
The Fundamental Organization of Cardiac Mitochondria as a Network
of Coupled Oscillators

Miguel Antonio Aon, Sonia Cortassa, and Brian O’Rourke
The Johns Hopkins University Institute of Molecular Cardiobiology, Baltimore, Maryland 21205-2195

ABSTRACT Mitochondria can behave as individual oscillators whose dynamics may obey collective, network properties. We
have shown that cardiomyocytes exhibit high-amplitude, self-sustained, and synchronous oscillations of bioenergetic param-
eters when the mitochondrial network is stressed to a critical state. Computational studies suggested that additional low-amplitude,
high-frequency oscillations were also possible. Herein, employing power spectral analysis, we show that the temporal behavior of
mitochondrial membrane potential (DCm) in cardiomyocytes under physiological conditions is oscillatory and characterized by a
broad frequency distribution that obeys a homogeneous power law (1/f b) with a spectral exponent, b ¼ 1.74. Additionally,
relative dispersional analysis shows that mitochondrial oscillatory dynamics exhibits long-term memory, characterized by an
inverse power law that scales with a fractal dimension (Df) of 1.008, distinct from random behavior (Df ¼ 1.5), over at least three
orders of magnitude. Analysis of a computational model of the mitochondrial oscillator suggests that the mechanistic origin of
the power law behavior is based on the inverse dependence of amplitude versus frequency of oscillation related to the balance
between reactive oxygen species production and scavenging. The results demonstrate that cardiac mitochondria behave as a
network of coupled oscillators under both physiological and pathophysiological conditions.

INTRODUCTION

The heart is a collection of dynamically coupled nonlinear

oscillators, and it has proven to be a rich source of data for

those interested in complex phenomena. One of the earliest

models of weakly coupled oscillators was described by Van

der Pol, who reproduced some of the functional aspects of

the heart by viewing it as a system of electrically coupled

relaxation oscillators (1). Since then, numerous investigators

have applied various analytical techniques to uncover ‘‘scale

invariant’’ (fractal) processes in cardiac function. A well-

studied example is the fluctuation of the beat-to-beat interval

of the electrocardiogram. Time series plots of this parameter

show variations that appear to have a similar morphology

when viewed at temporal resolutions spanning several orders

of magnitude. This is the temporal analogy to spatial fractal

scaling observed in, for example, the branching patterns of a

tree, the pulmonary bronchioles, or the arterial system (2).

Several methods have been developed to quantify such

long-range correlations in time series, indicating that the

events being correlated are not independent of each other.

The methods include spectral analysis, which reveals the

scale-free memory effect as a power law dependence of the

frequency distribution (often displaying a ‘‘1/f’’ distribution
(3)), and methods that plot fluctuations of a signal around a

trendline when the data are aggregated over different time

windows (e.g., fluctuation analysis (4), detrended fluctuation

analysis (5), or relative dispersion analysis (6)). The potential

importance of identifying these nontrivial correlations in

complex physiological functions is that in disease conditions,

it has been shown that the fractal character of the system can

break down. Degeneration of the characteristic long-range

correlation can be manifested either as i), an increase in the

randomness of the fluctuations (i.e., toward uncorrelated white

noise), ii), the appearance of correlations of the random walk

type (i.e., Brownian noise), or iii), a narrowing of the fre-

quency spectrum and/or the appearance of highly periodic be-

havior (e.g., the appearance of the Cheyne-Stokes frequency

in the interbeat time series in patients with heart failure)

(4,5,7).

Scale invariance has been observed in many biological

systems that require a high degree of adaptability and a flex-

ible response to changing environmental conditions. Hence,

it has been argued that this organizational motif may permit

complex control processes to respond without becoming

‘‘mode-locked’’ into a narrow range of function (4,5,7).

Mitochondrial oxidative phosphorylation is a prime ex-

ample of a biological system regulated by a series of mech-

anisms that interact to provide a rapid and robust change in

energy production to meet cellular demand. Therefore, in this

study, we test the hypothesis that the mitochondrial network

of the heart cell may be organized as a lattice of coupled

relaxation-type oscillators (i.e., those exhibiting slow and fast

phase components) that exhibit scale-free temporal organi-

zation. We have previously demonstrated that this network

displays complex dynamic behavior when subjected to meta-

bolic stress (8), including scale invariant spatiotemporal

synchronization (9). Self-sustained and highly coordinated

oscillations in mitochondrial membrane potential (DCm) and

reactive oxygen species (ROS) can be triggered under condi-

tions of oxidative stress (8), which could be reproduced in a

computational model of ROS-induced ROS release (10).
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In addition to reproducing the dominant low-frequency

(;0.01 Hz) oscillations in energetic parameters observed

under stress, the mathematical model also displayed a variety

of stable high-frequency, low-amplitude oscillations when a

single parameter was varied (10). This motivated us to em-

ploy the aforementioned analytical techniques to determine

if long-range correlations exist in experimental time series of

mitochondrial energetic parameters under physiological con-

ditions. We demonstrate that the mitochondrial network

behaves as a collection of weakly coupled oscillators with a

broad frequency distribution under normal conditions that

can transition to an oscillatory state with a single dominant

frequency under conditions of metabolic stress. We suggest

that this phase transition in time and space is due to an in-

crease in the levels of the primary coupling factor, ROS. The

findings reveal the fundamental spatial and temporal orga-

nization of mitochondria as a complex system of oscillators.

