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Mitochondria are the central coordinators of energy metabolism and alterations in their function and
number have long been associated with metabolic disorders such as obesity, diabetes and hyperlipidemias.
Since oxidative phosphorylation requires an electrochemical gradient across the inner mitochondrial
membrane, ion channels in this membrane certainly must play an important role in the regulation of energy
metabolism. However, in many experimental settings, the relationship between the activity of mitochondrial
ion transport and metabolic disorders is still poorly understood. This review briefly summarizes some
aspects of mitochondrial H* transport (promoted by uncoupling proteins, UCPs), Ca>* and K* uniporters
which may be determinant in metabolic disorders.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Mitochondria are the central coordinators and the site of essential
biochemical transformations involved in energy metabolism. As such,
these organelles have always been focused on within studies
involving metabolic diseases. Indeed, a vast array of findings link
changes in mitochondrial functions with disorders associated with the
metabolic syndrome. In some cases, mitochondrial alterations appear
as causes of the metabolic changes observed. For example, enhance-
ment of mitochondrial proliferation improves symptoms associated
with the metabolic syndrome, indicating that defective mitochondrial
biogenesis leads to these characteristics [1-3]. Indeed, mutations in
mitochondrial tRNA promote maternally-inherited symptoms char-
acteristic of the metabolic syndrome [4]. In other studies, the link
between mitochondrial dysfunction and metabolic syndrome is
correlative, but still highly interesting. As examples, the selection
for low aerobic capacity produces animals with metabolic alterations
typical of the metabolic syndrome and decreased mitochondrial
biogenesis [5]. Insulin resistance induced by early introduction to
animal fat in the diet is preceded by altered mitochondrial gene
expression and reduced mitochondrial DNA content [6]. Non-
alcoholic steatohepatitis and gains in visceral fat are associated with
mitochondrial dysfunction [3,7,8]. Furthermore, mitochondria are the
most quantitatively relevant intracellular source of reactive oxygen
species (ROS) [9-11], and oxidative imbalance is strongly linked to
the metabolic syndrome [12].

These studies mostly focus on changes in mitochondrial content,
point mutations or changes of respiratory capacity as determinants for
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alterations in metabolic control. On the other hand, recent results
suggest mitochondrial ion carriers may also be important regulators
of animal energy metabolism. In this review, we uncover some
characteristics of mitochondrial ion transport which may be impor-
tant in metabolic disorders.

2. Mitochondrial ion transport: general properties

Mitochondria must, at the same time, exchange metabolites and
other compounds with the cytoplasm and maintain the high
protonmotive force across the inner mitochondrial membrane
necessary for oxidative phosphorylation. Most metabolites trans-
ported are anions, and are often symported with protons or
antiported against hydroxyl anions in order to use protonmotive
force to drive the accumulation of these metabolites. Cation
exchangers are present in the mitochondrial inner membrane to
remove specific ions from the matrix. A small group of cation
uniporters allow the regulated entry of selected cations into the
matrix. These uniporters must present limited transport rates in order
to maintain protonmotive force and oxidative phosphorylation
[13,14].

Most mitochondrial ion transporters have been characterized
functionally and pharmacologically, but still remain uncharacterized
structurally, due to their low abundance. This makes their link with
metabolic diseases much harder to study than other properties and
biomolecules in mitochondria.

3. Uncoupling proteins
A notable exception to the lack of structural knowledge regarding

mitochondrial ion carriers are uncoupling proteins (UCPs), a family of
inner membrane carriers that increase proton conductance and are
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the product of well-established genes [15-18]. Interestingly, UCPs are
not proton channels, but anion transporters instead. They are believed
to transport free fatty acid anions from the mitochondrial matrix to
the intermembrane space (see Fig. 1). The fatty acids become
protonated due to the electrochemical proton gradient, lose their
charge and flip-flop through the inner membrane lipid bilayer,
transporting a proton into the matrix (for reviews, see [19,20]).
Another proposed mechanism for UCP function [21] suggests UCPs
transport H™ using fatty acids at their active site, in a process
mediated by histidines. However, not all UCPs possess histidines in
this site [20,22]. The following publications provide overviews of
differing proposed mechanisms of uncoupling protein function:
[15,23-26].

