Generalized Jordan derivation on nest algebras ⚫

Jinchuan Hou a,b,*, Xiaofei Qi a

a Department of Mathematics, Shanxi University, Taiyuan 030006, PR China
b Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, PR China

Received 16 August 2007; accepted 11 October 2007
Available online 3 December 2007
Submitted by Pei Yuan Wu

Abstract

Let \mathcal{N} be a nest on a Banach space X, and $\text{Alg} \mathcal{N}$ be the associated nest algebra. In this paper, we prove that, if there is a nontrivial element in \mathcal{N} which is complemented in X, then every additive generalized Jordan derivation from $\text{Alg} \mathcal{N}$ into itself is an additive generalized derivation. Moreover, we give a characterization of linear generalized Jordan derivations of nest algebras on complex separable Hilbert spaces.

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 47L35; 47D45

Keywords: Jordan derivation; Generalized Jordan derivation; Nest algebra

1. Introduction

Let \mathcal{A} be an algebra and \mathcal{M} be an \mathcal{A}-bimodule. Recall that a linear (additive) map δ from \mathcal{A} into \mathcal{M} is called a linear (additive) derivation if $\delta(AB) = \delta(A)B + A\delta(B)$ for all $A, B \in \mathcal{A}$. Linear derivations are very important maps both in theory and applications, and studied intensively. More generally, a linear (additive) map δ from \mathcal{A} into \mathcal{M} is called a linear (additive) Jordan derivation if $\delta(A^2) = \delta(A)A + A\delta(A)$ for each $A \in \mathcal{A}$; if there is a linear (additive) derivation $\tau : \mathcal{A} \rightarrow \mathcal{A}$ such that $\delta(AB) = \delta(A)B + A\tau(B)$ for all $A, B \in \mathcal{A}$, then δ is called a linear (additive) generalized derivation and τ is the relating derivation [5]; similarly, if there is a linear...
(additive) Jordan derivation \(\tau : \mathcal{A} \to \mathcal{A} \) such that \(\delta(A^2) = \delta(A)A + A\tau(A) \) for all \(A \in \mathcal{A} \), then \(\delta \) is called a linear (additive) generalized Jordan derivation and \(\tau \) is the relating Jordan derivation. In [7,11], authors gave another definition for generalized Jordan derivation: \(\delta \) is called a generalized Jordan derivation if \(\delta(A^2) = \delta(A)A + A\delta(A) - A\delta(I)A \) for all \(A \in \mathcal{A} \). It is easy to prove that their definition is a special case of ours.

The structures of derivations, Jordan derivations, generalized derivations and generalized Jordan derivations were systematically studied. Especially, the question when a Jordan derivation is a derivation was discussed by several authors. Herstein in [4] proved that every Jordan derivation from a prime ring of characteristic not 2 into itself is a derivation and that there are no nonzero antiderivations on a prime ring. Brešar in [1] showed that every Jordan derivation from a 2-torsion free semiprime ring into itself is a derivation. Recall that a ring or module is said to be 2-torsion free if \(2a \) is nonzero for any nonzero element \(a \) in it. Zhang in [9] proved that every linear Jordan derivation on a nest algebra is a linear derivation, and further it is an inner derivation. Recently, Lu in [6] proved that every additive Jordan derivation on reflexive algebra is an additive derivation, which generalized the result in [9]. Similarly, it is also an interesting question when a generalized Jordan derivation is a generalized derivation. Zhu in [11] showed that every generalized Jordan derivation from a 2-torsion free semiprime ring with identity into itself is a generalized derivation. Ji in [7] proved that every generalized Jordan derivation from the algebra of all upper triangular matrices over a commutative ring with identity into its bimodule is the sum of a generalized derivation and an antiderivation. In the present paper we consider the above question for the nest algebra case. We prove that if there is a nontrivial element in a nest \(\mathcal{N} \) on a Banach space \(X \) which is complemented in \(X \), then every additive generalized Jordan derivation of the corresponding nest algebra is an additive generalized derivation. Moreover, we give a characterization of linear generalized Jordan derivations of nest algebras on complex separable Hilbert spaces.

