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The knowiedge of the Chow ring of algebraic cycles on the modular 
variety sf curves is very limited at the present time. As our conception of the 
modular variety has become more and more concrete in recent years, we 
may hope to obtain further understanding of the global geometry on these 
varieties. 

This work was initiated in an attempt to determine the rationaE 
equivalence class of the divisor on the modular variety which appears in the 

Mumford and .I. Harris [2]. In their paper they used degeneration 
compute this class over the complete modular variety of stable 

curves after they had noted that the divisor is a rational multipie of the J.- 
class over the modular variety of smooth curves. This paper began in an 
attempt to compute this rational multiple directly. After much trial and error 
I succeeded in doing this calculation. 

The calculation involves intersecting (virtually) various obvious cycles on 
the relative product of the universal smooth curve with itself several times. 
Then one has to determine the image in the sense of intersection theory of 
these cycles in the modular variety. My results are essentially purely 
combinatorial in nature and hopefully will be useful in other calcuiations. 

Most noteworthy was the discovery of patterns occurring in many of the 
calculations. There is an CO ‘-dimensional commutative formal Lie mo 
all patterns which one may make in series based on the monoid of w 
partitions. At present I have limited my investigations of this monoid of 
patterns to making the calculations necessary for determining the exact 
rational multiple of the L-class. 
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1. GRAPHS AND WEIGHTED PARTITIONS 

Let S be a fixed set. Given two graphs rI and r, with vertices S, we may 
define another such graph r, * Tz called the conjunction of rr and r2. By 
definition the edges of rI * r, connecting two points of S is the disjoint 
union of the edges in rr connecting those points and the edges in r, 
connecting them. Clearly the trivial graph with no edges is an identity for 
conjunction. Also the isomorphism class of rI * Tz as a graph (with fixed 
vertices) depends only on the classes of r, and I’,. Clearly the set G(S) of 
isomorphism classes of graphs with vertices S is a commutative and 
associative monoid under conjunction. 

Here we will only consider graphs with a finite number of vertices and 
edges. Hence the isomorphism class of a graph r with vertices S is 
completely determined by the knowledge of the numberf,(s, t) of edges in r 
connecting each point s of S to another point t. This function fr on S x S 
has non-negative integral values and is symmetric, and any such function 
arises from some graph. For any two such graphs r, and r,, Jr, *Tz = 
f,, + fr,. Hence f defines an isomorphism from G(S) to the monoid of non- 
negative integral-valued symmetric functions on S x S. 

A graph r with vertices S has many interesting invariants. The most 
useful of these is the partition 23, of S defined by I’. Recall that a partition 
of S is a collection H of non-empty subsets h of S, which are called 
compartments, such that S = UkEH h. The partition H,‘is the finest partition 
of S such that any two points of S, which are connected by an edge of r, are 
in the same compartment. In other words two points of S are in the same 
compartment of H, if and only if they lie in the same connected component 
of the graph. 

The other invariant which we use counts the number of edges of r which 
lie in each component. Formally, for any graph r with vertices S and any 
compartment h of H,, we define 

(1.1) 

As order(h) - 1 is the minimal number of edges required to connect the 
order(h) points of h, we have 

a,(h) > order(h) - 1. (14 

Conversely given any integral-valued function a on a partition H of S such 
that u(h) > order(h) - 1 for each h in H, there are graphs r with H = Hr 
and a=a,. The set of all pairs (H, a) satisfying the above inequality is 
denoted by W(S), the set of weighted partitions of S. 
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One remarkable property of weighted partitons is that we may multiply 
Ihem. 

LEMMA 1.3. Let y: G(S) -+ W(S) be the mapping which assigns the 
weighted partition (H,, ar) = v(T) to the graph F. Therz 

(a) W(S) possesses a unique commutative monoid structure such that 
v is a homomorphism, and 

(b) the product (K,j3) x (L, y) = (H, a) of two elements (K, p) alzd 
(L, “J) of W(S) is given by 

mest partition of S which is caarser than both K au?d L, and (i) H is the f 

(ii> 4% = CkEK, kc h P(k) + C,a,lch Y@for ‘W h in 

PuooJ As we have already noted that y is surjective, we need only check 
the truth of the statements (i) and (ii) when ( 
(X, p) = yl(T,) and (L, y) = I@~) for I-r and r, in G(S). In the situation the 
statements express how the vertices perceive the following two self-evident 
facts about graphs. A connected component C of rl 4: r2 is a minimal subset 
of I-, ::i Tz which is the union of connected components of r, and 
simultaneously those of r,. The number of edges In C equals the number of 
edges in C from rl plus the number of those from Tz. ED. 

Most of the difficulties in this paper are caused by the 
multiplication in the monoid W(S) of weighted partitions. 
a few easy observations about this structure. The ident 
finest partition S = u sEs (s] with each compartment having weight zero, 

rn~~oid W(S) is graded by total weight. For any element (H-B, a), we 
de 

y definition of the X-multiplication we immediately see that 

deg((K P) x (L Y)) = deg(K P3 + deg(L Y). 

Therefore W(S) is a graded monoid and G(S) has a unique graded monoid 
structure so that the homomorphism w preserves degrees. In fact, for any -r 
in G(S) 

deg(r) = -$- ( x fr(s, t> + 2 f&Y $1 
(S,f)ESXS sts 

is the number of edges in the graph I-. 

1.5 
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Both graded monoids G(S) and W(S) are generated by their elements of 
degree one, which in either case may be identified with the collection S’ of 
all subsets of S with one or two elements. First -we explicitly identify these 
generators. For any pair s and t of S, let {s, t} be the graph with vertices S 
which has only one edge which connects s and t. As { , } is symmetric in its 
variables, it defines a unique element of G(S) to each subset in S’. Clearly 
this establishes a one-to-one correspondence between S’ and the degree one 
elements of G(S) ( i.e., isomorphism classes of graphs with one edge). For 
any pair s and t of S, let [s, t] denote the element ~({s, t}) of W(S). Using 
the weight inequality one immediately sees that this process [ , ] defines a 
bijection between S’ and the degree one elements of W(S) (i.e., weighted 
partitions of total weight one). Moreover our two identifications are 
compatible with the homomorphism v between G(S) and W(S). 

The monoid G(S) has a very simple structure. In fact, G(S) is free 
commutative graded monoid generated by its elements S’ of degree one. As 
any graph is made up of edges, any element r of G(S) may be written as r= 

rISf is, tl n([s3r1). As the exponent n({s, t}) equals the previous fr(s, r), we see 
that the above expression for r is unique. Furthermore the degree of r is just 
its length as a word in the generators S’. 

The monoid W(S) is more complicated. As w is surjective, W(S) is a 
commutative monoid generated by its elements S’ of degree one. Still the 
degree of an element of W(S) is the length of any word in the generators 
which express it. The difficulty is that an element may be expressed by many 
different words. In other terms, the surjection I,V: G(S) -+ W(S) is not 
injective and, hence, W(S) is determined by the equivalence relation, 
rl - 4 0 w,) = cd, on elements of G(S). As I,Y is a degree-preserving 
homomorphism of graded monoids, the equivalence relation - automatically 
satisfies the formalisms; r, -r,+degr,=degr, andr,*r,-r,*r,.In 
words the relation - is homogeneous and stable under multiplication. 

