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Abstract

Matrix-valued distributions are used in continuous multivariate analysis to model sample data
matrices of continuous measurements; their use seems to be neglected for binary, or more generally
categorical, data. In this paper we propose a matrix-valued Bernoulli distribution, based on the log-
linear representation introduced by Cox [The analysis of multivariate binary data, Appl. Statist. 21
(1972) 113–120] for the Multivariate Bernoulli distribution with correlated components.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Matrix-valued distributions are used in continuous multivariate analysis (see, for exam-
ple, [10]) to model sample data matrices of continuous measurements, allowing for both
variable-dependence and unit-dependence. Their potentials seem to have been neglected for
binary, and more generally categorical, data. This is somewhat surprising, since the natural,
elementary representation of datasets with categorical variables is precisely in the form of
sample binary data matrices, through the 0-1 coding of categories.
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In this paper we denote an observed binary data matrix by Z and the matrix-valued
random variable, of which Z is a sample realization, by Z. Both are n × p matrices,
where n is the number of sample units and p is the number of binary variables. As long
as the units can be assumed to be independent, it is appropriate to model sufficient statis-
tics obtained by marginalizing Z, or its appropriate functions, over units; this kind of
marginalization underlies the practice of directly modeling the p-dimensional frequency
table obtained cross-classifying the p binary variables. If units are dependent, e.g. because
they are sampled through a complex sampling scheme or come from a longitudinal or spatial
study, then both the dependence structure of variables and that of units, and even the cross-
dependence of variables and units, can be of interest. We shall call these three dimensions
of dependence pure unit-dependence, pure variable-dependence and mixed unit/variable-
dependence. When all these dimensions are actually of interest, it would seem natural to
analyze Z by setting up a parametric model for Pr(Z = Z), which can take into account
simultaneously all these three types of dependence, in much the way the Matrix Normal
distribution does in the continuous case.Applications motivating the search for such a model
can be found in many fields, for example in epidemiology, when family members are ex-
amined for the presence of multiple diseases (see, e.g., [3]), and in toxicology, when the
offspring of treated pregnant animals are assessed for multiple outcomes (see, e.g., [9]).

The objective of this paper is to show the advantages of specifying a binary matrix
distribution directly for Z. Since the characterization of the Matrix Bernoulli distribution
proposed in this paper parallels that used by many authors for the Matrix Normal, we
shall devote the next section to a brief review of the Matrix Normal distribution. Section
3 presents the characterization of the Matrix Bernoulli distribution in general terms and
Section 4 illustrates three special cases obtained by making simplifying assumptions about
the dependence structure among units. In Section 5 some results in maximum likelihood
estimation of the parameters of the Matrix Bernoulli distribution are described. Finally,
Section 6 contains a discussion of possible extensions, and of the difficulties linked with
them.

2. A brief review of the Matrix Normal distribution

The Matrix Normal is by far the most studied matrix-valued distribution; a thorough
treatment can be found in [8]. Here we just give some basic results that will be useful in the
sequel.

There are several ways to characterize the Matrix Normal distribution; the most useful
one for our subsequent developments is given in the following definition (see, e.g., [8, p.
55]):

A random matrix X of continuous data is said to have a Matrix Normal distribution,
denoted by X ∼ Nn,p(M, �, �), if vec(X) has a Multivariate Normal distribution with
parameters vec(M) and � ⊗ �, i.e. vec(X) ∼ Nnp(vec(M), � ⊗ �).

By this approach, the Matrix Normal distribution of a random matrix X is derived from the
Multivariate Normal distribution of its vectorized form. From this definition, it is straight-
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forward to deduce that X has p.d.f.:

f (X) = 1

(2�)np/2|�|p/2|�|n/2 exp

{
−1

2
tr[�−1(X − M)�−1(X − M)T ]

}
, (1)

where M, � and � are n × p, n × n and p × p matrices, respectively.
The three matrix-valued parameters M, � and � have intuitive interpretations. Clearly M

is the (matrix-valued) expected value of X; as for � and �, it is interesting to think of � as
representing the covariance between the rows of X, and � as representing the covariance
between the columns of X. This interpretation is particularly useful when X is a sample
data matrix of p-variate observations on n sampling units. Then � can be thought of as
containing the “pure unit-dependence” parameters and � the “pure variable-dependence”
parameters. Moreover, the two aspects, unit-dependence and variable-dependence, do not
interact, in the sense that

cov(Xij , Xhk) = �ih�jk. (2)

The form of the covariance in (2) is a consequence of the absence of mixed unit/variable
interaction implicit in (1): the relationship between two variables is the same on any unit,
and the relationship between two units is the same on any variable. This is better seen in
terms of correlations instead of covariances. Using var(Xij ) = �ii�jj and (2), we obtain:

�(Xij , Xik) = �jk√
�jj

√
�kk

= �(Xhj , Xhk) ∀i, h,

�(Xij , Xhj ) = �ih√
�ii

√
�hh

= �(Xik, Xhk) ∀j, k.

