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The transmission of dengue disease is influenced by complex interactions among vector,
host and virus. Land use such as water bodies or certain agricultural practices have been
identified as likely risk factors for dengue because of the provision of suitable habitats
for the vector. Many studies have focused on the land use factors of dengue vector abun-
dance in small areas but have not yet studied the relationship between land use factors
and dengue cases for large regions. This study aims to clarify if land use factors other than
human settlements, e.g. different types of agricultural land use, water bodies and forest are
associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malay-
sia. From the correlative relationship, we aim to generate a prediction risk map. We used
Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the
factors with high predictive accuracies. Our model with a cross-validated performance
score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed
that the most important land use factors are human settlements (model importance of
39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%)
and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated
ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset
for improving surveillance and control interventions for dengue.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction (VBD) in tropical areas (Gubler, 2006). In recent decades
Dengue fever (DF) and dengue haemorrhagic fever
(DHF) are the most important vector-borne diseases
the risk of dengue infection has increased dramatically
not only in tropical, but also in sub-tropical regions
(World Health Organization, 2012). There are between 50
and 100 million dengue infections every year, and more
than 500,000 cases are hospitalized (Gubler, 2006). Dengue
transmission is influenced by a complex set of factors
including the environment, climate and weather, human
behavior and dengue virus serotype-specific herd
immunity among the human population (Cheong et al.,
2013; Halstead, 2008; Hay et al., 2000). Understanding
the association between environmental factors and VBD
is essential for better preventing and controlling
disease transmission (Armien et al., 2008; Dambach
et al., 2009).
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In many countries, such as in Malaysia, dengue disease
has been endemic (Halstead, 2008). Since the first
reported case in Malaysia in 1901 (Skae, 1902) peaks of
dengue cases have been reported in 1974, 1978, 1982
and 1990, and the total number of dengue cases has
increased (Lam, 1993). All four serotypes circulated, the
predominant serotype identified was DEN-3 from 1992
to 1995, DEN-1, DEN-2 and DEN-3 alternated in recent
years (Arima and Matsui, 2011). According to the Minis-
try of Health Malaysia, the incidence rate of DF was the
highest ever in 2010 (148.73 per 100,000 population)
and the mortality rate of DHF was 0.42 per 100,000 pop-
ulation (Ministry of Health Malaysia, 2011). These figures
significantly exceed the national target of Malaysia,
which aims for the incidence rate of DF to be less than
50 cases per 100,000 population (Ministry of Health
Malaysia, 2011).

Dengue disease is often called an ‘‘urban’’ disease, with
the Aedes mosquitoes, both Aedes aegypti and Aedes albo-
pictus, mainly found breeding in artificial containers in
areas where high population density appears (Chen
et al., 2005; Gubler and Clark, 1995). However, A. albopic-
tus has also been found in natural environments (Gubler,
1998; World Health Organization, 2008). Entomological
studies showed that dengue vectors have been captured
in vegetated areas (Hayden et al., 2010; Vezzani et al.,
2005), orchards (Vanwambeke et al., 2007b), rubber plan-
tations (Paily et al., 2013; Sumodan, 2003), marshy swamp
(Sarfraz et al., 2012) and even in brackish waters (Idris
et al., 2013; Ramasamy et al., 2011). In a study of dengue
seroprevalence taken from the national database of the
Malaysian cohort study of 2008 (Muhammad Azami
et al., 2011), from the 1000 randomly selected adults aged
35–74, there was no significant difference in the seroprev-
alence rate between adults living in urban and rural areas.
Therefore, diverse land use types in the neighborhood of
human settlements may also provide a suitable habitat
for Aedes mosquitoes. Although human settlements have
been identified in earlier studies as being highly associated
with dengue cases (Gubler, 2006), we hypothesized that
other land use types are also associated with the
occurrences of dengue cases. In this study, our research
questions are:

(i) Which land use factors are associated with dengue
cases in Selangor state, Malaysia?

(ii) What is the spatial pattern of dengue risk based on
the identified correlative relationships?

