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Abstract

The properties of spin polarized neutron matter are studied both at zero and finite temperature within the framework of the Brueckne
Fock formalism, using the Argonne v18 nucleon–nucleon interaction. The free energy, energy and entropy per particle are calculated
values of the spin polarization, densities and temperatures together with the magnetic susceptibility of the system. The results show no
of a ferromagnetic transition at any density and temperature.
 2005 Elsevier B.V.
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Since the suggestion of Pacini[1] and Gold[2] pulsars are
generally believed to be rapidly rotating neutron stars w
strong surface magnetic fields in the range of 10 –10 Ga12 13

Despite the great theoretical effort of the last forty years, th
is still no general consensus regarding the mechanism to
erate such strong magnetic fields in a neutron star. The fi
could be a fossil remnant from that of the progenitor star
alternatively, they could be generated after the formation
the neutron star by some long-lived electric currents flow
in the highly conductive neutron star material. From the
clear physics point of view, however, one of the most inter
ing and stimulating mechanisms which have been suggest
the possible existence of a phase transition to a ferromag
state at densities corresponding to the theoretically stable
tron stars and, therefore, of a ferromagnetic core in the liq
interior of such compact objects. Such a possibility has b
considered since long ago by several authors within diffe
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theoretical approaches[3–24], but the results are still contra
dictory. Whereas some calculations, like, for instance, the o
based on Skyrme-like interactions predict the transition to
cur at densities in the range(1–4)ρ (ρ0 0 = 0.16 fm−3), others,
like recent Monte Carlo[20] and Brueckner–Hartree–Fock ca
culations[21–23] using modern two- and three-body realis
interactions exclude such a transition, at least up to dens
around five timesρ0. This transition could have important co
sequences for the evolution of a protoneutron star, in partic
for the spin correlations in the medium which do strongly aff
the neutrino cross sections and the neutrino mean free pa
side the star[25]. Therefore, drastically different scenarios f
the evolution of protoneutron stars emerge depending on
existence of such a ferromagnetic transition.

Most of the studies of the ferromagnetic transition in n
tron and nuclear matter have been done at zero tempera
However, the description of protoneutron stars[26] motivates a
study of spin polarized neutron matter at temperatureT of the
order of a few tens of MeV. Recently, the properties of po
ized neutron matter both at finite and zero temperature,
been investigated[27] using a large sample of Skyrme-like i
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teractions. The results of Ref.[27] indicate the occurrence o
a ferromagnetic phase of neutron matter. However, contra
what one would intuitively expect, the authors of Ref.[27] have
found that the critical density at which ferromagnetism ta
place decreases with temperature. This unexpected resul
associated to an anomalous behaviour of the entropy of the
tem which becomes larger for the spin-polarized phase
respect to the one for the non-polarized phase, above a
tain density. This was shown to be related to the depend
of the effective masses of neutrons with spin up and down
the amount of spin-polarization, and a new constraint on
parameters of the Skyrme force was derived if this anoma
behaviour is to be avoided[27].

In the present work, we study the bulk and single part
properties of spin-polarized neutron matter at finite temp
ture. To this aim we make use of a microscopic approach b
on the Brueckner–Hartree–Fock (BHF) approximation of
Brueckner–Bethe–Goldstone (BBG) expansion. Here we m
use of an extension of the BBG theory (i) to the case in wh
neutron matter is arbitrarily asymmetric in the spin degree
freedom[21] (i.e., ρ↑ �= ρ↓, whereρ↑ (ρ↓) is the density of
neutron with spin up (down)), and (ii) to the case of finite te
perature. In particular, we study the behaviour of the entrop
the system and the effective mass of neutrons as a functio
the spin polarization parameter,∆ = (ρ↑ − ρ↓)/(ρ↑ + ρ↓). We
show that, contrary to what it is found in Ref.[27], the entropy
of the polarized phase is lower than that of the non-polar
one, according to the idea that the polarized phase is more
dered” than the non-polarized one.

