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Abstract-Peristaltic pumping induced by a sinusoidal travelling wave of moderate amplitude is 
analysed in the axisymmetrical case for a viscous incompressible and Newtonian fluid mixed with 
rigid spherical particles which are of identical size. A perturbation method has been employed to 
find the solution of the problem, choosing the amplitude ratio (i.e., wave amplitude/tube radius) 
as a parameter. The analysis has been carried out by duly accounting for the nonlinear convective 
acceleration terms, and the nonslip condition for the fluid part on the wavy wall. The governing 
equations are developed up to the second order of the amplitude ratio. The zeroth order terms yield 
the Poiseuille flow and the first order terms give the Orr-Sommerfeld equation. In the absence of the 
pressure gradient and the wall motion, the mean flows (for the fluid and the solid particles) and the 
mean pressure gradient (averaged over time) are all found to be proportional to the square of the 
amplitude ratio. Numerical results are obtained for this simple case by approximating complicated 
groups of the products of Bessel functions by polynomials. It is observed that a reversal of flow occurs 
when the pressure gradient exceeds the critical value; this is favoured by the presence of the solid 
particles. The reversal of flow may take place near the boundaries also. 

1. INTRODUCTION 

Certain physiological phenomena, like the transportation of urine from the kidney to the bladder 

through the ureter, movement of thyme in gastrointestinal tract, and the vasomotion of some 

blood vessels involve a peculiar kind of motion that is caused by the movement of some progressive 

wave of contraction or expansion on the walls of the tube, which then relaxes and a lower portion 

becomes shortened and narrowed. This is termed as peristalsis. Moreover, the movement of 

spermatozoa in the ductus efferentes of the male reproductive tracts, that of the ovum in the 

fallopian tube, et&, are also of similar type, and the locomotion of some worms has also been found 

to be of peristaltic nature. Futhermore, by using the principle of peristalsis, some biomechanical 

instruments, e.g., heart-lung machine, have been fabricated. 

Some of the aforementioned physiological phenomena, including the flow of diseased urine in 

the ureter are based on the flow of particle-fluid mixture instead of a pure fluid. Hung and 

Brown [l] initiated the study of the peristaltic transport of solid particles, which included an 

experimental work on the particle transport in two-dimensional vertical channels having various 

geometries. A two-dimensional analysis of the problem was subsequently carried out mathemat- 

ically by Srivastava and Srivastava [2]. 

In this paper, we take up the axisymmetric flow of a suspension of solid particles in an incom- 

pressible Newtonian viscous fluid through a long flexible tube of uniform cross-sectional area. A 

sinusoidal wave is considered to be imposed along the walls of the tube. 
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The problem is analysed theoretically. In order to make the problem more realistic, the con- 
tributions of the nonlinear convective acceleration terms in the flow equations have been duly 
accounted for. A perturbation method is used to analyse the problem. The analysis has been 
carried out for the situation in which the amplitude ratio (i.e., wave amplitude/tube ratio) is 
small. In order to illustrate the applicability of the theoretical analysis, numerical values of vari- 
ous physical quantities have been computed for a specific example, viz., the flow of urine through 
the ureter. 

It is known that urine from the kidneys passes through ureters and is trapped between the 
contracted segments of the ureter. When there is some obstruction in the ureter or in the ureter- 
bladder junction, the upstream ureter dilates. In such hydroureter cases, peristaltic motion 
becomes a travelling wave of relatively small amplitude over a cylindrical tube. It is evident that 
the efficiency of pumping is decreased in such cases and the quantity of urine pumped through 
the ureter is reduced. Ultimately, the urine is stored in the bladder, from which it is periodically 
delivered through the urethrae. 

The roles of various parameters, like the Reynolds number, wave number, and the volume 
fraction of the particles have been examined in quantitative terms for the specific case, mentioned 
above, by using suitable data available in the literature. 

2. FORMULATION OF THE PROBLEM 

We consider an axisymmetric flow of a mixture of small spherical solid particles and an in- 
compressible Newtonian viscous fluid through a uniform circular cylindrical tube. We consider 
that the tube wall is subjected to sinusoidal waves. With the continuum mechanics approach, 
the equations governing the conservation of mass and linear momentum for both the fluid and 
the solid particle phases may be written in the following manner (cf. [3]): 

FLUID PHASE. 

