JOURNAL OF ALGEBRA 14, 485-492 (1970)

On a Generalization of Krull Domains
ELBerT M. PIRTLE

Department of Mathematics, University of Missouri, Kansas City, Missouri 64110
Communicated by Nathan Jacobson
Received March 1, 1969

INTRODUCTION

Let R be an integral domain with quotient field L and let F be a family of
valuations on L satisfying the following:

(1) Each v €F has rank one.
@ R=n{R,|veh),
(3) R, = Rp(,) for each v €F.

Here R, ={xeL | v(x) > 0} and P(v) ={x € R | v(x) > 0}. P(v) is called
the center of  on R. The family F is said to be of finite character if for any
nonzero x € L there are only finitely many v € F such that o(x) % 0. We say R
satisfies (#) with respect to F, if for distinct subsets Fy , F,, of F, we have
N{R, |weF} = N{R,|weF,} (This is a generalization of Gilmer’s
property (#) in [2].).

In [3], a semigroup (Z(R) of fractionary ideal classes was constructed using
the family F. Necessary and sufficient conditions were determined for (¥(R)
and Z(R) to be isomorphic, where Z(R) is the divisor group of R constructed
in [1]. Following [1], a nonzero fractionary ideal 4 of R is said to be divisorial
If it is the intersection of all principal fractionary ideals which contain it.
if the elements of F are discrete and F is of finite character (i.e., if R is a Krull
domain) then P(v) is divisorial for each v € F. In [3] it was shown that if F
is a family of discrete valuations satisfying (1), (2), (3), then (%(R) ~ Z(R)
iff P(v) is divisorial for each v €F. An example was given to show that F
need not be of finite character in order for each P(v) to be divisorial. In this
paper we investigate integral domains which have family F of valuations
satisfying (1), (2), (3), above and (4) P(v) is divisorial for each v € F.

For the construction and properties of Z(R), the reader is referred to [1].
All notation concerning Z(R) will be that of [1]. Prime ideals are always
nonzero and not all of R, Proper containment is indicated by <. Otherwise,
the notation is that of [4] and [5].
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1. DerFiniTION AND CHARACTERIZATIONS OF K DOMAINS

For completeness we briefly outline the construction of G/(R). Thus, let
I(R) denote the collection of nonzero fractionary ideals of R. For 4, B € I(R),
define 4 ~ B iff v(4) = o(B) for all v € F, where v(4) = inf{v(a) | a € 4}.
Then ~ is an equivalence relation on R, [4] denotes the equivalence class of
of A and C/R) denotes the collection of all such equivalence classes.
For [4], [B] e (U(R), put [A] < [B] iff v(4) < o(B) for all v eF, and
put [A] 4 [B] = [4B]. With these definitions (Z(R) is a partially ordered
Abelian semigroup with O = [R] satisfying the cancellation law. In [3] we
have shown that the map g : (R) — 2(R) defined by g([4]) = divg (4) is
an order preserving homomorphism from (¥(R) onto Z(R).

DeriniTiON 1.1.  Ris called a K domain if there is a family F of valuations
on L satisfying the following:

(i) Each v €F has rank one.
(i) R=n{R,|veF}
(iii) R, = Rp(,) for each v F.
(iv) P(v) is divisorial for each v e F.

The family F is called a family of essential valuations for the X domain R.
For any nonzero fractionary ideal 4 of R, 4 = N {Rx | 4 C Rx}. Thus
A is divisorial iff 4 = 4 (see [1]).

Prorosttion 1.2. IfFis a family of essential valuations for the K domain R
then each v € F is discrete.

Proof. We observe that R is the intersection of rank one valuation rings
and, hence, is completely integrally closed. Thus 2(R) is a group (see [1]).
Now let v € F. If v is not discrete then P = P2, Then divg (P) = divy (P?),
ie., 2 divy (P) = divg (P) and divg (P) = 0. But then P = R contradicting
P=P<R

It is well-known that if R is a Krull domain with family F of essential
rings Rp where P ranges over the collection of all minimal primes of R. Thus
when R is a Krull domain, the family F is uniquely determined by R.

