEO0) ),

The period manifold o will be normally nondegenerate when this range is
constantly one dimensional, i.e., when the function

> (a(mn, 0))* + (B(mn, §)— 1)

never vanishes. If this is the case, a complement to # is given by

0, 0 0,0)[ 2 740,
g?l(ﬂ):[(]—ﬁ(mm 9))(f((; ))H(mm 9)<Hf( )no I )ﬂ

For notational convenience we write G(t) := g(¢(¢), o). Then, in terms of
the splitting, we compute

tan _ (L)
F L 0)= — “f(t Ok (S, 0), G(1) ),

Fr(, 8)=(f* (t, 0), G(1)) = f(1,0) A G(1),
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W)= [ =2 (/16,01 GO) >—;§§zz;f(s,0)AG(s)ds
=mk+j0 o 8 g S 0. 66) ﬂ(s,g (s) ds,
ﬂ(@)—[ 5 Bf(s,B)/\G(s)ds
and define
50) 1= s A5, 00,660~ 501 116.0)  Gls) .
0 50)

Thus, the bifurcation function is given by

(1-B(mn, 8)) A"(8) + a(mn, 6) #(0)
(a(mn, 0))* + (1-B(mn, 0))?

#(6) =

Since # has the same simple zeros as the normalized bifurcation function
2(8) = (1-B(mn, 0)) A"(0) + a(mn, 0) #(0)

we have the following fact: Consider the forced oscillator €, . and suppose
0 denotes an angular coordinate on an unperturbed limit cycle A whose period
1> 0 is in (m:n) resonance with the period n>0 of the forcing. If the corre-
sponding function 0+ (1 — B(mn, 0))* + (a(mn, 8))* never vanishes, then the
simple zeros of the normalized bifurcation function on A are (subharmonic)
branch points of periodic solutions; ie., if 2(8,)=0 and 2'(0,) #0, then the
point on A with angular coordinate 8, is a (subharmonic) branch point. For
additional results of this type and especially for the bifurcation analysis in
more degenerate cases see [5].

The formula for the bifurcation function makes clear the roles of the
functions a, f, .#, and A". Here, .# and .4 are the components of the
variational derivative of the vector field in the direction of the bifurcation
parameter. In the literature .# is usually called the (subharmonic)
Melnikov function after [16], but this variational derivative arises fre-
quently in other work. The function g is the derivative of the section map
of the unperturbed system defined on a section orthogonal to A at 8 with
range in an orthogonal section at (¢, ). In the resonant forced oscillator
with n7 = m#, we have

B(mn, 0) = f(nt, 0) = B°(z, 0),
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where f(z, §) is the derivative of the Poincaré map on the orthogonal
section at 8. It is easy to see f(z, 0) is independent of 8. Therefore, we write

Ba:=p(z.8).

Of course, fi, is just the characteristic multiplier of the unperturbed
periodic solution. The function « is a normalized derivative of the transit
time between the same orthogonal sections. More precisely, for the
orthogonal Poincaré section at 6 given by the integral curve of f*, the
derivative of the transit time is — ||/ a(z, @), ¢f. [5, Theorem 2.2]. Also,
we have

o{mn, 0) =a(nt, ) =na(z, 6).

In particular, if 4 is a member of a one parameter family of periodic solu-
tions of the unperturbed system, then — | f| a(z, ) is the derivative of the
period function for the family. With these identifications, we see that if A
is hyperbolic, then §,# 1 and « is normally nondegenerate (in fact it is
normally hyperbolic). On the other hand, if A is not hyperbolic, then the
condition a{t, 8)# 0 implies .« is normally nondegenerate. In particular,
when A4 is a member of a one parameter family of periodic solutions of the
unperturbed system, the condition a(z, 8)#0 is equivalent to the non-
vanishing of the derivative of the period function at A. Thus, the normal
nondegeneracy reduces to the the usual nondegeneracy condition for the
subharmonic Melnikov theory [6, 12, 25].

As an application for the above results on the existence of subharmonic
branch points consider the phenomenon of frequency entrainment. For this
we study the forced oscillator ¢, ., but here we assume the unperturbed
system, (,, ,, has a hyperbolic limit cycle A with period t :=27n/Q in (m:n)-
resonance with the forcing, i.e., there are relatively prime positive integers
n and m such that nt =mn. An entrainment domain for €, , is the subset
of the (w, ¢) parameter space corresponding to those oscillators which have
a periodic solution in resonance with the forcing. To be more precise, note
first that the period manifold &/ = A xS! is an invariant torus in the
extended phase space R?x S§' for the unperturbed system which inherits
normal hyperbolicity from the limit cycle A. Thus, this invariant torus will
persist for small values of the bifurcation parameter. Moreover, all the
solutions of the unforced oscillator starting on A in the Poincaré section
corresponding to ¢ =0 will return to the same point of the section after
winding around the invariant torus &/ exactly »n times. The entrainment
domain %, is the set of all (w, ¢) such that ¢, , has a periodic solution
that has period mn and that wraps around the perturbed invariant torus
n times. Such a solution is said to be entrained (or phase locked) to the
(m:n)-resonance. Equivalently stated in the language of circle maps, the
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solution is entrained if its return to the Poincaré section (modulo #) has
rotation number n/m. The underlying theory for the existence of entrain-
ment domains is well known (3, 4, 13, 17, 20] and many applications have
been studied [2, 14, 15, 21, 227. Our goal is to introduce some new exact
formulas for the widths of these entrainment domains as they approach the
w-axis; 1. €., we study the widths of the “Arnold tongues.” We note that our
formulas are valid for the case of fully nonlinear unperturbed systems.