= -(l - C) g + (1 - C) P,(C) [& + & + ; g - f] l/f + cs (VP - V,), (2.1) 

(l-c)Pf 
[ 
g+v$+‘II-g ?Jf 

1 

= -(l-C)dp aa+(l-C)&) 
[ 
g+-$+g q+CS(up-q), I (2.2) 

-g(l-C)vf+-$(l-C)uf+~(l-c)vf=O. (2.3) 

PARTICULATE PHASE. 

[ 

a 
CPP z +vp;+up; up=-c 1 aP 

~+cS(yf-vp)> 

cpp at [ 
d+V p$+up-& up=-c~+cs(uf-up), 

1 

$cvp+~cup+~cvp=o. 

(2.4) 

(2.5) 

(2.6) 

In (2.1)-(2.6), z represents the direction of the wave propagation, whereas r stands for the 
radial coordinate, (uf, of) denote the axial and radial velocity components of the fluid phase, 
and (uP,vP) those of the particulate phase; pf, pp, (1 - C) pf, and Cp, are, respectively, the 
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actual densities of the materials consisting of fluid and the solid particle phases, the fluid-phase 

density, and particle-phase density, C being the volume fraction of the particles in the mixture. In 

addition, p is the pressure, ps(C) is the particle-fluid mixture viscosity (also called as the effective 

viscosity of the suspension), and S the drag coefficient of the interaction for the force exerted 

by one phase on the other. We may neglect the field interaction between particles and regard 

the volume fraction, C, as a constant, when the concentration is low. Under the assumption 

that the solid particles are very small in size, the diffusivity terms, representing the effects of 

particle-particle interaction owing to the Brownian motion, may be considered to be negligible. 

The expression of the drag coefficient of the present problem is selected as (cf. [4]) 

s = ; 5 X’(C), where 

4 + 3 [8C - X’(C) 3C2]1/2 + 3c = 

[a - 3C]2 ’ 

(2.7) 

p. being the fluid viscosity, and a the radius of each solid particle suspended in the fluid. The 

above expression for the drag coefficient bears the potential to account for the finite particulate 

fractional volume through the function X’(C). The following empirical relation, suggested by 

Charm and Kurland [5], will be used in the foregoing analysis, for the viscosity of the suspension: 

1 
p,(C) = /Jo------, 

1-qc (2.8) 

where 

q = 0.070 exp 
1107 

2.49C + - T exp(-1.69C) , 1 
in which T represents the absolute temperature (“K). This formula has been tested by Charm 

and Kurland [5] by using a cone and a plate viscometer, and it has been proclaimed that it 

is reasonably accurate up to C = 0.6. Nonslip and impermeability conditions constitute the 

boundary conditions of the problem. The tube wall is assumed to be flexible but inextensible. 

It is also assumed that the displacement of the tube wall takes place in the radial direction only. 

Thus, the boundary conditions may be put as 

Uf = 0, 
2l 

uf = bt) 

1 

on r=R+v. (2.9) 
J?!!l 

VP = at 7 

We also introduce the stream functions q!~j and Gp such that 

1 Wf 
Uf =---1 

1 a& 
r ar up=---, r ar 

1 Wf 
“f =--, 1 aqp 

r az 
up=---, 

r az 

The transverse displacement, n, is given by 

q = b cos F (z - ct), 

where b is the amplitude, X is the wave-length, and c is the wave-speed. 

Furthermore, we introduce the following nondimensional variables based on R and c: 

(2.10) 

(2.11) 

2’ = t r’ = T U f u;=---, VUf 
R' R' C 

v; = -, UP VP 

C 
+--, 

C 
v:,=---, 

C 

@‘r $,; = -, 
(2.12) 

cR2 
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cRpf 
Re= (l-C)& 

(suspension Reynolds number), 

2lrr 
a=--- 

x 
(the wave number), 

b 
E=- 

R 
(the amplitude ratio), 

M=$& 

f 1 Iv = (l-“c”, p”, fiLs 
(suspension parameters). 

In terms of these, the equations (2.1)-(2.6), (2.9), and (2.11) become (after the primes are 

dropped): 

(1-C)Re -$mf + 
1 a 
;Qf 28 2 v a,++-$; 1 = V2V2Qf + CM (V2&, - V2$Jf), (2.13) 

iv’&, f i $+!+ V2$ - $ V2 + -$ g &, - i $,l+V2$+!+, 1 = C N (V2gf - V2&), (2.14) 

1 a 
q=ECOScY(Z-ct), v2,g+&- 

T 87-l 
(2.15) 

and 
&f =o 
&1//f = aErsina(z - t) 

&$J, = cuErsincu(z - t) 

at r = (1 + v), (2.16) 

where V2 denotes the Laplace operator. 