MATERIALS AND METHODS

Cardiomyocyte isolation

All experiments were carried out at 37�C on freshly isolated adult guinea pig

ventricular myocytes prepared by enzymatic dispersion as previously de-

scribed (11). See Supplementary Material for further details.

Fluorescent probes for two photon laser scanning
microscopy and image acquisition and analysis

The cationic potentiometric fluorescent dye tetramethylrhodamine methyl

ester (TMRM) (100 nM) was used to monitor changes in DCm as previously

described (8). Images were recorded using a two photon laser scanning

microscope (Bio-Rad (Hercules, CA) MRC-1024MP) with excitation at 740

nm, and the red emission of TMRMwas collected at 6056 25 nm (Tsunami

Ti:Sa laser, Spectra-Physics, Mountain View, CA).

Analysis of TMRM time series

Extended time series of TMRM fluorescence (1500–4000 images) recorded

at a maximal temporal resolution of 110 ms were subjected to relative

dispersional analysis (RDA) and power spectral analysis (PSA).

RDA

RDA allows a quantitative determination of how the state of a process at a

given point in time is influenced by the state of the system at previous time

points (2,12,13). The relative dispersion or coefficient of variation (CV ¼
standard deviation/mean) is repeatedly calculated while binning (coarse-

graining) the data set at successively larger timescales. More specifically, we

aggregated adjacent points in the time series of DCm at 2, 4, 8, 16, and 32

successive values of the data set to calculate the CV for each grouping (12)

and plotted it versus the aggregation number, m. The slope of this relation

provides information as to the extent of long-term correlation (or memory) in

the data set.

PSA

The power spectrum of the TMRM time series was analyzed after fast

Fourier transform (FFT) of the fluorescence signal. Double log plots of am-

plitude versus frequency indicated a decrease in power proportional to 1/f b,
where f is frequency and b is the spectral exponent (2,12,13) (and see

Supplementary Material). The Fourier transform of the TMRM signal was

performed with the FFT routine ofMicrocal Origin (Version 6.0, Northampton,

MA). Since this routine may use five different data windowing methods

(rectangular, Welch, Hanning, Hamming, Blackman), we performed con-

trols to examine how different windowing methods influenced the determi-

nation of b. Simulated pink noise (35,281 time points) was used as a control

whose power spectrum should yield b ¼ 1.0. The best fit of the simulated

data was obtained with rectangular windowing (b ¼ 1.0; r ¼ 0.61) (see

Supplementary Material); thus, we used this method to calculate FFT from

the TMRM time series. The results did not differ significantly when different

windowing methods were used.

Because the sampling rate was limited to;100 Hz and the data were not

low-pass filtered, data points shown at frequencies .1.3 (i.e., five times the

sampling rate) in the power spectrum may contain some minor frequency

contamination due to aliasing. This effect should not significantly alter the

conclusions of the study since the slopes were determined from the data points

that satisfied the Nyquist criterion of at least two times the sample frequency.

To differentiate between the TMRM signal obtained from cells and pure

brown noise, we applied RDA and PSA to either simulated brown noise or

brown noise obtained from the integration of white noise (see legends for

Figs. 3 and 4, and the text; see also Supplementary Material for additional

controls).

Additional controls

We investigated whether the excitation wavelength, lexc, and laser intensity

affected the results obtained with RDA or PSA (see Supplementary Material

for details).

Computational model of the mitochondrial
oscillator

An integrated model of mitochondrial energetics (14), which was extended

to include a shunt of electrons of the respiratory chain toward the generation

of O�
2 , a ROS scavenging system, and a ROS-activated anion efflux pathway

across the inner membrane (10), was used for the simulations shown in Fig.

2, using the parametric conditions described in Cortassa et al. (10).

Statistical analysis

Estimation of the statistical significance of differences in Df or b between

controls and treatments and the calculation of correlation coefficients was

performed with GraphPad Prism (version 2; San Diego, CA). The results are

presented as mean 6 SE (95% confidence interval) after a t-test (small

samples, unpaired t-test with two tail p-values). The adequacy of the sample

size (n values) was assessed with retrospective power calculations (8).

RESULTS

Frequency and amplitude modulation of the
mitochondrial oscillator

Under ‘‘physiological’’ conditions mitochondrial DCm fluc-

tuates at high frequency within a restricted amplitude range,

implying depolarizations of only microvolts to a few mil-

livolts. As we have shown previously, oxidative stress may

elicit low-frequency, high-amplitude oscillations that char-

acterize the ‘‘pathophysiological’’ response (Fig. 1; see video

in Supplementary Material). A return plot illustrates how the

distribution of frequencies and amplitudes of oscillation can

change at the junction between physiology and pathophys-

iology (Fig. 1, inset). Although the physiological domain
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shows an apparently ‘‘noisy’’ appearance, the transition to

pathophysiology is characterized by a highly correlated limit

cycle type oscillation.