In order to obtain the formulas for the tangents of the entrainment
domains as they approach the w-axis, consider the resonant point on this
axis with coordinates (wg, 0) and a path y(¢) = (w(e), ¢} in the parameter
space where, as above,

w(e) = wo + 0, & + O(&?).

Entrainment will occur if, for sufficiently small ||, the image of y lies in
Z,. . However, we have just seen that this will occur when the normalized
bifurcation function has a simple zero. Using this fact it is a simple matter
to obtain the formulas for the tangents to the entrainment domain at the
resonant point on the frequency axis. For this we define the subharmonic
bifurcation function (cf. [57})

%(0) := (1 — B(mn, 8)) Ho(0) + o.M (6)
and note that the normalized bifurcation function is given by
D(0)=mk(1 — B(mn, 8)) + €(6).

Of course, ¢ is just the normalized bifurcation function for ¢, ..
Moreover, it is easy to see that € is a periodic function of 8 with period
corresponding to the choice of parameterization on A. To obtain a
convenient parameterization, consider the flow ¢+ ¢, of the unperturbed
system and choose a point £ € A. Then s+ €(¢,(£)) is periodic of period
7. The subharmonic bifurcation function ¥ does not depend on the
detuning parameter &, but since € depends on the forcing function, it does
depend implicitly on m and n. More importantly, detuning can be viewed
geometrically as vertical translation of the graph of u=%(¢,(¢)). Thus,
there are two critical values of the detuning given by

1
Kpax 1= —————  mi
max (=) o in_ €(#:(0)),

1
———— max
m(l —f7%) sio<s<s)

€(d:(L)).

min *

505/112/2-13
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In effect, if k., <k <kpna, then 2 has a zero along A. If this zero is
simple, our path &+ y(¢) will lie in the entrainment domain. In terms of the
frequency, we will have entrainment if the first order coefficient w, of the
forcing frequency satisfies the inequality

2 2
w w
0 @ 0
min < @,

—_— <m(gma)<'
2zm(1 — #%) 2nm(1 — $7)

Since the slope of the tangent to our path at ¢ =0 in the parameter space
is just w ', it follows that the tangents at the ‘tongue’ of the entrainment
domain at the resonant point (w,, 0) are given by

2um(1 — B7)
=

%min w%(w_wo)
2um(1—p1)
E=—— wolw — wg).

max

In addition, if € has a simple zero, then the corresponding tongue opens
with a nonzero angle between its tangents. On the other hand, if ¥(0)=0,
then these tangents coincide (they both have infinite slope) and the order
of contact of the boundary curves must be determined from higher order
methods. This is done in [17] for certain weakly nonlinear systems.

This analysis also gives a clear geometric picture of the bifurcation at the
crossings of the boundaries of the entrainment domain. As we have just
seen, the detuning translates the graph of the subharmonic bifurcation
function in the vertical direction. When a boundary of the entrainment
domain is crossed near the resonant point on the frequency axis, the trans-
lated graph of the subharmonic bifurcation function will be tangent to the
frequency axis at the @-coordinate of either its maximum or minimum
value. Thus, the position of 8 giving the subharmonic branch point on A
will be the f-coordinate of the minimum of ¢ at the left boundary of the
tongue and the #-coordinate of the maximum of € at the right boundary.
In case the limit cycle can be parametrized by the phase angle in the phase
plane, the phase of the entrained periodic solution will shift from the phase
angle of the minimum of ¥ at the left boundary of the tongue to the
phase angle of the maximum of # at the right boundary of the tongue. For
example, this would be observable by fixing the amplitude of the forcing
and then adjusting the frequency of the forcing so as to cross the tongue
in the direction of increasing frequency. Of course, since crossing a
boundary of the tongue corresponds to the passage of the minimum or the
maximum of the graph of u=%(4,(8)) by vertical translation past the
s-axis, we see that the graph crosses the s-axis twice near its maximum or
its minimum. As the detuning changes in the appropriate direction, these
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two crossings coalesce and then disappear. In other words, there is
(generically) a saddle node bifurcation as the boundaries of the tongue are
crossed by changing the frequency parameter.

We now illustrate typical computations of the infinitesimal boundaries of
the entrainment domains. Our first example is provided by the system

X=—y+x(1-x2—yp?
y=x+ y(1 -x*— y*) + & cos(wt),

which is chosen so that explicit formulas can be obtained. Here, the
unperturbed system has the unit circle as a limit cycle. In fact, the solution
starting at (cos 8, sin 8) is given by

x(t)y=cos(t+8), y(t)=sin(r + 0).