Many studies have focused on the relationship
between Aedes mosquitoes density and environmental
factors in specific local hotspots of dengue (Chen et al.,
2005; Rohani et al., 2001; Wan-Norafikah et al., 2012).
There are also some studies that have evaluated the
spatial risk factors of dengue cases on a local scale
(Nazri et al., 2009; Shafie, 2011). To our knowledge, this
is the first study assessing the land use factors
associated with dengue cases in Malaysia on a state-
wide level.
2. Data and methods

2.1. Study area

Selangor covers an area of 7930.20 km2 and is located
between 2�350N to 3�600N and 100�430E to 102�50E
(Fig. 1). We selected the state of Selangor because of its
large number of dengue cases, which accounted for 41.1%
(56,305 cases) of all reported dengue cases in Malaysia
(Department of Statistics Malaysia, 2011). Secondly, Selan-
gor has the highest population density and gross domestic
product per capita of all states in Malaysia (Abdullah and
Nakagoshi, 2006). Thirdly, Selangor is geographically het-
erogeneous and displays a large variety of land use and
related environmental characteristics with large urban
areas, agricultural use, forests and wetlands (Abdullah
and Nakagoshi, 2006).
2.2. Data sources

We obtained dengue data for the state of Selangor for
the years 2008, 2009 and 2010 from the Disease Control
Division, Ministry of Health Malaysia. We used only those
dengue cases that were confirmed by the serological tests
IgM capture enzyme-linked immunosorbent assay (ELISA)
with single positive IgM, following earlier studies
(Chadwick et al., 2006; Krishnan et al., 2012).

We obtained a land use map of the year 2006 from the
Department of Agriculture Malaysia. This map is based on
imagery from Landsat 7 (30 m � 30 m resolution) and
SPOT 4 (20 m � 20 m resolution) satellite imagery, a topo-
graphic map (L7030, 1:50,000) and reference data from
field trips. According to the official accuracy assessment,
less than 5% of the land use classes have been incorrectly
classified.
2.3. Explanatory variables

We selected 15 land use variables that could be associ-
ated with suitable habitats for Aedes mosquitoes according
to a detailed literature review and dengue expert knowl-
edge. The land use variables are coconut and cocoa planta-
tion, animal husbandry, mixed horticulture, orchard and
farm, tea plantation, mining, oil palm plantation, neglected
grassland, rubber plantation, paddy field, swamp forest,
forest, open land, human settlements and water bodies.
The detailed map of each land use variable is shown in
Supplementary Fig. 1.

In coconut and cocoa plantations, natural breeding hab-
itats such as plant axils, coconut husks, coconut shells and
coconut floral spathes containing organic debris were
identified as suitable habitats for Aedes mosquitoes
(Chareonviriyaphap et al., 2004; Rohani et al., 2001;
Thavara et al., 2001). Land being used for animal hus-
bandry is a potential habitat for the dengue vector as A.
albopictus also feed on domestic chickens (Richards et al.,
2006). Mixed horticulture describes the area of mixed
cultivation of gardens, orchards and nurseries with



Fig. 1. Study area: State of Selangor, Malaysia with presence and absence of dengue cases in 200 m � 200 m grid cells.
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flowers, fruits, vegetables and ornamental plants sur-
rounding the human settlements where mosquitoes find
several suitable breeding possibilities (Nazri et al., 2009).
Furthermore, Aedes mosquitoes have been found in orna-
mental plants (Wan-Norafikah et al., 2012) including the
water-holding bromeliad axils (Mocellin et al., 2009) in
mixed horticulture. The presence of fruit trees and vegeta-
ble farms – which is classified here as orchard and farm
land including vegetation farming, fruit trees and mixed
cropland – has been seen to increase the probability of
finding Aedes mosquitoes (Chareonviriyaphap et al.,
2004; Vanwambeke et al., 2007b). In tea plantation areas
Aedes mosquitoes have been found in discarded tires, tins
and plastic cups near human inhabitations (Amala and
Anuradha, 2011).
Aedes mosquitoes have also been found in old mining
areas, in particular in flooded disused gold mine shafts
and wells (Russell et al., 1996). They have been identified
in suburban areas surrounded by oil palm plantation
(Ponlawat and Harrington, 2005) and in the neglected
grassland of a cemetery (Vezzani et al., 2005). Further-
more, Aedes mosquitoes have also been found in rubber
plantations, particularly in the rubber tree hole (Paily
et al., 2013), in suspended sap-collecting containers with-
out rain guards (Sumodan, 2003) and discarded water stor-
age containers (Chareonviriyaphap et al., 2004). Paddy
fields and swamp forest containing standing water from
2.5 cm to 30 cm in depth serve as a rainfall catchment area,
and are another suitable habitat for the dengue vector
(Sarfraz et al., 2012). Aedes mosquitoes have been
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captured from sites inside the forest, as far as 1 km from
houses (Lourenco-de-Oliveira et al., 2004), and in tree
holes, bamboo stumps and rock pools in the forest area
(Amala and Anuradha, 2011).

