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INTRODUCTION 

Let R be an integral domain with quotient field L and let F be a family of 
valuations on L satisfying the following: 

(1) Each o SF has rank one. 
(2) R = n {R, 1 w EF), 
(3) R, = Rpcv) for each w EF. 

Here R, = {X EL 1 V(X) > 0) and P(w) = {X E R 1 V(X) > 0). P(V) is called 
the center of v on R. The family F is said to be of finite character if for any 
nonxero x EL there are only finitely many v E F such that v(x) # 0. We say R 

satisfies (#) with respect to F, if for distinct subsets Fl , F, , of F, we have 
n {RW 1 w EF~} # n {RW [ w EF~} (This is a generalization of Gilmer’s 
PropertY (#I in PI.). 

In [3], a semigroup b’l(R) of fractionary ideal classes was constructed using 
the family F, Necessary and sufficient conditions were determined for Ul(R) 
and 9(R) to be isomorphic, where 9(R) is the divisor group of R constructed 
in [I]. Following fl], a nonzero fractionary ideal A of R is said to be divisorial 
If it is the intersection of all principal fractionary ideals which contain it. 
if the elements ofF are discrete and F is of finite character (i.e., if R is a Krull 
domain) then P(V) is divisorial for each w EF. In [3] it was shown that if F 
is a family of discrete valuations satisfying (l), (2), (3), then a(R) s 9(R) 
iff P(w) is divisorial for each v EF. An example was given to show that F 
need not be of finite character in order for each P(w) to be divisorial. In this 
paper we investigate integral domains which have family F of valuations 
satisfying (1), (2), (3), above and (4) P(w) is divisorial for each w E F. 

For the construction and properties of 9(R), the reader is referred to [l]. 
All notation concerning .9(R) will be that of [l]. Prime ideals are always 
nonzero and not all of R. Proper containment is indicated by <. Otherwise, 
the notation is that of [4] and [S]. 

485 



486 PIRTLE 

1. DEFINITION AND CHARACTERIZATIONS OF K DOMAINS 

For completeness we briefly outline the construction of 02(R). Thus, let 
I(R) denote the collection of nonzero fractionary ideals of R. For A, B E I(R), 
define A -B iff a(A) = v(B) f or all er EF, where v(A) = inf{v(a) 1 a E A}. 
Then N is an equivalence relation on R, [A] denotes the equivalence class of 
of A and a(R) d enotes the collection of all such equivalence classes. 
For [A], [B] e 02(R), put [A] < [BJ iff o(A) < v(B) for all v EF, and 
put [A] + [B] = [AB]. With these definitions G!(R) is a partially ordered 
Abelian semigroup with 0 = [R] satisfying the cancellation law. In [3] we 
have shown that the map g : U(R) --+.9(R) defined by g([A]) = div, (A) is 
an order preserving homomorphism from a(R) onto 9(R). 

DEFINITION 1.1. R is called a K domain if there is a family F of valuations 
on L satisfying the following: 

(i) Each w E F has rank one. 

(ii) R = n {R, 1 v EF}, 

(iii) R, = R,+,) for each v EF. 

(iv) P(v) is divisorial for each v EF. 

The family F is called a family of essential valuations for the K domain R. 
For any nonzero fractionary ideal A of R, A = n (Rx 1 A C Rx}. Thus 

A is divisorial iff A = A (see [l]). 

PROPOSITION 1.2. If F is a family of essential valuations for the K domain R 
then each v E F is discrete. 

Proof. We observe that R is the intersection of rank one valuation rings 
and, hence, is completely integrally closed. Thus 9(R) is a group (see [l]). 
Now let e, EF. If o is not discrete then P = P2. Then divR (P) = div, (Pa), 
i.e., 2 div, (P) = div, (P) and divR (P) = 0. But then fl = R contradicting 
P=P<R. 

It is well-known that if R is a Krull domain with family F of essential 
rings Rj where P ranges over the collection of all minimal primes of R. Thus 
when R is a Krull domain, the family F is uniquely determined by R. 

The following proposition shows that if R is a f( domain with family F 
of essential valuations then F is uniquely determined by R. 