If we take w(e)=m/n+ w,¢, then the period of the forcing will be

We compute =0,

D(0) = (1 — B(2mn))mk + (1 — B(2nn)) Ny(6, 2nn)
= (1= e ") mk + (1 — e~ *) fm cos(t + 0) cos(wt) dt
4]
and, for >0,

€(0)= (1 —e™ ™) J:M cos(t + 8) cos(wt) dt

= (1 _e—tlnn)

7n cos 0, w=1
X 1 -1

T (sin 9+w;— sin(21tncu—0)+w2 sin(2nnw+0)>, w#l.

At resonance @ = m/n. So

nn cos 6, m=n

w-{g"

Thus, for m=n, the (1:1)-resonance, we compute the tangents at the
resonant point (w, &)= (1,0) to be
e=+2(w—1)

while, for the case m # n, the tangents have infinite slope.
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The phase shift mentioned above is also easy to see in this example. The
phase angle is 8 and, for m = n, the detuning simply translates the graph of
nn cos(f). Thus, at the left boundary of the tongue, the phase of the
entrained solution will be near § = while it will be near 8 =0 at the right
hand boundary.

The next example shows our formulas can be used in conjunction with
standard perturbation techniques to obtain estimates of the width of
tongues when the unperturbed system is not explicitly integrable. For this
we consider the forced van der Pol oscillator in the form

%4 8(x? — 1)% + x =& cos(wt).

For small 6, the second order Poincaré-Lindstedt approximation for the
unperturbed limit cycle is given by [23]

x(1)=2cos s+ (2 sin s — § sin 35)6
+ (— 4 cos s+ £ cos 35 — & cos 55)8% + 0(53),

where s=(1—6%/16 + O(6*))1. Also, the approximate period of the limit
cycle is given by t:=2n(1+6%/16)+ O(6*). These approximations are
valid on the time scale of one period of the limit cycle. To obtain an
approximation of ¥, we approximate the phase plane parameterization of
A by

O (x(1+0), x(t +0)),

insert the resulting formulas into %, and, using an algebraic processor,
compute an expression of the form

6(0)=c,(0)0+ c,(6)6% + O(8°).

This approximation vanishes unless m=n or m=3n reflecting the
resonances that appear in the approximation of the limit cycle and the
order of the approximation. For these resonances, we find

B(nt)=1-2nnd + 2n°n?8% + O(5°).
Also, for m=n
%(0)= — (n’n? cos 0)6 + tn*n*(sin 36 — 3 sin 56 + sin O
+ 8nm cos 6 + 4 sin 6 cos 26 + 6 sin 6 cos 40)8% + 0(5°)

and for m=3n
€(6)= — §(n’n?sin 30)5%
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In order to approximate the extrema of € in case n=m, we note that the
extrema of 0+ €(0)/6 at 6=0 occur at =0 and #=n. The perturbed
extrema are then found from %'(#)=0 by series expansion. We find for
m=n

Gmin = — 12126 + n3136% + 0(83), Cax = 12126 — 137362 + O(8%),
while for m=3n
(gmin = - én2n262 + 0(63)’ %max = én2n252 + 0(63)

Inserting these expressions into the formulas for the tangent lines of the
tongues we obtain a Q(6*) approximation for m=n

e= 1 (4430w —(1-56%)),

while for m = 3n the approximation is O(5%)

(32, 32nm 4 dnm, 1,
(e 2y ) (1 L))

It is interesting to compare these approximations with numerical computa-
tions of 4. Our numerical algorithm uses a variable step variable order
Adams ODE solver and Simpson’s rule. For § =0.1 and m = n the tangents
{rounded to three decimal places) obtained from this numerical method are

e= —3.996(w — 1.000)
£=3.995(w — 1.000).

Substitution in the series gives the tangents
e= +4.005(w —0.999).
For m = 3n the tangents obtained from the numerical algorithm are
g= —73.206(w — 3.000)
£ ="73.255(w — 3.000).
Substitution in the series gives the tangents
e= £ 73.248(w — 2.998).

Of course, the accuracy of these computations can be improved and
higher order resonances can be studied by starting with a higher order
Poincaré-Lindstedt approximation. For such approximations see [1, 7].
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FiG. 1. The entrainment domain for the {1:1)-lock in the system £+ (x>—1)+x=
¢ cos(wt). The horizontal axis represents the frequency and the vertical axis the amplitude (for
the range [ —0.1, 0.1] of the forcing. The shaded region is the computed entrainment domain
while the solid lines are the tangents to the entrainment domain at zero amplitude computed
from the bifurcation function. The equations for these tangents are given approximately by
& =13.7400(w — 0.9430) and ¢ = — 3.7402(w — 0.9430).

Finally, we have conducted numerical experiments to obtain some
indications of how well the tangents to the tongues computed from the for-
mulas of this paper compare with the actual shape of the tongues. It turns
out that the agreement is quite good. A typical example is illustrated in
Fig. 1.

4.2. Coupled Oscillators

A natural and important generalization of the single forced oscillator is
a system of coupled oscillators. For this application consider the system FE,
of differential equations given by

X = fr(Xe) +egelxy, X3y vy Xy, E), x,eR™, ¢eR, k=1,.., N.