Artificial water containers that provide nutrients for the
Aedes mosquitoes have been found in open land, i.e. areas
that are ready for construction or agriculture and have only
little or no vegetation coverage with a dominance of sand
and rocks (Chang et al., 1997; Dom et al., 2012; Gleiser
and Zalazar, 2010). In several studies, Aedes mosquitoes
were identified in human settlements where they were
found to breed in a variety of water filled containers
(Nyamah et al., 2010). Another favorable dengue vector
habitat is natural reservoirs including various types of
water bodies, e.g. roadside ponds, pools, streams and other
containers found on river banks (Uribe et al., 2008).

2.4. Data preprocessing

In a first step, we geocoded the addresses of the dengue
cases with totals of 11,664, 10,482 and 8300 for the years
2008, 2009 and 2010. The geocoding accounted for
92.16% (2008), 93.44% (2009) and 94.87% (2010) of the
addresses; the others had to be excluded due to missing
values. We used the Google Maps Application Program-
ming Interface (API) that showed high quality geocoding
services (Cui, 2013; Roongpiboonsopit and Karimi, 2010)
and has successfully been used for the geocoding of health
care facility locations (Gu et al., 2010) and mosquito survey
in earlier studies (Neteler et al., 2011).

Secondly, we calculated a systematic 200 m grid of the
projected coordinate system Kertau (RSO)/RSO Malaya (m)
for the state of Selangor. This follows the official definition
of the Ministry of Health Malaysia that a dengue outbreak
is constituted by an incidence of two or more dengue cases
in a location where the onset dates of the cases are less
than 14 days apart and the cases are within 200 m of each
other (MoHM, 1986, MoHM, 2009). Next, only those grids
that are at least partly covered by human settlements were
included in the model. We hereby avoid a modeling bias of
dengue absence data in areas where no human settlement
and therefore no potential cases could be recorded because
we analyse the patient’s home address that falls into the
human settlements class of land use. We then classified
6344 grid cells as presence data (1) where at least one den-
gue case was reported between 2008 to 2010. The remain-
ing 29,662 grid cells with a certain proportion of human
settlements but no reported dengue cases were considered
as absence (0) data. Hence, our target, i.e. response
variable, is a binary presence/absence value of at least
one reported dengue case in a 200 m grid cell that includes
human settlement area.

We then used the focal statistics geoprocessing function
of ArcGIS’s Spatial Analyst (Environmental Systems
Research Institute, Inc.) to obtain the proportion of
coverage of each land use factor (Supplementary Fig. 1)
within a rectangular moving window of 1 km radius sur-
rounding each grid cell for the spatial neighborhood anal-
ysis. The radius was used in order to consider the
maximum flight range of the mosquito during its life span
and the potential dengue virus (DV) transmission with
human mobility that has also been applied in other studies
(Maciel-de-Freitas et al., 2006; Sarfraz et al., 2012). After
data compilation, and in order to avoid using highly
correlated variables in the subsequent models, we checked
for the pair-wise Spearman rank correlation between all
predictor variables.
2.5. Boosted Regression Tree analysis