PROPOSITION 1.3. Let F be a family of essential valuations for the K domain 
R. Then the valuation rings R, , v EF are identical with the quotient rings Rr 
where P runs over all divisorial primes of R. 
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Proof. It is clear that the collection of valuation rings R, , v E F, is 
contained in the collection of quotient rings Rp , P a divisorial prime. On 
the other hand, let P be a divisorial prime in R. If P # P(v) for any v EF, 
then [P] = 0, i.e., v(P) = 0 for all er EF. But then g([P]) = div, (P) = 0 
and P = R, contradicting P = P < R. 

In 1.2 it was shown that if F is the family of essential valuations of a K 
domain R then each v E F is discrete. In practice it is often obvious whether or 
not a valuation is discrete. We now study necessary and sufficient conditions 
for each P(v) to be divisorial when the elements of F are assumed to be 
discrete. Thus, let F be a family of valuations on L satisfying: 

(1) each v E F has rank one and is discrete; 

(2) R=~{R,(vEF}; 

(3) R, = Rplv) for each v EF. 

The following two propositions are of use and interest because they give 
necessary and sufficient conditions for a single P(v), v EF, to be divisorial. 

PROPOSITION 1.4. Let F be a fumiZy of vuhztions sutisfying (l), (2), (3). 
For v E F, P(v) is divisoriul z$ P(v) < P(v) [R : P(v)]. 

Proof. Let P(v) = P. If P < P(R : P), then [P] > 0 and [P(R : P)] = 0. 
Now R:P=R:p and PCP, so P(R:P)CP(R:P)CR. Thus, 
0 = [P] + [R : P] = [p] + [R : p]. S’ mce 02(R) is a cancellative semigroup 
we have P = P. For if P < P then [P] = 0. On the other hand, suppose 
P =P. If P= P(R: P) then diva(P) = divs [P(R: P)] =0 so that 
P = R. This contradicts P = P < R. 

PROPOSITION 1.5. Let F be a fumiZy of valuations sutisfring (l), (2), (3). 
For v EF, P(v) is divisoriul a3 R < R : P(v). 

Proof. Let P = P(v), v EF. 
(+-) R:P={xELIxPCR}, so RCR:P. Now R and R:P are 

divisorial, so if R < R : P, then div, (R) = 0 # div, (R : P). Thus, if P 
is divisorial and R = R : P, then 

0 = diva [P(R : P)] = div, (P) + div, (R : P) = diva (P) + 0 = div, (P). 

But then P = R contradicts P = P < R. 
(=s) If R < R : P then divR (R : P) # 0. Then 

0 = divR [P(R : P)] = diva (P) + div, (R : P) and diva (P) # 0. 

Hence, P # R. It follows that P = P as in the proof of 1.4. 
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For v EF, we let F, = F - (v}. The proof of the following lemma is 
substantially the same as Lemma 1 of [2] and is omitted. 

LEMMA 1.6. R satisfies (#) with respect to F iff n {R, 1 w EF,} !$ R, for 
any v EF. 

PROPOSITION 1.7. Let R be an integral domain with family F satisfying (l), 
(2), (3) above. R is a K domain ifl R satis-es (#) with respect to F. 

Proof. (3) This follows from Proposition 1.3 and Lemma 1.6. 
(e) Suppose R satisfies (#) with respect to F and let v E F. By Lemma 

1.6, there is x E n {RW 1 w E FJ such that x $ R, . Then w(x) 2 0 for all 
w~F,.Sincex$R,, v(x) = - n for some integer n > 0. We may assume 
that v[P(v)] = 1 for each v E F since the elements of F are discrete. Let 
y E P(v) be such that v(y) = 1. Then v(xyn-l) = - 1, so z = xyn-l 4 R. 
But z E R : P(v) since for each u EF we have u[zP(v)] 3 0. Thus, 
R < R : P(v) and P(w) is divisorial by Proposition 1.5. 

We can now state the following theorem. 

THEOREM 1.8. Let R be an integral domain with family F of valuations 
satisfying (l), (2), (3), above. The following are equiwalent. 

(i) R is a K domain with family F of essential valuations. 