Here f,:R™—R™ and g,:R¥*!' > R™ are smooth functions and
M :=¥7Y_,m,. Let EX denote the kth equation of the system and let ¢*
denote the flow of E. If each Ef, k=1, .., N has a periodic trajectory I'*
with period n, >0 and frequency w, :=2n/n,, we say E* is a system of
coupled oscillators. If, in addition, there are relatively prime positive
integers K, .., Ky and a number >0 such that =K, n, for k=1, ., N
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we say the system of coupled oscillators is in resonance. If E, is in
resonance and if £, e I', for each k=1, ..., N, then

- (¢ll(él)’ ey ¢iv(éN))

defines a periodic solution I" of the unperturbed system E, whose period is
n. This periodic solution lies in the period manifold & :=I"; x --- x 'y, an
N dimensional torus in R. The function ¢: Rx RY~! - of given by

¢(S, 621 .vy gN) = ((b:(él)a ¢?+ 02(52)’ ooy ¢iv+ 9N(éN))

defines an adapted angular coordinate system on .o/. The distinguished first
coordinate serves to define a Poincaré section for the unperturbed flow on
o, ViZ.,

Z = {$(0, 8, s x) | (B2, .0 O,) € RY 1.

Using the definition f, (s, 8) := f(é(s, 0;, ..., O5)), we have the first two
summands of the (bundile) splitting for R given by

fi(s, 6)
&(s,0) = : ,
(s, 8)
0 0
fals, 8) 0
&'%°(s, 0) := 0 :
: 0
0 fN(Sa 6)

Of course, £™" is just the image of R" generated by
{0/08,, ... 8/06 \}

under the linear transformation given by the derivative Dg(s, 8): RY —
T, 4, where T,/ denotes the tangent space of & at 0.

To obtain &"°, note for each k=1,.., N there are m, —1 mutually
orthogonal vector fields each orthogonal to f, and each defined in a
neighborhood of I', which form an ordered normalized frame

T =Ml ™2 fivs oo W fame— il _Zf/_:mk-l>>'

Using this collection of frames we define £*°* as the family of M — N
dimensional subspaces given by

& (s, 0):=[f1(5,0), ..., fls, 0)].
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Each normal field has an associated flow, ¥* in R™. These serve to define
for each k=1, .., N a map ¥*: R™ ! x I', - R™ given by

PH(Li Ex) = (W (ER), o W (ED).
Then, for £, I, k=1, .., N, adapted coordinates
ARXxRY I xRM -~ > RM
are given by

A(s,0,0) = (L1, 6,(81)), P2ULa, 746,82 s PV (Lns 5 6,(EN)).

The identification of the bifurcation function depends on the matrix
representation, with respect to the bases defined above, of the fundamental
matrix sclution @(z, 8) of the homogeneous variational equation for the
unperturbed system. This matrix has the block form

1 0 d4d(t,0)
D(1,0)=10 I «(1,8) ],
0 0 B(1,9)
where [ is the (N — 1) x (N — 1) identity, a(s, 8) is (N— 1) x (M — N), B(1, 6)

is (M—N)x{(M-—N), and d(¢, 8) is 1 x (M — N), where these blocks can be
partitioned as

d(t, )= (a,(2,6),0, .., 0)

with o,,(z,8) a 1 x(m, — 1) matrix,

_O(u(t, 0) azz(t, 0) 0 0 0 O
(1, 0) = —am.(t, 6) 0 a5(£,68) 0 .- 0 0 |
—ou(60) 0 0 - 0 ayn(t,0)

with a,,(z, 8) a 1 x (m, — 1) matrix and

Bi.(1,0)
B(t, 8)=
Bwnlt, 0)

a block diagonal matrix with §,,(s, 8) an (m, — 1) x (m, — 1) matrix.

For general coupled oscillators it is not clear how to obtain useful
representations of the components of o and . However, as we have seen
in the case of the periodically forced oscillator, reasonable formulas can be
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obtained if each uncoupled oscillator has a two dimensional phase space.
We will restrict ourselves to the case below. Here we make general remarks
about the meaning of these operators. In particular, we know the period
manifold «/ is normally nondegenerate when the range of the map
ViRM ¥ 5 RY=!'x RY " given by

Viu)=(a(n, O)u, (B(n, 8) — Nu)

has dimension M — N. The obvious sufficient condition for normal non-
degeneracy is the requirement that f(y, 6): R®~~ — R~ does not have
1 as an eigenvalue. For example, this is the case if I, is a hyperbolic limit
cycle for each k=1, .., N. Of course, as is easily seen from the structure of
V, it is possible for the period manifold to be normally nondegenerate
when some of the individual oscillators are not hyperbolic. This occurs, as
we have seen, for the periodically forced oscillator. In general, the lack of
hyperbolicity can be compensated by the nonvanishing of appropriate
derivatives of the transit time maps. Specifically, consider the action of the
monodromy transformation @(#, 6) on the oscillator E§. If w is orthogonal
to f.(8,) in R™ ! at 0,el,, then w determines an element in
£(0, 0)® &0, 6) @ £°°7(0, H) given by #, :=(0, 0, W). Here We RM™—V,
where W:=(w,, .., wy) with w,e R™' defined by w;=0 if j#k and
w,=w. The monodromy transformation applied to ¥ has image
W :=(X,Y,Z), where XeR, Y=(y,,.,¥Vn), ye€cR™" ' and
Z=1(z,, ., zx), 2, € R™ 1 In fact, for k > 2 all of these components vanish
except y.=oau(n 0)w and z,=Pf,(n 8)w. For k=1, we have
X=dn, Ow, y;= —a,(n,0)w for j=2,..,N and Z=f,,(n, 0)w. Here,
Bii(n, B) gives the matrix representation of the derivative of the Poincaré
map on the section orthogonal to I', in R™ ! after K, iterations while
o(n, 8) gives the projection of #° omnto f.(6). Finally, we indicate
how x..(n, 6) can be interpreted as the derivative of a transit time map.
For this general fact let x = f(x), xe R**! be a differential equation that
has a periodic solution I. Choose a vector v tangent to an orthogonal
Poincaré section X at #e [l and let h: L — X denote the Poincaré map.
There is a curve s+ a(s) in 2 with ¢(0) =0 and 6(0) =v. If the flow of the
differential equation is given by ¢+ ¢,, then an application of the Implicit
Function Theorem shows there is a transit time function 7: 2 — R such
that