The following proposition shows that if R is a K domain with family F
of essential valuations then F is uniquely determined by R.

ProposITION 1.3. Let F be a family of essential valuations for the K domain
R. Then the valuation rings R, , v €F are identical with the quotient rings R,
where P runs over all divisorial primes of R.
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Proof. It is clear that the collection of valuation rings R,, v €F, is
contained in the collection of quotient rings R, P a divisorial prime. On
the other hand, let P be a divisorial prime in R. If P 5= P(v) for any v €F,
then [P] =0, ie., o(P) = 0 for all v €F. But then g([P]) = divz (P) =0
and P = R, contradicting P = P < R.

In 1.2 it was shown that if F is the family of essential valuations of 2 K
domain R then each v € F is discrete. In practice it is often obvious whether or
not a valuation is discrete. We now study necessary and sufficient conditions
for each P(v) to be divisorial when the elements of F are assumed to be
discrete. Thus, let F be a family of valuations on L satisfying:

(1) each  €F has rank one and is discrete;
() R=n{R,|veF}
(3) R, = Rp(,) for each v eF.

The following two propositions are of use and interest because they give
necessary and sufficient conditions for a single P(v), v €F, to be divisorial.

ProPosITION 1.4. Let F be a family of valuations satisfying (1), (2), (3).
For v € F, P(v) is divisorial iff P(v) << P(v) [R : P(v)).

Proof. Let P(v) = P.If P < P(R : P), then [P] > 0 and [P(R : P)] = 0.
Now R:P=R:P and PCP, so P(R:P)CPR:P)CR. Thus,
0=[P] +[R:P]=[P] + [R: P]. Since (Z(R) is 2 cancellative semigroup
we have P = P, For if P < P then [P] = 0. On the other hand, suppose
P=P. If P=P(R:P) then divg(P)=divg[P(R:P)] =0 so that
P = R. This contradicts = P < R.

PrOPOSITION 1.5. Let F be a family of valuations satisfying (1), (2), (3).
For v € F, P(v) is divisorial iff R << R : P(v).

Proof. Let P = P(v), veF.

(=) R:P={xeL|xPCR}, so RCR:P. Now R and R:P are
divisorial, so if R << R: P, then divg (R) =0 # divg (R: P). Thus, if P
is divisorial and R =— R : P, then

0 = divg [P(R : P)] = divg (P) + divg (R : P) = divg (P) + 0 = divg (P).

But then P = R contradicts P = P < R.
(=) If R < R:P then divg (R: P) 0. Then

0 = divg [P(R : P)] = divgx (P) + divg (R : P) and divy (P) # 0.
Hence, P = R. It follows that P = P as in the proof of 1.4.
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For v eF, we let F, =F — {v}. The proof of the following lemma is
substantially the same as Lemma 1 of [2] and is omitted.

LemMa 1.6. R satisfies (#) with respect to F iff N {R, |weF,} L R, for
any veF.

PropPosITION 1.7. Let R be an tntegral domain with family F satisfying (1),
(2), (3) above. R is a K domain iff R satisfies (#) with respect to F.

Proof. (=) This follows from Proposition 1.3 and Lemma 1.6.
(=) Suppose R satisfies (#) with respect to F and let v € F. By Lemma
1.6, there is x e N {R, | w €F,} such that x¢ R, . Then w(x) > 0 for all

wekF, . Since x ¢ R, , v(x) = — = for some integer n > 0. We may assume
that ¢[P(v)] = 1 for each v €F since the elements of F are discrete. Let
¥ € P(v) be such that o(y) = 1. Then v(xy* 1) = — 1, so 2 =xy" 1 ¢ R.

But zeR:P(v) since for each ueF we have u[2P(v)] > 0. Thus,
R < R : P(v) and P(v) is divisorial by Proposition 1.5.
We can now state the following theorem.