One easily determines all equivalences between graphs with two edges. I 
have listed the three types of these equivalences below (pictorially, verbally 
as equivalences in G(S), and verbally as equalities in W(S)). Let r, s and t 
be distinct elements of S. 

We will not have to look for any more equivalences of graphs. The 
equivalence relation - on G(S) is the smallest equivalence relation which is 
stable under multiplication and contains the second-degree relations of types 
A, B, and C listed in the table. The details of the proof of this fact will 
dramatize some important features of the monoid W(S). In terms of W(S) 
we intend to demonstrate the truth of 

PROPOSITION 1.6. The commutative monoid W(S) of weighted partitions 
of S is generated by its first-degree elements S’ module the quadratic 
relations A, B, and C in the below table. 
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{s, f} * It, t) - (s, s} * {S> 1) (s, f)> - {s, s} * (s, E) {r, ti e {S, f) - (r, s} * {s. i/ 

Is, t] x [t, I] = [s: s] x [s, t] [s, cl2 = Is, s] x [s, r] jr, t] x [s, t] = [r: s] x [s, tl 

To calculate systematically in the monoids we will eliminate the 
ambiguities due to the automorphisms of the set S by fixing a linear ordering 
of S. A graph F’ with vertices S is called tedious if each compartment h of 
H, has the two properties: (i) two distinct points of h are cormected by an 
edge of F if and only if they are neighbors in the induced partial ordering of 
h; (ii) no point of h is connected to itself by an edge of I- unless it is the 
smallest point min(h) of h. Although this definition is quite iong, the tedious 
graphs have very boring structure, which is completely determined by their 
weighted partition (H,, c+). In fact, the property (i) shows that the edges 
between distinct points in S are determined by the partition H, and there are 
order (h) - 1 edges of this type in any compartment h of 
this with property (ii) we see that the only other edges in I- 
(k) + 1 edges connecting min(h) to itself as h runs through Hr. As any 
weighted partition may arise from some tedious graph, r+~ induces a bijection 
from the tedious elements of G(S) to the whole of W(S). In other words any 
element of G(S) is equivalent to one and only one tedious element of G(S). 

We will need a more simple-minded criterion for a graph r with vertices s 
to be tedious. The advantage of this jess descriptive criterion is that it may 
be verified without determining the partition N, ~ e define the graph T to be 
exciting at the point s of S if either (1) CSCt&(s, t) > I, or (2) &(s4 s) > 6 
and IL s fr(ry s> > 0, or (3) Cr<Jr(f-~4 > 1. By this definition we may 
state our criterion. 

LEMMA 1.7. The graph r is tedious Q-and o&l ifit is not exciting rat amy 
point 0fS. 

Proof. Assume that r is tedious. By (i) C,,, f,(r, s) < 1 and 
c s<tJ”,(S, t) < I for all points s of S and CrCs fr(r, s) = 0 if s = min(h) for 
some h in Hr. y (ii) fr(s, s) > 0 only if s = mm(h) for some h in N,. 
Therefore r is never exciting at any point of S. 

Assume that r is not exciting at any point of S. Let s = max(S) be the 
largest point of S and let R = S - {s} be its complement. Let d be the graph 

4X1/85/2-19 
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with vertices R which is gotten by removing from r the vertex s and all 
edges which touch s. As A has fewer edges than I’, A is not exciting at any 
point of R. Thus by induction we may assume that A is tedious. If 
Cr<s”M9S)=o~ { s is an entire compartment of Hr and we immediately i 
see that r is tedious. Otherwise the inequality C,<Sfr(r, s) > 1 holds. 

By (1) at the point s we may conclude that the above sum is one. Hence 
there is only one edge in r which connects s with a point, say, r,,, of R. By 
(3) applied a point r0 and the tediousness of A, we conclude that r0 must be 
the maximal element of the compartment, say, h,, of HA which contains it. 
As h, LJ {s} in the only compartment of H, which is not a compartment of 
Hd) the condition (i) for the tediousness of r follows directly. By (2) at the 
point s the condition (ii) is also true for r. Thus r is tedious. Q.E.D. 

The inductive technique exhibited in this proof of removing a point from S 
is also useful in many other situations. We will now use it to prove the 
proposition. 

Proof of the Proposition 1.6. Let r be a graph with vertices S. We want 
to show that by using a sequence of the elementary edge switching 
operations A, B, and C that r is equivalent to a tedious graph. By induction 
we may assume that this procedure has already been delineated for a smaller 
set of vertices. 

As in the last proof, let s = max(S), R = S - {s} and A be the graph with’ 
vertices R gotten by removing the vertex s and all the edges touching it from 
r. If Cv,, f,(r, 4 = 0, we may modify A until it is tedious and we are done 
because r is tedious by the reasoning in the last proof. 

Otherwise Crcsfr(r, s) > 1. Thus there is a greatest point rO of R such 
that there is an edge in r connecting rO and s. Iffr(s, s) > 0, we use the A- 
operation to move a loop at s to one at rO as to decrease fr(s, s) > 0. Even- 
tually we have &(s, s) = 0. If fr( ,, , r s) > 1, we may use the B-operation to 
replace an extra edge between r,, and s by a loop at r,, as to decreasefr(r,, s) 
to one. Eventually we have &(r,, s) = 1. If C,,, f&r, s) > 1, then there is a 
greatest rl such that r, < r,, and f,(r,, s) > 0. In this case we use the C- 
operation to move an edge connecting r1 and s to an edge connecting rl and 
r,, as to reduce &(r, , s) to zero. Repeating this procedure we eventually have 
C,,, fr(r, s) = 1. Reviewing our current position we now only have one edge 
touching s and it connects s and the point r,, of R. 

Now we modify A (and r similarly) until A is tedious. If rO is not the 
largest element in its compartment of ,Hb, we have an edge in A which 
connects rO and rz which is the next largest element of the compartment. 
Using the C-operation we may replace the edge between rO and s by one 
between r2 and s. For the new graph r,, equals the old r2 and we may repeat 
this procedure until r,, is the largest element of its compartment of H,. In 
this situation the last proof has shown that r is tedious. Q.E.D. 
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This proof should give the reader a good taste of the flavor of actual 
calculations in the monoid of weighted partitions, 

2. PATTERNS IN SERIES BASED ON WEIGHTED PART~T~~N~ 

Let R be a commutative ring and M be a graded commutative monoid, 
We will consider series C,,,,,, f,,, . m, where the ~oef~cient f, of each 
element m of M is an element of R. One may add two such series coefficient- 
by-coefficient. Furthermore, if A4 has oniy a finite number of elements in 
each degree, one may multiply two such. series as follows: 

E%l . m)(rb, e m) = (Cc, . m), where c, = C,. s=m ez, . b, . ~mrned~a~el~~ 
one verifies that the collection of such series forms a commutative ring 
which we will call the ring of series based on M with coeffcienls in 

We will consider series which are based on the graded monoid W(S) of 
weighted partitions of a fixed set S. Some of the most interesting of these 
series have definite ‘“patterns” in their coefficients. I will first define 
“patterns” precisely. 