¢T(a(s)l(0(s)) = h(O'(S))
After differentiation with respect to s, we obtain

(dT(8)v) f(8)+ D, (6)v="h(6)v.
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Also, there are scalars @ and b,, ..., b, such that

n

D¢»,w,(9)’-’ =af(0) + Z biffL(O)a

i=1

where {f{,.. fr} is a basis for the orthogonal vector fields defined in a
neighborhood of . Hence,

(dT(0)0 +a) f(O)+ Y b,f2(8) =k (B0

i=1
and this implies

v, b,
dT(0)v= —a, WO 1 |=
Un b,

In other words, the projection onto f(#) of the image of v under the
monodromy transformation is the directional derivative of the transit time
map in the direction ». In case »=1, Diliberto’s Theorem applies. With
v=f*/|Ifl we find a=|f|le. Thus, for a plane vector field
aroy /7= —1fle

Let us now specialize to the case m,=2, k=1,.,N. Under the
hypothesis of normal nondegeneracy, the range of the operator
V(0): RY > RY ! xR" given by

V(B)u = (afn, O)u, (B(n, 8) — Du)

has dimension N. Of course, this is just the statement that the column
space of the (2N — 1) x N matrix

—a]l azz 0 .. O
— 0y 0 ®3z - 0
=0 0 o - Ay
Bu—1

Bn—1

L

has rank N. We require a projection onto the complement of the range. In
case B # 1 for each k=1, ..., N, a complement is just R” ' x {0}. Thus,
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the projection #n*(8): R*™ ' RY~! is represented (in adapted coor-
dinates) by the (N — 1) x (2N — 1) partitioned matrix (/,_,|0), where I, _,
denotes the (N—1)x(N—1) identity. In case fi,,—1=0 for some
k=1, ..,N, we have the following result: If 8., —1=0 for at most N—1 of
the indices k=1, .., N and if for each such index oy #0, then the range of
V(8) has dimension N. This follows easily by showing the (column) rank of
the matrix representation of ¥(8) is N. To see this, note the rank of the first
N rows of the matrix is N—1 when o,, #0 for each k=1, .., N and that
any proper subset of columns of this submatrix has rank equal to the num-
ber of nonzero columns. To obtain a projection to a complement for this
range one can take a sum of the projections onto N — 1 unit vectors corre-
sponding to the usual basis vectors e, e,, .., e5_, with ¢, replaced by
€r,~_1 wWhenever B, —1=0.

In case B, #1 for each k=1, .., N, the bifurcation function relative to
the projection defined in the last paragraph is just

0
#(0)=H(6)| A(0) |=A(0),
M(0)
where

T(8)
H(O)=] " Fio(s,0)—als, ) b~(s, 6) F2(s, 0) db.
0
To obtain the coordinate representation of this formula, define

Guls, 8) :=g.(4(s5, 0),0) and note the bases for the summands of the
splitting £ ® £*" @ £™°" are

[/ /1
& .= : ,
|\ S~
[ /0 0\
)2 0
& = ol : ,
. 0/
| \O Iw
Wik 0\
0 :
e = | . o
[\ O I/l
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It follows that
1Ll 2 LGy, fo> = 1/ 2 KGy, fi)

F;an = s
ISl 72 G ns fu> =il 2 <Gy, f1
Hle_'ZfI AnGy
F;mrz ‘ ,
ISl -2 Jwr Gy
and therefore
N3(8)
A(0)= : ,
Np(0)

where, for k=2,.,Nand j=1, .., N,
p(t,0)=exp | div (s, 0) ds
vl
,0)Y=| [—= 2k | f;|| —curl f, . 0) ds,
4 60) = (7 2 1)) —cur f,m) (5,0) ds
=" (G 0)d
uk( )_ o (ka“2< k’fk> "f ”2 ],f1>)(s, ) A
T fay, Ogege
+J0 (B“fl E;mm) (s, 0) ds.

As an application consider the standard limit cycle oscillator given by the
planar system

= —puy+x(AP—x>—y?), y=ux+p(A2—x*=y?), 1>0, u>0.