Let \(X \) be a Banach space, and \(\mathcal{B}(X) \) denote the algebra of all bounded linear operators on \(X \). A nest \(\mathcal{N} \) on \(X \) is a chain of closed (under norm topology) subspaces of \(X \) which is closed under the formation of arbitrary closed linear span (denote by \(\overline{\bigvee} \) and intersection (denote by \(\overline{\bigwedge} \), and which includes \(\{0\} \) and \(X \). The nest algebra associated to the nest \(\mathcal{N} \), denoted by \(\text{Alg} \mathcal{N} \), is the weak closed operator algebra consisting of all operators that leave \(\mathcal{N} \) invariant, i.e.,

\[
\text{Alg} \mathcal{N} = \{ T \in \mathcal{B}(X) : TN \subseteq N \text{ for all } N \in \mathcal{N} \}.
\]

When \(\mathcal{N} \neq \{0, X\} \), we say that \(\mathcal{N} \) is non-trivial. If \(\mathcal{N} \) is trivial, then \(\text{Alg} \mathcal{N} = \mathcal{B}(X) \). We refer the reader to [3] for the theory of nest algebras.

2. Results and proofs

In this section, we discuss the additive generalized Jordan derivations on nest algebras. The following is our main result:

Theorem 2.1. Let \(\mathcal{N} \) be a nest on a Banach space \(X \), and \(\delta \) be an additive generalized Jordan derivation from \(\text{Alg} \mathcal{N} \) into itself. If there exists a non-trivial element in \(\mathcal{N} \) which is complemented in \(X \), then \(\delta \) is an additive generalized derivation.

We will complete the proof of above theorem by proving several lemmas. In the sequel, we always assume that \(\mathcal{N} \neq \{0, X\} \), and that \(N_1 \in \mathcal{N} \) is complemented (\(\{0\} \neq N_1 \neq X \)). Thus there exists an idempotent \(E \in \text{Alg} \mathcal{N} \) such that \(\text{ran} E = N_1 \). We denote the idempotent \(I - E \)
by E^\perp. As a notational convenience, we denote $\mathcal{A} = \text{Alg } \mathcal{N}$, $\mathcal{A}_{11} = E \mathcal{A} E$, $\mathcal{A}_{12} = E \mathcal{A} (I - E)$ and $\mathcal{A}_{22} = (I - E) \mathcal{A} (I - E)$. Thus $\mathcal{A} = \mathcal{A}_{11} + \mathcal{A}_{12} + \mathcal{A}_{22}$. For S_{ij}, $(i, j) \in \{1, 2\}$, we always mean $S_{ij} \in \mathcal{A}_{ij}$. Assume that $\delta : \mathcal{A} \rightarrow \mathcal{A}$ is an additive generalized Jordan derivation, and $\tau : \mathcal{A} \rightarrow \mathcal{A}$ the additive Jordan derivation such that $\delta(A^2) = \delta(A)A + A\tau(A)$ for all $A \in \mathcal{A}$.

For the additive Jordan derivation τ, we have the following lemma.

Lemma 2.1. $\tau(E) = [E, S]$ for some $S \in \mathcal{A}$.

Proof. Write $\tau(E) = S_{11} + S_{12} + S_{22}$. Since $\tau(E) = \tau(E)E + E\tau(E)$, we have $S_{11} + S_{12} + S_{22} = 2S_{11} + S_{12}$, which implies that $S_{11} = S_{22} = 0$ and $\tau(E) = S_{12}$. Let $S = S_{12}$. It is obvious that $\tau(E) = [E, S]$. □

Now define δ' by $\delta' = \delta(A) - [A, S]$, for each $A \in \mathcal{A}$. Clearly, δ' is also an additive generalized Jordan derivation from \mathcal{A} into itself, and $\tau' : \mathcal{A} \rightarrow \mathcal{A}$ defined by $\tau'(A) = \tau(A) - [A, S]$ for each $A \in \text{Alg } \mathcal{N}$ is the relating additive Jordan derivation, which is in fact an additive derivation by [6]. Note that $\tau'(E) = 0$. Moreover, we have $\tau'(I - E) = 0$. $\tau'(\mathcal{A}_{12}) \subset \mathcal{A}_{12}$, and $\tau'(\mathcal{A}_{ii}) \subset \mathcal{A}_{ii}$ for each $i = 1, 2$ by [10].