UCP1, the first such protein described, is present in high quantities
in the brown adipose tissue, and promotes overt uncoupling, widely
associated with thermogenesis [27-30]. The discovery of a family of
proteins with high identities to UCP1 in the 1990s, widely distributed
in many tissues, immediately attracted the attention of researchers in
energy metabolism, and the idea that UCP content could regulate
body weight by determining mitochondrial coupling surfaced [31,32].
Subsequently, a large body of work investigated the expression of
UCPs in metabolic alterations, including obesity, diabetes and
hyperlipidemias [33-35]. Many correlations were uncovered, includ-
ing correlations of UCP polymorphisms with obesity and diabetes
[35,36], but unfortunately results varied widely, and often showed
unexpected correlations (such as increased UCP expression in obesity
[37]). Furthermore, most studies quantified mRNA levels for UCP2 or
UCP3 and investigated polymorphisms, while few measured protein
levels in tissues or looked directly at the activity of these transporters,
hampering precise conclusions. Indeed, Yu et al. [38] demonstrated
experimentally that significant discrepancies exist between UCP
mRNA levels, temperature and mitochondrial proton leak.

Clues regarding the functional activities of UCP family members
were also expected to be uncovered using knockout animal models.
Interestingly, knockouts of either UCP2 or UCP3 have little or no
phenotype [34,39-41]. Overexpression of UCP3 generated leaner mice
in one model [42], but the levels of overexpression required were very
high, and can lead to uncoupling simply due to protein misfolding
[43]. These results increasingly made it clear that the role of UCP
family members in energy metabolism was more subtle and complex:
The simplistic hypothesis for the function of these proteins did not
completely account for their actions. Indeed, the degree of uncoupling
promoted by these transporters varies largely with their abundance,
and generalized uncoupling leading to whole body increases in energy

expenditure does not seem to the primary function of UCP2 and UCP3
[43-45].

Since the metabolic syndrome involves a complex network of
pathophysiological changes, tissue-specific activation of UCPs could
be involved in the metabolic responses. Indeed, obesity and a pro-
inflammatory state can induce the expression of UCP2 in the liver,
where its expression is normally low [46-49]. UCP2 could be an
adaptation to oxidize excessive lipids in mitochondria by increasing
respiratory rates and the NAD™ pool. However, UCP2 null mice
submitted to hyperlipidemic diets do not exhibit any differences in
non-alcoholic steatohepatitis development [34], possibly due to the
compensatory effect of increasing other uncoupling pathways that
mitigate the steatotic phenotype, such as K™ channels (discussed
below). Indeed, UCP2 overexpression measured in the livers of obese
animals could be due to Kupffer cells (liver resident macrophages),
without a relevant hepatocyte-related change in metabolic function
[34].

A well-established function for UCP family members is the control
of the intracellular redox state, by limiting mitochondrial production
of ROS [19,45,50,51], a necessary byproduct of energy metabolism
[10,11]. Indeed, mild mitochondrial uncoupling is often an effective
manner to control the generation of mitochondrial oxidants in
isolated mitochondria [10,11,22,52], and systemic mild uncoupling
is associated with strong improvements in redox state [53,54]. In this
general line, many publications have shown that UCP activation
effectively prevents mitochondrial ROS release, under physiological
and pathological conditions [19,45,50,51,55,56]. While ROS control
contributes toward tissue protection under many conditions, mild
uncoupling can be lethal for cerebellar cultures [57]. In these cells,
mild uncoupling decreases ATP generation leading to a decreased
capacity to exchange Na™t for K*, resulting in cell death. Thus, the
protection caused by mild uncoupling via ROS regulation is probably
dependent on the ability of the cell to maintain levels of ATP despite
the decrease in coupling.

Other results suggest UCPs may also have a role transporting ROS
anion fatty acid hydroperoxides, thus further contributing toward
redox control [58]. A strong indicator that the redox role of UCP
proteins is indeed physiologically relevant is the finding that the
activity of these proteins is increased by oxidants [59].