3. METHOD OF SOLUTION 

Taking the amplitude ratio, E, of the wave to be small, let us consider the following series 

expansions of the stream functions and the pressure gradient (in powers of E). 

In the equation (3.3), the first term on the right hand side corresponds to the imposed pressure 

gradient associated with the primary flow, and the other terms associated with the peristaltic 
motion. 

Substituting (3.1) and (3.2) in (2.13) and (2.14), and collecting terms of like powers of E, we 
obtain 

V2V2$fo = Rx3 (1 - C) 
[ 
$72+, + ; gqfo 

{ 
1 a vz$ - $ v2 + - - r2 dr > 

Gfo 

- ; ~2LfoV2 $fo 1 - CM V2bb,, - +fo,>, (3.4) 
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(3.6) 

CRe 

In a similar manner, from the boundary conditions (16), we have 

(3.9) 

(3.10) 

(3.11) 
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$f,(l) + $fl(l) cos(Y(z -t) + 5 g-J fl l a3 11, (1) cosa(z - t) = 0, (3.12) 

-$foW = 0, (3.13) 

&,I (1) + &W) cos a(~ - t) = c~ sin c\l(z - t), 

$!Ml) + &@,I cosa(z-t)+5m fo l d3 ti (1) co? (Y(z - t) = 0, 

(3.14) 

(3.15) 

(3.16) 

&J, (1) + gg4m coscr(z-t) =cusincu(z-t), (3.17) 

a2 &&) + ~aZpJ1) COSQ(Z - t) + ; &~po(l)Cos2a(t - t) = 0. (3.18) 

The differential equations (3.4), (3.7), (3.10), (3.13), and (3.16), subject to the steady parallel 
flow and transverse symmetry assumption for a constant pressure gradient in the z-direction, give 

the classical Poiseuille flow for the fluid and the particle phases for which the stream functions 

are given by 

and (3.19) 

(3.20) 

where 

(3.21) 

is the Poiseuille parameter. 

Thus, the effect of the particles on the fluid velocity profile is to cause an increase in the 

viscosity, i.e., the fluid viscosity, ~0, is replaced by the suspension viscosity ,LL~ = pc/(l - Q C), 

and thus for a given pressure difference less fluid will flow through the tube. 

The above differential equations in $fl, T)+,~, $J,Q, and $J>~, together with the corresponding 
boundary conditions are satisfied if 

(3.22) 

+f2 = #fto (r)+ 4fa2 CT) exd2ia (2 - t)l+ d;,, (7-1 apt -2s (z - t)), 
tip2 = $f,, (r) + dh (7) exd2ia (2 - t)) + 4F*Izz CT> exP{-2iQ (z - t>I, 

(3.23) 

where the 4’s are arbitrary functions of r alone and * denotes the complex conjugate. 

Substituting (3.22) and (3.23) into the differential equations and their corresponding boundary 

conditions in $fl, p&, $fi, and &, , we obtain the following set of differential equations: 

d2 Id ----- 
dr2 

rdr a2+icuRe(l-C){l+2K(l-r2)} 
I( 

-$-:$-a’ 4fl 
> 

= CM -$ - ; $ - a’] (qbfl - (ppl), (3.24) 

d2 ld 
------_2 & 
dr2 r dr > I 

&+2](&,I-~fI), (3.25) 
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$gifl(l) = 2K, 4jlO) = -;> $1(l) = -5, 

[{-$-;-$}{~-~$}]4f20 
=i&,e(l-C) f 

[{ 
(4fl4;:’ - 4’;14;,> - f (4.h 4;: - 4;, m;A}] 

- ; (4m 4;: - 4kl 4;,1] 

d2 1 d __--- 
dr2 T dr 

402 d2 1 d --_-_ 
dr2 T dr 4a2 h 
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(3.26) 

(3.27) 

(3.28) 