We will show that δ' is an additive generalized derivation by Lemma 2.2–2.6.

Lemma 2.2. For all $A, B, C \in \mathcal{A}$, the following statements hold:

1. $\delta'(AB + BA) = \delta'(A)B + A\tau'(B) + \delta'(B)A + B\tau'(A)$,
2. $\delta'(ABA) = \delta'(A)BA + A\tau'(B)A + AB\tau'(A)$,
3. $\delta'(ABC + CBA) = \delta'(A)BC + A\tau'(B)C + AB\tau'(C) + \delta'(C)BA + C\tau'(B)A + C\tau'(B)A$.

Proof. (1) On the one hand, $\delta'((A + B)^2) = \delta'(A + B)(A + B) + (A + B)\tau'(A + B)$, and on the other hand, $\delta'((A + B)^2) = \delta'(A^2 + AB + BA + B^2) = \delta'(A)A + A\tau'(A) + \delta'(AB + BA) + \delta'(B)B + B\tau'(B)$.

Comparing these two expressions we obtain that $\delta'(AB + BA) = \delta'(A)B + A\tau'(B) + \delta'(B)A + B\tau'(A)$.

(2) Let $S = \delta'(A(AB + BA) + (AB + BA)A)$. Using (1) we have $S = \delta'(A)(AB + BA) + A\tau'(AB + BA) + \delta'(AB + BA)A + (AB + BA)\tau'(A)$.

On the other hand, we also have $S = \delta'(A^2B + 2ABA + BA^2) = \delta'(A^2)B + A^2\tau'(B) + \delta'(B)A^2 + B\tau'(A^2) + 2\delta'(ABA)$.

Since τ' is a Jordan derivation, it is known that $\tau'(AB + BA) = \tau'(A)B + A\tau'(B) + \tau'(B)A + B\tau'(A)$.
So we get
\[\delta'(ABA) = \delta'(A)BA + A\tau'(B)A + AB\tau'(A). \]

(3) Replacing \(A \) by \(A + C \) in (2), one obtains (3). \(\square \)

Lemma 2.3. \(\delta'(\mathcal{A}_{12}) \subset \mathcal{A}_{12}. \)

Proof. Firstly, we prove that \(\delta'(E) \in \mathcal{A}_{11}. \) Let \(\delta'(E) = S_{11} + S_{12} + S_{22}. \) Since \(\delta'(E) = \delta'(E)E + E\tau'(E) = \delta'(E)E, \) we see that \(S_{11} + S_{12} + S_{22} = S_{11}, \) which implies that \(S_{12} = S_{22} = 0 \) and \(\delta'(E) = S_{11} \in \mathcal{A}_{11}. \)

Now let \(A_{12} \in \mathcal{A}_{12} \) and \(\delta'(A_{12}) = S_{11} + S_{12} + S_{22}. \) Then
\[S_{11} + S_{12} + S_{22} = \delta'(A_{12}) \]
\[= \delta'(EA_{12} + A_{12}E) \]
\[= \delta'(E)A_{12} + E\tau'(A_{12}) + \delta'(A_{12})E + A_{12}\tau'(E) \]
\[= \delta'(E)A_{12} + \tau'(A_{12}) + S_{11}. \]

Hence \(S_{12} + S_{22} = \delta'(E)A_{12} + \tau'(A_{12}) \in \mathcal{A}_{12}, \) and \(S_{22} = 0. \)