Another clear metabolic role for a specific member of the UCP
family, UCP2, is the control of glucose-stimulated insulin release by
pancreatic p-cells (for a review see [43]). UCP2 activity in these cells
decreases the quantity of ATP produced in the presence of a set
concentration of glucose, increasing the activity of ATP-sensitive K™

Fig. 1.K", H" and Ca®" transport in mitochondria — effects on ROS production and energy metabolism. K™ transport (through mitoKarp channels), H transport (mediated by UCPs,
and involving free fatty acids, FA) and Ca®>* transport (through Ca®>* uniporters) occurs down the electrochemical gradient generated by the electron transport chain (ETC), using
electrons collected in the tricarboxylic acid cycle (TCA). The activity of these pathways promotes uncoupling, which prevents the formation of mitochondrial reactive oxygen species
(ROS), which in turn, are activators of mitoKarp and UCPs. MitoKarp is also activated by agonists such as diazoxide (DZX) and the reactive nitrogen species NO". Uncoupling decreases
energetic efficiency. Excessive ROS and Ca?™ uptake into mitochondria can lead to non-selective inner membrane permeabilization, due to the activation of the mitochondrial

permeability transition (MPT).
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channels on the plasma membrane, and leading to lower insulin
release [60,61] (see Fig. 2). As a result, inhibition of UCP2 leads to
more efficient insulin secretion in the presence of equal quantities of
glucose. This helps explain why UCP2 expression levels were often
paradoxically related to body weight, and may be the reason for
correlations between UCP2 polymorphisms and type 2 diabetes
[62,63].

A recent publication has suggested yet another role for tissue-
specific effects of UCP2 in the regulation of energy metabolism:
Andrews et al. [64] suggest that UCP2 in arcuate nucleus neurons
controls the response to ghrelin and, hence, food intake. However, the
UCP2 knockout preparations in this work appear to have lower
mitochondrial membrane potentials and capacity to phosphorylate
ADP, a point which requires further clarification. Another possible role
for uncoupling proteins in energy metabolism has been suggested
based on studies in plant mitochondria, which present significant
plant uncoupling mitochondrial protein (PUMP) activity [65]: by
increasing NADH oxidation, uncoupling allows NAD'-dependent
reactions such as those within the citric acid cycle to occur even in
the presence of high ATP levels, thus permitting biosynthesis
reactions to occur in the presence of high energy states.

UCP1, the first UCP to be described, is highly abundant and overtly
uncoupling in brown adipose tissue, and was for many years believed
to be an adaptation to induce thermogenesis under specific condi-
tions, such as arousal after hibernation and body heat maintenance in
newborns. The finding that brown adipose tissue is closely related to
muscular tissue [66-68] has shed new interest in this protein as a
more general metabolic regulator. In a highly insightful study,
Needegard's group demonstrated that UCP1 ablation induced obesity
in mice housed at thermoneutrality [69]. Indeed, there is convincing, if
preliminary, evidence that UCP1 and brown adipose tissue activity
may be a factor in the regulation of human weight gain [70-72].

UCPs are not the only fatty acid anion transporters in mitochondria
capable of promoting mild uncoupling. In fact, in many tissues, the
adenine nucleotide translocator is the main protein responsible for
this activity, and other mitochondrial carriers such as the aspartate/
glutamate antiporter have also been shown to present this activity
(for review, see [73]). Although difficult to evaluate, it would be very
interesting to know if the uncoupling activity of these proteins can
impact energy metabolism. The adenine nucleotide translocator has
been shown to regulate ROS release through its uncoupling activity
[74], and is involved in cardiac protection induced by ischemic
preconditioning [75,76].
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Fig. 2. Regulation of insulin release by UCP2 in pancreatic 3 cells. Glucose freely enters
the cytosol, producing intracellular pyruvate, which is oxidized by mitochondria,
generating ATP in a manner regulated by UCP2 activity. High ATP levels close plasma
membrane ATP-sensitive K channels, leading to membrane depolarization and
activation of voltage-gated Ca?* channels. Increased intracellular Ca®>* stimulates
both insulin synthesis (not shown) and release through exocytosis.