We became interested in determining if the physiological

domain also shows temporal correlations after model simula-

tions revealed the potential for high-frequency, low-amplitude

domains of the mitochondrial oscillator (Fig. 2 A). A sys-

tematic simulation study of the oscillatory behavior of DCm

and ROS, as a function of a fraction of the respiratory flux

diverted to ROS production (i.e., superoxide anion O�
2 ), re-

vealed that in the high-frequency domain both the period and

amplitude of the oscillator could be modulated. The period

decreased from 34 ms to 16 ms as the ROS leak was in-

creased from 6% to 15% of the respiratory flux, whereas the

amplitude of ROS pulses reached a maximum (66 nM O�
2 ) at

;8% of respiration diverted to ROS and then decreased at

higher frequencies (Fig. 2 B). The period (from 70 ms to

250 ms) and the amplitude of the DCm (2–24 mV) and ROS

oscillations (150 nM to 1 mM) could also be modulated by

varying the superoxide dismutase (SOD) concentration (from

1.0 to 1.2 mM) within the high-frequency range when the

fraction of respiration diverted to ROS was fixed at 7.4%

(not shown, but see Cortassa et al. (10)).

These results suggest that the mitochondrial oscillator

may, potentially, function as both a frequency- and amplitude-

encoding ROS signaling mechanism in the physiological

(high-frequency) domain. This hypothesis was explored using

the statistical analysis of DCm time series from isolated heart

cells described below.

Temporal correlation of the mitochondrial
network in the physiological domain

Heart cells loaded with TMRM, reportingDCm, were imaged

at a frame interval of 110 ms with two photon laser scanning

microscopy. RDA and PSA were applied to time series com-

posed of 1500–4000 time points.

The rationale underlying RDA is that for a system exhib-

iting completely random fluctuations, the CV, drops off more

rapidly as the data are aggregated over longer timescales as

compared with a system that shows long-term memory (see

Materials and Methods). The double-log plot of CV versus

the aggregation number, m, of adjacent time points shows an

inverse power law correlation with a slope corresponding to a

fractal dimension,Df¼ 1.0086 0.002 (Fig. 3 A; n¼ 10 time

series; five independent experiments). An inverse power law

with a slope corresponding to a fractal dimension close to 1.0

suggests that there is long-term memory in the system (Fig. 3,

A and C). In this context, long-term memory means that the

DCm fluctuations are influenced by changes of DCm in the

past.

Unlike the high correlation exhibited by the mitochondrial

network, processes without memory show completely ran-

dom behavior (white or brown noise) characterized by an

exponential (Poisson) law with slopes corresponding to Df ¼
1.5 (Fig. 3, A, D, and E) (12). Unlike white and brown

noises, pink noise exhibited a Df close to 1.0 (see Supple-

mentary Material). The long-term memory of the mitochon-

drial network was not only evident in the ‘‘physiological

domain’’ but also in the ‘‘pathophysiological domain’’ (Fig. 3,

A–C) (see also Supplementary Material and Aon et al. (8)).

These results were substantiated with controls performed on

the instrument noise of the background from the same image

sequence (Fig. 3 D) or after random shuffling of DCm time

points to eliminate any deterministic component. Under ei-

ther of these conditions, Df shifted from 1.0 to 1.5 (Fig. 3 A),
indicating that the fluctuations in the signal were due to

physiologically relevant, dynamic control mechanisms in

mitochondrial metabolism rather than random variation. This

was also confirmed later when inhibitors known to affect the

mitochondrial oscillatorymechanismwere applied (see below).

FIGURE 1 Physiological and pathophysiological behaviors of the mito-

chondrial network in heart cells. Freshly isolated ventricular cardiomyocytes

were loaded with 100 nM TMRM and imaged by two photon microscopy

(150-ms time resolution) as described in Materials and Methods. The results

obtained from a stack of 3720 images are shown (see the video of this experi-

ment in Supplementary Material). Before the mitochondrial network reaches

criticality (9,15,30), the DCm (as measured by TMRM) oscillates at high fre-

quencies and small amplitudes. After criticality, the network behavior evolves

into ‘‘pathophysiological’’ behavior characterized by low-frequency, high-

amplitude oscillations (8,10). The return plot of the time series shown in the

inset was calculated by representing the fluorescent signal, Xn, with a lag of

150 ms with respect to itself, Xn11. This graph allows a quick visualization of

the richness of high-frequency, low-amplitude oscillations present in the

physiological as opposed to the low-frequency, high-amplitude oscillations

present in the pathophysiological regime.
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Power spectral analysis of DWm

Correlations in time series are also revealed using PSA and

are often characterized by an inverse power law relationship.

As also shown using the RDA above, self-similar scaling

suggests that events in different timescales (milliseconds,

seconds, minutes) are tied together in an orderly statistical

sequence. Thus, the power spectrum of such data usually fol-

lows an inverse power law proportional to 1/f b (see Materials

and Methods: PSA and FFT calculation).