On the other hand,
\[S_{11} + S_{12} = \delta'(A_{12}) \]
\[= \delta'(A_{12}E^\perp + E^\perp A_{12}) \]
\[= \delta'(A_{12})E^\perp + A_{12}\tau'(E^\perp) \]
\[+ \delta'(E^\perp)A_{12} + E^\perp\tau'(A_{12}) \]
\[= \delta'(A_{12})E^\perp + \delta'(E^\perp)A_{12} \]
\[= (S_{11} + S_{12})E^\perp + \delta'(E^\perp)A_{12}. \]

Thus we get \(S_{11} = \delta'(E^\perp)A_{12}, \) which implies that \(S_{11} = S_{11}E = \delta'(E^\perp)A_{12}E = 0. \) Therefore \(\delta'(A_{12}) = S_{12} \in \mathcal{A}_{12}. \) \(\square \)

Lemma 2.4. \(\delta'(\mathcal{A}_{11}) \subset \mathcal{A}_{11} \) and \(\delta'(\mathcal{A}_{22}) \subset \mathcal{A}_{22}. \)

Proof. Let \(A_{11} \in \mathcal{A}_{11}. \) By Lemma 2.2(2), we have
\[\delta'(A_{11}) = \delta'(EA_{11}E) \]
\[= \delta'(E)A_{11}E + E\tau'(A_{11})E + EA_{11}\tau'(E) \]
\[= \delta'(E)A_{11}E + \tau'(A_{11})E. \]

Since \(\delta'(E)A_{11} \in \mathcal{A}_{11} \) and \(E\tau'(A_{11})E \in \mathcal{A}_{11}, \) we get \(\delta'(A_{11}) \in \mathcal{A}_{11}. \)

Similarly, one can check that \(\delta'(\mathcal{A}_{22}) \subset \mathcal{A}_{22}. \) \(\square \)

Lemma 2.5. \(\delta' \) has the following properties:

1. \(\delta'(A_{11}B_{12}) = \delta'(A_{11})B_{12} + A_{11}\tau'(B_{12}) \) holds for all \(A_{11} \in \mathcal{A}_{11} \) and \(B_{12} \in \mathcal{A}_{12}. \)
2. \(\delta'(A_{12}B_{22}) = \delta'(A_{12})B_{22} + A_{12}\tau'(B_{22}) \) holds for all \(A_{12} \in \mathcal{A}_{12} \) and \(B_{22} \in \mathcal{A}_{22}. \)
3. \(\delta'(A_{22}B_{22}) = \delta'(A_{22})B_{22} + A_{22}\tau'(B_{22}) \) holds for all \(A_{22}, B_{22} \in \mathcal{A}_{22}. \)
Lemma 2.6. \(\delta \) we get that
\[
\delta'(A_{11}B_{12}) = \delta'(A_{11}B_{12} + B_{12}A_{11}) \\
= \delta'(A_{11})B_{12} + A_{11}\tau'(B_{12}) + \delta'(B_{12})A_{11} + B_{12}\tau'(A_{11}) \\
= \delta'(A_{11})B_{12} + A_{11}\tau'(B_{12}).
\]
Similarly, (2) is true for all \(A_{12} \in \mathcal{A}_{12} \) and \(B_{22} \in \mathcal{A}_{22} \).

For any \(A_{22} \in \mathcal{A}_{22} \), by Lemma 2.2(2), we have
\[
\delta'(A_{22}) = \delta'(E^\bot A_{22}E^\bot) \\
= \delta'(E^\bot)A_{22}E^\bot + E^\bot \tau'(A_{22})E^\bot + E^\bot A_{22}\tau'(E^\bot) \\
= \delta'(E^\bot)A_{22} + \tau'(A_{22}),
\]
and hence
\[
\delta'(A_{22}B_{22}) = \delta'(E^\bot)A_{22}B_{22} + \tau'(A_{22}B_{22})
\]
holds for all \(A_{22}, B_{22} \in \mathcal{A}_{22} \). Since
\[
\delta'(A_{22})B_{22} + A_{22}\tau'(B_{22}) = \delta'(E^\bot)A_{22}B_{22} + \tau'(A_{22})B_{22} + A_{22}\tau'(B_{22}) \\
= \delta'(E^\bot)A_{22}B_{22} + \tau'(A_{22}B_{22}),
\]
we get that \(\delta'(A_{22}B_{22}) = \delta'(A_{22})B_{22} + A_{22}\tau'(B_{22}). \)

