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S U M M A R Y

Background: Cryptosporidium oocysts and Giardia cysts can be transmitted by the fecal–oral route and

may cause gastrointestinal parasitic zoonoses. These zoonoses are common in rural zones due to the

parasites being harbored in fecally contaminated soil. This study assessed the risk of illness (giardiasis

and cryptosporidiosis) from inhaling and/or ingesting soil and/or airborne dust in Potam, Mexico.

Methods: To assess the risk of infection, Quantitative Microbial Risk Assessment (QMRA) was employed,

with the following steps: (1) hazard identification, (2) hazard exposure, (3) dose–response, and (4) risk

characterization.

Results: Cryptosporidium oocysts and Giardia cysts were observed in 52% and 57%, respectively, of total

soil samples (n = 21), and in 60% and 80%, respectively, of air samples (n = 12). The calculated annual risks

were higher than 9.9 � 10�1 for both parasites in both types of sample.

Conclusions: Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our

knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and

giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the

microbial air quality around these parasites in rural zones.

� 2014 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/3.0/).
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1. Introduction

Cryptosporidium and Giardia are pathogens transmitted by the
fecal–oral route causing gastrointestinal infections in both humans
and animals.1 The public health importance of both parasites
results from the very low infectious dose required to cause illness,
their resistance to chemical disinfection, and the long period of
viability in the environment.2 The infective stages of Cryptospo-
ridium and Giardia, termed oocysts and cysts, respectively, can be
disseminated successfully across several environmental matrices
including water, food, and soil.3,4 Among these environmental
* Corresponding author. Tel.: +64 4100900 ext. 2110.
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1201-9712/� 2014 The Authors. Published by Elsevier Ltd on behalf of International So

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
matrices, soil represents an important vehicle through which
Cryptosporidium and Giardia infect humans. Soil is contaminated
by effluents (water runoff, rain and floods, and wastewater)
carrying human and non-human fecal material.3,5

Parasite exposure caused by soil inhalation/ingestion is a
serious health risk to children, who often play outdoors and
deliberately place their hands in their mouths. The estimated
average soil ingestion by children can reach between 5 and 8 g per
day.6 In adults, small soil particles are inadvertently ingested at a
value around 0.01 g per day.7

The soil in rural areas is highly predisposed to direct
contamination with fecal material because of the lack of sanitary
infrastructure (lack of proper water and sewage services, street
pavements, and others), resulting in a greater dispersion of soil via
airborne dust during the dry season, particularly in those places
where people are exposed to large amounts of outdoor dust.8
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The process for determining health risk is termed Quantitative
Microbial Risk Assessment (QMRA),9 which involves four steps: (1)
hazard identification, consisting of the estimation of Cryptospo-
ridium and Giardia (oo)cysts in soil and air using the Information
Collection Requirement Rule (ICR) method, (2) hazard exposure for
the Potam population, (3) dose–response modeling, and (4) risk
characterization using an exponential model.10

Rural areas in Mexico are extensive, and inhabitants of these
areas are more in contact with soil and air presumably
contaminated with fecal pathogens.8 The objective of this study
was to assess the human health risk of illness by Cryptosporidium
oocysts and Giardia cysts from exposure to soil and air in Potam,
Sonora, Mexico.

2. Materials and methods

2.1. Study area

Potam is located in the municipality of Guaymas, Sonora,
Mexico. It is one of eight rural villages of the Yaqui tribe, which has
a population of 6417,11 and it is situated 10 m above sea level at
global position 278370350 0 N, 1108240520 0 W.

2.2. Identification and characterization of oocysts and cysts in soil and

airborne dust samples

Soil samples were collected from five different areas inside the
community, once every 2 months for 8 months (July 2010 to
February 2011). Soil samples (2–3 kg) were obtained from a 0.9-m2

area and between 0 and 5 cm of depth. Air samples were collected
every 2 weeks for 8 months (August 2010 to April 2011), using a
portable air sampler (Graseby GMW) located in the town center, at
an elevation of 1.70 m from the ground. The air sampler flow rate
was operated at between 1200 and 1800 l/min. Glass microfiber
filters (934-AH RTU 90-mm; Whatman; Kent, UK) were used to
retain airborne dust as total suspended particulates (TSP) or
particulate matter (PM).

2.2.1. Sample characterization

The soil composition was obtained according to NOM-021-
SEMARNAT (2000), which includes the following parameters: soil
moisture, texture (by Bouyoucos technique), density, and organic
matter (by Walkley–Black method). The TSP in the air was
determined as defined in NOM-CCAM-002-ECOL (1993).