Applying PSA, we calculated the power spectra (displayed

as a double log plot of amplitude versus frequency) after FFT

of the DCm time series from mitochondria under physio-

logical conditions. The power spectrum of the mitochondrial

network exhibited a bandwidth pattern with low-frequency

components (,0.3 Hz, dashed line in Fig. 4 A) and a pre-

dominant (.90% of the data points) low-amplitude tail of

higher frequencies (.0.3 Hz). The power spectrum could be

described by a homogeneous inverse power law of the form

1/f b with b ¼ 1.737 6 0.015 (n ¼ 10 time series; five inde-

pendent experiments) (Fig. 4 A). However, a value of b close

to 2.0 (1.99 6 0.03, n ¼ 10) could be attributed to the low-

frequency components, and 1.54 6 0.03 (n ¼ 10) for the

high-frequency, low-amplitude region of the spectrum (see

below). The frequencies .0.3 Hz thus behaved in the mid-

range between pink (b ¼ 1.0) and brown (b ¼ 2.0) noise.

The observed power spectrum is indicative of highly per-

sistent, correlated, long-term memory processes that scale

for at least three orders of magnitude. Correspondingly, we

obtained b � 0 or b � 2.0 for controls exhibiting random

behavior (white noise) (Fig. 4 B, mid panels) or ordinary
brown noise (Fig. 4 B, bottom panels), respectively. More-

over, b ¼ 1.0 was obtained from time series that simulate

pink noise (see Supplementary Material, Fig. S3).

Taken together, the results show that the collective behav-

ior of the mitochondrial network (i.e., through DCm) belongs

to a statistically fractal, self-similar process characterized by

a large number of frequencies in multiple timescales, rather

than an inherent ‘‘characteristic’’ frequency.

Are reactive oxygen species intracellular
messengers under physiological conditions as
they are in pathophysiology?

The scale-free behavior of the mitochondrial network sug-

gests that the mechanism described for the mitochondrial

oscillator under pathophysiological conditions could share

similar features in the physiological domain of behavior. We

tested this by exposing heart cells to a respiratory inhibitor

(rotenone), a ROS scavenger (TMPyP), and a mitochondrial

FIGURE 2 Frequency and amplitude modulation of the mitochondrial

oscillator model through changes in the balance between ROS production

and ROS scavenging. (A) Oscillation periods of 25 ms and 143 ms are shown

for SOD concentrations of 0.75 mM and 1.07mM, respectively. The model

parameters used to run the simulations for shunt ¼ 0.0744 (defined as the

fraction of the electron flow in the respiratory chain diverted to the

generation of superoxide anion, O�
2 ) were concentration of respiratory chain

carriers, rREN ¼ 2.5 3 10�6 mM; concentration of F1F0 ATPase, rF1 ¼
2.03 3 10�3 mM; [Ca21]i ¼ 0.1 mM; Kcc ¼ 0.01 mM; k1SOD ¼ 2.4 3
106 mM�1s�1; k1CAT ¼ 1.73 104 mM�1s�1; GT ¼ 0.5 mM; maximal rate of

the adenine nucleotide translocase, VmaxANT ¼ 5 mM s�1; maximal rate of

the mitochondrial Na-Ca exchanger, VNaCa
max ¼ 0.015 mM s�1. The

O�
2 concentrations correspond to the mitochondrial matrix space and were

calculated as described in Cortassa et al. (14). Remaining parameters were

set as described in Cortassa et al. (10) and Cortassa et al. (14). (B) Under

similar parametric conditions, the frequency and amplitude of the oscilla-

tions in O�
2 delivered to the cytoplasm as a function of the fractional O�

2

production in the high-frequency domain (ms). Within the oscillatory region

(shaded), the oscillatory period constantly decreased, whereas the amplitude

reached a peak and then decreased as a function of the increase in ROS

production. A similar analysis was performed in the low-frequency domain

(seconds to minutes) for SOD concentrations of 1.87 mM (not shown). In the

latter case, the amplitude of O�
2 (0.86 mM) did not change as a function of

the shunt (from 0.05 to 0.25), whereas the period decreased from 276 s to

62 s, respectively.
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benzodiazepine receptor (mBzR) inhibitor (49-Cl-DZP).
These pharmacological treatments decrease ROS production

either by blocking respiration, by direct scavenging, or by

inhibiting ROS-induced ROS release from mitochondria.

Mechanistically, all of these agents inhibit oscillations in the

pathophysiological domain (9,10).

Under physiological conditions, the presence of 15 mM
rotenone or 64 mM 49-Cl-DZP, but not TMPyP, rapidly

(within 5 min) affected the high-frequency region of the

spectrum but not the low-frequency one, with the exception

of rotenone at 5 min. This effect on the high-frequency, low-

amplitude domain of the spectrum (frequencies .0.3 Hz)

(Fig. 5) was manifested as a strong decrease in the value of b,
predominantly as a result of a significant loss of correlation

(Fig. 5). The loss of correlation in the high-frequency domain

of the spectrum is consistent with a weaker coupling between

mitochondrial oscillators in the network, in agreement with a

decrease in ROS, the proposed coupling factor (8).