4. Ca®* uniporters

One of the first characteristics noted in isolated mitochondria was
the high capacity to take up Ca®>" ions. Indeed, mitochondrial inner
membranes posses a highly selective Ca>* uniporter [77]. As is often
the case for inner membrane transporters, the identity of mitochon-
drial Ca®' uniporters is yet undetermined. Trenker et al. [78]
suggested the activity was mediated by UCPs, but this concept has
been strongly rebuffed by most prominent researchers in the area
[79]. Indeed, silencing UCP genes does not alter mitochondrial matrix
calcium concentrations [80]. Furthermore, physiological characteriza-
tions suggest that more than one Ca?* uptake pathway into
mitochondria exists (reviewed in [81,82]).

The quantity and rate of Ca®" uptake into mitochondria are
determined not only by the activity of mitochondrial Ca>* uptake
pathways but also by the availability of this ion within the
mitochondrial microenvironment, since the affinity of mitochondrial
Ca®* transporters is in general lower than those present in the
endoplasmic reticulum. Indeed, Ca®™ signals are closely transmitted
between the reticulum and mitochondria, which are functionally and
spatially coupled [83].

Ca%* in the matrix has strong effects on mitochondrial metabolism
(see Fig. 1 and [82,84] for reviews). Pyruvate, isocitrate, o-glyceropho-
sphate and a-ketoglutarate dehydrogenase are strongly activated by Ca®*
ions, leading to enhanced NAD" reduction and increased protonmotive
force. Ca®>* uptake by mitochondria also has an important role in regu-
lating physiological Ca®* transients [85].

Furthermore, Ca?™ ions can be determinant for the rates of
mitochondrial ROS release (reviewed in [11,86]). Uptake of low
concentrations of Ca>* by mitochondria can decrease ROS release due
to the temporary decrease in protonmotive force and, possibly, loss of
pyrimidine nucleotides [87,88]. On the other hand, uptake of higher
Ca®* quantities can significantly increase ROS release from mito-
chondria [89-92], possibly due to interactions with inner mitochon-
drial membrane cardiolipin, leading to structural changes in the
membrane-inserted electron transport chain [93].

When accumulated by mitochondria at high levels, and associated
with conditions of oxidative stress, Ca®" ions can lead to extensive
changes in mitochondrial function, including a non-selective form
of inner membrane permeabilization known as the mitochon-
drial permeability transition (see Fig. 1, reviewed in [82,86,94]).
Ca?*-induced mitochondrial dysfunction has been associated with a
wide variety of disorders, including dyslipidemias and diabetes [95-
97]. On the other hand, although Ca?* uniporters in the mitochondrial
membrane have a large set of elements suggestive that they may be
involved in dysfunctions associated with metabolic diseases, the lack
of a molecular identity has hampered direct studies indicating if this is
indeed the case.

5. K* uniporters

K" uniporters were first described in inner mitochondrial
membranes in the early 1990s [98,99]. The presence of a regulated
K™ entry pathway into mitochondria was surprising, since K* is the
main intracellular cation and leaks at small but significant rates
through the mitochondrial lipid bilayer, reaching the matrix. Today, it
is evident that there are many functional advantages in having a
regulated K™ entry pathway in addition to a K leak (reviewed in
[14,100-102]).

K™ uptake into mitochondria is inhibited by ATP and sulfonylur-
eas, leading to the characterization of these K™ uniporters as ATP-
sensitive K* channels (mitoKarp, [99,103,104]). Other more recent
findings suggest mitochondria may also have Ca®* activated and/or
voltage-gated Kv1.3 potassium channels and the twin-pore domain
TASK-3 potassium channels (reviewed in [105]), but the roles of these
are still poorly understood.
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K" uptake is driven by the electrochemical potential and
accompanied by phosphate and water, resulting in matrix swelling,
which in turn dilutes matrix Mg?" and activates the K*/H™
exchanger [14]. The net result is K* cycling and lower protonmotive
force. The decrease in protonmotive force is, however, dependent on
the transport efficiency of the K* channel. In keeping with the reality
that mitochondria must be able to maintain oxidative phosphoryla-
tion, K* transport through mitoKarp channels is very limited, and
often undetectable by conventional measurement techniques [106].

MitoKarp channels are thus a (very) mild uncoupling pathway (Fig. 1).

Over the years, many functions have been proposed for mito-
chondrial K* uniporters. Since their activity results in water uptake by
the organelle, they play a role in the regulation of mitochondrial
matrix volume, which may be important to maintain the structural
relationship between the inner and outer membrane [14,106].
Another possible role for mitoK,tp may be to regulate mitochondrial
ApH, since the activity of this channel may result in matrix
alkalinization [107].