2.2.2. Detection of oocysts and cysts

Only 20 g of each soil sample was processed, whereas in the
case of air samples, each filter was processed. The 20-g soil samples
and each air filter were eluted by adding 0.2 l of buffered phosphate
detergent solution, in accordance with the guidelines of the United
States Environmental Protection Agency (USEPA).12 The prepara-
tion obtained from each sample was concentrated by centrifuga-
tion at 1050 � g for 10 min. The pellets were purified by flotation
using a Percoll–sucrose solution with a specific gravity of 1.1,
stained with a specific direct fluorescent antibody (Aqua-Glo G/C
Kit; Waterborne Inc., New Orleans, LA, USA), and examined under
an epifluorescence microscope (Axiolab; Zeiss, Heidenheim,
Germany). The results were reported as the concentration (C) in
terms of oocysts (Cryptosporidium) or cysts (Giardia) per liter of air
filtered in the case of air samples, or per gram in the case of soil
samples. For negative samples, the reported concentration was the
detection limit.

As quality control, the Aqua-Glo G/C Kit was used to evaluate
the recovery efficiency (R). Soil (20 g) and filters used to collect air
samples were intentionally inoculated with a known concentra-
tion of oocysts or cysts and were then processed as described
above. The R value, reported as a percentage, was calculated as
follows:

R ¼ ðCo � CÞ
Co

� 100

where Co is the known initial concentration of (oo)cysts in the
matrix (soil or filters to collect air samples) and C is the estimated
concentration of (oo)cysts recovered once the ICR protocol was
developed. The reported R values are the arithmetic mean of
triplicate results.

2.3. Exposure assessment

Exposure (N) was evaluated considering the following
factors: (oo)cyst concentration (C) per gram for soil samples
or per liter for air samples; amount of matrix (soil or air) ingested
or inhaled per day (M); the recovery efficiency of the method (R),
which is considered to avoid underestimation of (oo)cyst
concentrations and therefore miscalculation of exposure; and
finally the fraction of detected (oo)cysts capable of causing
infection (I).13,14 The following equation was applied to
determine exposure assessment:

N ¼ CR�1IM

2.4. Dose–response modeling and risk characterization

An exponential dose–response model was used for risk
characterization.10 The exponential model is given by the
following equation:

Pid ¼ 1 � e�rN

where Pid is the probability of daily risk of infection, N is the
exposure as estimated above, and r is the probability that the
organism survives to initiate an infectious focus. The r-values are
0.00419 and 0.0199 for Cryptosporidium and Giardia, respective-
ly.10 Although current research has reported a new r-value for
Cryptosporidium (r = 0.09),15 which increases the likelihood of
risks because the infectious dose is lower, the r-value for
Cryptosporidium in the present study was 0.00419.

The estimated daily risk could be extrapolated to calculate the
risk of illness over extended periods according to the following
equation:

Piy ¼ 1 � ð1 � PidÞðnÞ

where Piy is the probability of yearly risk of infection, n is the
number of days that an individual is exposed to the amount of
protozoa, and Pid is the daily risk.

Assuming, the risk of illness for both parasites is independent
but accumulative, the total risk (soil + airborne dust) can be
estimated as follows:

Pt ¼ 1 � e�rNt

where Pt is the probability of total risk and Nt is the total exposure
to pathogens in both samples.

3. Results

3.1. Hazard identification and characterization

The soil characteristics are given in Table 1. The TSP value in
Potam was 846.0 � 523.5 mg/m3, which is higher than Mexican
guidelines (210.0 mg/m3, NOM-024-SSA1-1993). Cryptosporidium
oocysts and Giardia cysts were observed in 52% and 57%, respectively,



Table 1
Soil sample characteristics

Potam district Texture Moisture

(%)

Bulk density

(g/cm3)

Organic

matter (%)

Pozo Clay loam 3.04 1.14 1.98

Tinaco Clay loam 2.41 1.16 1.47

Centro Clay loam 2.83 1.17 0.62

Merida Clayey 3.01 1.12 1.23

Santa Emea Clay loam 1.33 1.10 0.47

Table 2
Cryptosporidium oocysts and Giardia cysts in environmental samplesa

Sample Air Soil

Cryptosporidium

(oocysts/l)

Giardia

(cysts/l)

Cryptosporidium

(oocysts/l)

Giardia

(cysts/l)