To identify the association between the land use factors
and the reported dengue cases we apply Boosted Regres-
sion Trees (BRT), a machine learning algorithm developed
by Friedman et al. (2000). BRT are very flexible and capable
of dealing with complex responses, including nonlineari-
ties and interactions (Elith et al., 2008). Compared to gen-
eralized linear model (GLM) and generalized addictive
model (GAM) models they have been shown to yield better
results e.g. in terms of prediction capability (Coutts and
Yokomizo, 2014; Oppel et al., 2012). BRT have performed
well in disease modeling (Stevens and Pfeiffer, 2011) and
have been applied in various study domains, from
predicting the distribution of organism (Elith et al.,
2008), to comparing the factors of cropland abandonment
(Müller et al., 2013). We applied the BRT using the R
version 3.0.2 (R Development Core Team, 2013), package
‘‘dismo’’ version 0.8–17 (Hijmans et al., 2013) and package
‘‘gbm’’ version 2.1 (Ridgeway, 2013).

BRT combine boosting and regression trees in a single
algorithm. Regression trees grow with recursively binary
splits of the data until some stopping criterion is met.
Despite its easier visual interpretation of the interactions,
capability to adapt predictor variables of any type
(numeric, binary, categorical, etc.), and insensitivity to out-
liers, decision trees are prone to bias and not as accurate as
other statistical methods (e.g. GAM). Boosting based on the
stochastic gradient boosting (Friedman, 2002) improves
the decision trees by minimizing the loss function (devi-
ance) at each tree split. Stochastic gradient boosting
applies randomness into the sequential fitting (De’ath,
2007). We use a bagging factor of 0.5 as suggested by
Friedman (2001). The stagewise approach means that the
first regression tree is fitted to the dependent variable
while randomly selecting 50% of the training data (bag-
ging). The following tree is then fitted to the residuals of
the first tree and the fitted values are added to the logit
of the fitted probability. The model is then updated to con-
tain two trees and the residuals from this updated model
are calculated. This process is then further iterated until
reaching the defined stopping criterion (Elith et al., 2008).

The model building process is best with slower learning
rates (lr), also known as shrinking rate. The number of
splits levels of each tree, also called tree complexity (tc),
determines the degree to which predictors may interact
with each other in relation to the response. More levels
of interactions are explained with a higher tc. In this study,
we fit the model with a ‘‘bernoulli’’ distribution as we are
dealing with presence and absence data, as explained
above. We test for several combinations of the lr
(0.025,0.05,0.1) and tc (3,4,6,8,9,10) parameters. The
model with the highest cross-validated Receiver Operating



Fig. 2. Probability of dengue occurrence at 200 m � 200 m spatial resolution of the mean predicted map (area under the receiver operator curve of 0.81
(±0.001 s.d.)) from 100 boosted regression tree model iterations. High probability of dengue occurrences area is shown in red and low probability of dengue
occurrences area in green.
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Characteristic Area Under the Curve (ROC AUC) score was
selected as the most optimal settings (Hastie et al., 2009).

To obtain a more valid and reliable result, the BRT
model runs were repeated in 100 iterations (Bhatt et al.,
2013). The mean and standard deviation of the ROC AUC
scores among the 100 iterations were reported. We then
calculated a risk map to show the spatial pattern of prob-
ability of occurrence of dengue cases on the 200 m grid
level for the state of Selangor, Malaysia. We therefore get
the mean of the 100 iterations of prediction value. As a
result we receive a risk value scaled between 0 and 1
where 0 means low risk for dengue and 1 means high risk
for dengue based on the identified associations between
land use variables and dengue cases.