On the other hand, the multiplicative form of (2) also implies a lack of identifiability of
(1): if X ∼ Nn,p(M, �, �) then X is also distributed as Nn,p(M, 1

a
�, a�) for any positive

scalar a. So, in a sense, unit-dependence and variable-dependence are never completely
distinguishable in their contribution to the overall dependence structure of X.

3. The matrix-valued Bernoulli distribution

In this section we set out to characterize the matrix-valued Bernoulli distribution by
analogy with the Matrix Normal. To do so, it is useful to begin by recalling some elementary
results on the Multivariate Bernoulli distribution.

3.1. The multivariate Bernoulli distribution

Let ZAk be a binary response, which measures whether a dichotomous variable Ak is
present (‘success’) or absent (‘failure’):

ZAk =
{

1 if a success is recorded on variable Ak, k = 1, . . . , m,

0 otherwise.

Consider the random vector ZA = [ZA1 , . . . , ZAk , . . . , ZAm ]T and its realization zA =
[zA1 , . . . , zAk , . . . , zAm ]T . There are many ways to model the possible dependence among
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components in ZA (see, for different approaches: [2,4,1,6,12,11]). The one which leads
more easily to a matrix-valued generalization is that proposed by Cox [4], who introduced
the following parameterization for the distribution of Z:

Pr(ZA = zA) = C exp

⎡
⎣ m∑

k

�AkzAk +
m∑

k �=h

�AkAhzAkzAh

+
m∑

k �=h�=r

�AkAhAr zAk zAhzAr

+ · · · + �A1,A2,...,AmzA1zA2 . . . zAm

⎤
⎦ , (3)

where C is a normalizing constant.
Parameterization (3) is completely general. The actual meaning of the � parameters will

depend on the nature of the binary variables ZAk ’s. For example, focussing on the simple
case of two variables: if ZAk , ZAh are two different binary variables recorded on each
sampling unit, then �AkAh is a “pure variable-association” parameter; if ZAk , ZAh refer to
two sampling draws from the same binary variable, then �AkAh is a “pure unit-association”
parameter; and finally, if ZAk is a variable recorded on a sampling unit and ZAh is a different
variable recorded on a different unit, then �AkAh is a “mixed variables/units-association”
parameter. In what follows, we shall stress this difference by using different symbols: � for
the first type of parameters, � for the second and � for the third.

3.2. The general matrix-valued Bernoulli distribution: vector representation

To keep things simple, we shall illustrate the matrix-variate case in a relatively simple
setting, i.e. with only two variables and n sampling units, i.e. with p = 2 and arbitrary n.
In order to avoid double subscripts, we shall use the letters A and B, instead of A1 and A2,
to denote the two variables.

Then, let ZA, ZB be two binary responses, which measure whether the two dichotomous
variables of interest A and B are present (‘success’) or absent (‘failure’) for n sample units:

ZA
i =

{
1 if the ith unit is a success on variable A, i = 1, . . . , n,

0 otherwise.

ZB
i =

{
1 if the ith unit is a success on variable B, i = 1, . . . , n,

0 otherwise

and denote by ZA = [ZA
1 , . . . , ZA

i , . . . , ZA
n ]T and ZB = [ZB

1 , . . . , ZB
i , . . . , ZB

n ]T the two
random vectors which generate the realizations zA = [zA

1 , . . . , zA
i , . . . , zA

n ]T and zB =
[zB

1 , . . . , zB
i , . . . , zB

n ]T .
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The natural arrangement for the two vectors ZA and ZB would be as columns of the
random matrix:

Z = [ZA, ZB ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ZA
1 ZB

1
ZA

2 ZB
2

...
...

ZB
i ZB

i
...

...

ZA
n ZB

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

However, in order to follow an approach similar to that used in the definition given in Section
2 for the Matrix Normal distribution, we first consider the distribution of the vectorized form
of ZT :

vec(ZT ) =
[
ZA

1 , ZB
1 , ZA

2 , ZB
2 , . . . , ZB

i , ZB
i , . . . , ZA

n , ZB
n

]T

.