The major effects of rotenone and 49-Cl-DZP on the high-

frequency domain (i.e., frequencies .0.3 Hz) of the spec-

trum were compared with pure white noise, which exhibits a

Pearson correlation coefficient of r� 0, whereas mitochondria

FIGURE 3 RDA of the TMRM fluorescence time series from the mitochondrial network of cardiomyocytes. Freshly isolated ventricular cardiomyocytes

were loaded with 100 nM TMRM and imaged by two photon microscopy, as described in Materials and Methods. The statistical analysis of the TMRM signal

showed that the mitochondrial network of the heart cell functions as a highly correlated network of oscillators. (A) RDA: A log-log plot of the CV (¼ SD/mean)

of the fluorescence distribution obtained at increasing values of the aggregation parameter, m (see also text), gives a fractal dimension, Df, close to 1.0, either

for myocytes showing large (‘‘pathophysiological’’) oscillations in DCm (panel A, solid triangles, and panel B) or those under ‘‘physiological’’ conditions
(panel A, solid circles, and panel C). A completely random process obtained from the noise in the image background (panel D) (in fact, corresponding to the

images shown in panel C) gives Df ¼ 1.48 (;1.5; panel A: WN, white noise, dark gray squares). The position of a Brownian particle as a random function of

time simulates brown noise (panel E), Df ¼ 1.57 (;1.5; panel A: BN, brown noise, light gray squares) (see also Supplementary Material). The data obtained

from RDA were subjected to linear regression and the slope calculated. Df was obtained as described in panel A.

Mitochondria as Coupled Oscillators 4321
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in the correlated network gave r ¼ 0.70 6 0.05 (n ¼ 4 time

series; two independent experiments; Fig. 6 A). A similar

comparison was made for myocytes undergoing ‘‘pathophy-

siological’’ mitochondrial oscillations by separately analyzing

mitochondria included within and outside of the synchro-

nized oscillating cluster (9). Mitochondria that were not os-

cillating in synchrony with the cluster exhibited a power

spectrum similar to white noise (r¼ 0.05; compare panels D

FIGURE 4 PSA of TMRM fluorescence time series

from the mitochondrial network of cardiomyocytes.

Experiments were carried out as described in the legend

of Fig. 1 and Materials and Methods. The time series of

TMRM fluorescence was subjected to FFT as described in

Materials and Methods. (A) PSA: The power spectrum was

obtained from the FFT of the TMRM signal as the double

log plot of the amplitude (power) versus the frequency.

This relationship obeys a homogeneous power law (1/f b;

with f, frequency, and b, the spectral exponent) and is

statistically self-similar, which means that there is no

dominant frequency. The PSA reveals a broad spectrum

of oscillation in normally polarized mitochondria with a

spectral exponent of b ¼ 1.79, whereas a random process

(white noise) gives a b ; 0, meaning that there is no

relationship between the amplitude and the frequency in a

random signal. A b ¼ 1.0 (Supplementary Material, Fig.

S3) or 2.0 (Fig. 4 B, bottom panels) corresponds to pink or

brown noise, respectively. The inverse power law spec-

trum arises from the coupling of frequency and amplitude

in an orderly statistical sequence. The periods, in seconds

or milliseconds, at the bottom of panel A are intended to

facilitate the interpretation of the high- and low-frequency

domains of the spectrum. (B) When the time series of the

TMRM fluorescent signal is randomized (mid, left), we

obtain a value of b close to zero (mid, right) as opposed to
a b ¼ 1.79 in the nonrandomized signal (right, top). The

spectral exponent b ¼ 1.79 (right, top) is consistent with

long-range correlations that after signal randomization

becomes white noise, with loss of correlation properties

b ¼ 0.25 (ffi 0) (mid, right) (12).
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and E of Fig. 6), whereas mitochondria within the cluster

showed a high r over a wide frequency range (r ¼ 0.74;

Fig. 6 C), similar to the high r exhibited by mitochondria

under physiological conditions (r ¼ 0.81; Fig. 6 B; see Sup-
plementary Material for discussion of the spatial implications

of these results).

Origins of the inverse power law behavior

In an attempt to better understand the origin of the power

law relationships observed experimentally, we examined the

amplitude versus frequency dependence of our previously

published computational model of the mitochondrial oscil-

lator (10). The double log plot of amplitude versus frequency

exhibits an inverse relationship (Fig. 7 and Supplementary

Material). Two key factors contribute to this dependence—

the SOD activity and the balance between the rate of ROS

production and scavenging. Within the oscillatory domain,

after a Hopf bifurcation (Fig. S4A in Supplementary Mate-

rial and (10)), an increase in the SOD rate results in longer

periods and higher amplitude oscillations (Fig. S4B in Sup-

plementary Material). An extensive parametric analysis of

the model revealed that this balance defines whether or not

the system oscillates (10,15). Furthermore, the results sug-

gest that the ROS balance also determines the frequency and

amplitude of the mitochondrial oscillator. The rationale for

interpreting this behavior is that given a constant background

conductance of the inner membrane anion channel (IMAC)

channel, having a lower SOD rate combined with a relatively

high rate of ROS production leads to faster ROS accumu-

lation in the mitochondrial matrix and triggers channel open-

ing more readily. In contrast, with a faster rate of ROS

scavenging (i.e., a higher SOD rate), it will take longer for

ROS to accumulate in the matrix, resulting in a longer period.