Our calculation starts with the construction of the neutr
neutronG-matrix, which describes in an effective way the int
action between two neutrons for each one of the spin comb
tions↑↑,↑↓,↓↑ and↓↓. This is formally obtained by solving
the well known Bethe–Goldstone equation, written schem
cally as

G(ω)σ1σ2,σ3σ4

= Vσ1σ2,σ3σ4 +
∑
σiσj

Vσ1σ2,σiσj

Qσiσj

ω − εσi
− εσj

+ iη

(1)× G(ω)σiσj ,σ3σ4,

where the first (last) two subindices indicate the spin projec
σ = ↑(↓) of the two neutrons in the initial (final) state,V is the
bare nucleon–nucleon interaction,Qσiσj

is the Pauli operato
which allows only intermediate states compatible with the P
principle, andω is the starting energy defined as the sum of
non-relativistic single-particle energies,ε↑(↓), of the interacting
neutrons.

The single-particle energy of a neutron with momentumk

and spin projectionσ = ↑(↓) is given by

(2)εσ (k) = h̄2k2

2m
+ Re

[
Uσ (k)

]
,

where the real part of the single-particle potentialUσ (k) rep-
resents the averaged field “felt” by the neutron due to its
teraction with the other neutrons of the system. In the B
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approximation it is given by

(3)

Uσ (k)=
∑
σ ′k′

nσ ′(k′)〈�kσ �k′σ ′|G(
ω= εσ (k)+ εσ ′(k′)

)|�kσ �k′σ ′〉A

where

(4)nσ (k) =
{

1, if k � kσ
F ,

0, otherwise,

is the corresponding occupation number of a neutron w
spin projectionσ and the matrix elements are properly an
symmetrized. We note here that the so-called continuous
scription has been adopted for the single-particle potential w
solving the Bethe–Goldstone equation. As shown by the aut
of Refs.[28,29], the contribution to the energy per particle fro
three-body clusters is diminished in this prescription with
spect to the one calculated with the gap choice for the si
particle potential. We also note that the present calculation
been carried out using the Argonne v18 nucleon–nucleon
tential [30]. The momentum dependence of the single-part
spectrum can be characterized by the effective massm∗

σ (k) de-
fined as:

(5)
m∗

σ (k)

m
= k

m

(
dεσ (k)

dk

)−1

,

wherem is the bare neutron mass.
The total energy per particle is easily obtained once a s

consistent solution of Eqs.(1)–(3)is achieved

(6)
E

A
= 1

A

∑
σk

nσ (k)

(
h̄2k2

2m
+ 1

2
Re

[
Uσ (k)

])
.

The many-body problem at finite temperature has been
sidered by several authors within different approaches, s
as the finite temperature Green’s function method[31], the
thermo field method[32], or the Bloch–De Domicis (BD) dia
grammatic expansion[33]. The latter, developed soon after t
Brueckner theory, represents the “natural” extension to fi
temperature of the BBG expansion, to which it leads in the z
temperature limit. Baldo and Ferreira[34] showed that the dom
inant terms in the BD expansion were those that correspon
the zero temperature of the BBG diagrams, where the temp
ture is introduced only through the Fermi–Dirac distribution

(7)fσ (k, T ) = 1

1+ exp([εσ (k, T ) − µσ (T )]/T )
,

µσ (T ) being the chemical potential of a neutron with spin p
jectionσ . Therefore, at the BHF level, finite temperature effe
can be introduced in a very good approximation just rep
ing in the Bethe–Goldstone equation: (i) the zero tempera
Pauli operatorQσiσj

= (1 − nσi
)(1 − nσj

) by the correspond
ing finite temperature oneQσiσj

(T ) = (1− fσi
)(1− fσj

), and
(ii) the single-particle energiesεσ (k) by the temperature depe
dent onesεσ (k, T ) obtained from Eqs.(2) and (3)whennσ (k)

is replaced byfσ (k, T ). These approximations, which are su
posed to be valid in the range of densities and tempera
considered here, correspond to the “naive” finite tempera
Brueckner–Bethe–Goldstone (NTBBG) expansion discusse
Ref. [34].
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te