The (transposed) observed matrix ZT is vectorized accordingly:

vec(ZT ) =
[
zA

1 , zB
1 , zA

2 , zB
2 , . . . , zB

i , zB
i , . . . , zA

n , zB
n

]T

.

We now need to accommodate the possible dependence among variables, units and vari-
ables/units. In order to do so, we extend (3) and introduce the following parameterization
for the distribution of vec(ZT ):

Pr(vec(ZT ) = vec(ZT ))

= C exp

[
n∑
i

�A
i zA

i +
n∑
i

�B
i zB

i +
n∑
i

�AB
i zA

i zB
i

+
n∑

i �=h

�AA
ih zA

i zA
h +

n∑
i �=h

�AB
ih zA

i zB
h +

n∑
i �=h

�BB
ih zB

i zB
h

+
n∑

i �=h�=r

�AAA
ihr zA

i zA
h zA

r +
n∑

i �=h�=r

�AAB
ihr zA

i zA
h zB

r

+ · · · +
n∑

i �=h�=r

�BBA
ihr zB

i zB
h zA

r +
n∑

i �=h�=r

�BBB
ihr zB

i zB
h zB

r

+ · · · + �AA...A
1,2,...,nz

A
1 zA

2 · · · zA
n + · · · + �BB...B

1,2,...,nz
B
1 zB

2 · · · zB
n

]
, (4)

where C is again a normalizing constant.
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As already mentioned, in (4) we can distinguish three types of parameters:

• �A
i , �B

i and �AB
i are usual log-linear parameters referring to the association structure of

the variables, e.g.:

�A
i = log

{
Pr[ZA

i = 1|rest = 0]
Pr[ZA

i = 0|rest = 0]

}
,

�AB
i = log

{
Pr[ZA

i = 1, ZB
i = 1|rest = 0]Pr[ZA

i = 0, ZB
i = 0|rest = 0]

Pr[ZA
i = 0, ZB

i = 1|rest = 0]Pr[ZA
i = 1, ZB

i = 0|rest = 0]

}

and therefore can be considered as “pure variable-association” parameters; in this respect,
they play the same role as the 	ij and �jk parameters in the Matrix Normal distribution.
Although in theory these parameters might be subject-specific, they are usually assumed
to be common to all units:

�A
i = �A, �B

i = �B and �AB
i = �AB ∀i.

• �-parameters, i.e. parameters with one-variable repeated superscripts, like �AA
ih , �BB

ih ,
�AAA
ihr , �BBB

ihr , etc., refer to the intra-units dependence with respect to each variable, e.g.:

�AA
ih = log

{
Pr[ZA

i = 1, ZA
h = 1|rest = 0]Pr[ZA

i = 0, ZA
h = 0|rest = 0]

Pr[ZA
i = 0, ZA

h = 1|rest = 0]Pr[ZA
i = 1, ZA

h = 0|rest = 0]

}

and therefore can be considered as “pure unit-association” parameters; from this perspec-
tive, they are the analog of the �ih parameters in the Matrix Normal distribution. These
parameters satisfy symmetry constraints within each t-uple of units, for 2� t �n, but they
can be different in different t-uples:

�AA
ih = �AA

hi ∀i, h,

�AAA
ihr = �AAA

irh = �AAA
hir = �AAA

hri = �AAA
rih = �AAA

rhi ∀i, h, r

and so on.
• �-parameters, i.e. parameters with two-variables superscripts, like �AB

ih , �AAB
ihr , �BBA

ihr ,
etc., refer to the intra-units dependence with respect to a specified combination of the
two variables, e.g.:

�AB
ih = log

{
Pr[ZA

i = 1, ZB
h = 1|rest = 0]Pr[ZA

i = 0, ZB
h = 0|rest = 0]

Pr[ZA
i = 0, ZB

h = 1|rest = 0]Pr[ZA
i = 1, ZB

h = 0|rest = 0]

}
.

As such, they measure the “mixed variables/units-association” on a log-linear scale. No-
tice that by definition they do not have any analog in the Matrix Normal distribution,
given the absence of variables/units interaction that is implicit in (1). These parameters
also satisfy symmetry constraints with respect to simultaneous permutations of variables
and units, e.g.:

�AB
ih = �BA

hi ∀i, h.
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On the other hand, they need not satisfy symmetry constraints with respect to permutations
of the variables alone or of the units alone, i.e. �AB

ih can be assumed to be equal or different
from �AB

hi (and from �BA
ih ), depending on the applications.