It has a stable hyperbolic limit cycle on the circle centered at the origin
with radius A. This limit cycle is given by the family of solutions

x(t, 0)= A cos(u(t + 8)), v(t, 8)=Asin(u(r+86)),

where 0<8<2n/u is an angular coordinate on the limit cycle that
corresponds to the initial value. Using Diliberto’s Theorem, it is easy to
compute «(z, 8)=0 and B(t, ) = exp(—24%t). This means the derivative of
the transit time map between orthogonal sections on the limit cycle
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vanishes at the point of intersection with the limit cycle and that the
characteristic multiplier of the limit cycle is given by

B(2r/u, 8) =exp(—42%m/u) < 1.

Now consider a system of N coupled standard limit cycle oscillators where
the kth oscillator has the form

%= — Y+ X (AT — X5 — ¥+ E8 X (s s Xny Y1y s YD
}}k = WX + J’k('iz —'xlz(— ylz() +8g2k(x] s X s Vi oy yN)'

Let 8, denote the angular coordinate for the kth limit cycle, define
8:=(6,, .., 8y), and define

gl #) :=gjk(il cos(y; ), 4, cos(ux(s+0,)), ..., Ay cos(pn(s +0y)),
Aysin(pys), Az sin(py(s + 03)), ., Ay sin(py(s +04))),
for j=1,2, and k=1, .., N. We assume the limit cycle oscillators are in
resonance so there are relatively prime positive integers K, ..., K, and a
number 5 >0 such that 22K, /u, =4, for k=1, .., N. Then, the bifurcation
function is given by
B(0) = (A3(0), ..., Nn(0)),

where

| B .
A= | c0s(hels + 0) gaals, 0) = in(ials + 60)) guels, 0) s
kK k

n
[ cos(1115) g5, 8) = sin(y,5) g5, 0) .

0

HiAy
As a special case suppose N =2, p:=pu, =,, and
gulxy, X5 ¥ys ¥2) =2(x,— xy), g21(X1, X35 15 ¥2) =2(1 =2c)(y2 = yy),
212X 1, X35 Vis ¥2) =2(xy — X3), 822Xy, X2, 1, ¥2) =2(1=2¢)(y, — y2)
Then,

B(0) = —8—-”%3_—°—)sin(u9)

and there are branch points at # =0 and 8 =n/u, cf. [19, p. 416].
As an illustration of a normally nondegenerate but normally nonhyper-
bolic period manifold in a coupled oscillator, consider a standard limit
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cycle oscillator coupled with an integrable system containing a period
annulus. For example, consider the system

d= = yilk+xT+ y}) +egulxy, X20 Y1y ¥2),

yi=xk+x} 4+ y1) +egialx1, X2, Y15 Yok

Xy= —uy2+x2(/lz—x§—y§)+sg21(xl, X3, Y15 Y2)

Va=pxs+ ya(A2 = x5 — y3) +egalxy, X2, ¥y, ¥2)s
with k>0, ¥>0, and A>0. The periodic solution of the integrable system
with initial value (r cos 8, rsin 6,) is given by

x(t,r,0)=rcos((k+r2)t+0,), yi(r 8)=rsin((k+r*)t+86,)

This solution has period 2n/(k + r?). The system is in resonance provided
there are relatively prime positive integers p and ¢ such that
n:=2np/(k+r*)=2nqg/un. As usual we let 6:=0, denote an angular
coordinate for the limit cycle of the second oscillator. As before we must
compute the range of the operator ¥ with matrix

—ay(n, 0) ax(n, 0)
B1(n, 0)—1 0
0 Ba(n, 0)—1

Here, we already know the standard limit cycle oscillator has a,, =0 and

—4ni?
ﬁzz('?:g):exP< i q)‘ 1#0.

A computation shows ,,(¢,0)—1=0 and

—2t
& “(l, O) = m
As an internal check we compute the derivative of the transit time map
directly. The periodic solution through the point (r cos 8, rsin 8,) for the
first oscillator has period 2n/(k + r?). Thus, the derivative of the period
function with respect to r is —d4nr/(k+r?)%. As mentioned above, the
derivative of the transit time on the orthogonal section defined by f+ is
— | flla,,, where f denotes the vector field corresponding to the oscillator.
Here, || f|| =k +r* and f* is oriented inward on the periodic solution. Thus
we obtain

) 2
—1£(r cos (8,), 7 sin(6,))] 2y (E—;’-’; 61)

as required.

_
(k)
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Returning to the operator V we find a complement to the range is given
by

Thus, the required projection is just projection onto the first component of
&, In other words
0
A7(8)
#(0)=H(9) = #(0).
A4(6)
A4,(8)
From this we compute
1

n
B(0)=
(6) .I-o B1i(s, 0) || f(s, 0)]

3 f1(s,0) A G (s, 6)ds

-1 7 2 : 2
=, oSk +7)5) g, ) +sin((k+)5) gu(x, v) ds
where we have used x = (x,, x,) and y = (y,, y,). As a simple example take
u=2,r=1, k=1 so that 2x/(k +r?)=2n/u. Also, for the coupling take
g1 =0 and g5,(xy, x5, ¥y, ¥2) = y,. Then,

B(0)= g J: cos(2s) sin(2(s+ 0)) ds= — i} sin(26)

and there are branch points at § =0 and 8 = n/2 along the limit cycle which
has been parameterized by 0 < 6 < . This may appear somewhat surprising
since the position of the branch points is not affected by the coupling func-
tions g,, and g,,. Of course, the curve of initial positions for the perturbed
periodic solutions will be dependent on the full coupling.