Let 
a s r a,,j ~‘2 

i>l 
00 

be a power series in the indeterminants y and z with coefficients cdi,j in 
may define a related series 

As- -Y n 
(H,a;;lW(S) hc.Y 

a,,der(h),a(h)-order(h) t l ’ (2.1) 

based on the weighted partitions of S. In this situation we will say that the 
series a is the pattern in the coefficients of the series A,, or the series A, has 
pattern a. If a series based on W(S) has a pattern, it will be easier simply to 
give its pattern. We will say that the pattern is strong if the coefficient a I ,. of 
y in the series a is the unit 1 in R. 

An example of a series (which we will later see arises in nature) with a 
strong pattern is the canonical polynomial 

(2.2) 

where rH EH (order(h) - l)! for any partition of S. This series has 
the strong rn (xi> l(i - l)! y”)(l + z). This paper was motivated 
desire to compute the inverse series I/G, in the ring of series based on 
weighted partitions of S. To whet the reader’s appetite for the abstract 
discussion of patterns I will mention that one of the achievements of the 
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work is a demonstration that this inverse series has a strong pattern which is 
computable. 

The essence of the formation of series with patterns is its fimctoriality as 
we change the set S. From this point of view, the pattern a assigns the series 
A, to any finite set S. Thus we want to examine a whole family A of series 
A, based on W(S) for all finite sets S. Let f: S + T be a bijection between 
finite sets. Then we have an induced bijection f.+: W(S) + W(7) which 
induces a natural operation of the same name from series based on W(S) to 
those based on W(T). With this operation we define a functorial property of 
a family A of series A, based on W(S). Such a family is called consistent if 
we have 

for any bijection f : T-1 S between finite sets. The lowbrow interpretation of 
consistencies is that the coefficient of a weighted partition (H, CX) of a set S 
in the series A, is a function of the collection {(order(h), o(h)) E Z2JhEH up 
to order. Clearly the family given by a pattern is consistent. 

The other characteristic functorial property of a family A of series will 
give a natural interpretation of the product which appears in the definition of 
the series A, produced by a pattern. We will take some time to develop this 
property in detail. Let S = uj,, Si be a fixed partition of a set S. This 
partition divides the set W(S) into two pieces. We have the set X of 
intelligible weighted partitions defined by X = {(H, cz) E W(S) / the partition 
H is finer than the fixed partition S = uj,, Sj}. Its complement W(S) -1 is 
called the set Y of mysterious weighted partitions. Thus the monoid W(S) 
has the decomposition W(S) = X u Y. This decomposition has some 
monoidal properties listed below which are direct consequences of the 
definition of x-multiplication and the lattice properties of partitions of S. 
The list is: 

(a) X is closed under x-multiplication and contains the identity of 
W(S); 

(b) Y is stable under x-multiplication by any element of W(S). 

Next we will explain why the elements of X are intelligible. This is because 
they may be interpreted as words whose letters are weighted partitions of the 
smaller subsets Si of S. More formally given a collection Hi of partitions of 
Si for each i in 1, we have a partition ui,, Hi given by S = Uitr,hsHi h, 
which is finer than the fixed partition S = uiEl Si. Clearly any partition of 
S which is finer than the fixed one can be written uniquely in the form 
ui,, Hi as above. Furthermore a weight (r on the partition ui,, Hi 
corresponds exactly to a collection of weights CQ on each of the partitions 
Hi. By consulting the definition of X-multiplication, one may verify that the 
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above decomposition gives a tautological ide~t~~ca~io~ X x XiGI W(Sj) 
where x denotes the product as commutative monoids. 

Using the X u Y decomposition of W(S) a series 
based on W(S) is defined to be intelligible (respec 
e Cli,a, = 0 unless (H, CY) E X (respectively Y). Thus we may decompose any 
such series B uniquely as the sum B’ + B”, where B’ is intelligible and 
mysterious. From the above-listed properties (a) and (b), we see 

’ + C’ and (B . 12)’ = B’ . C’ for any two series 
on W(S). Thus the operation of taking the intelligible part is an 
endomorphism of the ring of all series based on W(S). In particuar the set 0:” 
all intelligible series is a commutative ring. By the decomposition theory of 
the last paragraph we may (and will) identify the ring of intelligible series 
with the tensor product over i of the rings of series based on W(Si). 

At last we may state the other functorial property which is possessed by 
the family A of series given by a fixed pattern. Given a family A of seri.es A, 
based on W(S) for each finite set S we will say t the family A is 
cQm~atible with decomposition if for any partition S = itl Sj we have 

In terms of the coefticrents vCH,aj of the weight partitions (H, CX) of sets T in 
the series A,, the above equation is equivalent to 

WrIi,,(Hi’ ai) - - rI W(Hi,ck,) (2A) 
it! 

for all (Hi, czi) in W(SJ. 
Using the last equation one immediately verifies that the family of series 

produced by a pattern a is compatible with respect to decomposition. In this 

case NJ(W,crj - -n hE,, uh,a~h~.order~h~+l and the equation is obvious from the 
definitions 

Next we will see that these two functorial properties, which we have 
developed, characterize the families of series which are produced by pattern 
may be extracted from the family. 

LEMMA 2.5. A pattern a produces a family A of series A,5 based on 
W(S) for all finite sets such that 

(i) A is consistent, and 

(ii) A is compatible with decomposition. 

Conversely any family A with these properties is produced by a unique 
patterfi a. 

ProoJ As we have verfied that the family of series produced by a pattern 
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has the required properties, we need only verify the converse. Let lyCH,,) 
denote the coefficient of an element (H, a) of W(S) in the series As. For any 
non-empty finite set T and non-negative integer j, let (T, j) denote the 
coarsest partition T= T of T with weight j + order(T) - 1. By the 
consistence of our family, 5 is a function ai,j of the pair (i, j), where 
i = order(T). Next let the fixed partition S = u Si be the partition 
s= LLH h. By the decomposition rule we have 

V(H,a) = rI Vluwh)) = rI ‘order(h),a(h)~order(h)+ 1. 
hEH hsH 

Therefore, if we set 

a = -jJ ai,j y?, 
i>l 
j>Q 

the given family A is produced by the pattern a which is clearly uniquely 
determined by A. Q.E.D. 

The only element of degree zero in the monoid W(S) is its unit 
(LLs @I, 0) = 1,. Th us f or a series K based on IV(S) to have an inverse 
l/K in the ring of series based on W(S) it is necessary and sufficient that the 
coefficient of 1, has an inverse in the ring R. We will say that the series K is 
obviously invertible if the coefficient of 1, is equal to identity 1 of R. With 
this definition we can understand the significance of the adjective “strong” as 
applied to patterns. 

COROLLARY 2.6. Let A be the family of series produced by a pattern a. 