3.3. A matrix-valued Bernoulli distribution with quadratic exponential dependence
structure

In general, it is not easy to write explicitly the p.d.f. of Z as a function of the sample
matrix Z starting from (4), since the presence of second- and higher-order interactions among
variables, among units and among variables/units implies the use of arrays with three or
more dimensions. A special case which only involves the use of matrices is obtained by
enforcing the condition that all interactions (among variables, among units, and among
variables/units) of order greater than 1 equal 0. Of course, since in our illustration we have
p = 2 variables, this condition puts no restrictions here as far as the variables are concerned,
but it would constrain the type of variables-association admitted if we had p > 2. For units,
and variables/units, this condition implies that only pairwise interactions are allowed, a
severe constraint, that anyway encompasses many cases of applicative interest, as we shall
see in Section 4.

The “only pairwise interactions” condition implies that the vectorized form of Z follows
a quadratic exponential model (see [13,5]):

Pr(vec(Z) = vec(Z)) = C(�) exp{vec(ZT )T � vec(ZT )}, (5)

where � is a partitioned matrix:

� =

⎡
⎢⎢⎢⎢⎢⎣

� �12 . . . �1,n−1 �1,n

�21 � . . . �2,n−1 �2,n

...
...

. . .
...

...

�n−1,1 �n−1,2 . . . � �n−1,n

�n,1 �n,2 . . . �n,n−1 �

⎤
⎥⎥⎥⎥⎥⎦ = In ⊗ � +

n∑
i

n∑
j �=i

Eij ⊗ �ij (6)

and C(�) is a normalizing constant. Since there are 2np possible matrices in support of Z,
such a normalizing constant is given by

C(�) =
⎡
⎣ 2np∑

k=1

exp{vec(ZT
k )T � vec(ZT

k )}
⎤
⎦

−1

.

In (6) In is the n × n identity matrix, Eij is the (i, j) elementary matrix of order n × n, and

� =
[

�A �AB

�AB �B

]
, �ij = �T

ji =
[

�A
ij �AB

ij

�BA
ij �B

ij

]
.
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By using the same characterization recalled in the definition of the Matrix Normal distri-
bution, we can introduce the following definition:

The random matrix Z is said to have a Matrix Bernoulli distribution, denoted by Z ∼
Bern,p(�, �12, . . . ,�n−1,n), if vec(Z) has a Multivariate Bernoulli distribution with pa-
rameter �, i.e. vec(Z) ∼ Bernp(�).

Using a standard result on the properties of the Kronecker product and the trace function,
we finally obtain from (5) an expression for Pr(Z = Z) as a function of Z:

Pr(Z = Z) = C(�, �12, . . . ,�n−1,n)

×exp

⎧⎨
⎩tr[Z�ZT ]+

n∑
i

n∑
j �=i

tr[Eij Z�ij ZT ]
⎫⎬
⎭ . (7)

In (7) the normalizing constant is given by

C(�, �12, . . . ,�n−1,n) = [S(�, �12, . . . ,�n−1,n)]−1,

where

S(�, �12, . . . ,�n−1,n) =
2np∑
k=1

exp

⎧⎨
⎩tr[Zk�ZT

k ] +
n∑
i

n∑
j �=i

tr[Eij Zk�ij ZT
k ]

⎫⎬
⎭ . (8)

It is immediately seen, by simple inspection of (7), that the Matrix Bernoulli distribution
does not suffer the lack of identifiability typical of the Matrix Normal distribution. On the
other hand, unlike the Matrix Normal, the Matrix Bernoulli is not closed with respect to
marginalization. Its use is therefore recommended when conditional, rather than marginal,
associations between variables, units and variables/units are of substantive interest.

4. Special cases

It is useful to make some simplifying assumptions which lead to meaningful reductions
of (7). In particular, in the applications it is usually possible to assume that the pure unit-
association parameters (and the mixed variables/units interactions parameters, if present)
take on some simplified form that reflects the association structure appropriate for the mech-
anism generating the data at hand. Three important examples are: (a) unit-independence,
(b) unit-exchangeability, and (c) unit-Markovianity.