Fig. 1. Single-particle potential (top panels) and effective mass (bottom panels) of neutrons with spin up (solid lines) and spin down (dashed lines)as functions of
the linear momentum at fixed density(ρ = 0.16 fm−3) and spin polarization (∆ = 0.5) for T = 0 (left panels) andT = 40 MeV (right panels). The arrows deno
the value of the corresponding Fermi momenta.
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In this case, however, the self-consistent process imp
that, together with the Bethe–Goldstone equation and
single-particle potential, the chemical potentials of neutr
with spin up and down must be extracted at each step o
iterative process from the normalization condition

(8)ρσ =
∑

k

fσ (k, T ).

This is an implicit equation which can be solved numerica
Note that theG-matrix obtained from the Bethe–Goldsto
equation(1) and also the single-particle potentials depend
plicitly on the chemical potentials.

Once a self-consistent solution is achieved the total free
ergy per particle is determined by

(9)
F

A
= E

A
− T

S

A
,

where E/A is evaluated from Eq.(6) replacing nσ (k) by
fσ (k, T ) and the total entropy per particle,S/A, is calculated
through the expression

S

A
= − 1

A

∑
σk

[
fσ (k, T ) ln

(
fσ (k, T )

)

(10)+ (
1− fσ (k, T )

)
ln

(
1− fσ (k, T )

)]
.

From the free energy per particle, we can get the rem
ing macroscopic properties of the system. In our case, we
particularly interested in the magnetic susceptibilityχ , which
characterizes the response of a system to a magnetic fiel
gives a measure of the energy required to produce a net
alignment in the direction of the field. It is given by

(11)χ = µ2ρ

(
∂2(F/A)

)∆=0

,

∂∆2
s
e
s
e

-

-

-
re

nd
in

whereµ is the magnetic moment of the neutron.
The single-particle potentials of neutrons with spin up a

down have been simultaneously and self-consistently ca
lated together with their effective interactions. The result
ρ = 0.16 fm−3 and spin polarization∆ = 0.5 are reported fo
T = 0 (left panel) andT = 40 MeV (right panel) on the top
panels ofFig. 1. The neutron single-particle potential splits
in two different components when a partial spin polarizat
is assumed. In the case ofFig. 1, the single-particle potentia
Re[U↑(k)] for neutrons with spin up (the most abundant co
ponent) is less attractive than the one for neutrons with
down, Re[U↓(k)]. As demonstrated by the authors of Ref.[22]
(see, in particular, their Eqs. (23) and (24)), this splitting
is the result of aphase space effect, i.e., to the change in th
number of pairs which the neutron under consideration|k,σ 〉
can form with the remaining neutrons|k � kσ ′

F ,σ ′ = ↑,↓〉 of
the system as neutron matter is polarized, and (ii) is du
the spin dependence of the neutron–neutronG-matrix in the
spin polarized medium (see Eq.(1)). Indeed, as polarization in
creases, the single particle potential of a spin up neutron is
from a larger number of up–up pairs that form a spin trip
state(S = 1) and, due to the Pauli principle, can only intera
through odd angular momentum partial waves. Conversely
potential of the less abundant species is built from a relati
larger number of up–down pairs which can interact both in
S = 0 andS = 1 two body states. Thus, the potential of the l
abundant species receives also contributions from some im
tant attractive channels as, e.g., the1S0.

The increase of the temperature changes moderately
single-particle potentials. The real part becomes slightly
attractive, whereas the imaginary part increases in size as a
sequence of the increase of phase space in the low mome
region.
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Fig. 2. Neutron effective mass at the corresponding Fermi surface of the sp
and down components as a function of the spin polarization atρ = 0.16 fm−3

for T = 0 andT = 40 MeV.