(i) b If the series A, has an inverse for all finite sets S, the family l/As 
is produced by a pattern. 

(ii) The pattern a is strong if and only if the series A, is obviously 
invertible for any Jnite set S. 

ProoJ. By the Lemma we need to see that the family l/As has the two 
required properties if the family A, does. As f* is an isomorphism of rings, 
f,(l/A,) = l/f,A, and, hence, the inverse family l/As is consistent hecause 
the family A, is. As the operation of taking intelligible parts is an 
homomorphism, (l/A,)’ = l/A; and, hence, the inverse family l/As is 
compatible with decomposition if the family A, is. This proves the statement 
(0 

For (ii) just note that the coefficient of 1, in A, is (al,O)order(S) by 
definition. If the pattern is strong (i.e., a,,, = l), then the coefficient of 1, in 
A, is 1 (i.e., A, is obviously invertible). The converse is also trivial. Just take 
order(S) = 1. Q.E.D. 
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We can immediately apply this in a special case to deduce the previousiy 
advertised result about the inverse of the canonical polynomial C,. 

~0ROLEAR-f 2.7. The family of inverse series f/C, produced a strong 
pattern. 

Our next objective is to compute the pattern for these inverse series l/C,S. 
This is a very isolated instance of the general problem of computing the 
pattern of an inverse series l/AS from the pattern for the series A,. 1 have 
never thought about the general problem as I am presently interested in 
special results about a very special series. We will now see that the 
simplicity of the pattern (CiaI(i - l)! $)(I + z) implies a simple 
interrelationship between two of the canonical poleomials C, . 

Let S = W u {s} be the fixed partition of S. 

LEMMA 2.8. (a) If R is empty, C, = 1 + [s, s]. 

(b) If R is not empty, C, = C, - (1 + xtES [sl t])~ 

Proof. Recall that C, = C’ I-, . (H, u)? where 8;1= 
(h) - I)! and we sum over the subset Z, = {(H, a) 1 a(h) < 
W(S). If R is empty, S = {s}, ZfS) = {I,, [s, s]} and Fy’ = I. So the equation 
of (a) follows immediately from the definition. If 19 is not empty, the 
equation of (b) reduces to two equations between the ~ntel~ig~b~e and 
mysterious parts: CL = C, . (1 + [s, s]) and Cg! = G . (CreR [s, r]). As c, is 
produced by a pattern, C& = C, . C,,) by the deco position rule, Thus the 
intelligible equation follows from part (a). 

It remains to prove the mysterious equation which we may write as 

Now given (H’, cr’) in Z, and Y in W, the product ( ‘, cc) x [ss r] is an 
eiement of Y n Z, . A given element (H, 0) of Yn Z can be factored as 
(H’, a’) x [s, Y], where (H’7 a’) E W(R) and T E R. furthermore the factor 
(IT’, cx’) must he in Z, and is uniquely determined by (M, a), and the eleme 
Y may be any element of R n h,, where h, is the compartment of 
containing s. One verifies that T’, = T,, 1 {number of such factorization 
Thus our mysterious equation follows and, hence, (b) is true. ED. 

We may immediately translate the last lemma into properties of the 
inverse series l/C,. 
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COROLLARY 2.9. (a) If R is empty, l/C, = CgO (-l)i[s, sli. 
(b) If R is not empty, 

ProoJ: For (a), we have l/C,,, = l/l + [s, s] = C$O(-l)i[s, sli. For (b) 
just rewrite the equation (l/C,)( 1 -t CtGs [s, t]) = l/C, appropriately. 

QED. 

Now we begin determining the pattern 

b = c bi,j y’zj 
i>l 
GO 

for the inverse family l/C, = C(H,u)EW(S) @(H,a) . (H, a). Recall from the 
proof of Lemma that we have a coarse weighted partition (S, j) of any finite 
set S, where j is a non-negative integer and the pattern is determined by the 
rule bi,j = G, where S is any finite set of order i. 

Thus the statement (a) of the Corollary is equivalent to the equations 

b,,j = (-l)j for j= 1. 

If order(S) = i > 0, we may use the decomposition S = R u {s} as the 
weighted partition <s,j> is then always mysterious. Thus statement (b) of the 
Corollary gives the equations 

where M,(t) = { (23, a) E W(S) 1 (H, U) X [t, S] = (S, j)}. Here M,(S) = 
{ (3, j - 1) ) if j > 0 and empty if j = 0. Also, if t # S, Mj(t) = M,(S) u N,(t), 
where N,(t)=(S,,j,)x(S,,j,) where S=S,uS,, tES,, sE.S, and 
j, +j, =j with j, > 0. Therefore using the decomposition rule and 
Corollary 2.9 we get if i > 0, bi,j = -ibi,j- 1 - CI <p<i PI”’ Co<q,<j b,,, * 
bi--p,j--q, where bi, _ 1 s 0 and I(p) is the number of subsets S, of R such 
that order(S,) = p. So 

I(P) = 
order(R)! (i - l)! 

p! /(order(R) - p)! = p! (i - 1 - p)! . 

Summarizing the contents of the above material setting b,,* 3 0 we 
surmise 
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b,,,i = -ib+ I - i,+i,=i (il - l)! (i, - I)! bwl . bMz 2 
(i - l)! 

if (i, j) f (LO). 

1, +j2=j 
i*,j,>O (2. IO) 

This gives a recursive relation for finding the pattern 

b = x b,,j y’zj. 
i>l 
j>O 

From the form of these equations one is led to consider another series 

where 

d = x d,,j yizis 
i>I 
j>O 

bi,,i= (-l)i+,‘-‘(i - I)! d,,,/. 

The relation satisfied by the new series is 

(2.1 I) 

d,,o = 1 (2.12) di,j = idi,j- 1 + x dilTj, * diz.j2 if (i,j) # (I, 0). 
{,ti,=i 
J1+j2=j 

In other words the series d satisfies the differential equation 

-d2+d-y=zy; (2.13) 

with the initial condition d(O, z) = 0. 
This differential equation may be solved by expanding d in powers of z as 

d = 2 d,(y)z” 
j=O 

where dj(y) = y di,,j yi 
lT1 

and solving for do, d,,... . Thus d, satisfies the quadratic equation 
-& +- LEO - y = 0 and d,(O) = 0. Therefore do is the algebraic function of y 
given by 

do = +( 1 - dm). (2.14) 

Proceeding further let do = do + zl, where E= CgO di+ lzi~ Then we must 
solve the equation 
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and hence by (2.14) we have 

(2.15) 

which gives a reasonable inductive formula for the coefficients d, , d, ,... of 1. 
Doing the first few terms by hand we get 

and 
d,=y(l-4~)~’ 

d, = (y + y2)(1 - 4~))~‘~. 
(2.16) 

At this point one may make the educated guess that we should write 

di+l = e,(y)(l - 4~)-l-(~‘*)~ when i>O (2.17) 

and hope that ei( y) turns out to be a polynomial of degree i + 1 in y with 
ei(0) = 0. This actually works well and we find the recursion formulae for 
the polynomials ej as 

e, = Y 
(2.18) 

ej = y( 1 - 4y) ++2(3j-- l)ejP1 y+ C ei, ei 2 
if j> 1. 

i,+i,=j-1 

3. A LINEAR FUNCTIONAL APPLIED TO SERIES BASED ON 
WEIGHTED PARTITIONS 

Assume that our ring R of coefficients is a graded ring. A series A, = 

cwcs, A W,a) . (H, a) based on weight partitions of a set S is homogeneous of 
degree p with a shift q if the coefficient AcH,aj is always a homogeneous 
element of R which has degree equal to p . deg(H, cz) + q . order(S). 