THeoREM 1.8. Let R be an integral domain with family F of valuations
satisfying (1), (2), (3), above. The following are equivalent.
(i) R s a K domain with family F of essential valuations.
(ii) CUR) is a group.
(i) The map g : O(R) — Z(R) is an isomorphism.
(iv) o(4) =o(A4) for allv €F, A €I(R).
(v) P(v) < P(@)[R: P(v)] for each v €F.
(vi) R < R:P(v) for each v eF.
(vi)) R satisfies (#) with respect to F.

Proof. 'The equivalence of (i) through (iv) is found in [3]. The equivalence
of (i), (v), (vi), and (vii) follows from the above propositions.

2. Extensions oF K DoMaINs

Throughout this section we shall assume that R is an integral domain
with quotient field L and family F of valuations satisfying conditions (1), (2),
(3), of Section 1.

Let L’ be a finite, algebraic extension of L with R’ denoting the integral
closure of R in L'. Let F’' denote the collection of extensions of elements of
F to valuations on L'. By Theorem 30, p. 87 of [5], ' is a family of valuations
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on L', satisfying (1), (2), (3), with R replaced by R'. For w € F', w is the
extension of some v € F. Letting P’ = P'(w), we have P’ N R = P, where
P = P(v). The above notation and hypothesis are assumed in the following
proposition.

ProrosiTioN 2.1. If P is divisorial then P’ is divisorial.

Proof. We may assume without loss of generality that w[P’(w)] =1 for
each w e F'. Since P is divisorial, by Proposition 1.5 we have R << R: P,
Thus, there is x €L — R such that P C R. Then w(x) = — n for some
integer n 2> 1. Let Py,..., P,/ be the distinct (from P’ and each other)
primes of R’ which correspond to the other extensions of v €F. Let
xneP,/' — P,..,x,eP/ —Pandleta=xux;..5,(a=1if P’ is the
unique prime lying above P.) Let y € P’ be such that w(y) = 1, and consider
2z =a"xy"1. We have w(2) = — 1 and #(2) >0 for all ueF’, u £ w. It
follows that 2P’ C R’ but ¢ R’ so that R* << R’ : P’. Hence, P’ is divisorial
by Proposition 1.5.

We can now state the following theorem.

THeOREM 2.2. Let R be a K domain with quotient field L and family F
of essential valuations. Let L' be a finite, algebraic extension of L, let F' denote the
family of extensions of elements of F to L', and let R’ denote the integral closure
of RinL'. Then R’ is a K domain with F' as family of essential valuations.

Now let X be an indeterminate. Let F’ denote the collection of canonical
extensions of elements of F to L(X) and let G denote the family of a(x)-adic
valuations on L(X), where a(x) is a nonconstant irreducible polynomial in
L[X]. It follows that F/ U G is a family of valuations on L(.X) satisfying (1),
(2), (3), of Section 1 with R replaced by R[X] (see [5]).

The following lemma is found in [3]. We repeat the proof here for com-
pleteness. We also observe that only conditions (2), (3) are used in the proof.

LemMa 2.3. If R satisfies (#) with respect to F then R[X] satisfies (#) with
respect to F' U G.

Proof. Let weF UG. If weG then w is an g(x)-adic valua-
tion for some nonconstant irreducible polynomial e(x) e L[X]. Without
loss of generality we may assume that a(x) € R[X]. Suppose
a(x) = a, X" + -+ ayx + @y, a;€R. Let b =[], 40a;. Then b0
since a,, # 0 and

= i >
2(b) G'Z#o v(a) > oDin, v(a)) =0
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for all v € F since a; € R for all £ and every v € F is nonnegative on R. Then
for o' e F' we have v'[b]a(x)] = v'(b) — v'[a(x)] = v(b) — minyc <, ¥{a;) = 0.
If u € G, u # w, then u is a ¢(x)-adic valuation for some nonconstant irre-
ducible polynomial g{x) which does not divide a(x), and, hence, u[b/a(x)] = 0.
So bla(x) e N {R[x], | v e (F' v G),}. However, bja(x)¢ R[x], since
w[b/a(x)] = — 1 < 0. This if w € G then U {R[x], | # € (F' U G),,} € R[],
On the other hand, if w € F’, then w = ¢’ for some v € F. Since
N{R,luecF}LR,, there is xenN{R,|uecF,} with x¢R,. It
follows that x € N {R[x], | w € (F' U G),}, x ¢ R[x],, . Thus, R satisfies (#)
with respect to F' U G by Lemma 1.6.