We now show how our geometric analysis can be used in concert with
a classical expansion method, in this case the Poincaré-Lindstedt method,
to help obtain a perturbation expansion for the branching periodic
solutions. For notational convenience and to avoid double subscripts we
consider the system in the form

u= —v(k +u®+v?),
v=u(k +u’ +0v?) +ey,

k= —py+x(A2—x?— y?)+eg(u, v, x, ),
Vy=ux+ y(A2—x*—y*)+eh(u, v, x, y).
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The idea is to expand each of the variables u, v, x, and y, the frequency,
and the initial conditions in power series with respect to the perturbation
parameter. We take the perturbation series in the form

u(t) :=ug(wt) + u,(wt)e + O(e?),
v(1) :=vo(@t) + v {wt)e + O(?),
x(2) = xo(wt) + x,(wt)e + O(?),

y(1) = polwt) + y (wr)e + O(e?),

g =go+ g6+ 0(&%),
h:=hy+h e+ O(?)

Guided by our geometric analysis and using the angular coordinate

6 [0, 2n) on the unperturbed limit cycle, the appropriate initial conditions
are given by

u(0)=1, v(0) =0, x(0)=cos 0+ &,e+ O(&?),
y(0)y=sin{0) + n, &+ O(e?).
After the change of variables ¢ :=wr, substitution into the differential

equations and the equating of terms of like order we find with ' := d/de
that

up = — 3vo(1 +ug +v3),

v =sup(l + ul + vf)),
= — Yo+ §xo(1 — x5 — ),
Yo=xXo+ 3 Yol — x5 = yé)-
Thus, assuming the existence of a solution with initial values
uy(0)y=1, v5(0)=0, xo(0} =cos 6, yo(0)=sin 6,
we find
u@)=cos @,  wole)=sin g,
Xo(@)=cos(¢p +0), Volo) =sin(¢p + 6).
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Using these substitutions, we find the differential equations for the O(e)
terms to be

w,\ (—singcose cos’p—2\/u N 1w sin @ )
v,/ \ cosl@+1 cosgsine/\v, isin(g +6)—iw,cos @)’
(xQ)__( —cos* (@ +8) ~1—cos(¢ +6) sin((p+0)>(x]>
yi)  \1—sin(¢ +8) cos(¢ +8) cos’(p +8)— 1 Vi

+ (%go‘{' sw, sin(p + 0))
sho— 1w, cos(p +6)

with the initial conditions
u,(0)=0, v,(0)=0, x,(0y=¢,, yi(0)=1n,.

A fundamental matrix for the first two equations (using Diliberto’s
Theorem) is

—1ising 2¢sing—2cos ¢ )

D(p)= .
(@) (%cosq) —2¢pcos @ —2sin @

Thus, using variation of parameters, we find

(”1(2"))=f2" cD(Zn)(I)"’(s)( 2w siD s >ds
0

v,(2x) (sin(s + 0) — 3w, cos s)

L8
—Zsin@
5 sin

]

1
—7rw‘—51z2 sin6+§4£cos(9

To obtain a periodic solution we must have u,(2n) = u,(0) =0. This implies
8 =0 or §=n. The result agrees with the previous analysis since here the
angular variable was taken on the interval [0, 2n), whereas before the
angular variable was taken on the interval [0, n). Asymptotic approxima-
tions to the perturbed periodic solution starting at one of the two branch
points can be found by imposing the remaining periodicity conditions and
by continuing in the same manner to higher order.

4.3. Mutual Synchronization
Consider the problem of mutual synchronization for the coupled system
of van der Pol oscillators

i+ (W —1)u+u=2e0,%,

402 =X +ow’x=eQ,i,

505:112/2-14
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considered in [18, p. 448]. We assume the unperturbed systems are nearly
in (1:1) resonance; i.e., the frequency w is detuned as a function of the per-
turbation parameter but in tune at ¢ =0. In particular we assume w=1—
ke + O(e*) and we call k the detuning parameter. We are interested in the
{1:1) synchronization domain. To give a precise definition of this set note
that each unperturbed oscillator has a limit cycle. The cross product of
these limit cycles is an invariant torus for the unperturbed system in the
product of the phase spaces for the oscillators. This invariant torus persists
for small perturbations and the branching periodic solutions will lie on it.
In fact, the flow of the coupled system restricted to the invariant torus has
no fixed points. Thus, a periodic solution can be classified by its (nonzero)
number of meridianal and longitudinal wraps on the torus before closing.
The (1:1) synchronization domain is, for fixed Q, and Q,, the set of points
in the (w, &) space such that the corresponding system has a periodic solu-
tion with exactly one meridianal and exactly one longitudinal wrap. Our
bifurcation analysis is applicable near the point where the synchronization
domain meets the frequency axis. Of course, for the (1:1) synchronization
this is the point (w, £) = (1, 0). In order to apply the bifurcation analysis we
consider the phase coordinate system given by

u=uv, b= —u+(1—u?)v—eQ,(x+ (x*—1)y),

X=y, v=—x+ (1 —xY) y+ekx—0x(u+ (12 —1)v)),

that is O(e) equivalent to the coupled oscillator. Let # > 0 denote
the common period of the limit cycles of the unperturbed tuned van der
Pol oscillators and let 8 denote the arc length variable on the limit cycle
of the first oscillator. By our previous analysis, the bifurcation function
1S