We may complete the graded ring R in a natural way. The completion I? 
consists of infinite sums C” I > o yi of homogeneous elements yi in R of degree i. 
As there are only a finite number of weighted partitions of given degree, 
given any series A, which is homogeneous of positive degree p with a shift 
of q the expression 

defines an element of I?. The ith homogeneous component of i A, equals 

c AW,a). 
p.deg(a,a)+qorder(S)=i 



WEIGHTED PARTITIONS AND PATTERNS 549 

Consider the case where the series A, is produced by the pattern 

a = -g qj yY. 

00 

Ciearly A, is homogeneous of degree p with a shift q if the pattern a satisfies 
the condition: for all i > 1 and j > 0, Q,,,~ is a homogeneous element of 
degree I-p . (i $ j - 1) + q . i. Conversely, if for all S the series A, have that 
property, the pattern must satisfy those conditions. 

efore considering the question of computing the integrals JA,, we will 
develop some particular examples of homogeneous series given by patterns. 

EXAMPLE 1. Let R be any graded ring with a particular element x of 
degree one. The strong pattern y + xyz produces the family A of series 

A, = CTcS x orde*~r)JJItET [ , 1, h’ h c t w lc is homogeneous of degree one with 
zero shift. 

EXAMPLE 2. Let 

b = 2] bi,j y’zj 
i>l 
j>O 

be a pattern which produces the family B of series B, which is homogeneous 
of degree p and shift q. By general reasoning the product family A ’ B of 
series A, . s is produced by a pattern 

c = C ci.j yizj 
i>l 
ja.0 

and it is homogeneous of degree p + 1 with a shift 9. Here the remarkable 
fact is that there is an easy rule for determining the pattern c from the 
pattern &, as the family A is so simple. In fact 

i! 
ciJ = ,<& k! (i - k)! b<,j-kXk (32) 

as the coefficient of (S, j) in the product A, . s is the sum of terms 2 
(coefficient of (S, j - k) in B,) ( number of subsets T of S with order(T) = k) 
as k goes from 0 to order S = i. 

EXAMPLE 3. The ring of coefficients is the graded ring [Kg, "1 ,--I 
which is freely generated by elements IC; of degree i. For formal reasons let 
K - 0. -, = 
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Consider the pattern 

&yp,Yiz’= (j+j) (Y/l-Y>. 
.i>l 

This pattern produces the family X of series 

(3.3) 

which is homogeneous of degree one with a shift minus one. 

Let 4 = CF,,,,, . W, a) and G, = C G(H,a) . (H, cx) be two series based 
on W(S). We may form another series F, * G, = C (Fs * G,)(,,,, . (H, a) 
based on W(S) by the formula (Fs * GS)(H,a) = FCH,aj - GcH,aJ for all (H, cz) 
in W(S). Evidently if we have two families F and G of series Fs and G, 
which are produced by patterns, then the family F * G of product series 
F, * G, is produced by a pattern. In fact, iff = Cfi,j y’zj and g = 2 gi,j y’zj 
are the patterns of the families F and G, then C (&,j g,,j) y’zj is the pattern 
of the family F * G. 

Given two families F and G of series Fs and G, which are homogeneous 
of degree pF and pG with shifts qF and qc, the family F * G of series Fs i G, 
is homogeneous of degree pE + pc with a shift qF + qc. In this situation we 
obtain the element 

of the completion l? for each finite set S. 

LEMMA 3.5. Assume that F and G are produced by patterns f = 
C -f;.,j y’zj and g = C gi,j y’zj and s = order(S). Then 

(F, G>s = 2 s! ITi,j(fi,j gi,jlki’j 

ki j>o, !: jk. .=s I7i,j ki,j! rIi,jCi!lki’j’ 

;> 1 and j’s’0 

ProoJ By definition (F, G)s = ~~H,a~EW~S~F~H,a~ . G(,,,, . Using the 
action of the automorphism group Aut(S) on W(S) and the invariance of 
F, * G,, we may conclude that 

(F, Gjs = c F(H,a) s G(H,a) . order{Aut(S) . (K a)}. 
AutW\WW 

Given any (H, o) in W(S) we have a double sequence (ki,j)i>i,j>o, where 
k,,j = order(H,,j) and Hi,j s {h E H 1 order(h) = i and 0) - 
order(h) + 1 = j}. As S = JJhEH h and H = ni,j Hi,j, order(S) = 
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s = Ci,j iki,j and ki,j > 0. Clearly the double sequence (ki,j) depends exacaiy 
on the At&(S)-orbit of (H, a) and any double sequence (ki,j)ial,jao such that 
Ci,j ~Jz,,,~ = s and ki,j > 0 arises this way. ~nrtherm~re FcH,a) . G(,,,, z 

i,j(Js:,.i gi,j)ki3j, where (H, CX) has the double sequence (ki,j). s from the 
ove we will have proven this lemma once we show that r(~~t(~~ I 

or equivalently, order ~A~t~~~)/Qrder~~~t 
way the formuia is obvious beta 

he order of the stabilizer of (H3 a) in Aut(S), 

Thus the number (F, G)s just depends on the number s = order(S) and we 
may denote it by (F, G),. To simplify writing the equation of the lemma, we 
will introduce the series 

(3.6) 

where w is a new bookkeeping variable. Then our lemma is equivalent to the 
equation 

= exp 
i 

xy fi,j gi.jwi 1 
d-e il . 

(3.1) 
i>l 

00 

Now we are well positioned to attack the problem which motivated I 
paper, i.e., we want to compute 

where .A? is defined in Example 3, A is defined in Example 1 and C is the 
canonical polynomial introduced in Section 2 where we found an expression 
for its inverse family l/C. We will recall some of the relevant details whiie 
we study the homogeneity of the families C and 1/C. 