We hypothesized that if the mitochondrial network was

exhibiting a mixture of frequencies, then we should be able

to simulate the inverse power law behavior obtained by ei-

ther PSA or RDA. We simulated five different oscillatory

periods ranging from 70 ms to 300 ms and one long period

(1 min) oscillation (Fig. S4, Supplementary Material). A com-

bination of 80% short period and 20% long period oscilla-

tions allowed us to simulate the inverse power law behavior

FIGURE 5 Effects of respiratory and IMAC in-

hibitors on the mitochondrial power spectrum under

physiological conditions. Freshly isolated ventricular

cardiomyocytes were incubated for at least 2 h in

Dulbecco’s modified Eagle’s medium as described in

Materials and Methods. After loading with 100 nM

TMRM, the cells were imaged at 110-ms time

resolution in the absence or the presence of 64 mM

49-Cl-DZP or 15 mM rotenone at different times. The

TMRM time series obtained (2000–3000 images)

were analyzed by PSA and fitted with a straight line

(Microcal Origin) separately for frequencies higher or

lower than 0.3 Hz as described in the text and Materials

and Methods.
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observed experimentally by either PSA or RDA (Fig. 7 B
and compare with Fig. 4 A; see also Supplementary

Material). This result demonstrates that the mixture of a

relatively modest number (six) of different periods of limit-

cycle type of oscillation is enough to explain our experi-

mental data. Using a similar approach, we were also able to

simulate the transition from physiological to pathophysio-

logical behavior (Fig. 1). This transition is effected when at

least 60% of the mitochondrial network dynamics is domi-

nated by the long period, high-amplitude DCm oscillations

(Fig. S6 in Supplementary Material), in agreement with

experimental data (9).

The decrease in the spectral exponent, b, observed in the

presence of inhibitors (Fig. 5) and the loss of correlation in

the high-frequency domain of the spectrum (Fig. 6 A) could
also be simulated by hypothesizing that a decrease in the

levels of ROS in the network would introduce more random

behavior (Fig. S6 in Supplementary Material). Thus, the be-

havior observed experimentally is consistent with an increase

in the random behavior exhibited by the oscillators as a con-

sequence of decreased ROS, the proposed coupling factor.

DISCUSSION

In this work, we demonstrate for the first time that both in the

physiological and pathophysiological domains (Fig. 1), the

mitochondrial network of cardiomyocytes functions as a

highly correlated, coordinated network of oscillators. This

indicates that each mitochondrion affects the temporal behav-

ior of its neighbors such that the collective ensemble of

mitochondria in a cardiac cell acts as a network. Under phy-

siological conditions, the mitochondrial network exhibits a

high temporal correlation for DCm that is distinctly different

from random behavior (Fig. 3). This is indicative of a self-

similar fractal process. The power spectrum of such a distri-

bution scales according to an inverse power law spanning at

least three orders of magnitude (from milliseconds to a few

minutes) and obeys a homogeneous power law (1/f b) with

FIGURE 6 Loss of correlation exhibited by mito-

chondrial oscillators in the high-frequency, low-

amplitude domain of the power spectrum after

treatment affecting ROS production, scavenging, or

spreading. Isolated cardiomyocytes loaded with

TMRM as described for the other experiments were

treated for 30 min with 64 mM 49Cl-DZP (n¼ 4, two

experiments) or 15 mM rotenone (n ¼ 4, two

experiments) or for 2 h with 135 mM TMPyP (n ¼
4, two experiments). Treated cells were imaged at

110-ms time resolution and the TMRM fluorescence

time series analyzed by PSA. (A) We determined the

Pearson correlation coefficient, r, of the high-

frequency, low-amplitude region of the spectrum as

that represented by frequencies .0.3 Hz. Repre-

sented are the absolute values of r. We determined

0.3 Hz as delimiting the high-frequency region on the

basis of analysis of white noise spectra since it

contains 93% of the data points (panel E; the dashed

line points out the 0.3 Hz frequency, which to the

right corresponds to the high-frequency, low-ampli-

tude domain of the spectrum, as in panels B–E). This

analysis was also applied to randomized time series

(see Fig. 4 B) or mitochondria oscillating outside the

mitochondrial cluster (panel D). The region of the

spectrum .0.3 Hz corresponds to random behavior

characterized by r ¼ 0.051 6 0.001 (n ¼ 4) as

opposed to r ¼ 0.706 0.05 (n ¼ 4) exhibited by the

mitochondrial network under control conditions

(panel B) or an oscillating mitochondrial cluster

(panel C). In panels B–E, the dashed lines represent

the linear fitting for the two separate regions of the

spectrum to emphasize that the change in slope

mainly happens in the high frequency domain (see

also Fig. 5). In panel A, WN is white noise and MOC

stands for mitochondria outside the cluster.
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b ¼ 1.74 (Fig. 4), in the mid-range between pink (b ¼ 1.0)

and brown (b ¼ 2.0) noise. Despite the value of b being

close to that of brown noise, and even having a b � 2.0 for

frequencies below 0.3 Hz (Fig. 5, control panels), the corre-
lative properties of the mitochondrial network were distinct

fromordinary brown noise as demonstrated byRDA (Fig. 3A).
Moreover, the results indicate that decreasing mitochondrial

ROS production at the level of the respiratory chain or

blocking the ROS-induced ROS release mechanism by in-

hibiting the mitochondrial benzodiazepine receptor in the

physiological domain consistently diminishes the extent

of correlated behavior of the mitochondrial network in the

high-frequency domain (Figs. 5 and 6, and Supplementary

Material).