1 <1.0 � 10�3 2.3 � 10�3 <6.5 <6.5

2 <1.0 � 10�3 2.7 � 10�3 43.5 72.91

3 4.5 � 10�3 3.0 � 10�3 37.5 29.16

4 1.1 � 10�2 2.4 � 10�3 <6.5 <6.5

5 8.3 � 10�3 2.6 � 10�3 <6.5 <6.5

6 4.5 � 10�3 <1.0 � 10�3 <6.5 29.16

7 5.3 � 10�3 5.2 � 10�3 43.5 72.91

8 5.6 � 10�3 8.7 � 10�3 <6.25 87.5

9 <1.0 � 10�3 <1.0 � 10�3 43.5 <6.5

10 <1.0 � 10�3 2.2 � 10�3 <6.5 <6.5

11 4.7 � 10�3 2.1 � 10�3 <6.5 <6.5

12 4.3 � 10�3 2.6 � 10�3 14.58 58.33

13 43.5 72.91

14 37.5 58.33

15 14.58 72.91

16 <6.5 <6.5

17 <6.5 <6.5

18 37.5 58.33

19 43.5 72.91

20 <6.5 29.16

21 14.58 58.33

GM 0.0032 0.0025 14.75 22.9

Min/max 0.001/0.011 0.001/0.0087 6.5/43.5 6.5/87.5

GM, geometric mean.
a The ‘<’ symbol indicates the concentration detection limits.
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of total soil samples (n = 21), and in 60% and 80%, respectively, of air
samples (n = 12) (Table 2). R-values in soil and air are shown in
Table 3.

3.2. Exposure assessment

Assuming a soil consumption (Ms) of 0.02 g/day in adults16 and
0.5 g/day in children under 7 years old,17 and the exposure
parameters (N) given in Table 3, the estimated N in adults and
children by soil ingestion is 2.89 and 72 Cryptosporidium oocysts,
respectively, and 2.19 and 54 Giardia cysts, respectively.

Air consumption (Ma) was calculated using the following
equation:

Ma ¼ WaTyB

where Wa is the average weight (54.2 kg) of people in Potam,18 Tv

is the volume of air inspired with normal breathing (6 ml/kg
weight), and B is the breaths per minute (18).19 Therefore Ma was
1404 liters per 4 h. Based on these calculations and parameters
given in Table 3, exposure due to air inhalation is 18.6
Cryptosporidium oocysts and 15.3 Giardia cysts.

3.3. Dose–response modeling and risk characterization

The risks of cryptosporidiosis and giardiasis for soil ingestion in
adults and children are given in Table 4; these results show that the
risks are considerably higher in children than in adults. The risks of
cryptosporidiosis and giardiasis in 4 h of exposure to air are shown
in Table 5.

3.4. Total risk

The total daily risk considering soil ingestion of 0.02 g and air
inhalation/ingestion of 1404 l was 6.8 � 10�2 for Cryptosporidium
and 2.3 � 10�1 for Giardia. The total annual risk of both parasites
Table 3
Parameters used for exposure calculation

Parameters to consider for exposure (N = CR�1IM)

Air Concentration of Cryptosporidium oocysts/l (C) 

Concentration of Giardia cysts/l (C) 

Recovery efficiency of Cryptosporidium and Giard

Cyst and oocyst viability (I) 

Amount of air inhaled (M) 

Soil Concentration of Cryptosporidium oocysts/g (C) 

Concentration of Giardia cysts/g (C) 

Recovery efficiency of Cryptosporidium and Giard

Cyst and oocyst viability (I) 

Amount of soil ingested (M) 

GM, geometric mean.
a All data were calculated in the present study; see section ‘‘Detec
b The amount of air inhaled was calculated in the section ‘‘Exposu
was 1.0, with the same consideration for soil and air inhaled/
ingested.

4. Discussion

4.1. Soil

Cryptosporidium oocysts and Giardia cysts were found in all
environmental soil samples. On dairy farms, 17% and 4% of soil
samples were found to be positive for Cryptosporidium and
Giardia, respectively.20 Oocyst and cyst numbers in this study are
higher than those reported on the dairy farms. However, the oocyst
numbers in soil obtained in this study (Table 2) are similar to those
reported in crop soils (0 to 640 oocysts/g).21

According to Armon et al.,21 the higher the moisture in soil, the
higher the concentration of cysts detected. High concentrations of
(oo)cysts obtained in soil can be associated with the presence of
clay particles and a high concentration of organic matter, which
 Data

Range 0.001–0.011; GM 0.0032a

Range 0.001/0.0087; GM 0.0025a

ia (R) 16.19% and 15.38%, respectivelya

100%

1404 litersb

Range 6.5–43.5; GM 14.75a

Range 6.5–87.5; GM 22.9a

ia (R) 10.18% and 20.83%, respectivelya

100%

0.02 g for adults16 and 0.5 g for children17

tion of oocysts and cysts’’.

re assessment’’.