Based on the fact that uncoupling, even to a very mild degree, can
prevent mitochondrial ROS release [52,108-111], we proposed that K*
cycling due to mitoKayp activity could act as a regulating pathway to
control rates of ROS release in mitochondria [100,112-115]. Although
this hypothesis has met some resistance [116], the idea is supported by
the finding that mitoKarp channels are strongly activated by oxidants,
and inhibited by thiol reductants [100,114,115,117-120]. Furthermore,
the redox effects of this channel explain, at least in part, why mitoKarp
activation is protective against acute tissue damage [113,115] (see
Fig. 3). Other protective activities of this channel include regulating
mitochondrial volume, the physical relationship between the inner and
outer membrane and, as a result, transport of metabolites into
mitochondria (reviewed in [100]).

Although the strong protective effects of mitoKarp in situations of
acute tissue damage have attracted most of the attention in the area, it
is most probable the main role of these channels is not related to acute
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Fig. 3. MitoKarp channels: redox-sensitive pathways that control physiological and
pathological ROS release. Physiological increases in ROS levels in the mitochondrial
microenvironment lead to the activation of mitoKarp channels, resulting in mild
uncoupling and controlling the production of oxidants in mitochondria. Specific
pathological conditions also alter redox state, resulting in the activation of this
pathway: ischemic preconditioning in the heart increases ROS release, resulting in
mitoKarp activation and ischemic protection associated with decreased ROS formation
during reperfusion. Preconditioning is mimicked by oxidants such as H,0, and mitoKxyp
agonists (including diazoxide, DZX), and is inhibited by antioxidants and mitoKarp
antagonists. Hypertriglyceridemia (HTG) increases ROS and activates mitoKarp, resulting
in decreased efficiency of energy conversion and an improvement in the mitochondrial
redox state. Thiol reductants, which inhibit mitoKarp, prevent these effects.

stimuli. In this sense, the first evidence that these channels could have
a more general role regulating energy metabolism was uncovered by
Vercesi's group [121], who found that mitoKarp channel activity was
higher in the livers of transgenic hypertriglyceridemic mice. Interest-
ingly, the higher activity of mitoKarp in these animals results in
increased oxidative metabolism and a lower efficiency of energy
conversion in these animals, preventing obesity. In view of these
results, it is tempting to propose that mitoKarp channels may act as
modulators of animal energy metabolism and, as such, may play a
central role in metabolic disorders [95,121]. Further studies have
revealed that hypertriglyceridemic mice, while presenting indicators
of oxidative stress in cytosolic extracts from their livers, present a
protection against mitochondrial oxidation that is dependent on
mitoKatp activity [122]. Thus, the redox role of mitoKrp channels is
important also within metabolic alterations.

Since intracellular insulin responses involve Akt-dependent path-
ways (for a review see [123]), and mitoKayp can be activated by Akt, at
least in the ischemic heart [124,125], it is tempting to propose that
mitoKarp channels may have interesting functions under conditions of
insulin resistance, although this possibility is largely unexplored. An
indirect indication that mitoKatp channels have changes in their
activity in diabetes is the finding that protection against ischemic
damage conferred by preconditioning, a process mediated by mitoK-
atp (for reviews see [100,126]), is abrogated in models of this disease
[127-130]. Another often overlooked point of relevance in diabetes is
that treatment of the disorder with sulfonylureas such as glybencla-
mide (reviewed in [131]) not only increases insulin secretion due to
the inhibition of 3-cell Katp channels (see Fig. 2) but may also inhibit
mitoKarp channels, with yet unknown metabolic and redox con-
sequences (see Fig. 3).

6. Final remarks

Altogether, many different approaches support the idea that ion
transport rates across the inner mitochondrial membrane may be
determinant in the regulation of energy metabolism. As a result,
changes in activities of these transporters are certainly important as
causes and response mechanisms in metabolic diseases. Unfortunate-
ly, studies in the field are limited by methodological difficulties
regarding measuring the activities of ion channels in vivo. We believe
the relationship between mitochondrial ion transport and metabolic
disorders is an area that should be explored more intensely in the near
future.
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