EXAMPLE 4. Let coefficient ring be Z with the trivial grading with ah 
elements of degree zero. Both the series C, and 1/C, are homogeneous of 
degree zero with zero shifts. The pattern producing the inverse family 1/C is 

c (-,y+.f-‘(i - I)! d,,j yizj 
i>O 

j>l 

where the double sequence (di,j) of integers is defined near the end of 
Section 2. 
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For the rest of this calculation the coefficient ring will be the graded ring 
Z[x, K,, K, ,...I which is freely generated by the homogeneous element x of 
degree one and the homogeneous elements ?ci of degree i. When it is 
necessary, x-i = 0. By definition 

where the integrand X * (A/C) is a member of a patterned homogeneous 
family of positive degree 2 (= 1 + 1 - 0) with shift minus s (= --s + 0 - 0), 
where s z order(S). Thus the integral converges and the integrand is 
produced by the pattern 

where 

C gi,j Yizj5 
i>I 
j>l 

gi,j=Kj_,i! 2 
i O<k<i 

(’ - ‘I! (pl)i+j+k+lXkdi,j-h) 
k! (i - k)! 

by Examples 2, 3, and 4. We will apply our last lemma using the notation 
which was introduced after it. Thus in the present situation we get 

= exp c x,+,-l 

(k + II - l)! (-qn+k+m+i XkWk+n d 
l?l>O k! n! ktn,m 

i 

= exp 
i, z. (-r)k+l~~o&+k&l)m 

/ 

x c (kfn-111 Wnwnd 

n! k+n,n 
?7>0 

by taking m = j - k, n = i - k and rewriting. If we define 

‘k,dw> = c 
(k+n- l)! (-l)“d 

n! k+n,m w” 
?I40 

(3.8) 
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we rewrite our formula as 

Thus we need to clarify the expression Ik,m(w). For instance, k = 0, 

&,(w)= 1 (-l$+v” 
n>i 

= 
1 

--)v 42(Y) dy 
0 Y 

(3.10) 

where 4h) = CFa I d,,, y” was studied in Section 2. When k = 1, we have 

4?(Y) 
b,,(w) = c (-1)” dnil,,w” = + - 

?7>0 4’ J’ =- ~ ,,, 

or 

n 

*I 
=-&y 0,m if you please. (3.11) 

More generally 

and our big formula becomes 

I will not need this full formula as I want to write (2, A/C) = 
c, + c,x + remaining terms when co and c1 are constant in x and have degree 
<I ~ It turns out that co and cI can be easily computed. 
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so 

(X,A/C) = exp(&l,,, -q10,2 + xwqI,,, - XIG~I,,, + rest) 

= exp(~~o~l)(l -4~o,2>(l -~4%4,~ -TU) + rest 

= exp(A70,1)P -;t/;L2) 

1 
AI, 0 -ml,, - xw fw@770,J -x; xI I 

+ rest. 
0 1,o 1 0,2 

Thus 

co = ~xpWi~o,I)U --?11,2> 

and (3.13) 

cl =--w exp(-FYo,l)(&4,0 -T4,l --%-?4,04d 

We will continue giving more and more explicit expressions for the power 
series co and c,. Recall from (2.14) and (2.16) that do = f (1 - dw), 
d,=y(l-4y)-’ and d, = (y + y2)(1 - 4~))~“. By (3.10) we have 

IO,, = J^ -w l/( 1 - 4~) dy = -$ log( 1 + 4~). 
0 

(3.14) 

Also from (3.11), we have I,,, = -d,(-w)w-‘. Therefore using the formulas 
from (3.13) we have 

co = exp 
t 
-~log(l+4w)) (1 +Uq(-1 +w)(l +4w)-5’2) 

and 

c, = exp 
i 
-$log(l + 4w) 

i 

i 
-$(l-Jlt4w) 

We can simplify the formula for c1 slighly. After integrating 

dy =& [5(1 + 4~)-~‘~ - 3(1 + 4w)-“* - 21, 
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substituting and collecting terms we have 

1 

555 

.X 2-3(1 $4~))‘+5(1 +4~)--’ 
a-2(1 +4w))“*+L 

12 i + (1 $ 4w)p2 - 5(1 + 4w:p2 

(3.16) 

4. APPLICATION ~0 THE M~DULI OF GURVE~ 

Let cr: @?’ +_& be a smooth projective morphism between quasi-projective 
smootk varieties where the fibers of cr are irreducible curves of genus g. For 
any finite set S we may deform the relative product pS : GYS +.A where a 
point of VS is a collection (c,),,S of points of %? and a point pS((cS)SES> of 
H which equals a(~,) for all s in S. We also have the relative symmetric 
product Q : SSY w -.A, where SY(‘) is the quotient of VS under the action of 
the automorphism group Am(S) of the set S of indices. e have a 
commutative diagram 

where 9 is the quotient morphism. The morphisms pSs 7~~ 
projective, and pS and zS are smooth with relative dimension or-de 
is a finite flat morphism. 

Furthermore for each subset R of 5’ we have the projection p: : %” + SPR 
which forgets the coordinates outside of R. If the set S has exactly one point, 
then we have an unequivocal identification between P7 gs, and g(s) which 
will be taken for granted. 

We will define the pluri-diagonai cycles in the product gs. Let H be any 
partition S = UhEH h of 5’. Then we have the closed subvariety d, of gS 
which consists of the points (c,),,~ such that c, = c, if s and 1 are contained 

e compatment of H. Clearly we have a natural isornQr~bis~ 
of M-schemes. Also let yH : VH -) gs e the closed rnor~b~s~~ 

gotten by composing X, with the inclusion A, c gs. Finally, for any 
selection y of a point y(h) in each component h of H9 let T, be the subset 
{y(h) / h E 41) of S. Then the composition a(y) = ,D~Y 0 yN: PH + GY’y is an 
isomorphism of J-schemes. 
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The free abelian group generated by the classes _d, of the pluri-diagonal 
cycles in the Chow ring Chow(%Y’S) of F’s is not closed under the 
intersection-product. We will need to introduce more auxiliary virtual cycles 
which will span the smallest subring of Chow(GY7S) which contains the pluri- 
diagonal cycles. 

Let 19 denote the divisor class of the sheaf of relative vector fields 
%,“4 = (Q,,,)@-‘. Thus 19 is an element of Chow@) and it is 
homogeneous of degree (i.e., codimension) one. For any integral-valued 
function a on H such that a(h) > order(h) - 1 for each h in H (i.e., (H, a) is 
a weighted partition of S), we may define the cycle class 

Z(ff, a) 3 YH* n ol&q~W~~dMO+ 1 (4.1) 
heH 

in Chow(@). Clearly Z(H, a) has codimension CheH a(h) - order(S) + 
order(H) in the variety Z(H, 0) =AH of codimension order(S) - order(H) in 
GY’. Therefore Z(H, a) is a homogeneous element of Chow(GY’) of degree 
c keH @)* 

We may now show that the set {Z(H, a)} spans a subring of Chow(gs) 
by determining the virtual intersections of the Z(H, a) and showing that the 
set is closed under multiplication in Chow(gs). 

LEMMA 4.2. The mapping Z: W(S) --f Chow(@‘) is a homomorphism of 
graded monoids. 

ProojI By the definition of the degree of a weighted partition (H, a), 
deg(H, a) = deg(Z(H, a)) by the above remarks. Hence Z preserves degrees. 
By Proposition 1.6, we know that the monoid W(S) is generated by its first- 
degree elements [s, t] for (s, t) E S* modulo the quadratic relations 

(A) [s, ~1 x [s, tl = [s, cl x [t, cl, 
(B) [s, t]* = [s, s] x [s, t], and 

CC> Is, fl X [t, rl = [r, ~1 X [s, cl, 

for distinct elements r, s, and t of S. Thus we need to verify the following 
intersection relations for divisors on Vs: 

(a> Z([h ~1) . Z([s, tl> = Z(b, cl> . -Nf, 111, 
(b) Z([s, tl>’ = Z(b, ~1) - Z([s, tl>, and 
Cc> Z(Is, tl) . z([t, rl> = z([r, sl> . .Ns, cl>. 