(a) Unit-independence: If the units are independent then �ij = O, ∀i, j and (7)
reduce to

Pr(Z = Z) = C(�) exp{tr[Z�ZT ]} = C(�) exp{tr[ZT Z�]}. (9)

We write Z ∼ Bern,p(�, O) in short and say that Z is distributed as a Standard Matrix
Bernoulli. It is instructive to re-write (9) in a more standard way by working out the nor-
malizing constant. Let yA = ∑n

i zA
i = ∑n

i (z
A
i )2 and yB = ∑n

i zB
i = ∑n

i (z
B
i )2 be the

sample marginal frequencies of successes on A and B, and yAB = ∑n
i zA

i zB
i be the sample
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joint frequency of successes on A and B. We can write:

ZT Z =
[ ∑n

i zA
i

∑n
i zA

i zB
i∑n

i zA
i zB

i

∑n
i zB

i

]
=

[
yA yAB

yAB yB

]
.

Recalling that tr[AB] = ∑
j

∑
k akj bjk , we get

C(�) exp{tr[ZT Z�]} = C(�) exp{�AyA + �ByB + 2�AByAB}
= C(�)[exp(�A)](yA−yAB)[exp(�B)](yB−yAB)

×[exp(�A + �B + 2�AB)]yAB

, (10)

whence

C(�) = 1

[1 + exp(�A) + exp(�B) + exp(�A + �B + 2�AB)]n . (11)

Substituting (11) into (10) we can finally write:

Pr(Z = Z) = �n−yA−yB+yAB

00 �yB−yAB

01 �yA−yAB

10 �yAB

11 , (12)

where

�00 = Pr(ZA = 0, ZB = 0) = 1

1 + exp(�A) + exp(�B) + exp(�A + �B + �AB)
,

�01 = Pr(ZA = 0, ZB = 1) = exp(�B)

1 + exp(�A) + exp(�B) + exp(�A + �B + �AB)
,

�10 = Pr(ZA = 1, ZB = 0) = exp(�A)

1 + exp(�A) + exp(�B) + exp(�A + �B + �AB)
,

�11 = Pr(ZA = 1, ZB = 1) = exp(�A + �B + �AB)

1 + exp(�A) + exp(�B) + exp(�A + �B + �AB)
.

Clearly (12) is the p.d.f. of a Bivariate Bernoulli, with associated variables, on a sample
of n i.i.d. units; more generally, in analogy with the Normal case, it is easy to show that
modeling a binary matrix as a Standard Matrix Bernoulli is equivalent to considering its
rows as n independent realizations from a Multivariate Bernoulli, as long as only first-order
interactions are present among the variables.

(b) Unit-exchangeability: Suppose the n units have no serial order, but belong to the same
cluster or matched set. It is then reasonable to assume not only that all unit-interactions and
variable/unit-interactions of order higher than 1 are zero but also that the units are exchange-
able, i.e. they have the same first-order unit-interaction parameters: �AA

ih = �A, �BB
ih =

�B ∀i, h, and the same first-order variable/unit-interaction: �AB
ih = �AB ∀i, h. As a conse-

quence: �ij = � ∀i �= j with

� =
[

�A �AB

�AB �B

]
.
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Thus

� = In ⊗ � + (Jn − In) ⊗ �, (13)

where Jn = 1n1T
n is a square matrix of ones of order n, and

Pr(Z = Z) = C(�, �) exp{tr[Z�ZT ] + tr[(Jn − In)Z�ZT ]}
= C(�, �) exp{tr[ZT Z�] + tr[ZT (Jn − In)Z�]}. (14)

(c) Unit-Markovianity: Suppose now the n sample units are the outcome of a longitudinal
study. Their dependence-structure is then serial in nature, and a simple way to take this
structure into account is to assume it to be Markovian, i.e. that the unit-interaction and the
mixed unit/variable-interaction parameters only depend on the distance of the unit labels:
�AA
ih = �A|h−i|, �BB

ih = �B|h−i|, �AB
ih = �AB|h−i| ∀i, h. In particular, suppose that first-order

Markovianity holds, i.e. �A|h−i| = 0, �B|h−i| = 0, �AB|h−i| = 0 ∀ |h − i| > 1. This allows to
write:

�i,i+1 = �1 =
[

�A
1 �AB

1
�AB

1 �B
1

]
, i = 1, . . . , n − 1, �i,i+t = O ∀t > 1.