Recalling Theorem 1.8, and retaining the above notation, we have the
following immediate corollary.

TrEOREM 2.4. Let R be a K domain with family F of essential valuations
and let x be an indeterminate. Then R[x] is a K domain with F' U G as family
of essential valuations.

The proof of the following corollary is immediate by induction.

CoroLLARY 2.5. Let R be a K domain and let x, ,..., x,, be indeterminates.
Then R[x; ,..., x,) is also a K domain.

It is well-known that when R is a Krull domain with family F of essential
valuations, then a domain 7 such that RC T'CL is a Krull domain if there
is a subfamily G of F such that T'= N {R, | v € G}. For K domains, the
author has been able to prove the following.

ProOPOSITION 2.6. Let R be a K domain with family F of essential valuations
and let GCF. The domain T = N{R,|ve G} is a K domain with G as
Jfamily of essential valuations.

Proof. It is easy to show that G satisfies (1), (2), (3), of Section 1 and that
T satisfies (#) with respect to G.

It is also a well-known fact that if R is a Krull domain and if .S is a multi-
plicative system in R then Ry is a Krull domain. In the next section we give
an example to show that this is not true for K domains in general.

3. AN ExampPLE

In this section we give an example of a K domain R which is not a Krull
domain, We show that there is a multiplicative system S in R such that R
is not a K domain. We also indicate that C(R) =~ C(R[x, ,..., ,]),whereC(R)

denotes the class group of R and x, ,..., x,, are indeterminates.
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Let R denote the ring of entire functions, let C denote the set of complex
numbers and let Z denote the additive group of integers. For a € C, define
9, R — {0} — Z by v,(f) =n if a is a zero of order n >0 of f. Define
©,(0) = + oo for all @ € C. Each v, can be extended to a valuation on the
quotient field of R. Let F denote the collection of all such valuations. The
following properties are easy to verify:

(i) Each v €F is rank one, discrete.
(i) R=nN{R,|veF}
(iii) R, = Rp(,) for each v €F.
(iv) P(v,) = (2 — a) R and, hence, P(v) is divisorial for each v e F.

(v) F is not of finite character.

Thus, R is a K domain which is not a Krull domain.

In the above example it can also be shown that P(v) is maximal for each
v €F and that R has the following property:

(*) Every rank one, discrete valuation on the quotient field of R which is
nonnegative on R is equivalent to some v € F.

Returning now to the general situation, let D be a K domain with quotient

field Q and family F of essential valuations. Consider the following statement
about D.

(**) Dy is a K domain for every multiplicative system S in R.
(**) is true when D is a Krull domain.

The above example does show that (**) is false for K domains in general.
For let {z,, _} be a sequence of complex numbers such that lim z,, = co.
For m =1, 2,..., let f,, be an entire function whose only zeroes are z,,,
241 s - The ideal 4 generated by {f,|m =1, 2,...} is proper and not
contained in P(v) for any v € F. Thus, 4 is contained in a maximal ideal M
which is not equal to P(2) for any v e F. It follows the Ry, is not a K domain
since R satisfies (*).

Let B(D) denote the subgroup of (¥(D) generated by principal fractionary
ideals of D. C(D) = 0{D)/B(D) is called the class group of D. When D
is a Krull domain and x,..., %, are indeterminates it is known that
C(D) =~ C(D[x, ,..., ¥,]). This statement is true for the example R above but
it is unknown to the autuor if this is true for K domains in general.
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