BRT delivers the relative importance of the predictor
variables in the model (Friedman, 2001). The relative
importance is based on the number of times a variable is
selected for splitting, weighted by the squared improve-
ment and averaged over all trees (Friedman and Meulman,
2003). The relative importance of each variable is then
scaled so that the sum adds to 100 as percentages. A higher
percentage of a variable indicates a stronger relative impor-
tance of this variable on the response. With 15 predictor
variables in our model, only the relative contribution above
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the randomness threshold (100%/number of predictor vari-
ables, 100%/15 = 6.67%) can be interpreted (Müller et al.,
2013). To better interpret the fitted functions, we used par-
tial dependence plots to visualize the relative importance of
the predictor variables on dengue cases (Friedman, 2001),
as well as rug plots to show the percentile distribution of
the response variables. To aid interpretation, all plots were
smoothed using a spline function.
3. Results

From the correlation analysis we found no high rank
correlations (rho > 0.70) between any pair of predictor
variables so that we continued with a model that included
all land use variables. The selected model was fitted using a
lr of 0.05, tc of 9 and a total of 2150 decision trees, and
showed a cross-validated ROC AUC score of 0.81. The
ensemble prediction map after the 100 iterations resulted
in a performance ROC AUC score of 0.81 (±0.001 s.d.). These
predictions were represented in the risk map of dengue
where we identify distinct spatial patterns of different
probabilities of occurrence of dengue cases for each grid
cell (Fig. 2). The spatial patterns of predicted dengue cases
overall coincide very well with the observed cases that are
shown in Fig. 1. Most of the reported high dengue risk
areas are identified, while only few are not correctly iden-
tified. Our predictions of high dengue risk (Fig. 2) seems to
be more focused on the central region of Selangor, with
clusters at the border to Kuala Lumpur, west and south-
east of Selangor. The presence of dengue cases that were
Fig. 3. Relative importance o
scattered in the northern and southern part of Selangor
(Fig. 1) is mainly predicted with low dengue risk (Fig. 2).
Besides, a large share of the presence of dengue cases in
the central region of Selangor is predicted with the proba-
bility of occurrences of dengue cases between high and low
risk (Fig. 2).

In addition to the spatial pattern of probability of occur-
rence of dengue cases we identified the relative impor-
tance of the predictors in the BRT model (Fig. 3) and the
correspondent partial dependence plots for each predictor
and the risk of dengue presence (Fig. 4). The selected
model demonstrated that only 5 out of 15 predictor vari-
ables had a considerable importance, i.e. above the ran-
domness threshold of 6.67% (Fig. 3). The partial
dependence plots in Fig. 4 further show the influence of
each of the five predictor variables on the dengue occur-
rences, taken that every other variable has been kept to
its mean value. We observed that the proportion of cover
of human settlements in a grid cell substantially contrib-
uted to the models with a relative importance of 39.2%
(Fig. 3), with a nearly linear increasing association with
the occurrence of dengue cases (Fig. 4(a)). Water bodies
including drains, lakes and rivers followed as the second
most important predictor of the dengue cases (relative
importance of 16.1%) (Fig. 3) with a slightly decreasing
non-linear association (Fig. 4(b)). The model indicates an
optimum for the occurrence of dengue in a grid cell with
the presence of water bodies of around the value of 25 to
50 ha of area (ca. 5 to 10% of the 1 km grid cell)
(Fig. 4(b)). Mixed horticulture, normally related to the
suburban orchards and gardens surrounding the human
f explanatory variables.



Fig. 4. Smoothed partial dependence plots for the five most influential land use factors for dengue cases; (a) human settlements, (b) water bodies, (c) mixed
horticulture, (d) open land, (e) neglected grassland. The density of presence and absence of dengue cases are represented in rug plots on the top and bottom
along the variable axis.
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settlements, showed a relative importance of 8.7%, with an
increasing non-linear association with the reported dengue
cases (Figs. 3 and 4(c)). The coverage of mixed horticulture,
particularly above ca. 200 ha (ca. 40% of the 1 km grid cell)
depicted a sudden increase of dengue risk. Similarly, the
proportion of area covered by open land, with a relative
importance of 7.5% (Fig. 3), also showed an increasing
non-linear association with the occurrence of dengue cases
(Fig. 4(d)), with particularly higher dengue risk in grid cells
with ca. 150–200 ha of open land (ca. 30% to 40% of the
1 km grid cell). Finally, neglected grassland, with a relative
importance of 6.7% (Fig. 3) in the model, showed a decreas-
ing linear association with the occurrence of dengue
(Fig. 4(e)).