Table 4
Daily and annual risks for Cryptosporidium and Giardia in adults and children, with an amount of soil ingested (M) of 0.02 g and 0.5 g per day, respectivelya

Risk of infection Concentration in soil

Cryptosporidium (oocysts/g) Giardia (cysts/g)

Min

6.5

GM

14.75

Max

43.5

Min

6.5

GM

22.9

Max

87.5

Adults Daily 5.3 � 10�3 1.2 � 10�2 3.5 � 10�2 7.3 � 10�3 2.5 � 10�2 9.5 � 10�2

Annual 8.5 � 10�1 9.8 � 10�1 9.9 � 10�1 9.3 � 10�1 9.9 � 10�1 1

Children Daily 1.2 � 10�1 2.6 � 10�1 5.9 � 10�1 1.6 � 10�1 4.8 � 10�1 9.1 � 10�1

Annual 1 1 1 1 1 1

GM, geometric mean.
a The r-values are 0.00419 and 0.0199 for Cryptosporidium and Giardia, respectively.10

Table 5
Daily and annual risks for Cryptosporidium and Giardia due to ingestion of oocysts

or cysts in air during 4 h of exposure per day

Risk of

infection

Concentrations in air

Cryptosporidium (oocysts/l) Giardia (cysts/l)

Min

0.001

GM

0.003

Max

0.01

Min

0.001

GM

0.002

Max

0.008

Daily 4.5 � 10�2 1.1 � 10�1 3.4 � 10�1 6.1 � 10�1 2.3 � 10�1 9.5 � 10�2

Annual 9.9 � 10�1 1.0 1.0 1.0 1.0 1

GM, geometric mean.

The r-values are 0.00419 and 0.0199 for Cryptosporidium and Giardia,

respectively.10
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can provide protection for microorganisms.22 The recovery
efficiency of oocysts in soil samples reported by Kuczynska and
Shelton ranged between 6% and 18%,23 which is similar to the
values obtained in the present study.

Although risk assessments in soil for Cryptosporidium and
Giardia have not been reported, a lot of research exists on the risk
assessment for these parasites in different water sources. The risk
of illness in water has been shown to range from 1 � 10�6 to 1 as a
function of water quality.24–27

4.2. Air

People habitually breathe through the nose; when abundant air
passes through the nose, the dust is bound by cilia, preventing the
particles from reaching the pulmonary bronchi. The agglomerated
dust in the cilia passes to the pharynx, and the esophagus
transports the dust to the stomach.24 During mouth breathing, the
airborne dust particles pass directly to the throat and into the
stomach. Thus, pathogens that are transported in air and
transmitted by the fecal–oral route can infect people.

In Potam, the content of (oo)cysts in air may be associated with
TSP values. However, a direct relationship between oocyst/cyst
concentrations and TSP detected in air samples was not found. In
the study by Cummins et al.,25 TSP results were not statistically
significant (p > 0.05) for the months sampled, the same finding as
that obtained in the present research.

The risk of illness for air inhalation is very high (Table 5), even
above the water guidelines (1.0 � 10�4).4 The infectious illness
estimates detailed in Tables 4 and 5 may be overestimates as a
result of assuming that all of the (oo)cysts (detected in soil and air)
were viable when swallowed (samples may have included non-
infectious (oo)cysts).

Further research is necessary, extended to other rural areas that
need an assessment of the risk for protozoan pathogens in air and
soil. Regardless of these characteristic limitations in the QMRA
method, this study offers microbial data that could be valuable in
the design of strategies or guidelines in inhabited towns,
particularly in rural zones.
5. Conclusions

This study provides the first QMRAs in soil for Cryptosporidium
and Giardia in Mexico and, to the best of our knowledge, the first
demonstration of microbial air quality monitoring in a rural zone.
Soil and air are important vehicles of infection for these parasites.
In Potam, Sonora, high (oo)cyst concentrations were detected with
a yearly risk of 1.0 for each parasite. Effective feces and sewage
disposal, as well as strategies to increase hygiene habits, are
recommended to reduce the infection risk.
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