B(O)= A5(0

|2< 2’f2 \2<Gl’f1>ds

J /21 A

oy %22
— fiAnG === foAGyds,
o B’ Y NS

where the subscripted variables have the obvious identifications. However,
since the unperturbed van der Pol oscillators are identical, we define
fi=fi=f,, 0:=a,,=0ay, and f:=f,, = . Then, using these definitions
and a computation, we find

B(0)=kA,(6) +(Q,— Q) B,(0),



where
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1 Z o
.@l(O):jo 2z (Z—Z:}_—?—Bz> dt,

", £ o,
.92(9)=J0 Z<z_—21~£—2—34> dt,

and ¢+ z(r) is the solution of

starting on the limit cycle at the point with angular coordinate 6.

F4(2—-1):i+z=0

443

The synchronization problem must be considered in the three dimen-
sional parameter space given by the frequency, the amplitude, and the dif-
ference of the coupling strengths, ie., in the coordinates (w, &, O, — Q).
However, since the natural control parameters are (w, ¢) and since two
dimensional bifurcation diagrams are easier to draw, we will consider the
synchronization domain in the (w, ¢) space as a function of the difference
of the coupling strengths. For the remainder of the discussion of the syn-
chronization problem we proceed to interpret the results of numerical

AN \,

A\’ o

Fig. 2. The graph of the computed values of 6 +— %#,(0) for 0<8< L, where L is the arc
length of the limit cycle for the unperturbed van der Pol oscillator. The horizontal 6-axis is
depicted for the interval [ —.2, 14.5], while the vertical axis is for the interval [ —-900, 900].
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experiments with the bifurcation function; at present we do not know how
to obtain the simple zeros of # analytically. First, it appears that, while
(Fig. 2) %, has four simple zeros, (Fig. 3) %, has only positive values.
Thus, to obtain the zeros of the bifurcation function there are three cases
determined by the sign of @, — Q,. If Q, — @, =0 there are four simple
zeros of the bifurcation function provided & #0. This means the syn-
chronization domain contains a disk centered at (w, ¢} = (1, 0) with the line
given by w =1 removed. Since the bifurcation function vanishes identically
for the systems corresponding to this line, a higher order method would
ordinarily be required to determine if this line is in the synchronization
domain. However, in the example, if @, —Q,=0 and £=0, then by the
symmetry we see there are periodic solutions for sufficiently small ¢. In fact,
two of these periodic solutions are given by r+ (u(r), +u(t)), where
t— u(t) is the periodic solution of

(1FeQ,)it+ (2= i +u=0.

Thus, the line w=1 is actually in the synchronization domain. If
Q,—Q,#0, the ratio £*(0) .= %,(9)/%,(0) defined on the complement of

A AU 7 \

FiG. 3. The graph of the computed values of 6+ #,(8) for 0 <8< L, where L is the arc
length of the limit cycle for the unperturbed van der Pol oscillator. The horizontal #-axis is
depicted for the interval { —.2, 14.5], while the vertical axis is for the interval { —850, 8501.
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FiG. 4. The graph of the computed values of 8+ #*(8) for 0 <0< L, where L is the arc
length of the limit cycle for the unperturbed van der Pol oscillator. The horizontal f-axis is
depicted for the interval [ —.2, 14.5], while the vertical axis is for the interval [ -2, 2].

4

F1G. 5. Infinitesimal qualitative bifurcation diagram for entrainment domain in case
@, —0Q,=0. The number of periodic solutions for sufficiently small ¢ is indicated by the
numerals between the lines bounding the regions.
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the zero set of %, has range (Fig. 4) covering the complement of an open
interval (a, )~ (—0.17,1.07) in R. Thus, there are branch points of
periodic solutions provided the ratio k/(Q, — Q,) is in the range of #*. In
other words, the curve of detuned frequencies given by w(¢)=1— ke lies in
the synchronization domain for small values of ¢ when this line lies in the
region bounded by the lines

w—1 w—1

T a0, -0 T k@ -0y)

and containing the w-axis. These lines are the tangents to the synchroniza-
tion domain at the point (w, ¢)= (1, 0). By our definition, the frequency
axis is i the synchronization domain. Of course, the corresponding
uncoupled system has a period torus and no attracting synchronous
solutions.

There is one other interesting phenomenon in examples of mutual
synchronization, namely, the number of stable synchronous solutions.
For sufficiently small ¢# 0 these correspond to the number of zeros of
the bifurcation function. In case there is an invariant torus, the periodic
solutions will generically occur in pairs with adjacent periodic solutions
having opposite stability. In the example, the number of periodic solutions
depends on the parameters. In fact, the numerical experiments suggest
there are either 4 or 8 periodic solutions. Qualitative pictures of typical
bifurcation diagrams are given in Figs. 5 and 6.

4

FiG. 6. Qualitative bifurcation diagram for entrainment domain in case @, — Q,>0. The
number of periodic solutions for sufficiently small ¢ is indicated by the numerals between the
lines bounding the regions.
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