The other predictor variables with relative importance
below the randomness threshold are coconut and cocoa,
animal husbandry, orchard and farm, tea plantation, min-
ing area, oil palm, rubber plantation, paddy field, swamp
forest, and forest. The dependency profiles for these pre-
dictor variables are not shown in the Fig. 4.

4. Discussions

In this study, we aimed to characterize associations
between different land use factors and dengue cases in
Selangor state, Malaysia. Moreover, we wished to show
the spatial patterns of dengue risk based on the identified
correlative relationships. Our results demonstrate that we
are able to explain the different associations between land
use factors and dengue cases from a state level perspective.

The study showed that human settlements and non-
agricultural areas largely determined the occurrence of
dengue cases. Larger shares of human settlement coverage
in the neighborhood are associated with higher numbers of
dengue cases. One of the reasons for this may be higher
population density in areas with more human settlements,
leading to higher human biting rates. Increased human bit-
ing rates offer opportunities for the Aedes mosquitoes to
acquire DV by biting an infected person and then to trans-
mit the virus after becoming infected (Scott and Morrison,
2010). Our findings are in line with those of other authors,
such as e.g. a study in one suburban city in Selangor, Sub-
ang Jaya, where they found that most dengue cases
occurred in urban areas (Nazri et al., 2009). The habitats
of Aedes mosquitoes were found in artificial containers in
areas related to human activities, but disparities were
identified between types of human settlements
(Vanwambeke et al., 2007a). Although no variation of
human settlements was investigated in this study, previ-
ous entomological surveillance has provided insightful
information. Aedes mosquitoes were found indoors and
outdoors in human settlements, especially in culverts,
water compartments, metal drums, plastic drums, pails,
gully traps, discarded containers, construction sites, solid-
waste dumps, open spaces and factories (Chen et al.,
2009; Nyamah et al., 2010; Teng and Singh, 2001).
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In addition to human settlements, the spatial patterns
of occurrence of dengue cases were also greatly influenced
by water bodies. In a 1 km buffer zone surrounding dengue
cases, a share of water bodies of about 25–50 ha exercise
the highest influence on the occurrences of dengue cases.
Although delineation of the type of water bodies was not
possible in this study, we infer that drains, small ponds
and streams would be the water bodies of about 25–
50 ha. Of particular relevance in this regard is the fact that
Malaysia has an open concrete drainage system (Ghani
et al., 2000; Zakaria et al., 2004). Our study is hence in line
with other entomological studies in Malaysia that found
that shallow clean stagnant water in drains served as a
suitable habitat for the Aedes mosquitoes (Chen et al.,
2005; Lee, 1991; Wan-Norafikah et al., 2012). Other water
bodies including roadside ponds, pools and streams are
also considered as natural reservoirs for Aedes mosquitoes
(Uribe et al., 2008).

Mixed horticulture also contributes to the high fre-
quency of dengue cases. The higher the coverage of mixed
horticulture, particularly above ca. 200 ha, the higher the
influence on dengue cases. Mixed horticulture is distrib-
uted throughout the suburban area. Orchards provide
shade and temporary stagnant water on plants or in
artificial containers that are suitable habitats for Aedes
mosquitoes (Vanwambeke et al., 2007a). Vanwambeke
et al. (2007a) also showed that the probability of finding
the A. albopictus mosquito larvae in orchards, peri-urban
settlements or villages was higher than in other land cover
types. Furthermore, the gardens or ornamental plants sur-
rounding the human settlements were also positively asso-
ciated with dengue cases. Teng et al. (1999) found that
containers used for planting and containers for watering
plants formed part of the breeding habitats for Aedes
mosquitoes.

More open land coverage in the 1 km vicinity shows a
positive association with dengue cases, especially when
open land covers an area of 150 to 200 ha. Natural gullies
filled with rainfall are a good reservoir for Aedes mosqui-
toes (Delatte et al., 2013). Such natural reservoirs are avail-
able all year round and are often neglected as vector
control largely targets human settlements (Delatte et al.,
2013). Furthermore, potential breeding sites have been
found in artificial containers discarded by workers in open
land (Chang et al., 2011).