=--2ioRe(l-C){l+2K(l-r2)) -$-:$-4a2 4jgz 
1 

1-C 3 
+icxReY 651#‘;: - & & - ; 4f1 4yl f 

1 d 
; ‘;i;l - 4ff2 1 (4fm - (Pm), 

d2 Id 
--;z-4os dr2 

(3.30) 

~~~,(1)+~idl;,(1)+~~~:(1))-3K=O, ~j,,(1)+~4~,(1)-~K=O, 

&(l)+ ;$J;,(l) =O, &z(1) +- ;$$,(1) =O. 

(3.31) 

These differential equations along with the corresponding boundary conditions are sufficient to 
solve the problem up to the second order in 6. After finding the solutions of the above system 
of differential equations, we can determine +fl and $J~, . The higher order terms may also be 
determined in the same way. It may be noted that the present problem, being one of moving 
boundaries, have nonhomogeneous boundary conditions and hence it is not an eigenvalue problem. 
This makes the solution of the problem much more difficult. The pumping of an originally 
stationary fluid, with a zero pressure gradient [viz. g = 0], however, removes K and all the 
coefficients in the differential equations (3.24), (3.25), and (3.27)-(3.30) become constant. For 
thii particular case, it is possible to obtain the solution in a simpler way. Over this one, the 
simple solution for a Poiseuille flow can be superposed if K = 0(c2). 
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4. PUMPING IN 
THE ABSENCE OF ZEROTH-ORDER 

PRESSURE GRADIENT 

Let us consider that the fluid-particle mixture is stationary initially, i.e., the pressure gradient 
and hence K are zero. Under this assumption, the solution of equations (3.24) and (3.25), 
subject to the boundary conditions (3.26) together with the condition that the velocity, and 
hence (l/r) (@f, /dr), must remain finite at r = 0 yields 

where 

p2=a2-icYRe (1-C)+ ,_“v& I ) 
a!II(P)~O(cr) -Polio 1 

c = CflN 
Pl N - ioRe’ 

c 
P2 

= 1 - CPI h(P) 

At(Y) ’ 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where IO and Ir are the modified Bessel functions of the first kind. 

Furthermore, in the expansion of $~f,, tiPz, we are interested in $fio (r), qipzo (T) only, as our 

goal is to find out the mean flow only. So, under the assumption that K = 0, the differential 
equations (3.27) and (3.28), subject to the boundary conditions (3.31) are solved as follows. 

The substitution of (4.1), (4.2) and their conjugates into (3.27), (3.28), and (3.31) yields 

(4.8) 



Peristaltic lIansp0r-t 139 

+ c,, Plo(P) + w,, + c;J alo + q* p* IO@*) 

I 
= 5. (4.10) 

The terms in brackets on the right hand side of (4.8) and (4.9) are complicated functions of T, 
and hence, the determination of the particular solutions of (4.8) and (4.9) corresponding to 
these groups of the terms is extremely complicated. To get rid of the tedious calculations and 
manipulations, we represent the results approximately by polynomials of the following forms: 

{$-~$}{-&-~$}~~z0=-(l-C)202Re2$B~r2’, (4.11) 

CN{-$;$} (&,zO - &,,) = o2 Re2 C (1 - C) 2 I?: rzi; (4.12) 
i=l 

Bi and Bl have been determined by a least squares procedure. They depend on C, a, and Re; 
thus, for the different ranges of C, cr, and Re different Bi and B,! have been used. 

Solving (4.11) and (4.12) and differentiating once, we obtain 

f$XO = (Lr + L2) r + 2L2 T In(r) + L3 t3 - (1 - C)2a21&2 2 Bi d2i+3) 
i=l (2i + 2>2 (2i) ’ 

(4.13) 

%o = (Lq+Ls)r+2Lzr hr(r)+Lgr3-02Re2(1 -C)lk Bir(2”+3) 
i=l (2i + 2)s (2i) 

+C(l-C) 2 J B; r(21+1) 
CN o Re2c 2i ’ (4.14) 

i=l 

where Ll, Lz, LB, and L4 are constants. 
The conditions that the velocity must remain finite at T = 0, and therefore +X0 must remain 

finite at T = 0, yields Ls = 0. Defining the following functions 

C(r) = (1 - C)2 $ (2$27;;)2 (4.15) 

F(T) = (1 _ q2 2 5 T(2i+3) c(1 _ c) J’ &~(2”+‘) 

i=2 (22) (2i + 2) - CN z 2i ’ 
(4.16) 
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the boundary condition (4.10) is written as 

4;,,(l) = L1 + L3 - a2 Re2 G(1) z C. (4.17) 

Now, using (4.15)-(4.17) and L2 = 0 into (4.13) and (4.14) we obtain 

4>20 = [I + a2 Re2 G(l)] r + L3 (r3 - r) - a2 Re2 G(r), 

&,, = [C + o2 Re2 G(l)] r + L3 r3 - r - $r } - a2 Re2 F(r). 

(4.18) 

(4.19) 