The relations (a) and (c) are trivial because one checks directly from the 
definition that they are equal to Z applied to the weighted partition given by 
the common value of the products in (A) and (C). The second relation is a 
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virtual computation of the self-intersection of the diagonal a([~, tj) as Z 
applied to the common value in (A). This follows directly from the 
adjunction equation @&I)] d z Qi, where A is the ordinary diagonal in the 
product C2. 

kising the homomorphism Z, we define a ring ~om~mor~bism 

-Kzz%f,,, * WY a>> = CMW,,, . Z(H, a) from polynomials (or series) 
based on IV(S) to the Chow ring (or its completion) as long as the coef- 
ficients M!lJ,a) are good enough to make sense of the resulting expressions. 

Let F be any locally free &-module on a quasi-projective smooth variety 
X. We have the Chern class c(R) in the Chow ring Chow(X) of X, which 
has homogeneous decomposition c(F) = 1 + c,(Z) f ~ .a + CAY)) whe 
is the rank of 27 We will be interested in the Chern class c(@~~~,,~), w 
0 4(S)/“+f 25 (J-&s,,.,,f)dua’ is the sheaf of regular vector fields on the symmetric 
product 527~” over A. 

First I will explain how the sheaf 0 qcs,,J arises in many calculations. 
Consider the universal effective divisor Div, c 52?(S) X.,g of degree 
order(S). Set-theoretically, if C denotes the fiber GFx = o-‘(x) over a point x 
in -4’ the points of Div, over x are pairs (CSES d,, c) of C”” X C, where c 
equals d, for at least one s in S. Algebraically Div., is a smooth irreducible 
divisor defined locally in %Y7js) x~SF by one equation. In many situations the 
expression 71Q(S)x(~~(S)X~(DivS)IDivS) arises where K denotes projection 
onto the factor - of a product. It is worthwhile knowing that by deformation 
theory (see [3], for instance, for a sketch for a constant curve) we have a 
canonical isomorphism from 

@WW,x. to the above expression, 

We may specialize this isomorphism from the universal case. 
Assume that we have a family D c X XJ %? of effective divisors of degree 

order(S) parameterized by a variety X over I . Then one has a natural 
isomorphism 

TY*v&f%@)lD> 5 vx%s~,Af4 (4.3) 

where tyD : X -+ 59 (‘) is the classifying M-morphism the family which is 
characterized by the equation (I+v, XM@?)‘(Div) . In this situation the 
above isomorphism gives a relation between Chern classes: 

We will next use this last equation to compute the left side in a particular 
case where the right side may be easily computed because the divisor 
the sum of families D, for s in S which has degree one. Consider the quotient 
morphism qs : 5F ’ -+ F?cs). Let D be the family (qs ~,~g)- “@iv) of divisors 
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on G? parameterized by the full product GP. Here the classifying morphism 
ly, is 4 itself and our above formula tells us how to compute the inverse 
image, i.e., 

(4.5) 

Now D is a divisor on the product %Fs Xx@, which we can identify with 
the product @7sutco), where 00 is some new index. Roughly D = 

{((c,h,s 3 c,) 1 c, = c, for some s in S}. Correctly D = CSES D,, where 
D, = Z([s, 001) as a divisor on 5Fsu(Oo1. Thus we want to compute the Chern 
class of the sheaf, rrqs,(@!&Xfl(CsES DJ, sD,), where each of the divisors 
D, are isomorphic to 97’ via the projection: This calculation may be done 
inductively using the correct Noetherian isomorphisms. 

Let S=R u (0) b e a fixed partition of the index set S. Then we have an 
exact sequence of sheaves on Y z 5??’ X,/g = $37’ xAg x,57, 

The first sheaf is naturally isomorphic to @g x F)*@‘,,,&D’)I,,, where 
D’ is the same kind of divisor as D but for the smaller index set R. The 
second sheaf is the sheaf on D, which is isomorphic under projection $Fs to 
@dLs Z([s, 01)). As th e d ivisor D is finite over G?‘, we have an exact 
sequence 

+ 4% (2 Z(b, 01)) -+ 0. 
SES 

So for Chern classes we have the relation 

= @WM%*(@ wwAWlD~))) . 11 + c Z([s, O])/ . (4.6) 
SFS 

Comparing this formula with Lemma 2.8, we may easily conclude that 

c(~-~@~w~~) = c(Q~@w&D)ID)) = Z(Cs> (4.7) 

where C, is the expression studied extensively in Section 2. 
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Next we will try to understand a little about the push-down operation pS,: 
Chow(%P) -+ Chow(J). As the structure morphism 43, has relative 
dimension order (S) ps, is homogeneous of degree one witb a shift minus 
order(S); i.e., if M is a cycle class of codimension i on PST then ps,M Is 
cycle class of codimension i-order(S). We shah restrict our attention to 
finding the first facts about the cycle classes pS*(Z(H, a)) for weighted 
partitions (H, o) of the index set S. 

The most obvious examples are when the index set 5’ has only one elemem 
and @ = %?. The possible cycles of interest are the powers 8” of t 
anti-canonical divisor t3 on F’, where (x is a ~~~~egat~ve integer. Here we 
define 

K a~ 1s a*(ey. (4.8) 

As the structure morphism 0’: SF + S has relative dimension one, ICY is a 
homogeneous element of Chow(J) of degree i. 

These particular examples may be used to determme all the others using 
the multiplication in the ring Chow(M). Specifically we have 

LEMMA 4.9. For any weighted partition ( 

PS*WW~ a>) = n ~a(h)-ordei(h~~ 
hsH 

We will first prove the case when e finest partition 
stS is} of S. Thus the weight a! is an arbitrary God-negative integral- 
function on S. Let xs X denote the actual product of a variety X with 

itself S-times and let 71, denote the projection onto the sth factor for s in S. 
ES n,YF’) = JJSES 7q1(13*(ea(s)) = 
+ x SM is the product morphism. If d: 

diagonal inclusion, we have A-‘(x~ o,(n,,, E;‘P’~‘)) 
X, o is a smooth morphism and A*(xs a> = os: 9’ -,k’? \4;e have 

Putting the two equations together we have proven our resuit in the finest 
case. 

For the general case, let ,8(h) = a(h) -order(h) $ I define a weight 
function on the coarsest partition of H. We have Z( 
where the prime (‘) denotes the analogous cycle on t 
AsPs.Y,=P,~ the formula for the special case ( 
formula for (H, cz). 

ith this lemma we see from 3.3 that ps,(Z(H, cz)) = 
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in the series XS based on (H, a) which previously defined with indeter- 
minants IcO, Kc, ,... . Therefore we may pleasantly write the series 

4 = c PS*wf> a>> . WY a> (4.10) 
W(S) 

whose coefftcients are in the Chow ring Chow(J). This series is a 
convenient form to display our calculation of the p,*(Z(H, a)) e (H, o) and 
the last lemma simply asserts that zS is given by the pattern forming the 
family X. 