Lemma 2.6. \(\delta'(AB) = \delta'(A)B + A\tau'(B) \) for all \(A, B \in \mathcal{A} \), that is, \(\delta' \) is an additive generalized derivation.

Proof. For any \(A, B \in \mathcal{A} \) and \(S_{12} \in \mathcal{A}_{12} \), by Lemma 2.2–2.5, we have
\[
\delta'(AB S_{12}) = \delta'(A_{11}B_{11}S_{12}) \\
= \delta'(A_{11})B_{11}S_{12} + A_{11}B_{11}\tau'(S_{12}) \\
= \delta'(A_{11}B_{11} + A_{11}B_{12} + A_{12}B_{22} + A_{22}B_{22})S_{12} \\
+ (A_{11}B_{11} + A_{11}B_{12} + A_{12}B_{22} + A_{22}B_{22})\tau'(S_{12}) \\
= \delta'(AB)S_{12} + AB\tau'(S_{12}).
\]

On the other hand,
\[
\delta'(AB S_{12}) = \delta'(A_{11}B_{11}S_{12}) \\
= \delta'(A_{11})B_{11}S_{12} + A_{11}\tau'(B_{11}S_{12}) \\
= \delta'(A)BS_{12} + A_{11}\tau'(B_{11})S_{12} + A_{11}B_{11}\tau'(S_{12}) \\
= \delta'(A)BS_{12} + A\tau'(B)S_{12} + AB\tau'(S_{12}).
\]
So we get \(\delta'(AB)S_{12} = (\delta'(A)B + A\tau'(B))S_{12} \), that is \([\delta'(AB) - (\delta'(A)B + A\tau'(B))]S_{12} = 0 \) for any \(S_{12} \in \mathcal{A}_{12} \). Hence \(E[\delta'(AB) - (\delta'(A)B + A\tau'(B))]E = 0. \)

Similarly, for any \(S_{22} \in \mathcal{A}_{22} \), we compute \(\delta'(AB S_{22}) \) in two ways. On the one hand,
\[
\delta'(AB S_{22}) = \delta'(A_{11}B_{12}S_{22}) + \delta'(A_{12}B_{22}S_{22}) + \delta'(A_{22}B_{22}S_{22}) \\
= \delta'(A_{11}B_{12})S_{22} + A_{11}B_{12}\tau'(S_{22}) + \delta'(A_{12}B_{22})S_{22}
\]
Lemma 2.7. Let derivation from be a linear generalized derivation.

Proof of Theorem 2.1. From the above lemmas, we have proved that \(\delta = \delta(A_1 B_{12} S_{22}) + \delta'(A_2 B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \)

On the other hand,

\[
\delta'(AB S_{22}) = \delta'(A_1 B_{12} S_{22}) + \delta'(A_2 B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
= \delta'(A_1 B_{12} S_{22}) + A_1 \tau'(B_{12} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
+ A_2 \tau'(B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
= \delta'(A) B S_{22} - \delta'(A_2) B_{22} S_{22} + A_1 \tau'(B_{12} S_{22}) \\
+ A_2 \tau'(B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
= \delta'(A) B S_{22} - \delta'(A_2) B_{22} S_{22} + \delta'(A) B_{22} S_{22} \\
+ A_1 B_{12} \tau'(S_{22}) + A_2 \tau'(B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
= \delta'(A) B S_{22} - \delta'(A_2) B_{22} S_{22} + \delta'(A) B_{22} S_{22} \\
+ A_1 B_{12} \tau'(S_{22}) + A_2 \tau'(B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}) \\
= \delta'(A) B S_{22} - \delta'(A_2) B_{22} S_{22} + \delta'(A) B_{22} S_{22} \\
+ A_1 B_{12} \tau'(S_{22}) + A_2 \tau'(B_{22} S_{22}) + \delta'(A_2 B_{22} S_{22}).
\]