One of the constants, Ls, still remains arbitrary and will depend upon the mean pressure gradient. 

To this end, if we consider a time-average of (2.1) for the solution given by (2.1), (2.2), (2.4), 

(2.5), (3.1)-(3.3), (3.7), (3.8), (3.17), (3.24), and (3.25), we find that 

where 

(4.20) 

a = _a2 Re _G”W + G’(r) G(r) --- 
7. r2 7.3 

- {( (l-C)t~yE-+e) + (Cl-‘)+ NCERe)} 

{ 
(l - c) c.f~ CT1 + C $ C,, Gil} Il(p*r) II 

- W)INyyfRe){ ( 
(1-C)+ CM 

N-tioRe ){ 
(l - G) G;, Gf, + G $ G,l Cp2} Il(p*r) II(w) 1 - 2. 

It may be noted that unlike the two-dimensional case, the time-averaged pressure gradient is not 

constant over time, but has a perturbation which depends upon the radius. Since A = 0 on 

r = 0, one may determine La by solving the above equation. Ls is found to be proportional to 

the axial time-averaged pressure gradient accompanying the peristaltic motion. Having specified 

L3 in this way, the solution, averaged over time, for the mean axial velocity may be given by 

(4.21) 

(422) 

From (4.21), the critical reversal flow condition, that the velocity along the centre-line of the 
tube is zero may be introduced. Using (4.20), this condition may be expressed by 

89 
Z2crit 

= $ [--a2 Re2 G(1) - []. (4.23) 

For particle-free flow our results tally exactly with those of Yin and Fung [6]. 
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r Ft.” 

600 

I 
700 

0.12 

0.15 

0.18 

0.21 

-41.07535 

-6.854490 

29.79772 

32.56108 

L 

0.12 -22.70283 -29.80276 -36.47531 

0.15 -35.89977 -23.21400 -8.484365 

0.18 13.13472 21.316 26.34322 

0.21 30.33152 31.931 32.56042 

-38.48836 -28.82742 

16.87302 23.29600 

31.38101 32.00893 

32.11160 31.42037 

800 

0.12 -18.60755 -3.477511 8.680878 

0.15 26.51192 29.41717 30.90509 

0.18 32.08697 31.80008 31.22109 

0.21 30.79297 29.78825 28.74751 

An Example: Peristaltic Flow in the Ureter 

-r T 
a 

0.0 

C 

0.1 0.2 

1 

In order to illustrate the applicability of the analytical work presented above, let us consider 

as a specific example, the flow through the ureter. 

It is known that for an adult human being, the average value of the length of the ureter 

is about 300mm and when fully distended, it has a diameter of a few mm, but it can easily 

collapse to a slit-shaped cross-section with essentially zero lumen. Under normal circumstances, 

the ureter undergoes peristalsis, i.e., successive waves of active muscular contraction pass along 

its wall from the kidney (renal pelvis) to the bladder at intervals of about 10 to 60 seconds (in 

men). The amplitude of the wave is of the order of 5 mm and the speed is typically about 20 to 

60 mm/s, so that the passage of one wave through the whole ureter takes about 10 to 15 seconds. 

The length of each wave usually ranges between 60 and 100mm. The frequency of contractions 

varies from one individual to another, and is about 1 to 8 per minute. Each contraction lasts 

about 1.5 to Ssec, the dilating phase is about twice as long as the contracting phase. Pressure 

during the contraction varies from 2 to 8mm Hg at the pelvis, 2 to 10mm Hg in the upper 

segments of the ureter, and 2 to 14mmHg in the lower segment of the ureter. The computational 

results presented below have been obtained by using the above data, which have been reported 

by Orkins [7], Bergman [8], Boyarsky [9], Griffiths [lo], and Wienberg [ll]. 

For the flow of urine through the ureter, numerical values of the mean axial velocity, %f(r), 

given by (4.21), have been computed for various values of C, o, and Re. They reveal that the main 

contribution for the mean axial velocity comes from < and the mean parabolic term L3 (1 - r2). 

It is also observed that the value of c (which owes its origin to the nonslip condition imposed on 

the wall of the tube) increases, in general, with the increase of C, a, and Re, although no exact 

trend is evident for the range considered here. The computed values of [ have been displayed in 

Table 1. 

From the time-averaged second order pressure gradient evaluated on the axis, we get the 