Given a cycle Cnnite w(S) PcH,a) . Z(H, o) - (,!I . Z) in Chow(gS), where 
the coefftcients PcH,a) = p$($,,,,,) for elements ,8cH,nI of Chow(M), we may 
easily check by the projection formula that 

Ps*co . z> = c P(H,a) * PS*cw~ a)). 
With our integral notation this equation may be written as 

Ps, 
( 
c PW,a) * Z(H, a) 

1 
= I(pSZ,> = (Zs, PA 

where PS = Cflnite Pb7.d . (H, cz) has coefficients in Chow(J). 
Now that we have made the formal connections between the present 

material and the previous abstract material, we can remark that the first few 
cycles xi in Chow(J) are well known: 

rc,=deg(0)- [A]=-2(g-1) 

K, = 121 where ,I = cr(,~&,,) = -c,(R’o*“,). 
(4.12) 

The first formula is trivial as it only gives the fiber degree of the relative 
anti-canonical class 6. The proof of the second equation uses the 
Grithendieck-Riemann-Roth theorem for the morphism (T and it appears in 
[51. 

Now that we are approaching the main course of this feast, we will have 
to be prepared to appreciate fully the delicacies on which we will dine by 
first being oriented to their general species. Let 1 DJ be the complete linear 
system of effective divisors containing a given effective divisor D on some 
particular curve C of genus g. As we vary the curve C and the effective 
divisor D, the dimension of the linear system IDI varies quite dramatically 
but in an organized way. The function dim IDI is an upper-semi-continuous 
function of the pair (D, C). A point x of g(s) should be regarded as an 
effective divisor CseS d, of degree order(S) on the particular curve 
CY- ‘(a(x)). By general principles one may define a natural closed subscheme 
of %Y(S) whose points correspond to pairs (D, C) satisfying the inequality 
dim ) D ] > d for any non-negative integer d. 
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I will explain these general principles explicitly. ecali that we have 
previously introduced the universal effective divisor Div on %?) xdV. For 
a fixed effective divisor D on C, the study of the linear system / 
equivalent to the study of the global sections of the sheaf &${D). 
naturally tires to extend this gambit to study t variational problem by 
replacing the fixed divisor D by the universal one iv. Thus one is misled to 
studying the coherent sheaf nV,,,,,(@V,(,,,fl(Div) 2-O on %5-) which turns 
out not be functorial as we specialize the iniversal family to a particular one 
and even worse does not contain the information that we want about 
dim ID]. To finesse this difficulty one notes that the first cohomology group 

“(C, @!&r)) contains the information implicitly about dim /I? j as the curve 
C has dimension one. Thus one examines the coherent sheaf 
W l~~(s~,(@~~s~ ,fl(Div)) z Y’ on $3’) which turns out to be functorial and 
contains all the information that we need. For instance the Fitting 
subschemes of 2-l provide the correct closed subschemes of q(s) for 
studying the dim ] D 1 properly. 

To use these ideas effectively one must make some attempt to compute 
2-l. The obvious approach is to try the long exact sequence of direct images 
under T+(~, of the sequence 

which gives 

Thus the homomorphism 6 is a stronger invariant than the sheaf 2-l and its 
formation is clearly functorial. The Fitting schemes for 2-l are the deter- 
minantal subschemes defined by putting rank conditions on the 
homomorphism 6 between locally free sheaves. 

Recall that Porteous (for instance, [4]) has given formulas describing the 
Chern classes of determinantal subscheme in terms of the quotient Chern 
classes (which in this case amount to p~c(R’o*B,/~(8,,~,))) provided we 
have the favorable transversality assumptions. For our present purposes 
c(R’o,@~) may be assumed to be known Thus in t 
circumstances the inverse l/c(O ,,S,,M) provided the most visible obstruction 
to using this machinery to compute the cycle classes in Chow(q”S’) of the 
varieties of special divisors. I have been rather vague here because we are 
only going to consider a very special case. 
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Assume that the genus g is an odd number 2k - 1 > 3 and order(K) = k. 
Consider the locus H in 5FK) representing divisors which move in linear 
systems along the fibers of 0: g + M (i.e., pairs (D, C) such that 1 D / > 1). 
We will assume that enough transversality [ 11 is present to ensure that the 
class of the cycle [H] = homogeneous component of degree k in 
4 ‘0, G~/c(@,,~,,,) and pcK) maps H onto a divisor D in J. We want to 
compute the cycle class [D] in Chow(&). 

There are two problems in finding [D]. 

(1) I don’t know how to compute in Chow(GF’) well enough. 

(2) In the Chow ring of JY, pcKj, [H] = 0 not [D] because pcgj is 
constant on the PI’s passing through each point of H. 

The first difficulty is circumvented by computing the class of 9-l [H] in 
Chow(GYK). The second difficulty may be end-played by intersecting 9-l [H] 
with the divisor CkeK [k, k] and then computing pR, of the intersection. This 
works well enough up to torsion as order(K)! deg O[D] = pK*(qel [H] . 
Em [k kl)). Th ere ore we have modulo torsion in the Chow ring of f 

PI = 
degree one term 

k! deg B 

c Z[k Wq*W,w~,A . M~‘~,~~))~ (4.14) 
kcK 

By (4.11) and (4.7) as c(R lo* @?) = 1 - 3, + higher terms, we have 

PI = deg;;;;;y of (1 -1) (Xi, c [k, k]/C,) . 
ksK K 

By the definition of the family A in Example 1 of Section 3, CkEK [k, k] is 
the coefficient of x in A,. Hence 

(1-n> GCC~~KI~K)K [D] = degree one term of the coefficient of x in ~ 
deg B k! 

= degree one term of the coefficient of xwk in 

(1 -a> = degree one term of the coefficient of wk in ~ c 
deg 8 ’ 

from the definition (3.7) and the definition ci, prior to (3.13). Now if we 
apply (3.16) which computes c,, and use the relations (4.12) together with 
g - 1 = 2(k - I), we arrive at 
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[II j = degree one term in the coefficient of wk of 

-4(k _ 1j ew((k - 1) log(l + 4~)) 

+/z 
i 

-3(I + 4wj-l - 2 + (1 + 4w)p”z 
+5(1 + 4w)-2 - 5(1 + 4wjp* I 

As exp((k - 1) log(1 + 4w)) = (1 + ~PV)~-“: we may conclude that 

[II] = + times the Coefficient of wk 

in /5(1 + 4W)kp3 - 3(1 + 4Hp2 + (12w/(k- I))(1 + 4w)k-* ( 
+3(1 + 4W)‘*k-3’/2 _ 5(1 + 4W)‘2k-W2 

If k > 3 and the first three terms are polynomials of degree <k. So 

] = 7 times the coefficient of wk in 3(1 + 4~3’~~ -3)12 - q1 + &q-5)‘2 
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