(ii) G!(R) is a group. 

(iii) The map g : a(R) -+ .9(R) is an isomorphism. 

(iv) v(A) = v(a) for all v E F, A E I(R). 

(v) P(v) < P(w) [R : P(v)] for each v EF. 

(vi) R < R : P(v) for each v E F. 

(vii) R satisfies (#) with respect to F. 

Proof. The equivalence of(i) through (iv) is found in [3]. The equivalence 
of(i), (v), (vi), and ( vu “) f 11 o ows from the above propositions. 

2. EXTENSIONS OF K DOMAINS 

Throughout this section we shall assume that R is an integral domain 
with quotient field L and family F of valuations satisfying conditions (l), (2), 
(3), of Section 1. 

Let L’ be a finite, algebraic extension of L with R’ denoting the integral 
closure of R in L’. Let F’ denote the collection of extensions of elements of 
F to valuations on L’. By Theorem 30, p. 87 of [5], F’ is a family of valuations 
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on L’, satisfying (l), (2), (3), with R replaced by R’. For w EF’, w is the 
extension of some v E F. Letting P’ = P’(w), we have P’ n R = P, where 
P = P(v). The above notation and hypothesis are assumed in the following 
proposition. 

PROPOSITION 2.1. If P is divisorial then P’ is divisorial. 

Proof. We may assume without loss of generality that w[P’(w)] = 1 for 
each w EF’. Since P is divisorial, by Proposition 1.5 we have R < R : P. 
Thus, there is x EL - R such that XP C R. Then w(x) = - n for some 
integer n $ 1. Let PI’,..., P,’ be the distinct (from P’ and each other) 
primes of R’ which correspond to the other extensions of v E F. Let 
xi E PI’ - P’,,.., xt E P,’ - P’ and let a = x1 x, . . . xt (a = 1 if P’ is the 
unique prime lying above P.) Let y E P’ be such that w(y) = 1, and consider 
z = a%y+1. We have w(x) = - 1 and u(z) > 0 for all u EFI, u # w. It 
follows that zP’ C R’ but z $ R’ so that R’ < R’ : P’. Hence, P’ is divisorial 
by Proposition 1.5. 

We can now state the following theorem. 

THEOREM 2.2. Let R be a K domain with quotient field L and family F 
of essential valuations. Let L’ be a finite, algebraic extension of L, let F’ denote the 
family of extension4 of elements of F to L’, and let R’ denote the integral closure 
of R in L’. Then R’ is a K domain with F’ as family of essential valuations. 

Now let X be an indeterminate. Let F’ denote the collection of canonical 
extensions of elements of F to L(X) and let G denote the family of a(x)-adic 
valuations on L(X), where a(x) is a nonconstant irreducible polynomial in 
L[XJ It follows that F’ u G is a family of valuations on L(X) satisfying (l), 
(2), (3), of Section 1 with R replaced by R[X] (see [5]). 

The following lemma is found in [3]. We repeat the proof here for com- 
pleteness. We also observe that only conditions (2), (3) are used in the proof. 

LEMMA 2.3. If R satisfies (#) with respect to F then R[X] satisfies (#) with 
respect to F’ u G. 

Proof. Let w E 8” U G. If w E G then w is an a(x)-adic valua- 
tion for some nonconstant irreducible polynomial a(x) EL[XJ Without 
loss of generality we may assume that a(x) E R[x]. Suppose 
a(x) = a,X* + ..* + aIx + u,, , ai E R. Let b = nahZ,, ak . Then b # 0 
since a,, # 0 and 

VP> = c VW 2 ,,~fj& v(a,) 2 0 
ak#o 
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for all v E F since aL E R for all k and every v E F is nonnegative on R. Then 
for v’ EF’ we have v’[b/a(x)] = v’(b) - v’[a(x)] = v(b) - rninsGjGn v(aj) > 0. 
If u E G, u # w, then u is a q(x)-adic valuation for some nonconstant irre- 
ducible polynomial q(x) which does not divide a(x), and, hence, u[b/a(x)] = 0. 
So b/a(x) E n {R[x]~ [ u E (F’ u G),}. However, b/a(x) 6 R[x]~ since 
w[b/a(x)] = - 1 < 0. This if w E G then u {R[x]~ 1 u E (F’ u G),} c R[x]:],. 
On the other hand, if w E F’, then w = v’ for some v E F. Since 
nVClu~FJ~L there is xen{R,luEF,,} with x$R,. It 
follows that x E n (R[x]~ / w E (F’ u G),,}, x I$ R[x],, . Thus, R satisfies (#) 
with respect to F’ u G by Lemma 1.6. 