Importantly, with the help of our computational model of

the mitochondrial oscillator (10), we are able to explain the

mechanistic origin of the inverse power law behavior. The

double log plot of amplitude versus frequency in Fig. 7 A dem-

onstrates two essential features of the oscillatory dynamics

displayed by mitochondria: i), the relationship between pe-

riod and amplitude (i.e., the lower the period, the higher the

amplitude), and ii), at periods .300 ms, the transition to a

single dominant frequency with large DCm depolarizations

that define the limit of the physiological domain (Fig. S4 in

Supplementary Material). Within the high-frequency, low-

amplitude range of behavior that we attribute to the physio-

logical domain, DCm deflections of a few microvolts up to

30 mV can be seen.

Overall, the value of b obtained suggests the existence of

processes exhibiting temporal responses to stimuli with a

combination of persistency (closer to brown noise, i.e., spec-

tra with mainly low-frequency components) and flexibility

(closer to pink noise, i.e., spectra enriched in high- and low-

frequency components). This interpretation is consistent with

the mitochondrial network of the heart cell having both pro-

perties of constancy and flexibility, i.e., providing a steady

supply of ATP to fuel contraction and adapting the rate of

energy production to meet the changing metabolic demand

as workload varies, respectively (14,16).

Mitochondria viewed as a network of
coupled oscillators

Winfree (22) pioneered the analysis of synchronization

among coupled oscillators in a network, later refined by

Kuramoto (37) (reviewed in Strogatz (17) and Strogatz (18)).

The relevance of this subject cannot be overstated, for

autonomous periodicity plays a pervasive role in the time-

keeping and coordination of biological rhythms (19–21).

Winfree considered idealized systems of nearly identical

weakly coupled sinusoidal oscillators modeled as such for

mathematical simplicity (22). He found that below a certain

threshold of coupling, each oscillator runs at its own

frequency, thus behaving incoherently until a further

increase in coupling overcomes the threshold for synchro-

nization (18,22). This synchronization event was character-

ized as the analog of a phase transition, revealing an

insightful connection between nonlinear dynamics and

statistical physics (17,18). This type of transition is strikingly

similar to our own observations of the mitochondrial

network (9) at the turning point between the physiological

and pathophysiological regimes (Fig. 1). This global phase

transition (visualized as a cell-wide mitochondrial depolar-

ization) occurs when a critical density (;60%) of mito-

chondria accumulate ROS above a threshold to form an

extended spanning cluster (9). Our results agree very well

with the quantitative predictions derived from percolation

theory, especially concerning the percolation threshold, the

fractal organization exhibited by percolation processes at the

threshold (23), and the critical exponents (9).

A main difference between our results and that of previous

coupled oscillator models is that we find an inverse power

law (by RDA and PSA) in the physiological regime. This

suggests that, despite their weak coupling, the oscillators do

FIGURE 7 Inverse power law behavior and the

amplitude versus frequency relationship exhibited by

the mitochondrial oscillator. (A) Oscillations were

simulated with our computational model of the

mitochondrial oscillator ((10); see also Fig. S4 in

Supplementary Material). The double log graph of

the amplitude versus frequency (1/period) was

plotted from DCm oscillations with amplitudes in

the range of 2–124 mV and periods ranging from 70

to 430 ms, respectively. The simulations for shunt ¼
0.1 and SOD concentrations from 0.9 3 10�4 to 1.3

3 10�3 were performed with the set of parameters

described in the legend of Fig. 2 (see Cortassa et al.

(10) and Cortassa et al. (14)) for detailed parameter descriptions). B) From the simulations, we selected five oscillatory periods in the high frequency domain

(between 70 and 300 ms) and one from the low-frequency (1-min period) domain and attributed each one of them proportionally to a network composed by 500

mitochondria as described in Supplementary Material (see also Fig. S5). A matrix containing a total of 500 columns (mitochondria) and 6,000 rows was

constructed. The time steps represented by the rows correspond to a fixed integration step of 20 ms for the numerical integration of the system of ordinary differential

equations (see SupplementaryMaterial). We applied RDA and PSA to the average value of each row of the matrix at, e.g., time 1, T1, that represents the experimental
averagevalueoffluorescent intensityof theDCmprobe (corresponding tomV)obtainedevery110ms from500mitochondria (onaverage) fromeach imageofour stack.
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not behave incoherently or randomly. If the coupling were

random, we should have found white noise in the physio-

logical regime (Fig. 6 and Supplementary Material). Instead,

we found a broad band of frequencies proceeding simulta-

neously at different timescales, described by an inverse

power law (Figs. 3 and 4 and Supplementary Material).