parabolic term LB (1 - TV), consisting of the mean pressure gradient. The mean pressure gradient 

has a perturbation function A(r). So a pressure perturbation function may be defined as 

H(r) = -$g. 
We observe a slight increase in H(r) with the increase of C and Re. Its value, however, decreases 

with the increase of cr(cf. Figure 1). 

The third perturbation term contributing to the velocity is G(1) - G(r)/r = E(r) (say). At 

the boundary, E(r) is minimum and increases inwards along the radius, and finally becomes G(1) 
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i 1.6 
-_-- C s 0.1. Re = 600,ti =0.21 

I 

I 
--a---- Cs 0.0. Roz 600.ti:0.12 I 
- .- C : 0.1, Re i 600. < = 0.12 c 

t 

1.2- --T C:O.l,Re:600.a:0.12 
- C ~0.2, Ro=600,o~~0.12 

.C 

2 0.6 - 
I 

0.4 - 

, , 8 
0.2 0.4 0.6 0-e 1.0 

r- 

Figure 1. Variation of the pressure perturbation Figure 2. Mean velocity perturbation function E(r) 
function in the radial direction for some selected for various values of particle-concentration (Re = 
C&%3% 600 and a = 0.12). 

t 
“0 

g 

W 

‘9 A- -< = 0.18 

I I 0.2 0.L 0.6 0.8 1-o 
re r--------c 

Figure 3. Mean velocity perturbation function for 
various values of the wave number (C = 0.1 and R.e 
= 700). 

Figure 4. Mean velocity perturbation function E(T) 
for various values of Reynolds number (C = 0.1 and 
OL = 0.18). 

on the centre line. Its variation with C, a, and Re is not very prominent. The variation of E(r) 
with T has been displayed in Figures 2-4 for different values of C, cr, and Re. 

In case the mean pressure gradient (g), exceeds a certain critical value, a reversal of flow 

takes place (Figure 5a). For the critical value of the mean pressure gradient, the mean axial 
velocity af(r) is zero at the centre of the tube (cf. Figure 5b). For the sake of comparison, 
velocity profiles have been presented for different variations of the parameters in Figures Sa-5d. 

At higher Reynolds number, the mean critical pressure gradient turns out to be negative in 
some cases, and the presence of the solid particles favours the backward flow (cf. Figure 6). 

It was observed by Srivsstava and Srivastava [2] that for the two-dimensional flow, the flow 
reversal does not take place at the boundary. However, present study indicates (cf. Figure 7) 
that for the axisymmetric case, there is a possibility of flow reversal for the mean flow even at 
the boundaries. 



(a) Time-averaged mean axial velocity profile for 

(C = 0.2, Q = 0.12, Re = 600, E = 0.15, (g), 

I I 1 
(b) Time-averaged mean axial velocity profile for 

= (C = 0.2, a = 0.12, Re = 600, E = 0.15, (g), > 

(c) Time-averaged mean axial velocity profile for 

(C = 0.2, a = 4.12, Re = 600, E = 0.15, ($$), = 

(d) Time-averaged mean axial velocity profile 

(C = 0.2, a = 0.12, Re = 

0). -5 < (%t!)2crit. 

600, E = 0.15, (g), = 

Figure 5. 
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-0 
1 

Figure 6. Variation of time-averaged mean velocity Figure 7. Time-averaged mean axial velocity 

profile with particle-concentration (Q = 0.15, He = profile for (C = 0.2, a = 0.21, He = 600, E = 

600, E = 0.15, (2)s = 0.15). 0.15, @), = -5). 

5. CONCLUSION 

We observe a qualitative similarity between the &symmetric flow and the two-dimensional 

channel flow for the mixture of fluid and solid particles. Unlike the case of two-dimensional chan- 

nel flow, the second order pressure gradient (averaged over a period), however, varies along the 

radius in the case of the cylindrical flow. F’rom the analysis, we are in a position to conclude that 

the mean flow induced by the peristaltic motion is proportional to the square of the amplitude 

ratio and depends on the mean pressure gradient also (induced by the peristaltic motion). More- 

over, at a certain critical value of the pressure gradient, the reversal of flow takes place, which is 

favoured by the presence of particles. Further, contrary to the two-dimensional Aow, the mean 

flow in axisysmmetric case may exhibit the reversal of flow at the boundaries also. 
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