The momentum dependence of the corresponding effe
masses of the two components is also shown in the bo
panels of the figure for the same values of density, spin po
ization and temperatures. The general effect of temperatu
to smooth out the enhancement of the effective mass nea
Fermi surface, as observed in the work of Ref.[35] in symmet-
ric nuclear matter.

In Fig. 2 we show the effective massm∗↑(m∗↓) for neutrons
with spin up (down) as a function of the spin polarization∆,
for fixed density(ρ = 0.16 fm−3) and temperature (T = 0 and
T = 40 MeV). The effective mass is calculated using Eq.(5)
taken for each component at the corresponding Fermi
mentum. Obviously, for∆ = 0 the effective mass of the tw
components coincides. Once some amount of polarizatio
considered, the values of the effective masses split in two
effective mass of the most abundant component being la
than the one of the less abundant. As can be seen the effe
masses show an almost linear and symmetric variation with
spect to their common value at spin polarization∆ = 0, both
at T = 0 andT = 40 MeV. Deviations from this behaviour a
only found at the higher polarization values. This behaviou
m∗

σ is a direct consequence of the scissors-like dependen
the single particle potential Re[Uσ ] as a function of the spin
polarization parameter∆ (see Fig. 2 of Ref.[22]). A similar
qualitative behaviour for the nucleon effective mass, as a fu
tion of the isospin asymmetry parameter,β = (ρn − ρp)/ρ, has
been found in isospin asymmetric nuclear matter[36–38](see,
in particular, Eq. (94) in Ref.[37]).

The differences of the free energy(F/A), energy(E/A) and
entropy(S/A) per particle between the totally polarized and
non-polarized phases are reported in the left, central and
panels ofFig. 3 as a function of the density for several te
peratures. The differences in the three quantities increase
density and increase (decrease) with temperature in the ca
the free energy (energy and entropy). Contrary to the resul
Ref. [27] with the Skyrme interaction, these differences are
ways positive for theF/A andE/A. This is an indication tha
the non-polarized phase is energetically preferred in the ra
p
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Fig. 3. Differences of the free energy (left panel), energy (central panel)
entropy per particle (right panel) between fully polarized and non-polar
neutron matter as a function of density for several temperatures.

Fig. 4. Left panel: free energy per particle at zero temperature as a functi
the spin polarization for several densities. Right panel: free energy per
cle at a fixed densityρ = 0.36 fm−3 as a function of the spin polarization fo
several temperatures. Circles, squares, diamonds and triangles show ou
results, whereas the solid lines correspond to the parabolic approximatio
fined in Eq.(12).

of densities explored. Therefore, we can conclude that a p
transition to a ferromagnetic state is not to be expected f
our microscopic calculation. If such a transition would ex
the difference in the free energy would become zero at s
density, indicating that the ground state of the system woul
ferromagnetic from that density on. In addition, the differen
in the entropy is always negative indicating, as one intuitiv
expects, that the totally polarized phase is more “ordered”
the non-polarized one.

In Fig. 4we show the behaviour of the free energyF/A per
particle as a function of the spin polarization for several de
ties (left panel) and temperatures (right panel). Circles, squ
diamonds and triangles correspond to our BHF results, whe
the solid lines correspond to the parabolic approximation
cussed below. As we expected from our previous calculat
at zero temperature[21] and[22], F/A is symmetric in∆ and
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Fig. 5. Ratio between the magnetic susceptibility of the free Fermi gas
the corresponding magnetic susceptibility of interacting neutron matter
function of density for several temperatures.

it shows a minimum at∆ = 0 for all the densities and tempe
atures considered. This is again an indication that the gro
state of neutron matter is paramagnetic, in opposition to w
it is found in Ref.[27] for Skyrme-like interactions where, a
a consequence of the anomalous behaviour of the entropy
minimum ofF/A is situated at 0< ∆ < 1 and moves to highe
polarizations when the temperature increases. It is also inte
ing to note that the dependence ofF/A on the spin polarization
is “up to a very good approximation” parabolic. One can try
characterize that dependence in the following simple ana
form:

(12)
F

A
(ρ,∆,T ) = F

A
(ρ,0, T ) + a(ρ,T )∆2

where, assuming the quadratic dependence to be valid u
|∆| = 1 as our results indicate, the value ofa(ρ,T ) can be eas
ily obtained for each density and temperature as the differe
between the total free energies per particle of totally polar
and non-polarized neutron matter

(13)a(ρ,T ) = F

A
(ρ,±1, T ) − F

A
(ρ,0, T ).