Aedes mosquitoes are free to proliferate without much
dengue control intervention, especially in abandoned land
cover types such as neglected grassland. Our study shows
that a small patch of neglected grassland of ca. 25 ha would
be a suitable reservoir for Aedes mosquitoes. Microhabitats
that are shaded and vegetated are favorable habitats for
Aedes mosquitoes to breed in (Tun-Lin et al., 1995;
Vezzani et al., 2005). Another study also found that wet
grassland was associated with suitable habitats for dengue
vector reproduction (Li et al., 2013).

Our results suggest that land use factors are an impor-
tant component to be considered in the strategic planning
and implementation of vector control. This finding can be
used as empirical evidence from the environmental per-
spective for Integrated Vector Management (IVM) (World
Health Organization, 2012) at the state level. IVM has been
found more effective than other vector control approaches
in that it represents a rational decision-making process
that allows the optimal use of resources for vector control,
addressing all risk factors from parasite to vector, human
to environment (Erlanger et al., 2008; World Health Orga-
nization, 2012). Although Malaysia is now adopting this
strategy, there is still a lot to be done to ensure effective
management with cost-effective programmes, intersector-
al action, regulatory and operational standards, subsidiar-
ity and sustainability (Horstick et al., 2010; Mnzava et al.,
2006). For Selangor, we suggest more combined vector
control intervention should be focused on human settle-
ments, water bodies, mixed horticulture, open land and
neglected grassland.

The risk map that we provide can offer a helpful
resource for the local vector control programme for the
state of Selangor (Fig. 2). The prediction map differentiates
between areas of higher and lower risk. Moreover, the pre-
diction model can be transferred to other locations with
similar environmental settings as applied in other studies
for predicting avian influenza risk (Van Boeckel et al.,
2012) and fish species distribution (Pittman and Brown,
2011).

However, our study is constrained by four main aspects.
Firstly, we use correlative models which cannot define a
causal relationship. Although the relationships identified
are not causal, they are suggestive for vector control inter-
vention and are in line with earlier studies that use field
knowledge and focus on the processes within the disease
cycle (Bhatt et al., 2013; Martin et al., 2011). Secondly, spe-
cial care needs to be taken in interpreting the relationship
between land use factors, dengue cases and habitats of
Aedes mosquitoes. The link between habitat and land
cover characteristics is not always straightforward and is
influenced by landscape structure (Vanwambeke et al.,
2007b). Nevertheless, knowledge of mosquito ecology
from other studies helps explain this relationship. Thirdly,
we could not include human lifestyles and habits in the
study due to a lack of data, e.g. on housing with air-condi-
tioning, human mobility from house to workplace, recrea-
tional habits both outdoor or indoor, and self-awareness of
personal protection – all of which could influence the
occurrence of dengue cases and would be worth including
in a more detailed study (Barmak et al., 2011). Fourthly,
this study focused on the spatial and did not consider tem-
poral effects associated with rapid climatic changes,
changes in the composition of animal host population,
abrupt land use/cover change, political and economic
change (Lambin et al., 2010). However, our study indicated
that there is a significant relationship between land use
factors associated with higher frequencies of dengue cases
and, moreover, we further quantified these relationships
and depicted the risk of dengue on a state-wide level.
5. Conclusions

Our study has shown that BRT are a useful tool to model
the nonlinear and complex association between dengue
and land use factors and to derive a risk map. This
approach can not only be applied to other vector-borne



Y.L. Cheong et al. / Spatial and Spatio-temporal Epidemiology 10 (2014) 75–84 83
diseases, but may also be transferred to other endemic
regions. More detailed consideration of processes related
to each land use type is a possible direction for future
research. An equal focus on parasite, vector, human and
environmental factors is needed for planning, implement-
ing and evaluating the vector control interventions to
reduce or eliminate dengue transmission.
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