Hence

� = In ⊗ � + L1 ⊗ �1, (15)

where L1 is the lag-one matrix of order n × n:

L1 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

On using (15), the general form (7) reduces to

Pr(Z = Z) = C(�, �1) exp{tr[ZT Z�] + tr[ZT L1Z�1]}. (16)

5. Likelihood inference

One of the advantages of considering a matrix-valued distribution is the compactness it
provides, and the possibility of employing matrix differentiation techniques in likelihood-
based computations.

To begin with, the p.d.f. (7) immediately highlights the (jointly) sufficient statistics for
the parameters. By writing it as

Pr(Z = Z) = [S(�, �12, . . . ,�n−1,n)]−1

×exp{tr[ZT Z�]}
n∏
i

n∏
j �=i

exp{tr[ZT Eij Z�ij ]}, (17)
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by the factorization criterion it is clear that ZT Z and ZT Eij Z, i, j = 1, . . . , n, i �= j are
jointly sufficient statistics for the matrix-valued parameters � and �ij , i, j = 1, . . . , n,
i �= j . Then, in particular:

(a) in the unit-independence model, the sufficient statistic for � is ZT Z;
(b) in the unit-exchangeability model, the jointly sufficient statistics for � and � are ZT Z

and ZT (Jn − In)Z, respectively; and
(c) in the first-order Markovian model for the units, the jointly sufficient statistics for �

and �1 are ZT Z and ZT L1Z, respectively.

Through the use of matrix derivative techniques, form (7) is also suitable for the derivation
of results concerning maximum likelihood estimation. From (17), the log-likelihood for the
parameters �, �ij , i, j = 1, . . . , n, i �= j is

�(�, �12, . . . ,�n−1,n|Z) = − log{S(�, �12, . . . ,�n−1,n)

+tr[ZT Z�] +
n∑
i

n∑
j �=i

tr[ZT Eij Z�ij ]. (18)

Let us denote by sk = exp
{

tr[ZT
k Zk�] + ∑n

i

∑n
j �=i tr[ZT

k Eij Zk�ij ]
}

the kth generic term

of the sum S(�, �12, . . . ,�n−1,n) defined in (8) and by ŝk = exp
{

tr[ZT
k Zk�̂] + ∑n

i

∑n
j �=i

tr[ZT
k Eij Zk�̂ij ]

}
its maximum likelihood estimator. Using the rules of matrix differentia-

tion (see [7]):

��(�, �12, . . . ,�n−1,n|Z)

��
= −

∑2np

k=1 skZT
k Zk∑2np

k=1 sk
+ ZT Z

and, for i, j = 1, . . . , n, j �= i:

��(�, �12, . . . ,�n−1,n|Z)

��ij

= −
∑2np

k=1 skZT
k Eij Zk∑2np

k=1 sk
+ ZT Eij Z.

Hence, the likelihood equations are

∑2np

k=1 ŝkZT
k Zk∑2np

k=1 ŝk
= ZT Z

and, for i, j = 1, . . . , n, j �= i:

∑2np

k=1 ŝkZT
k Eij Zk∑2np

k=1 ŝk
= ZT Eij Z.

But

ŝk∑2np

k=1 ŝk
= Pr(Z = Zk|�̂, �̂12, . . . , �̂n−1,n),
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thus, the likelihood equations can be written as

E
[
ZT Z|�̂, �̂12, . . . , �̂n−1,n

]
= ZT Z (19)

and, for i, j = 1, . . . , n, j �= i:

E
[
ZT Eij Z|�̂, �̂12, . . . , �̂n−1,n

]
= ZT Eij Z. (20)

The likelihood equations in forms (19) and (20) provide an extension to the matrix-valued
case of the well-known result by which the maximum likelihood estimates are the (unique)
values that equate expected and observed sufficient statistics for the model.

6. Extensions

The main limitations of the Matrix Bernoulli distribution proposed in this paper are linked
to its quadratic exponential dependence structure.As long as the “only pairwise interactions”
condition holds, the extension of the results of the previous Sections is straightforward to
situations such as:

• more than two binary variables;
• polytomous rather than dichotomous responses; and
• units grouped into clusters, with within-clusters unit-dependence but between-clusters

independence.

As mentioned in Section 3.3, the extension to situations in which variables, units or vari-
able/units dependence comprises higher-order interactions is conceptually easy but formally
and computationally cumbersome, due to the need to work with higher dimensional arrays.

Finally, parameterizations of dependence alternative to the one introduced by Cox [4]
and extended in this paper are going to be not only computationally but also conceptually
challenging, since it is not immediately clear how they can be expressed in a form that leads
to a matrix-valued distribution.
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