The magnetic susceptibility can be evaluated then in a
simple way if the parabolic dependence of Eq.(12) is assumed
giving

(14)χ(ρ,T ) = µ2ρ

2a(ρ,T )
.

The ratioχF /χ , whereχF is the magnetic susceptibility o
the free Fermi gas, is shown inFig. 5 as a function of den
sity for several temperatures. Starting from 1, the ratio incre
as the density increases at any temperature and no signa
change of such a trend is expected at higher densities, con
to the results of Ref.[27] in the case of the Skyrme-like intera
tions. This is again an indication that a ferromagnetic transit
whose onset would be signaled by the density at which this
becomes zero, is not seen and not expected at larger den
either.
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Fig. 6. Entropy per particle as a function of the spin polarization
ρ = 0.32 fm−3 for several temperatures.

Finally, the behaviour of the entropy per particleS/A as
a function of the spin polarization at a fixed densityρ =
0.32 fm−3 for several temperatures is shown inFig. 6. The en-
tropy, as the free energy, is also symmetric and almost para
in ∆. Its maximum is placed at∆ = 0 for all the densities an
temperatures considered, as one naively expects, contrary
findings of Ref.[27]. In this reference, it was shown that for
pure parabolic single particle spectrum, as it is the case fo
Skyrme interaction, imposing the entropy of the polarized ph
to be smaller than the unpolarized one for a given density
temperature, is equivalent to requiring the ratio of the neu
effective masses in the fully polarized and unpolarized phas
be smaller than 22/3. In the BHF approach, the momentum a
temperature dependence of the effective mass prevents fro
riving a similar rigorous condition. However, thinking in term
of a value of the effective mass that would characterize
single particle spectrum in average, or considering just the
fective mass at the Fermi surface, which is the most relevan
the calculation of the entropy at small temperatures, we can
explore if the BHF calculations respect the condition deri
in [27]. In fact, in the case ofρ = 0.16 fm−3 andT = 40 MeV
we find (seeFig. 2) m∗↑(∆ = 1)/m∗

↑(↓)(∆ = 0) = 1.09, which
is smaller than the limit established in Ref.[27]. This is true
for all the densities and temperatures explored in this work
therefore the entropy of the polarized phase is always sm
than that for the unpolarized one.

In summary, we have studied the properties of spin po
ized neutron matter both at zero and finite temperature w
the framework of the Brueckner–Hartree–Fock formalism.
have determined the single-particle potentials and the effe
mass of neutrons with spin up and down for arbitrary value
the density, temperature and spin polarization. We have fo
that the spin up and spin down effective masses show an al
linear and symmetric variation with respect to their value
spin polarization∆ = 0.

We have determined the differences of the free ene
(F/A), energy(E/A) and entropy(S/A) per particle between
the totally polarized and non-polarized phases. We have fo
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that, in contrast to the results of a similar study with the Skyr
interaction[27], these differences are always positive for
F/A and E/A which is an indication that the non-polarize
phase is energetically favorable, from which we can concl
that a phase transition to a ferromagnetic state is not to
expected. In addition, contrary to the results with the Sky
interaction, we have found that the difference in the entrop
always negative according to the idea that the totally polar
phase is more “ordered” than the non-polarized one.

Finally, we have seen that both the free energy and the
tropy per particle are not only symmetric on the spin po
ization but also parabolic in a very good approximation up
|∆| = 1. This finding supports the calculation of the magne
susceptibility by using only the free energies of the fully pol
ized and non-polarized phases.
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