The mitochondrial oscillator as a putative
signaling system

The possibility for high-frequency, low-amplitude oscilla-

tions in mitochondrial ROS and DCm were predicted from

simulations using our computational model of the mitochon-

drial oscillator (Fig. 2). Our experimental findings provide

support for the hypothesis that mitochondrial oscillation may

function as a frequency- and/or amplitude-encoded signaling

mechanism under physiological conditions. The simulations

indicate that the mitochondrial oscillator’s period can be

modulated over a wide range of timescales (10), suggesting

that it may play a role as an intracellular timekeeper. Al-

though the frequency distribution is broad under normal

conditions, the long-term temporal correlations of the mito-

chondrial network could theoretically allow a change in one

timescale to be felt across the frequency range.

We hypothesize that mitochondrial oscillations in the phy-

siological domain are associated with ROS-dependent sig-

naling since they do not represent a substantial energetic

burden for the cell. Our hypothesis is based on i), the as-

sociated pulses of ROS in the nM range that are concomitant

with the low-amplitude DCm oscillations (Fig. 2 A); and ii),

their possible modulation in amplitude and frequency as a

function of two feasible physiological variables, i.e., the de-

gree of ROS production by the respiratory chain (Fig. 2 B) or
the rate of superoxide scavenging by SOD (see Supplemen-

tary Material Fig. S4A).

The dual role of ROS as either toxic or signaling mole-

cules with important effects on signaling cascades has been

extensively recognized (24–26). One major molecular mech-

anism of ROS signaling is associated with intracellular redox

sensing by sensitive thiols of cysteine residues present in

kinases and phosphatases. For example, cytoplasmic signal-

ing kinases such as mitogen-activated MAP kinases (e.g.,

p38, JNK, ERK), apoptosis regulating kinase (ASK1), and

several isoforms of protein kinase C (e.g., PKC-a) can be

activated by ROS or a prooxidative shift in the antioxidant

capacity (24–26). Nuclear transcription factors can be acti-

vated either indirectly, via the above-mentioned signal cas-

cades, or directly by ROS, and recent evidence also suggests

that mitochondrial ROS production may be important for the

activation of hypoxia-inducible factor (HIF; (27)).

The significance of inverse power laws for
heart (patho)physiology

A main contribution of this work is to show that inverse

power laws also characterize the normal, physiological be-

havior of the mitochondrial network. Inverse power laws

express the inherent relatedness and nonrandom interactions

of cellular processes proceeding, simultaneously, at different

timescales. A profound implication of the power law behav-

ior exhibited by the mitochondrial network is that beyond a

critical level, the loss of a single element may cause the entire

network to fail because of their multiplicative interdepen-

dency (12,13,28,29). Thus, a prediction derived from such an

inherent organization of mitochondria is that failures can

scale to higher levels of organization (15,30). This has al-

ready been shown to be true at criticality in the case of the

mitochondrial network of heart cells under oxidative stress

(8,9) or the whole organ after ischemia reperfusion (31).

According to PSA, the mitochondrial network of heart

cells does not show a dominant frequency. Consequently,

whatever happens in one frequency range may reverberate

on all frequency scales. This is reminiscent of heart rate

regulation in a normal subject, suggesting the intriguing

possibility that a change in mitochondrial network dynamics

could entrain pathological consequences for the cell and the

organism. With metabolic stress, the frequency spectrum for

DCm narrows and a dominant oscillatory frequency appears,

indicating the transition from physiological to pathophysi-

ological behavior in the mitochondrial network (Fig. 1).

Interestingly, a ‘‘loss of spectral reserve’’ (32) for cardiac

electrical activity occurs during the transition from normal to

pathological states during the development of heart failure

(33) or during postinfarction arrhythmias (34,35).

This raises the question of whether mitochondrial ener-

getics could contribute to the mechanism underlying other

scale invariant properties of the heart. The long-range cor-

relations in the human heartbeat time series have been partly

attributed to competition between parasympathetic and sym-

pathetic stimuli on the pacemaker cells of the sinus node (4);

however, the contribution of nonautonomic or cardiac cell

processes has not been investigated. Fractal processes have

also been recognized in the context of cardiac arrhythmias

and used to define stimulation protocols to control chaos

(36). It is worth noting that close links exist between mito-

chondrial energetics and action potential morphology, as

exemplified in our recent study linking mitochondrial insta-

bility with postischemic arrhythmias (31), raising the possi-

bility that the nonlinear properties of mitochondrial control

could scale to produce cascades of feedback loops across

coupled oscillatory systems (15,30). This possibility can be

readily tested in future investigations.

Summarizing, we have described for the first time that the

mitochondrial network of heart cells functions as a network

of coupled oscillators under physiological conditions. The

mechanism of the mitochondrial oscillator described exper-

imentally and theoretically is shared by the physiological and

pathophysiological domains of behavior, although differ-

ently. Under physiological conditions, the role of ROS would

be more prominent for signaling intracellular processes

rather than as in pathophysiology. These findings are in
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agreement with the highly structured, organized nature of the

heart cell both from morphological and dynamic points of

view.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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