Comparing the above two equations, we get \([\delta'(AB) - (\delta'(A) B + A \tau'(B))] S_{22} = 0\), that is \(E[\delta'(AB) - (\delta'(A) B + A \tau'(B))] E^\perp + E^\perp[\delta'(AB) - (\delta'(A) B + A \tau'(B))] E^\perp = 0\). So \(E[\delta'(AB) - (\delta'(A) B + A \tau'(B))] E^\perp = 0\) and \(E^\perp[\delta'(AB) - (\delta'(A) B + A \tau'(B))] E^\perp = 0\). Therefore \(\delta'(AB) = \delta'(A) B + A \tau'(B)\).

Proof of Theorem 2.1. From the above lemmas, we have proved that \(\delta' : \mathcal{A} \to \mathcal{A}\) is an additive generalized derivation. Since \(\delta'(A) = \delta(A) - [A, S]\) for each \(A \in \mathcal{A}\), by a simple calculation, we see that \(\delta\) is also an additive generalized derivation. The proof is completed.

From Theorem 2.1, one gets the following corollary immediately.

Corollary 2.2. Let \(\mathcal{N}\) be a nest on a Hilbert space \(H\), and \(\delta\) be an additive generalized Jordan derivation from \(\text{Alg} \mathcal{N}\) into itself. Then \(\delta\) is an additive generalized derivation.

By a result of Christensen in \([2]\), the following lemma is obvious.

Lemma 2.7. Let \(\mathcal{N}\) be a nest on a complex separable Hilbert space \(H\), and \(\delta : \text{Alg} \mathcal{N} \to \text{Alg} \mathcal{N}\) be a linear generalized derivation. Then there exist \(T, S \in \text{Alg} \mathcal{N}\) such that \(\delta(A) = TA + AS\) for all \(A \in \text{Alg} \mathcal{N}\).

Hence, for linear generalized Jordan derivation, the following result is true.

Theorem 2.3. Let \(\mathcal{N}\) be a nest on a complex separable Hilbert space \(H\), and \(\delta : \text{Alg} \mathcal{N} \to \text{Alg} \mathcal{N}\) be a linear generalized Jordan derivation. Then there exist \(T, S \in \text{Alg} \mathcal{N}\) such that \(\delta(A) = TA + AS\) for all \(A \in \text{Alg} \mathcal{N}\).
In [8], the authors introduced the concept of generalized Jordan triple derivation. Let \(R \) be a ring and \(\delta : R \rightarrow R \) an additive map. If there is a Jordan triple derivation \(\tau : R \rightarrow R \) such that
\[
\delta(ABA) = \delta(A)BA + A\tau(B)A + AB\tau(A)
\]
for every \(A, B \in R \), then \(\delta \) is called a generalized Jordan triple derivation, and \(\tau \) is the relating Jordan triple derivation. Recall that \(\tau \) is a Jordan triple derivation if \(\tau(ABA) = \tau(A)BA + A\tau(B)A + AB\tau(A) \) for any \(A, B \in R \).

Let \(\tau : \text{Alg} \mathcal{N} \rightarrow \text{Alg} \mathcal{N} \) be a Jordan triple derivation. Note that \(\tau(I) = 0 \), so \(\tau \) is in fact a Jordan derivation. Now it is easy to check that a generalized Jordan triple derivation on a nest algebra is a generalized Jordan derivation. Hence we get the following corollary.

Corollary 2.4. Let \(\mathcal{N} \) be a nest on a Hilbert space \(H \), and \(\delta : \text{Alg} \mathcal{N} \rightarrow \text{Alg} \mathcal{N} \) be a generalized Jordan triple derivation. Then \(\delta \) is a generalized derivation.

References