Recalling Theorem 1.8, and retaining the above notation, we have the 
following immediate corollary. 

THJZOREM 2.4. Let R be a K domain with family F of essential valuations 
and let x be an indeterminate. Then R[x] is a K domain with F’ u G as family 
of essential valuations. 

The proof of the following corollary is immediate by induction, 

COROLLARY 2.5. Let R be a K domain and let x1 ,..., x, be indeterminates. 
Then R[x, ,..., x,J is also a K domain. 

It is well-known that when R is a Krull domain with family F of essential 
valuations, then a domain T such that R C T Z L is a Krull domain if there 
is a subfamily G of F such that T = n {R, ] v E G}. For K domains, the 
author has been able to prove the following. 

PROPOSITION 2.6. Let R be a K domain with family F of essential valuations 
and let G _C F. The domain T = n {R, 1 v E G} is a K domain with G as 
family of essential valuations. 

Proof. It is easy to show that G satisfies (l), (2), (3), of Section 1 and that 
T satisfies (#) with respect to G. 

It is also a well-known fact that if R is a Krull domain and if S is a multi- 
plicative system in R then Rs is a Krull domain. In the next section we give 
an example to show that this is not true for K domains in general. 

3. AN EXAMPLE 

In this section we give an example of a K domain R which is not a Kill 
domain. We show that there is a multiplicative system S in R such that R, 
is not a K domain. We also indicate that C(R) z C(R[+ ,..., x,J),whereC(R) 
denotes the class group of R and x1 ,..., x, are indeterminates. 
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Let R denote the ring of entire functions, let C denote the set of complex 
numbers and let 2 denote the additive group of integers. For a E C, define 
w, : R - {0} 3 2 by o,(f) = n i a is a zero of order n > 0 off. Define f 
o,(O) = + co for all a E C. Each o, can be extended to a valuation on the 
quotient field of R. Let F denote the collection of all such valuations. The 
following properties are easy to verify: 

(i) Each v EF is rank one, discrete. 

(ii) R=n{R,[vEF). 

(iii) R, = Rptu) for each v EF. 

(iv) P(w,) = (z - a) R and, hence, P(V) is divisorial for each et EF. 

(v) F is not of finite character. 

Thus, R is a K domain which is not a Krull domain. 
In the above example it can also be shown that P(w) is maximal for each 

w EF and that R has the following property: 
(*) Every rank one, discrete valuation on the quotient field of R which is 

nonnegative on R is equivalent to some w E F. 
Returning now to the general situation, let D be a K domain with quotient 

field Q and family F of essential valuations. Consider the following statement 
about D. 

(**) D, is a K domain for every multiplicative system S in R. 

(**) is true when D is a Krull domain. 

The above example does show that (**) is false for K domains in general. 
For let {z~,_,> b e a sequence of complex numbers such that lim z, = co. 
For m = 1,2,..., let f,,, be an entire function whose only zeroes are .a;, , 
2 m+l ,... . The ideal A generated by { fm 1 m = 1,2 ,... } is proper and not 
contained in P(w) for any w EF. Thus, A is contained in a maximal ideal M 
which is not equal to P(w) for any w E F. It follows the RM is not a K domain 
since R satisfies (*). 

Let B(D) denote the subgroup of .cT(D) g enerated by principal fractionary 
ideals of D. C(D) = G!(D)/B(D) is called the class group of D. When D 
is a Krull domain and x1 ,..., X, are indeterminates it is known that 
C(D) E C(D[x, ,..., ~~1). This statement is true for the example R above but 
it is unknown to the autuor if this is true for K domains in general. 
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